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Conventional breeding in conjunction with molecular techniques and transgenic approaches have a great promise
to reduce pest associated crop losses, and accelerate the progress in developing cultivars with resistance to
insects. Although, considerable progress has been made over the past two decades in manipulating genes from
diverse sources to develop plants with resistance to insect pests, deployment of molecular techniques for insect
resistance, understand nature of gene action and metabolic pathways, but rapid and cost effective development
and adoption of biotechnology-derived products will depend on developing a full understanding on the interaction
of genes within their genomic environment, and with the environment in which their conferred phenotype interact.
A good beginning has been made in developing genetic linkage maps of many crops, but the accuracy and precision
of phenotyping for resistance to insect pests remains a critical constraint in many crops. Improved phenotyping
systems will have substantial impact on both conventional and biotechnological approaches to breed for resistance
to insect pests, in addition to the more strategic research that feeds into these endeavors.

��!"����# Host plant resistance, insect pests, molecular markers, genetic transformation, gene pyramiding, RNAi

������������

Host plant resist-ance (HPR) assumes a central role, and is
the backbone of pest management in order to increase
pro-duction and productivity of the crops, to meet the
increasing demand for food, feed, fodder, and fuel. In spite
of the importance of HPR as an integral part of integrated
pest management (IPM), breeding for resistance to insects
has not been as successful as breeding for disease resistance
because of the relative ease with which insect control is
achieved through insecticide use, slow progress in
developing insect-resistant cultivars as a result of the
difficulties involved in ensuring adequate insect infestation
for resistance screening and slow transfer of insect resistance
traits due to complex and polygenic inheritance. With the
development of insect resistance to insecticides, adverse
effects of insecticides on natural enemies, and public
awareness of environment conservation, there has been a
renewed interest in the development of crop cultivars with
resistance to insect pests. The insect resistant varieties have
been deployed as principal method of insect control in
several parts of the world, for example, corn varieties with
resistance to corn borer, Ostrinia nubilalis (Hubner) and
corn earworm, Helicoverpa zea (Boddie), sorghum to green

bug, Schizaphis graminum (Rondani), and alfalfa to aphids
- Therioaphis maculate (Buckton) and Acyrthosiphon pisum
(Harris] in USA; cotton to jassid, Jacobiella facialis (Jacobi)
in Africa; sorghum to midge, Stenodiplosis sorghicola
(Coquillett) in India; and rice to brown planthopper,
Nilapavata lugens (Stal) and green leaf hopper, Nephotettix
virescens (Distant), and wheat to Hessian fly, Mayetiola
destructor (Say) and wheat stem fly, Cephus cinctus Norton
in several parts of the world (Stoner, 1996). The quest to
break yield plateau for sustainable increase in crop
productivity of field crops through use of hybrid technology
has diluted the emphasis on development of insect-resistant
cultivars. Moreover, the levels of insect resistance in most
of the recently released varieties/hybrids are inadequate, and
therefore recent years have observed a paradigm shift in
advocacy and deployment of techniques to diversify the
bases of resistance through gene pyramiding from cultivated
germplasm, closely related wild relatives of crops, and
transfer of insect resistance genes in parental lines for
developing insect-resistant hybrids (Kameshwara Rao et al.,
2005, Dhillon et al., 2008, Sharma, 2009).

Last two decades have seen a rapid progress in deployment
of molecular techniques and marker systems in agricultural
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sciences to understand gene and genome organization and
function of crop plants, and revolutionized the understanding
to manipulate traits contributing to crop productivity, and
the genes associated with resistance to insect pests. High-
density genetic linkage maps of several crops such as barley,
maize, potato, rye, sorghum, soybean, tomato, and wheat
have been developed, and molecular markers in many of
these crops have also been found to be linked to genes
expressing resistance to insect pests, which can be used to
accelerate the process of transferring insect resistance into
improved cultivars (Sharma, 2009). The ability to isolate
and manipulate single genes through recombinant DNA
technology together with the ability to insert specific genes
into cultivars with desirable agronomic traits, and adaptation
to environmental conditions in a particular region has added
new chapter to crop improvement. Significant progress has
been made in over the past two decades in introducing
foreign genes into plants, and provided opportunities to
modify crops to increase yields, impart resistance to biotic
stresses (insect pests, diseases, and weeds), and improve
nutritional quality and yield (Sharma et al., 2004). Genes
from bacterium, Bacillus thuringiensis, non-selective
herbicide resistance genes, protease inhibitors, plant lectins,
ribosome inactivating proteins, secondary plant metabolites,
and small RNA viruses have been used alone or in
combination with conventional host plant resistance to
develop crop cultivars that suffer less damage from insect
pests (Sharma, 2009). Although, the Bt genes conferring
resistance to insects have been inserted into several crop
plants, genetically transformed cotton, maize, rice, tomato,
and potato for the management of insect pests with Bt genes
alone or stacked with herbicide resistance genes, have been
deployed for commercial cultivation in several countries of
the world (James, 2009). The crops, which initiate a gene-
silencing response (RNAi), are a step ahead of existing
genetically modified crops that produce toxic proteins, and
now lots of emphasis is being given on deployment of this
technology for producing insect-resistant crop plants. This
paper overviews the paradigm shifts in research on different
components of HPR to insect pests over the last two decades.

������������������������%���������������
������������������

Several thousands of germplasm collections have been
evaluated for the identification of accessions with resistance
against several insect species in different crops in the last
two decades (Panda and Khush, 1995, Clement and
Quisenberry, 1999, Sharma et al., 2003, Dhaliwal et al., 2004,
Smith, 2005, Sharma, 2009), and several insect-resistant
cultivars have been released for cultivation in many crops in
India (Table 1). Several new sources of insect resistance have
been identified and supplemented to the existing resistance

sources against corn earworm, H. zea, corn borer, O. nubilalis,
sugarcane borer, Diatraea grandiosella (Dyar), fall armyworm,
Spodoptera frugiperda (J.E. Smith), and spotted stem borer,
Chilo partellus (Swinhoe) in maize (Kanta et al., 1997); brown
planthopper, N. lugens, gall midge Orseolea oryzae (Wood-
Mason), and stem borers, Scirpophaga incertulas (Walker) and
Chilo suppressalis (Walker) in rice (Smith et al., 1994);
Hessian fly, M. destructor and greenbug, S. graminum in
wheat (Smith, 2005); sorghum shoot fly, Atherigona soccata
(Rondani), spotted stem borer, C. partellus, sorghum midge,
S. sorghicola, and head bug, Calocoris angustatus (Lethiery)
in sorghum (Sharma et al., 2003, Sharma et al., 2005c); and
Oriental armyworm, Mythimna separata (Walker) in pearl
millet (Sharma and Sullivan, 2000). Sources of resistance have
also been identified against cotton bollworm, Helicoverpa
armigera (Hubner), and leafhopper Amrasca biguttula
biguttula Ishida in cotton; legume pod borer, H. armigera in
chickpea and pigeonpea (Sharma et al., 2005a); spotted pod
borer, Maruca vitrata (Geyer) in pigeonpea and cowpea
(Sharma et al., 1999, Sharma and Franzmann, 2000); and pea
weevil, Bruchus pisorum L. in pea (Clement et al., 1994).
Insect-resistant cultivars with desirable agronomic
backgrounds have been developed in several crops, and
cultivars with multiple resistance to stresses will be in greater
demand in future for sustainable crop production, and this
requires a concerted effort from the scientists involved in
crop improvement programs.

&�������������������������������������

Information on genetics and inheritance of resistance to
insect pests is important for crop improvement, which
indicates the degree of ease or difficulty involved in
incorporating resistance genes into the improved cultivars.
Many genes have been identified in rice that contribute for
resistance to brown planthopper, green leafhoppers, gall
midge, white backed planthopper, and yellow stem borer
(Khush and Brar, 1991). Both dominant and recessive genes
control the inheritance of resistance to brown plant hopper,
white backed plant hopper, and gall midge (Khush and Brar,
1991, Katiyar et al., 2001), while resistance to yellow stem
borer is polygenic, and exists in many genotypes of rice
(Khush and Brar, 1991). Evaluation of germplasm for
resistance to Hessian fly has reported 29 genes that control
resistance to this insect (Smith, 2005). All the genes (except
h4) are inherited as dominant or partially dominant traits,
and several of these genes have been deployed in response
to evolution of Hessian fly biotypes. Eleven dominant genes
control the expression of resistance to green bug (Zhu et
al., 2004), while twelve genes (both dominant and recessive)
control resistance to the Russian wheat aphid, Diuraphis
noxia (Kurdj.) in wheat (Saidi and Quick, 1996, Liu et al.,
2001). Resistance to D. noxia biotype I in barley is

Host Plant Resistance to Insect Pests M K Dhillon and H C Sharma
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controlled by dominant alleles at two loci (Momhinweg et
al. 1995). Resistance to ear damage by European corn borer
in sweet corn involves multiple genes, and is controlled by
epistatic as well as additive-dominance effects (Warnock et
al., 1998). Both GCA and SCA effects explain significant
amounts of variation in different maize populations for
resistance to fall armyworm and southwestern corn borer
(Williams et al., 1995, 1998). Inheritance of maysin content

in maize imparts resistance to corn earworm, and is governed
by the presence of a major modifier gene (Widstrom and
Snook, 2001). Stalk resistance to the stem borer, Sesamia
nonagrioides (Lefebvre) is quantitatively inherited, and
additive, dominant and epistatic effects control the gene
action (Cartea et al., 2001). Both additive and dominant
effects explain the variation in expression of resistance to
corn leaf aphid, Rhopalosiphum maidis (Fitch.) (Bing and

Table 1. Insect-resistant cultivars of major food crops released for cultivation in India
Insect pests Cultivars

Rice

Brown planthopper Manasarowar, Bhadra, Jyoti, Co 42, MTU 5249, Co 46, Shyraksha, and Dhanya

White backed planthopper Tangner and Amelbero

Gall midge IR 36, Kakatiya, Surekha, Phalguna, Kunti, Shakti, Shamlei, Asha, Rajendradhan,
Sharaksha, and Kavya

Green leafhopper IR 20 and Vani

Leaf folder ASD 20

Yellow stem borer Ratana, Sasyasree, Saket, and MTU 5849

Maize

Pink stem borer Deccan 101 and Deccan 103

Spotted stem borer Ganga 4, 5, 7 and 9, Ganga safed 2, Deccan 101, 103, Ageti, Kanchan, Kundan

Sorghum

Shoot fly M 35-1, Swati, SPV 491, ICSV 700, ICSV 705, Phule Yashoda, SPV 1015

Spotted stem borer E 302, E 303, ICSV 700, ICSV 705, SPV 101

Midge DJ 6514, AF 28, ICSV 197, ICSV 745, ICSV 88032

Head bug CSM 388, Chencholam, ICSV 239

Groundnut

Leaf miner ICGV 86031, IGCS 156 (M 13), FDRS 10

Thrips M 13, Robut 33-1

Tobacco caterpillar ICGV 86031, FDRS 10

Rapeseed and mustard

Mustard aphid PBR 91, Pusa Jai Kisan, C 294, Laha 101, Pusa Kalyani, Regent, Tora, Sariahi

Soybean

Leaf miner Nimsoy

Chickpea

Pod borer C 235, PantG 114, Anupam, JG 74, ICCV 10, Dulia, Pusa 261, Vijay, Vishal

Pigeonpea

Pod borer T 21, Bori, BDN 2, ICPL 332, MA 2, Bahar, ICPL 84060, Pant A1, BSMR 1

Pod fly KM 7

Source: Dhaliwal et al. (2004)

Indian Journal of Plant Protection Vol. 40. No. 1, 2012 (1-11)



   
   

w
w

w
.In

d
ia

n
Jo

u
rn

al
s.

co
m

   
   

   
   

M
em

b
er

s 
C

o
p

y,
 N

o
t 

fo
r 

C
o

m
m

er
ci

al
 S

al
e 

   
 

D
o

w
n

lo
ad

ed
 F

ro
m

 IP
 -

 2
20

.2
27

.2
42

.2
20

 o
n

 d
at

ed
 2

3-
A

u
g

-2
01

2

(

Guthrie, 1991), and to C. partellus (Pathak, 1991). Resistance
to shoot fly is inherited by additive gene action (Dhillon et
al., 2006e), while additive and non-additive gene effects
govern resistance to spotted stem borer in sorghum (Sharma
et al., 2007). Resistance to sorghum midge is inherited as a
recessive trait, and is controlled by additive gene effects
(Sharma et al. 1996). However, resistance to sorghum head
bug, C. angustatus is inherited as a partially dominant trait
controlled by both additive and non-additive gene action
(Sharma et al., 2000), while resistance to African head bug,
Eurytylus oldi (Poppius) is largely controlled by additive
type of gene effects (Ratnadass et al., 2002). Most of the
characters associated with resistance to H. armigera in
cotton are governed by oligogenes, and can be transferred
into locally adapted cultivars. Inheritance of gossypol
containing glands, which are associated with resistance to
bollworms in cotton, is due to G 13 allele (Calhoun, 1997).
Trichome density in Gossypium species, which is associated
with resistance to leafhoppers, is governed by five genes t

1
–

t
5
 (Lacape and Nguyen, 2005). Resistance to H. armigera

is controlled by multiple genes, and inheritance of resistance
to pod borer in desi chickpea is governed by additive gene
effects, while non-additive type of gene action was observed
in kabuli types (Gowda et al., 2005). Verulkar et al., (1997)
indicated the involvement of a single dominant gene in
antixenosis mechanism of resistance in C. scarabaeoides
to H. armigera and Melanagromyza obtusa Malloch.
Inheritance of hooked trichomes responsible for Empoasca
kraemeri Ross and Moore resistance in Lima bean is
complex, and is controlled by additive, dominant, and
epistatic gene effects (Park et al., 1994). Resistance to bean
weevil, Acanthoscelides obtectus (Say), is derived from a
wild Phaseolus accession, and is inherited as a
complementary effect of two recessive genes (Kornegay and
Cardona, 1991). Resistance in mungbean, Vigna radiata to
the Azuki bean weevil, Callosobruchus chinensis L., and
the cowpea weevil, C. maculatus (F.) is derived from the
wild mungbean, Vigna radiata var. sublobata, and is
inherited as a simple dominant trait (Tomaka et al., 1992).

)*���������������!��������������+��������!
�!���������������������������

Considerable information has been generated on the effects
of cytoplasmic male-sterility (CMS) on morphological and
physiological characteristics in different crop plants, and
on the influence of CMS on expression of resistance to insect
pests. Most of the sorghum hybrids grown to date are based
on Milo (A

1
) cytoplasm, except a few hybrids based on A

2

cytoplasm in China (Shan et al., 2000). The A
1
 cytoplasm

based hybrids have been reported to be highly susceptible
to insect pests (Sharma, 2001, Dhillon et al., 2005, Dhillon
et al., 2008). The expression of nonpreference and antibiosis

components of resistance to D. grandiosella and D.
saccharalis was higher in resistant inbred lines based hybrids
than the inbreds (Kumar and Mihm, 1996). Expression of
different mechanisms and traits associated with resistance
to shoot fly, midge, shoot bug, and sugarcane aphid have been
found to be significantly lower in CMS as compared to the
maintainer lines of sorghum (Dhillon et al., 2006b, c, d).
Hybrids based on shoot bug, sugarcane aphid, midge, and
shoot fly-resistant CMS and restorer lines suffered less
damage than the hybrids based on susceptible CMS and
resistant or susceptible restorer lines, suggesting that
expression of resistance to these insects is influenced by
the genetic background of the CMS lines, and resistance is
needed in both the parents to produce insect-resistant hybrids
(Sharma et al., 1996, Dhillon et al., 2006c, Sharma et al.,
2006). Furthermore, the A

4
M cytoplasm was found to be

comparatively less susceptible to A. soccata damage than
the A

1
, A

2
, A

3
, A

4
G, A

4
VzM cytoplasms (Dhillon et al., 2005).

The analyses of literature available on different CMS
systems in cereals suggests that the genetic background of
CMS, cytoplasmic factors, the interactions of the factors in
the cytoplasm of maintainer lines with the nuclear genes
and the restoration abilities of the restorers influences the
expression of resistance to insect pests and diseases
depending on the crop and the pest species involved; and
therefore, there is a continuing need to evaluate different
cytoplasms for their effects on cultivar susceptibility to insect
pests, and transfer insect resistance genes into A-, B-, and
R-lines to develop hybrids with multiple resistance to insect
pests for sustainable crop production (Dhillon et al., 2008).

�������������������������������������
"����������,�����������

Wild species of crops are important sources of genes for
resistance to biotic and abiotic constraints. Genotypes
showing high levels of resistance to insects can be used in wide-
hybridization to increase the levels and diversify the basis of
resistance to the target insects. Last two decades have observed
a paradigm shift in identification and deployment of wild
species of several crops as sources of genes for resistance
to insects, for example, wild relatives of cotton for resistance
to pink bollworm, cotton bollworm, white fly, and
leafhoppers; tomato for fruit borer; pigeonpea for pod borer,
pod fly, and pod wasp; chickpea for pod borer and bruchids;
groundnut for leaf miner, leaf hoppers, pod borer, and
armyworms; pea for bruchid; cowpea for spotted pod borer
and pod sucking bug; sorghum for shoot fly, stem borer,
and sorghum midge; rice for brown planthopper, green leaf
hopper, yellow stem borer, and

striped rice stem borer; and wheat for resistance to Hessian
fly and Russian wheat aphid (Table 2).

Host Plant Resistance to Insect Pests M K Dhillon and H C Sharma
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A wide variety of techniques have been developed in the
past few years to detect DNA sequence polymorphism,
characterization of genetic diversity, genome fingerprinting,
genome mapping, gene localization, genome evolution,
population genetics, taxonomy, plant breeding, and
diagnostics. Whole genome sequencing of a number of
model organisms and deployment of different types of
molecular markers for the development of high-density
genetic linkage maps of several crops such as barley, maize,
rice, potato, rye, sorghum, soybean, cowpea, tomato, and
wheat are some of the recent biotechnological developments
in agriculture (Sharma, 2009). It takes five to six generations
to transfer insect resistance traits into the high-yielding
cultivars through conventional breeding, while gene transfer
from wild relatives may take considerably longer time due
to the complexity of achieving interspecific hybrids on a
sufficiently large scale to identify stable progeny with an
acceptable combination of traits. Near isogenic lines (NILs),
F

2
 and backcross populations, doubled haploids, and

recombinant inbred lines (RILs) can be used for gene
mapping in many crops (Mohan et al., 1997). Mapping
populations from interspecific crosses are often used for
genetic linkage studies due to high level of detectable
polymorphism, but linkage maps derived from such crosses
may have limited relevance in crop breeding programs due
to different recombination patterns (Fulton et al., 1997).
However, markers developed from such maps may be
valuable tools for introgression of genes of interest from
the wild relatives into the cultigen. Furthermore, marker

assisted selection (MAS) has shown the potential to
dramatically speed up the process by reducing the number
of generations and the size of the populations required to
identify individuals with appropriate combination of genes,
with minimal amount of linkage drag from the wild relatives.

Considerable progress has been made in the recent past in
identifying genomic regions and genes associated with
resistance traits in several crops to different insect pests
(Smith, 2005). Several types of molecular markers have been
used to evaluate DNA polymorphism, and for developing
genetic linkage maps of different crops, to identify
quantitative trait loci (QTLs) associated with resistance to
insects. Molecular markers linked to yellow stem borer
resistance (Selvi et al. 2002), and QTLs and genes conferring
resistance to rice gall midge and its biotypes (Mohan et al.,
1994, Biradar et al., 2004, Jain et al., 2004), leaf hoppers
(Wang et al., 2004, Fujita et al., 2006), and brown plant
hopper (Sharma et al., 2003, Jena et al., 2006), have been
mapped and deployed in MAS for developing insect-
resistant rice. Several polymorphic markers and genes
responsible for resistance to Hessian fly and its different
biotypes (Dweikat et al., 2004, Wang et al., 2006), Russian
wheat aphid (Ma et al., 1998), and green bug (Zhu et al.,
2005), have been mapped and used in wheat breeding for
insect resistance. The corn earworm resistance QTLs
depicting change in maysin concentration in maize silk have
been reported by Byrne et al., (1996). Although, a few QTLs
have been found for resistance to borers, the QTLs found
responsible for resistance to stem boring by O. nubilalis,
D. grandiosella, and D. saccharalis share some common
genomic regions, and play a major role for resistance in

Table 2. Wild species of different crops identified as sources of genes for resistance to different insect pests
Crop Wild species Insect pests

Tomato Lycopersicon esculantum, L. hirsutum, and L. hirsutum Helicoverpa armigera

Cotton Gossypium thurberi, G. somalense, G. armourianum G. gossypiodies bollworms and sucking insect pests
G. capitis viridis, G. raimondaii, G. trilobum, G. sinense, G. latifolium
and G. barbosanum

Pigeonpea Rhynchosia aurea, R. bracteata, Cajanus scarabaeoides, C. sericeus, Helicoverpa armigera
C. acutifolius, C. albicans and Flemingia bracteata

Chickpea Cicer bijugum  C. cuneatum, C. pinnatifidum, and C. judaicu Helicoverpa armigera

Groundnut Arachis cardenasii, A. duranensis, A. kempffmercadoi, A. monticola, leafminer, Helicoverpa armigera,
A. stenosperma, A. paraguariensis, A. pusilla, and A. triseminata Spodoptera litura, and Empoasca kerri

Sorghum Sorghum australiense, S. purpureosericeum, S. brevicallosum, S. timorense, Atherigona soccata, Chilo partellus,
S. versicolor, S. matarankense, S. nitidum, S. angustum, S. ecarinatum,  and Stenodiplosis sorghicola
S. extans, S. intrans, S. interjectum, and S. stipodeum

Rice Oryza officinalis, O. minuta, O. latifolia, O. australiensis, O. granulata, Sogatella furcifera, Nilaparvata
and O. brachyantha lugens, and Scirpophaga incertulas

Source: Sharma (2009)

Indian Journal of Plant Protection Vol. 40. No. 1, 2012 (1-11)
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maize (Khairallah et al., 1997, Butron et al., 2005). Resistance
to O. nubilalis appears to be controlled by QTLs for neutral
detergent fiber, acid detergent fiber in leaf-sheaths, leaf-
sheath acid detergent lignin, starch concentration in the
stalk, and stem tunneling by European corn borer (Krakowsky
et al., 2007). Several QTLs have also been found associated
with resistance to green bug and its I and K biotypes (Agrama
et al., 2002, Nagaraj et al. 2005), and two different mechanisms
of resistance to midge have been mapped in sorghum (Tao
et al., 2003). The QTLs associated with phenotypic traits
responsible for resistance to shoot fly have been identified
in sorghum (Folkertsma et al., 2003, Hash et al., 2003, Dhillon
et al., 2006a). Two BAC libraries of wild Mexican diploid
potato, Solanum pinnatisectum, have been constructed
where fifteen BAC clones harbored polyphenol oxidase loci
for Colorado potato beetle, Leptinotarsa decemlineata (Say)
resistance (Chen et al., 2004), which might be useful for
BAC contig construction and map-based cloning of genes
responsible for resistance to this insect. The QTLs for
resistance to leaf miner, Liriomyza trifolii (Burgess) have
also been identified in tomato (Moreira et al., 1999). A
mapping population based on C. cajan x C. scarabaeoides
has been developed, and is under evaluation for resistance
to H. armigera and identify QTLs linked to pod borer
resistance in pigeonpea (Sharma, 2009). Mapping for
resistance to pod borer in chickpea is only just beginning,
and the efforts are underway to evaluate inter-specific
mapping populations to identify QTLs linked to various
components of resistance to H. armigera in chickpea (Sharma
et al., 2005b, Sharma, 2009). Eight markers associated with
resistance to potato leafhopper, Empoasca fabae (Harris),
four markers to E. kraemeri, and three markers to both species
have been reported in common bean (Murray et al., 2004). A
major QTL for Thrips palmi Karny resistance has also been
reported in Mesoamerican bean (Frei et al., 2005). Two major
QTLs have been identified in soybean for antibiosis
mechanism of resistance to H. zea, and Pseudoplusia
includens (Walker) (Terry et al., 2000). Resistance to aphid,
Aphis craccivora Koch has been identified in the groundnut
breeding line ICG 12991, which is controlled by a single
recessive gene (Herselman et al., 2004).

&�������������������������������!�������
���������������������

Recombinant DNA technology has opened up new vistas to
isolate and manipulate genes for crop improvement.
Significant progress has been made over the past two decades
in isolation, cloning, and introduction of foreign insecticidal
genes into crop plants to impart resistance to insect pests
and widen the pool of useful genes. The Bt genes conferring
resistance to insects have been inserted into several crop
plants such as maize, rice, wheat, sorghum, sugarcane,

cotton, potato, tobacco, broccoli, cabbage, chickpea,
pigeonpea, cowpea, groundnut, tomato, brinjal, and soybean
(Hilder and Boulter, 1999, Sharma et al., 2004). Combining
conventional/marker assisted host plant resistance with
insertion of insect resistance genes through genetic
transformation can provide a germplasm base to achieve
durable resistance to insect pests. For example, MAS has
been used to track the antibiosis/antixenosis resistance linked
QTLs during and after the two backcrosses in soybean to
develop a series of BC

2
F

3
 plants with or without cry1Ac

transgene, for Bt and QTL conditioning resistance against
corn earworm (Walker et al., 2002), indicating that Bt-
transgene and QTL-mediated resistance can be combined
for a viable insect control strategy. Transgenic plants of
cotton with Bt + GNA conferred resistance to H. armigera
and cotton aphid, Aphis gossypii Glover (Liu et al., 2003).
Till date, a total of 14 Bt genes have been deployed through
31 events of genetically modified cotton, 40 events of maize,
three events of rice, one event of tomato, and 28 events of
potato for the management of lepidopteran and coleopteran
insect pests (Table 3), alone or stacked with herbicide
resistance genes, and these genetically modified crops are
under commercial cultivation in several countries of the
world. The benefits of growing transgenic crops to growers
have been higher yield, lower input costs in terms of pesticide
use, reduction in harmful effects of insecticides on non-target
organisms, reduced amounts of insecticide residues in food
and food products, and easier crop management (Qaim and
Zilberman, 2003, Dhillon and Sharma, 2009).

�����!���������/���������������0�/��1
��������!�������������������������

A conserved biological response to double-stranded RNA,
oftenly known as RNA interference (RNAi) or post-
transcriptional gene silencing, mediates resistance to both
endogenous parasitic and exogenous pathogenic nucleic
acids, and regulates the expression of protein-coding genes
(Hannon, 2002). Recently, the RNAi technology has been
demonstrated to be helpful in understanding the functional
genomics of valuable crop traits for resistance against insect
pests (Gordon and Waterhouse, 2007). In RNAi technology,
the dsRNA of insect's gene is expressed in plants by using
transgenic technique, and then the interfering RNAs are
formed in the plants. The interfering RNAs then enter into
insects' bodies after being ingested by the insect that eats
the plant, and conduct RNAi against the target gene, thereby
expression of the target gene is suppressed by RNAi.
Transgenic corn plants engineered to express WCR dsRNAs
have shown a significant reduction in western corn
rootworm, Diabrotica virgifera virgifera LeConte feeding
damage, suggesting that the RNAi pathway can be exploited
to control insect pests via in planta expression of a dsRNA

2 Host Plant Resistance to Insect Pests M K Dhillon and H C Sharma
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(Baum et al., 2007). Cytochrome P450 gene (CYP6AE14)
the first gossypol-inducible P450 gene from bollworms, is
directly involved in the ability of cotton bollworm to tolerate
gossypol. When CYP6AE14 expression is suppressed, as
achieved by plant-mediated RNAi, the larval tolerance to
gossypol is greatly reduced (Mao et al., 2007). The ability
to down-regulate CYP6AE14 and GST1 expression in the
midgut by feeding cotton bollworms dsRNA-producing
leaves, suggests that plant-mediated RNAi may be a general
approach for gene-silencing in herbivorous insects.
However, the passage of years without reports of success
using this approach seemed to suggest that simply expressing
hairpin RNA in plant material to be ingested by an insect
would not provide sufficient levels of intact dsRNA to trigger
potent RNAi in the pest. RNAi provides a unique mode of
action for the control of insect pests that could complement
the current strategy of expressing Bt insecticidal proteins in
crops such as corn, cotton and soybeans, and as the new
crops target particular genes in particular insects, they will
be safer and less likely to have unintended effects than other
genetically modified plants.

�����������

Augmentation of conventional breeding with the use of
molecular techniques and transgenic approaches have a great
promise to reduce pest associated crop losses, and accelerate
the progress in developing cultivars with resistance to insects
and increase crop productivity. Although, considerable
progress has been made over the past two decades in
manipulating genes from diverse sources to develop plants
with resistance to insect pests, deployment of molecular
techniques for insect resistance, understand nature of gene
action and metabolic pathways, but rapid and cost effective
development, and adoption of biotechnology-derived
products will depend on developing a full understanding on
the interaction of genes within their genomic environment,
and with the environment in which their conferred

phenotype interact. A good beginning has been made in
developing genetic linkage maps of many crops, but the
accuracy and precision of phenotyping for resistance to
insect pests remains a critical constraint in many crops.
Improved phenotyping systems will have substantial impact
on both conventional and biotechnological approaches to
breed for resistance to insect pests, in addition to the more
strategic research that feeds into these endeavors. Marker-
assisted selection has had a dramatic impact, particularly in
the private sector, in breeding for disease-resistance and
quality traits where simply inherited components could be
readily identified. The same potential may be achieved in
case of more complex traits such as resistance to insect
pests and abiotic stresses. Therefore, there is a need to use
molecular techniques to develop cultivars with improved
resistance to insect pests, and to strengthen Bt transgenic
crops for other components of plant resistance through
precise mapping of the QTLs associated with resistance to
insects, and development of new paradigms in breeding
based on re-engineered breeding programs to make best
use of biotechnological tools.

����������
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Crop No. of events Insect pests Gene(s)

Cotton 31 Lepidopteran cry1Ac, cry2Ab2, cry1Ab, cry1C, cry1A, vip3A(a), cry1F,  and
flcry1Ab
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Tomato 1 Lepidopteran cry1Ac

Potato 28 Coleopteran cry3A
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