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ABSTRACT 

The present investigation was undertaken in grain sorghum to estimate the 

heterosis and to study the nature of gene action and combining ability for grain iron and 

zinc contents as well as to understand the correlations of grain iron and zinc contents 

with grain yield and other important characters and the direct and indirect effects of 

these traits on grain iron and zinc contents in sorghum. Two separate experiments were 

conducted by using parents with varied levels of grain iron in one experiment and those 

with diversified contents of grain zinc in another experiment.  

In the first experiment, four parental lines (IS 2263, IS 13211, IS 10305 

and SPV 1359) were crossed among each other in a full-diallel fashion and the resultant 

twelve crosses along with four parents and standard check (ICSR 40) were evaluated 

during two postrainy seasons, 2010-2011 and 2011-2012 in Randomized Block Design 

(RBD) with three replications. Significant variation was observed among the 

genotypes, environment and genotype x environment interaction for all the characters 

studied (plant height, days to 50 % flowering, 100-grain weight, grain yield and grain 

zinc) except 100-grain weight. Heterosis for grain iron varied from -9.07 % to 12.89 % 

over mid-parent, from -14.72 % to 8.55 % over better parent and from -7.19 % to 30.57 

% over standard check across the seasons. Heterosis was found to be non-significant 

over mid-parent and better parent, indicating that additive gene action had a 

predominant role in the inheritance of this trait. Most of the hybrids recorded 

significant heterosis over standard check.  

The combined analysis of variance for combining ability revealed 

significant differences among parents, direct crosses and reciprocal crosses indicating 

the existence of wider variability in the material under study for all the characters. 

However, direct crosses did not show significant variation for grain iron. The ratios of 

GCA/SCA variances revealed that additive gene action was predominant in the 

inheritance of all the characters studied barring days to 50 % flowering. Predictability 

ratio revealed that grain iron content was found to be governed by additive gene action. 

IS 2263 and IS 13211 were found to be promising general combiners for grain iron 

based on gca effects and SPV 1359 X IS 13211, IS 10305 X IS 13211, IS 10305 X  



IS 2263, SPV 1359 X IS 2263 and IS 2263 X IS 13211 were identified as promising 

hybrids for grain iron based on sca effects. Correlation studies revealed that plant 

height showed positive correlation, while days to 50 % flowering showed negative 

correlation with grain iron during postrainy season, 2010. Plant height, 100-grain 

weight and grain yield showed negative correlation, while days to 50 % flowering 

showed positive correlation with grain iron content in 2011. This difference might be 

attributed to the influence of environment on these traits. Path values obtained in this 

study indicated that plant height, days to 50 % flowering and 100-grain weight showed 

controversial direct effects on grain iron in two seasons due to environmental influence. 

Grain yield showed negative direct effect on grain iron content consistently in both the 

seasons. Higher magnitude of residual effect obtained in both the seasons indicated that 

it might be necessary to include some more characters closely related with grain iron 

content. 

Four parental lines contrasting for grain zinc (IS 2248, IS 20843, PVK 801 

and ICSB 56) were crossed among each other in a full-diallel fashion in second 

experiment and the resultant twelve crosses along with their parents and standard check 

(ICSR 40) were evaluated during two postrainy seasons, 2010-2011 and 2011-2012 in 

Randomized Block Design (RBD) with three replications. Analysis of variance 

revealed that genotypes and genotype x environment interaction were significant for all 

the five characters studied and environment was significant for plant height, days to 50 

% flowering and grain yield. Heterosis for grain zinc ranged from -28.77 % to 28.23 % 

over mid-parent, from -21.12 % to 37.09 % over better parent and from -21.61 % to 

84.08 % over standard check across the seasons. Majority of the hybrids did not exhibit 

significant heterosis over mid-parent, better parent and standard check, suggesting that 

additive gene action governed the inheritance of this trait. Barring few crosses, none of 

the hybrids outperformed significantly the parents which had high level of grain zinc, 

indicating that there would be little opportunity, if any, to exploit heterosis for 

improving this trait. 

The combined analysis of variance for combining ability revealed 

significant differences among parents, direct crosses and reciprocal crosses indicating 

the existence of wider variability in the material under study for all the characters in 

this experiment. However, reciprocal crosses did not show significant variation for 

plant height and grain zinc. The ratios of GCA/SCA variances revealed that non-

additive gene action was predominant in controlling all the characters studied barring 

grain zinc. Predictability ratio revealed that grain zinc content was found to be 

governed by additive gene action with little role of non-additive gene action. IS 2248 

and IS 20843 were found to be promising general combiners based on gca effects and 

three hybrids viz., IS 2248 X IS 20843,  IS 20843 X IS 2248 and IS 2248 X PVK 801 

were proven to be superior for grain zinc based on per se performance, significant sca 

effects and heterosis over standard check. Plant height and 100-grain weight had 

positive correlation with grain zinc, while days to 50 % flowering showed negative 

association with grain zinc in both the postrainy seasons, 2010 and 2011. Grain yield 

showed positive association in 2010, while negative correlation in 2011 with grain zinc, 

which can be attributed to the influence of environment on these traits. Plant height 

showed positive direct effect, while days to 50 % flowering and grain yield showed 

negative direct effect on grain zinc consistently in both the seasons. Many of the 

characters had positive indirect effect through plant height, while negative direct effect 

through grain yield on grain zinc. Higher magnitude of residual effect obtained in both 

the seasons indicated that it might be necessary to include some more characters closely 

related with grain zinc content. 
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Chapter I 

INTRODUCTION 

 

Sorghum (Sorghum bicolor L. Moench), the fifth most important cereal 

crop in the world after wheat, maize, rice and barley, is a major cereal staple food and 

forage crop of the semi-arid tropics of Indian sub-continent and several African 

regions. Sorghum is a staple food for about 300 million people who live in the dry 

tropics and temperate regions. In India, the rainy season sorghum grain is used mostly 

as animal feed while the postrainy season sorghum grain is primarily used for human 

consumption. It is the fourth most important food crop in India after rice, wheat and 

maize. India is one of the largest sorghum growers in the world with an area of  

7.53 M ha and production of 7.25 M t with an average productivity of 963 kg ha
-1

. In 

Andhra Pradesh, it covers an area of 0.28 M ha with a production of 0.44 M t with an 

average productivity of 1574 kg ha
-1

 (CMIE, 2009). The area under sorghum is 

declining in India over years which can be attributed to the low remuneration for rainy 

season sorghum grains because of the grain molds and change in consumer preference 

for food grains in favour of fine cereals such as rice and wheat. However, sorghum is a 

risk aversion crop, tolerant to drought and heat due to its C4 characteristics. It is well 

adapted to the semi-arid and arid climatic conditions of Africa and Asia.  

Sorghum cannot be excluded from cropping systems as it is a sustainable 

fodder source for meeting huge livestock demand under drought conditions in addition 

to its food value. Sorghum is good choice as a rotation crop to maintain soil fertility 

and to manage pests. 

Sorghum is the second cheapest source of energy in the form of starch  

(63.4 - 72.5 %) and micronutrients such as iron (Fe) and zinc (Zn) after pearl millet. 

The poor and vulnerable groups in the society, particularly in India, depend upon 

sorghum for their calorie and micronutrient requirement in the absence of access and 

affordability to nutrient-rich foods like vegetables, fruits and animal products. To 

highlight the importance of sorghum in the human diets, there is a need to emphasize 

the multidisciplinary approach to evaluate the contribution of sorghum in the intake of 

grain Fe and Zn by poor people in the world especially in Asia and Africa (Kayode, 

2006). Earlier research at ICRISAT (International Crops Research Institute for Semi-



Arid Tropics) indicated that the contribution of sorghum in iron intake was as high as 

50 % in the low income group population in India (Rao et al., 2006). 

Modern agricultural systems are adept at providing calories, but in the 

process, they have increased hidden hunger among the world‟s poor by displacing 

acreage allotted to traditional crops such as pulses, making many micronutrient-rich 

plant foods less available and more expensive to low-income families (Combs et al., 

1996). Green revolution crops successfully increased the per capita availability of food 

energy but were associated with a decline in the density of dietary iron in the people of 

South Asia and the incidence of iron-deficiency (anaemia) that has increased in pre-

menopausal women. Micronutrient malnutrition, primarily the result of diets poor in 

bio-available vitamins and minerals, causes blindness and anaemia (even death) in 

more than half of the world‟s population, especially among women of reproductive age, 

pregnant and lactating women and also pre-school children (Underwood, 2000; 

Sharma, 2003 and Welch and Graham, 2004) and efforts are being made to provide 

fortified foods to the vulnerable groups of the society. World Health Organization 

(WHO) of the United Nations recognized that the two micronutrients iron and zinc and 

pro-vitamin A (β-carotene) are limiting. Human nutritionists have focused on 

supplementation, fortification and dietary diversification as the three principal 

interventions to reduce micronutrient malnutrition. Biofortification, whereever possible, 

is a cost effective and sustainable solution for tackling the micronutrient deficiencies as 

the intake of micronutrients is on a continuing basis with no additional costs to the 

consumer in the developing countries (Kumar et al., 2011). Biofortification of sorghum 

by increasing mineral micronutrients, especially iron and zinc in the grains is of 

widespread interest (Pfeiffer and McClafferty, 2007 and Kumar et al., 2009).  

The introduction of crop varieties selected and bred for increased iron and 

zinc contents through plant breeding approach will complement the existing approaches 

(such as fortified foods and food supplementation while processing) to combat the 

micronutrient deficiency. The plant breeding approach would avoid dependency on 

behavioural changes in farmers or consumers unlike other programs (Reddy et al., 

2005). In order to realize the potential impact of the micronutrient-dense cultivars, the 

micronutrient-rich cultivars must be delivered in high-yielding backgrounds with 

farmer‟s preferred traits such as early maturity and large seed size (Kumar et al., 2010). 

However, limited information is available on the character association between grain 

iron and zinc contents and their associations with other agronomic traits.  



Research has demonstrated that large genetic variability for micronutrients 

are available within the genomes of major staple crops that could allow substantial 

increase in grain iron and zinc content through genetic enhancement (Welch, 2001). 

The Consultative Group on International Agricultural Research (CGIAR) has been 

investigating the genetic potential to increase bioavailable iron and zinc in staple food 

crops including the cereal crops such as rice, wheat, maize, sorghum and pearl millet. 

The „HarvestPlus‟ biofortification challenge program on sorghum research at ICRISAT 

aims at genetically enhancing the grain iron and zinc contents in agronomically 

superior varieties of sorghum. 

Heterosis is expressed as per cent increase or decrease of F1 hybrid 

performance over the mid parental value (Mutazing, 1945 and Pal and Singh, 1946). 

Since the better parent may fall on either extreme, depending upon the traits, heterosis 

may result in any one of the two directions, positive or negative. The utilization of 

heterosis or hybrid vigour as a means of maximizing the yield of agricultural crops has 

become one of the most important techniques in plant breeding.  Knowledge on the 

magnitude of heterosis for various characters is essential to locate better combinations 

to exploit them through heterosis breeding. The economic heterosis, rather than mid 

parent heterosis and heterobeltiosis, reflects the actual superiority over the best existing 

cultivar to be replaced and appears to be more relevant and practical. 

Combining ability analysis helps to get an insight into the inheritance 

through the predominance of general combining ability (GCA) over specific combining 

ability (SCA) variances and vice-versa. It helps the breeder to select the parents with 

good gca effects and crosses with good sca effects and the appropriate breeding 

methodology to achieve the objective quickly and reliably. The effects of gca and sca 

are important indicators of potential value for inbred lines in hybrid combinations. 

Differences in gca effects have been attributed to additive, the interaction of additive x 

additive and the higher-order interactions of additive genetic effects in the base 

population, while differences in sca effects have been attributed to non-additive genetic 

variance (Falconer, 1981). The concept of gca and sca has become increasingly 

important to plant breeders because of the widespread use of hybrid cultivars in many 

crops (Wilson et al., 1978). 

Diallel mating system suggested by Griffing (1956) aids in the estimation 

of the combining ability effects and consequently helps in the identification of superior 

parents and single cross hybrids. It provides good information on the genetic identity of 

genotypes especially on dominance-recessive relations and some other genetic 



interactions. Diallel crosses have been used in genetic research to determine the 

inheritance of a trait among a set of genotypes and to identify superior parents for 

hybrid or cultivar development. 

The estimates of correlation co-efficients among the different characters 

indicate the extent of direct association. The correlation co-efficient provides a reliable 

measure of association among the characters and helps to differentiate vital associations 

useful in breeding from those of the non-vital ones (Falconer, 1981). The study of 

relationships among quantitative traits is important for assessing the feasibility of joint 

selection of two or more traits and hence for evaluating the effect of selection for 

secondary traits on genetic gain for the primary trait under consideration. A positive 

genetic correlation between two desirable traits makes the job of the plant breeder easy 

for improving both the traits simultaneously. On the other hand, a negative correlation 

between two desirable traits impedes or makes it impossible to achieve a significant 

and simultaneous improvement in both traits.  

Path analysis partitions the total correlation coefficient into direct and 

indirect effects and measures the relative importance of the causal factor individually 

(Dewey and Lu, 1959). The major advantage of path analysis is that, it permits the 

partitioning of the correlation coefficient into its components. It helps in assessing the 

cause-effect relationship as well as effective selection. The estimates of correlation and 

path coefficients can help us to understand the roles and relative contributions of 

various plant traits in establishing the growth behaviour of crop cultivars under given 

environmental conditions (Akhtar et al., 2007). Keeping all these points in view, the 

present investigation was undertaken in sorghum in collaboration with ICRISAT with 

the following objectives: 

Objectives of Investigation: 

1) To study the extent of heterosis for grain iron and zinc contents in sorghum. 

2) To study the general combining ability (gca) and specific combining ability (sca) 

effects for grain iron and zinc contents in sorghum. 

3) To study the character associations of grain iron and zinc contents with other 

agronomic traits. 

4) To estimate the direct and indirect effects of various agronomic characters on grain 

iron and zinc contents in sorghum. 
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Chapter-II 

REVIEW OF LITERATURE 

 

Sorghum [Sorghum bicolor (L.) Moench] is an important food and feed 

crop in the semi-arid regions of the world where it is grown under rain fed and irrigated 

conditions Sorghum is considered as a nutritious cereal crop in providing high quality 

both for human and animal consumption that will continue to play an important role in 

Indian economy. However, genetic investigations on the grain iron and zinc content of 

grain sorghum have been comparatively limited. The exploitation of heterosis by 

developing the hybrids is one of the quickest and simpler ways to improve the grain 

iron and zinc content of sorghum. Before placing strong emphasis on breeding for 

nutritional quality characters (grain iron and zinc), the knowledge on the association 

between yield and its attributes and also interrelationship between yield and nutritional 

quality characters will enable the breeder for simultaneous improvement of yield with 

nutritional traits. The correlation coefficient may help to identify characters that have 

little or no importance in the selection programme. The most appropriate breeding 

methodology to be adopted for improvement of any crop depends primarily on the 

combining ability of the parents in the hybridization programme and also the nature of 

gene action involved in the expression of quantitative traits of economic importance. 

Diallel analysis is the precise method for obtaining such information. The 

investigations made on heterosis, combining ability, character associations and direct 

and indirect effects of agronomic traits on grain iron and zinc has been very useful in 

further improvement programmes. A brief review of literature available on above 

aspects in grain sorghum is presented in this section, under the following sub-headings. 

 Variability and heritability 

 Heterosis 

 Combining ability analysis 

 Correlation studies 

 Path co-efficient analysis 

 

 

 

 



2.1 Variability and Heritability 

Phenotypic variability expressed by a genotype or a group of genotypes in 

any species can be partitioned into genotypic and phenotypic components. The 

genotypic component being the heritable part of the total variability, its magnitude on 

yield and its component characters influences the selection strategies to be adopted by 

the breeder. Heritability in broad sense is the ratio between the genotypic variance as a 

whole that is due to phenotype. The genetic gain that can be expected for a particular 

character through selection is the product of its heritability, phenotypic standard 

deviation and selection differential. Heritability estimates along with genetic gain are 

considered to be more useful in predicting the outcome of selecting the best individuals 

(Johanson et al., 1955). 

Amirthadevarathinam and Sankarapandian (1994) reported high genetic 

advance coupled with high heritability for plant yield and 100 seed weight and high 

heritability coupled with low genetic advance for plant height and leaf area suggesting 

the operation of non-additive gene action and further found positive and significant 

correlation between plant yield and 100 seed weight in sorghum. 

Maloo et al. (1998) reported high potential genetic gain along with high 

estimates of GCA and broadsense heritability for quality traits like seed iron content in 

finger millet, indicating that this trait is largely governed by additive gene effects that 

in turn could be improved by selection. 

Can and Yoshida (1999) obtained large proportion of phenotypic variance, 

which was attributable to the genotypic variance for plant height, 100 grain weight and 

grain yield in sorghum. 

Brkic et al. (2003) estimated the grain iron content in the range of 13.6-30.3  

mg kg
-1

 and grain zinc content in the range of 16.0-23.6 mg kg
-1

 in maize and suggested 

the possibility to improve several minerals simultaneously due to no negative and 

significantly positive associations among minerals. 

Kayode et al. (2006) determined that the iron concentration of the sorghum 

grains ranged from 30 to 113 mg kg
-1

 with an average of 58 mg kg
-1

 and the zinc 

concentration ranged from 11 to 44 mg kg
-1

 with an average of 25 mg kg
-1

.  

Oury et al. (2006) estimated iron and zinc concentrations in the range of 20 

to 60 ppm and 15 to 35 ppm, respectively in sorghum. 

Reddy et al. (2006) reported considerable genetic variability coupled with 

high broad-sense heritability, suggesting good prospects of genetic enhancement for 



grain iron and zinc density through conventional breeding complemented by molecular 

breeding. 

Hemalatha et al. (2007) estimated the variability in zinc content ranged 

from 1.08 mg 100 g
-1

 in rice to 2.24 mg 100 g
-1

 in sorghum and iron content ranged 

from 3.85 mg 100 g
-1

 in rice to 6.51 mg 100 g
-1

 in sorghum. 

Ling and Kaun (2010) showed that the distribution of mineral element 

contents in the F2 populations exceeded the performances of their parents, indicating 

the possibility for selecting the offspring with abundant of mineral nutrients from the F2 

populations in rice.  

Nguni et al. (2011) reported that farmer varieties of sorghum showed 

superiority for grain Fe content ranging from 2.74 to 8.18 mg 100 g
-1

 and grain zinc 

content ranging from 2.03 to 5.53 mg 100 g
-1

. 

2.2 Heterosis 

An increase in vigour due to crossing two homozygous inbred lines and 

decrease in vigour due to inbreeding are manifestations of the same phenomenon i.e., 

heterozygosis. The heterosis can be defined in terms of superiority of F1 hybrid over 

better parent. Since the better parent may fall on either extreme, depending upon the 

traits, heterosis may infest in any one of the two directions, positive and negative. 

 The utilization of heterosis or hybrid vigour as a means of maximizing the 

yield of agricultural crops has become one of the most important techniques in plant 

breeding. In sorghum, heterosis was described and defined in the literature ever before 

hybrid sorghum became especially important and the first report of heterosis in the crop 

was given by Conner and Karper (1927). Karper and Quinby (1937) found that milo 

and hegari hybrids invariably possessed extreme vigour and these cultivars apparently 

possess many dominant alleles favourable for growth and production. The occurrence 

of cytoplasmic genetic male sterility led to the development of hybrids on commercial 

scale. In India, the first two hybrids CSH1 and CSH2 were released in 1964 and 1965 

which made the beginning of sorghum hybrid era by Rao (1972). 

In sorghum, heterosis for different traits has been reported and 

commercially utilized by number of workers, the details of which are presented here 

under. 

Kirby and Atkins (1968) found that significant average heterosis was 

expressed by the sorghum hybrids for grain yield and plant height and also observed 



greatest heterotic response for grain yield, where hybrids averaged 122 % of the mid-

parent values, with a range of 106 to 147 % among individual hybrids.  

Rao and Goud (1977) concluded that the overdominance conditioned the 

grain yield in sorghum. They further observed maximum heterosis for grain yield in IS 

2226 (dwarf introduction) X Karad Local (tall), resulting from additive X additive gene 

interaction.  

Giriraj (1983) reported that heterosis for grain yield was mainly due to the 

heterotic effect expressed for 100-grain weight in sorghum which was not related to 

genetic divergence.  

Nandanwankar (1990) concluded that sorghum hybrids showing significant 

heterobeltiosis for grain yield were also significantly superior for atleast 3 to 4 ear and 

grain characters and they further reported that heterosis for grain yield was due to 

increased number of seeds/ear head, secondaries and ear weight. 

Badhe and Patil (1997) found that the most of the heterotic combinations in 

sorghum were between geographically diverse parents and these were heterotic for all 

the panicle characters and plant height. 

Rajguru et al. (2005a) identified the sorghum cross combinations 116A X  

RS-29, 3642A X SPV-489, 53A X SPV-1277 and 36642A X RSE-5 with the highest 

magnitude of heterosis for grain yield and its components. 

Rajguru et al. (2005b) concluded that the per se performance of 

cytoplasmic genetic male sterile lines, restorer lines and their hybrids was related to 

heterotic effects in rabi sorghum. 

Chaudhary et al. (2006) evaluated seven sorghum hybrids for their 

performance in rabi season and showed significant useful heterosis for grain yield and 

other yield contributing characters. 

Desai et al. (2006) showed significant heterosis for all the yield components 

except panicle length in sorghum and further concluded that the crosses that exhibited 

heterobeltiosis showed higher grain size. 

Iyanar and Gopalan (2006) found close association between per se 

performance of hybrids and heterosis for all the agronomic traits except for leaf number 

and seed yield, suggesting that the selection of the crosses based on per se performance 

could be more realistic in sorghum.  

Jayalakshmi et al. (2006) identified three promising hybrids, i.e. NTJ 3 ×  

CSV 13, NTJ 4 × NJ 2575 and NJT 4 × SPV 1532, with desirable heterobeltiosis for 



grain yield and panicle weight, which could be used for further exploitation in sorghum 

breeding programs. 

Chen et al. (2007) showed that heterosis of iron concentration was very 

low, indicating that traditional hybrid breeding may not be efficient for improving this 

trait by analysing nine maize inbred lines. 

Ghorade and Ghive (2007) reported highest heterobeltiosis (38.43 %) in 

respect of grain yield, plant height, days to 50 % flowering and all panicle characters in 

the sorghum cross ms-104A X AKR-354. 

Khapre et al. (2007) concluded that the crosses SPV 1422 × SPV 1359,  

SPV 1500 × PVR 524, SPV 1502 × PVR 524, SPV 1422 × SPV 1413 and SPV 1500 × 

RR 9808 exhibited significantly high heterobeltiosis and standard heterosis over M 35-

1, CSH 15 R and SPV 655 in sorghum.  

Kulkarni et al. (2007) reported pronounced hybrid vigour for grain yield, 

panicle length, panicle breadth, 1000-seed weight and fodder yield, while it was low for 

earliness, i.e. days to 50 % flowering in sorghum.  

Vragolovic et al. (2007) noticed that heterosis was not significant for leaf 

and grain Fe and Zn concentrations in maize. They further found that the Fe and Zn 

concentrations varied from 15.9 to 24.8 mg kg
-1

 and 19.2 to 24.1 mg kg
-1

, respectively.  

Wadikar et al. (2007) identified the cross PMS 37 A × RS 29 with greatest 

significant heterotic effects for grain yield per plant at both physiological and normal 

maturity in sorghum. 

Rani and Rao (2009) found that there was no perfect correspondence 

between level of heterosis expressed in a cross and genetic divergence between parents 

in grain sorghum. 

Makanda et al. (2010) found that the overall hybrid mean yield was 

significantly higher than that of parents and standard check varieties, which was 

attributed to high levels of average heterosis and standard heterosis, respectively in 

sorghum.  

Showemimo et al. (2010) observed high heterotic value of 692.03 % for 

grain yield in sorghum and concluded that the hybrids that exhibited high heterotic 

value for grain yield also has high heterotic value for yield components viz., 1000 seed 

weight and number of seed per panicle.  

Sajjanar et al. (2011) reported that the crosses, Atharga Kempu Jola × M 

35-1 showed high level of significant positive heterosis for panicle weight (79.8 and 



73.2 % over midparent and better parent/control, respectively) and grain yield (109.7 

and 99.5 % over midparent and better parent/control, respectively).  

Velu et al. (2011) found that hybrids did not outperform the parents having 

high Fe and Zn levels, which showed that there would be little opportunity, if any, to 

exploit heterosis for these mineral micronutrients in pearl millet. 

In addition to the above studies, a brief review on heterosis for various traits 

in sorghum reported by several workers is presented hereunder: 

Table 2.1. Heterosis for various characters in sorghum 

Character Heterosis References 

Plant height  Positive heterosis over mid 

parent 

Shivanna and Patil (1988) 

Belavatagi (1997) 

Significant heterosis over 

mid parent  

Kanaka (1979) 

Non-significant heterosis 

over mid parental values. 

Giriraj and Goud (1981) 

Significant negative 

heterosis over mid parent 

Patil and Biaradar (2005) 

Positive heterosis over 

better 

parent  

Senthil and Palaniswamy (1993)  

Ganesh et al. (1996)  

Lokapur (1997) 

Pawar (2000) 

Negative heterosis over 

better 

Parent 

Naik et al. (1994) 

Madhusudana and Patil (1996) 

Lokapur (1997) 

Pawar (2000) 

 

 

 

 

 

 

 

 

 

 



Table 2.1. (contd.) 

Character Heterosis References 

Plant height Heterosis over standard 

check 

Shivanna and Patil (1988) 

Significant heterosis over 

commercial check 

Patel et al. (1987)  

Desai (1991)  

Belavatagi (1997) 

Positive as well as negative 

Heterosis 

Shivanna (1989) 

Days to 50 % flowering Heterosis 

over mid parent 

Shivanna and Patil (1988) 

Belavatagi (1997) 

Positive heterosis over 

better parent 

 

Senthil and Palaniswamy 

(1993)  

Pandit (1989) 

Negative heterosis Naik et al. (1994) 

Lokapur (1997)  

Pawar (2000) 

100-grain weight Significant positive 

heterosis over mid-parent 

Dinakar (1985) 

Sahib and Reddy (1986)  

Chinna and Phul (1988)  

Geeta and Rana (1988)  

Nandanwankar (1990)  

Patel et al. (1990)  

Senthil and Palaniswamy 

(1993)  

Sankarpandian et al. (1994) 

Lokapur (1997)   

Pawar (2000) 

Nimbalkar et al. (1988)  

Biradar (1995) 

 

 

 

 

 

 



Table 2.1. (contd.) 

Character Heterosis References 

100-grain weight Highly significant heterosis 

over mid-parent and better 

parent 

Geeta and Rana (1988) 

Shivanna (1989) 

Senthil and Palaniswamy 

(1993)  

Biradar (1995) 

Chen (1994) 

Negative heterosis over 

mid-parent 

Pandit (1989) 

Negative heterosis over 

better parent 

Desai et al. (1985) 

Significant heterosis over 

mid parent, better parent 

and check. 

Ganesh et al. (1996) 

 

 Wide range of heterosis Kanaka (1979) 

Desai et al. (1980) 

Shinde et al. (1983) 

Giriraj (1983) 

Dinakar (1985) 

Giriraj and Goud (1985) 

 Shivanna and Patil (1988) 

 Limited heterosis  

 

Shivanna (1989)  

Rao et al. (1993)  

Biradar (1995) 

Grain yield  
Positive heterosis over mid 

parent  

 

Nimbalkar et al. (1988) 

Wenzel (1988) 

Berenji (1988)  

Kasenko (1988)  

Chinna and Phul (1988) 

 

 

 

 

 

 



Table 2.1. (contd.) 

Character Heterosis References 

Grain yield  
Positive heterosis over mid 

parent  

 

Jeebaraj et al. (1988) 

Shivanna and Patil (1988) 

Nandanwankar (1990) 

Choudhari (1992)  

Gururaj Rao et al. (1993) 

Sankarapandian et al. 

(1994)  

Ganesh et al. (1996) 

 

A brief review on heterosis for grain iron and zinc reported by several 

workers in different crops is presented hereunder: 

Table 2.2. Heterosis for grain iron and zinc contents in various crops 

Character Crop Heterosis  References 

Grain iron Pearl millet Significant positive 

heterosis over mid-

parent 

Aruselvi et al. (2006) 

Velu (2006) 

Velu et al. (2011) 

Maize Significant positive 

heterosis over 

standard check 

Chakraborti et al. 

(2009) 

Grain zinc Pearl millet Significant positive 

heterosis over mid-

parent 

Aruselvi et al. (2006) 

Velu (2006) 

Velu et al. (2011) 

Maize  Significant positive 

heterosis over 

standard check 

Chakraborti et al. 

(2009) 

 

 

 

 

 

 

 

 

 



2.3 Combining Ability Analysis 

The estimates of combining ability effects are especially useful to predict 

the relative performance of different lines in hybrid combinations. The information on 

the nature and magnitude of gene action is important in understanding the genetic 

potential of a population and to decide the breeding procedure to be adopted in a given 

population. The diallel analysis is a precise approach for obtaining such information. 

Very limited information is available on the inheritance of grain iron and zinc contents 

in crops. 

Sprague and Tatum (1942) proposed the concepts of combining ability as a 

measure of gene action. They defined the term “general combining ability” (gca) as the 

average performance of a line in hybrid combinations and the term “specific combining 

ability” (sca) is used to designate the cross in which certain combinations do relatively 

better or worse than would be expected on the basis of average performance of a lines 

crossed. They further revealed that genetically gca is due to additive effects of genes 

which is fixable and sca is due to non-additive gene effects. 

Griffing (1956) stated that gca was associated with genes which were 

additive in their effects, while sca was attributed primarily due to development of the 

additive gene effects, caused by dominance and epistasis. Further it was suggested that 

gca would include both additive as well as additive X additive interactions. 

A schematic study of gca and sca of quantitative characters influencing 

grain iron and zinc is helpful in selecting the parents for crossing to exploit hybrid 

vigour (heterosis) and to isolate desirable homozygotes from segregating populations. 

In sorghum, Kramer (1960) was the first to report the importance of both gca and sca in 

the expression of yield. According to him, the additive effects were more important for 

gca and dominance and epistatic effects were important for sca. 

Li and Chang (1970) found that much of the genetic variation for seeding-

to-heading period, plant height, number of panicles per plant, panicle length, panicle 

weight and number of spikelets per panicle of rice was due to additive effect. They 

further concluded that the dominance effect was of a significant source in all the traits 

and indirect evidence indicated that gene interaction played a negligible role. 

Arnold and Bauman (1976) detected significant variation among gca effects 

for concentrations and phosphorus, magnesium, iron, zinc, oil and protein constituents 

in maize grain. They found that both general and specific combining ability effects 

were significant for grain weight, volume and density. 



Wilson et al. (1978) identified equal frequency of alleles with positive and 

negative effects for yield in sorghum. They further observed significant gca and sca 

effects for all traits with the latter being more important. 

Khotyleva et al. (1980) found that overdominance was most important in 

the genetical control of grain yield, while dominance and nonallelic interaction were 

most important in controlling plant height in sorghum.  

Kanaka (1982) reported that additive gene action was predominant for plant 

height, both additive and non-additive effects were important for days to 50 % 

flowering and panicle length and non-additive effects were predominant in controlling 

the remaining characters. 

Khotyleva and Neshina (1983) found that the SCA variances for growth 

duration in almost all lines of sorghum exceeded the corresponding GCA variances, 

indicating predominance of dominance and epistasis effects in the control of the 

emergence-flowering period.  

Patil and Thombre (1984) observed that non-additive gene effects were 

more important than additive effects for all the characters studied in sorghum.  They 

further concluded that sca effects were more stable than gca effects which were 

attributed to additive X additive interactions. 

 Rafiq and Rehman (1985) analysed grain yield/plant and other yield related 

traits from a half-diallel cross, involving two foreign and two local lines of sorghum 

which gave high heritability estimates for plant height, number of days to anthesis and 

panicle length. 

Biradar and Borikar (1985) found the additive gene effects were important 

for grain yield and concluded that epistatic components were important for this trait, 

which leads to exploitation of hybrid vigour due to the involvement of both additive 

and non-additive components in sorghum. 

Luthra et al. (1986) observed that the forage sorghum varieties and hybrids 

had similar mineral compositions, but grain varieties had lower concentrations of Fe 

(39 ppm) and Zn (17 ppm) than grain hybrids and forage varieties (70 and 73 ppm of 

iron and 23 and 25 ppm of zinc, respectively). 

Veerabadhiran et al. (1994) found significant differences among the 

genotypes for days to 50 % flowering and grain yield/plant and further reported that the 

days to 50 % flowering is largely under the control of non-additive gene effects as 

reflected by high SCA variance in sorghum. 



Wei et al. (1996) reported that the SCA variance was larger than GCA 

variance for Fe content, indicating the predominance of non-additive gene effects in 

controlling the inheritance of Fe content in rice.  

Gregorio et al. (2000) showed highly significant differences among the 

crosses and between the parents and F1 progeny which indicates clearly a genetic effect 

on grain iron concentration of rice. They further revealed the presence of additive gene 

action (fixable genes) in addition to a significant non-additive genetic variance (non-

fixable genes or unpredictable genes).  

Umakanth et al. (2002) observed higher SCA variances than the GCA 

variances for grain yield and its contributing characters in sorghum, indicating the 

predominance of non-additive gene action in the inheritance of these characters. 

Gregorio and Htut (2003) concluded that the rice cultivars with a positive 

gca effect for most of the grain mineral densities were the micronutrient-dense parents. 

They further showed a differential sca effect of crosses across mineral elements, grain 

Fe, Zn, Mg, P, K and S.  

Kabdal et al. (2003) showed that GCA variances for all the panicle 

characters were higher than SCA variances in maize except for ear height indicating the 

importance of additive genes in controlling these traits.  

Long et al. (2004) found that the gca effects for flour Fe and Zn 

concentration were significantly more important than sca effects in high yielding 

environments, indicating that per se line evaluation could identify promising lines in 

white grained-maize. 

Zhang et al. (2004) found that the seed, maternal as well as cytoplasmic 

genetic effects controlled the contents of mineral elements in rice and among them, the 

seed genetic effects were found to be more influential than the maternal genetic effects 

on Fe, Zn and Mn contents. They further observed the existence of genetic correlations 

of seed additive, seed dominance, cytoplasm, maternal additive and maternal 

dominance between grain characteristics such as 100-grain weight, grain length, grain 

width, grain shape and mineral elements Fe, Zn, Mn and P contents.  

Abo-Elwafa et al (2005) identified the female lines of sorghum ICSA-20 

and ICSA-89002 with  significantly negative and positive gca effects for days to 50 % 

flowering and grain yield per plant, respectively, which indicates that these lines had 

desirable gene action and could be considered as good combiners for both traits. 

http://www.cabdirect.org/search.html?q=au%3A%22Gregorio%2C+G.+B.%22
http://www.cabdirect.org/search.html?q=au%3A%22Htut%2C+T.%22


Sharma et al. (2005) showed highly significant GCA and SCA variances for 

grain yield plant
-1

 indicating the involvement of both additive and non-additive gene 

actions.  

Sumathi et al. (2005) identified non-additive gene action as the major cause 

of significant variation among crosses for the grain yield and its components, which is 

supported by the higher magnitude of variances due to SCA than those due to GCA in 

finger millet.  

Umakanth and Kuriakose (2005) reported that the non-additive gene action 

was predominant in the inheritance of all the yield components except number of 

primaries per panicle in sorghum.  

Narain et al. (2007) found the inadequacy of simple additive-dominance 

model which reflected the presence of epistatic interaction. They further suggested that 

the reciprocal recurrent selection and biparental mating in early segregating generations 

could prove to be an effective approach for development of high yielding sorghum 

varieties. 

Ojo et al. (2007) identified that GCA and SCA mean squares were not 

significantly different for the yield components of maize and GCA mean squares were 

highly significant for grain yield, indicating that additive gene action was more 

important than non-additive gene action for grain yield. 

Solanki et al. (2007) observed that the GCA variances were higher than the 

SCA variances for all the yield components, indicating the presence of additive gene 

action for these traits. 

Arulselvi et al. (2009) reported that the non-additive gene action was found 

to be significant in the expression of all the grain quality characters and yield in pearl 

millet. They further found that none of the parents as well as hybrids was found to be 

significant for all grain quality characters and grain yield. 

Godbharle et al. (2010) observed that genotypic variance was lower than 

phenotypic variance for characters panicle length, primary branches per panicle, grains 

per primary branches, harvest index, grain yield and plant height of sorghum indicating 

that additive gene effects were operating in controlling these characters. 

Prabhakar and Raut (2010) identified that SLR-13, SLR-24 and SLR-30 as 

good general combiner male parents for grain yield and SL-12B and SLR-10 and SLR-

27 as good general combiner female parents for earliness in sorghum.  

http://www.cabdirect.org/search.html?q=au%3A%22Umakanth%2C+A.+V.%22
http://www.cabdirect.org/search.html?q=au%3A%22Kuriakose%2C+S.+V.%22


Punitha et al. (2010) found that non-additive gene action was predominant 

in majority of the characters in sweet sorghum. They identified the parents ICSA 11, 

ICSA 297, VMS 98001 and VMS 98002 as good general combiners for grain yield and 

many of the desirable attributes and the crosses viz., ICSA 297 × VMS 98002, ICSA 

293 × IS 14549 and ICSA 293 × ASSV 9402 as potential crosses, which had both the 

parents or any one of the parents with significant gca effects. 

Bidhendi et al. (2011) found that gca and sca effects were significant for 

grain yield, number of kernel rows per ear, kernel number per row and thousand-kernel 

weight in maize. 

Mahdy et al. (2011) reported that the GCA variance components as 

estimated from male and/or female overall environments were larger than those of SCA 

for days to 50 % blooming, plant height and 1000-grain weight, while, opposite results 

were obtained for grain yield ha
-1

 in sorghum.  

Pawar et al. (2011) found significant values for GCA and SCA variances 

for all the agronomic traits except panicle girth in sorghum, indicating the importance 

of both additive and non-additive genetic components. They further observed 

preponderance of additive genetic action for days to 50 % flowering and plant height 

where as that of non-additive gene action for panicle weight and grain yield/plant.  

Upadhyaya et al. (2011) observed substantial genetic variability for grain 

iron, zinc, calcium and protein contents in finger millet. They further found that the 

accessions rich in Zn content had significantly higher grain yield potential than those 

rich in Fe and protein content. 

In addition to the above studies, a brief review on gene action for various 

agronomic characters reported by several workers in sorghum is presented hereunder: 

 

 

 

 

 

 

 

 

 

 



Table 2.3. Gene action for different characters in sorghum 

Character Nature of gene action Reference 

Plant height Non-additive Hugar et al. (1984) 

Jagadishwar and Shinde (1992) 

Naik et al. (1994) 

Belavatagi (1997) 

Siddiqui and Baig (2001) 

Additive Borikar and Bhale (1982) 

Sankarapandian et al. (1996) 

Nayakar (1985) 

Chandrashekharappa (1987) 

Shivanna and Patil (1988) 

Sakhare et al. (1992) 

Shivanna et al. (1992) 

Senthil and Palaniswamy (1994) 

Shivanna (1989) 

Chinna and Phul (1988) 

Iyanar et al. (2001) 

Additive and non-additive Rao and Goud (1977) 

Giriraj and Goud (1983) 

Dabholkar and Lal (1987) 

Dinakar (1985) 

Chand (1996) 

Biradar (1995) 

 

 

 

 

 

 

 

 

 

 

 



Table 2.3. (contd.) 

 

Character Nature of gene action Reference 

Days to 50 % 

 flowering 

Non-additive Biradar (1995)  

Kanawade et al. (2001) 

Additive Nayakar (1985) 

Dabholkar and Usha (1988) 

Shivanna et al. (1992) 

Senthil and Palaniswamy (1994) 

Siddiqui and Baig (2001) 

Additive and non-additive 

 

Kanaka (1979) 

Patel et al. (1995) 

100-grain weight Non-additive Patil and Thombre (1984) 

Shivanna (1989) 

Patel et al. (1990) 

Senthil and Palaniswamy (1994) 

Siddiqui and Baig (2001) 

Additive Nayakar (1985) 

Dabholkar and Usha (1988) 

Jagadishwar and Shinde (1992) 

 Shivanna et al. (1992)  

Grain yield Non-additive Rao and Goud (1977) 

Wilson et al. (1978) 

Kishan and Borikar (1988) 

Armugam et al. (1995) 

Siddiqui and Baig (2001) 

Patil and Thombre (1984)  

Shivanna (1989) 

Additive Iyanar et al. (2001)  

Palaniswamy and Subramanian (1986) 

Dinakar (1985) 

Senthil and Palaniswamy (1994) 

 

  



A brief review on gene action for grain iron and zinc contents reported by 

several workers in various crops is presented hereunder: 

Table 2.4. Gene action for grain iron and zinc contents in various crops 

Character Nature of gene 

action 

Crop Reference 

Grain iron 

 

 

 

Non-additive Rice Zhang et al. (1996) 

Pearl millet Aruselvi et al. (2006) 

Additive Pearl millet Velu (2006) 

Rai et al. (2007) 

Velu et al. (2011) 

Maize Arnold and Bauman 

(1976) 

Long et al. (2004) 

Chen et al. (2007) 

Chakraborti et al. (2009) 

Rice Zhang et al. (2000) 

Gregorio et al. (2000) 

Gregorio (2002) 

Gregorio and Htut (2003) 

Grain zinc Non-additive Rice  Zhang et al. (1996) 

Pearl millet Aruselvi et al. (2009) 

Additive  

  

Maize Gorsline et al. (1964) 

Arnold and Bauman 

(1976) 

Long et al. (2004) 

Chen et al. (2007) 

Chakraborti et al. (2009) 

Pearl millet Velu (2006) 

Rai et al. (2007) 

Velu et al. (2011) 

Non-additive and 

additive 

Rice Majumdar et al. (1990) 

 

 

 

 



2.4 Correlation Studies 

The correlation coefficient, that indicates association between two 

characters, is useful as a basis for selecting desirable plant type. It enables to identify 

character or combination of characters which might be useful as indicator of high yield 

with high nutritional quality. Correlation studies provide information on the association 

of grain iron, zinc and other agronomic characters which in turn help in the selection of 

high yielding genotypes with high grain iron and zinc. 

Reddy et al. (2005) reported significant and positive correlation between 

The correlation coefficient, that indicates association between two characters, is useful 

as a basis for selecting desirable plant type. It enables to identify character or 

combination of characters which might be useful as indicator of high yield with high 

nutritional quality. Correlation studies provide information on the association of grain 

iron, zinc and with other agronomic characters which in turn help in the selection of 

genotypes with high grain iron and zinc. 

Rao et al. (1979) found the association between days to maturity and zinc 

contents in sorghum and further concluded that the sorghum grain had a better balance 

of mineral composition as was evidenced by higher values of Ca, Mg, P and Fe than 

rice and maize. 

Srihari and Nagur (1980) reported that grain yield of sorghum was 

significantly associated with 1000-grain weight and plant height. 

 Vogel (1989) found that grain iron and days to 50 % flowering were 

positively correlated, while grain iron and grain yield were negatively correlated in 

wheat.  

Chintu et al. (1994) observed positive correlations of 1000 grain weight 

with iron (r = 0.80; P < 0.01) and zinc (r = 0.85; P < 0.01) content per grain which 

indicated that breeding for higher levels of  these micronutrients could be achieved 

without compromising the large grain size in pearl millet. 

Graham and Welch (1996) reported significant and fairly higher positive 

correlation (r = 0.55) between grain iron and zinc contents suggesting the possibility of 

combining both the micronutrients in single agronomic background. They further noted 

that the seeds rich in Fe and Zn contents showed several agronomic advantages such as 

higher seedling vigor, especially in low- fertile soils, higher levels of resistance to 

diseases and empowering plants with higher water use efficiency.  

Velu (2006) reported negative association of grain Fe (r = -0.60 to -0.31) 

and grain Zn (r = -0.32 to -0.53) with days to 50 % flowering in pearl millet. 



Morgunov et al. (2007) found negative but non-significant association of 

grain iron (r = 0.05) with days to 50 % flowering and 1000-grain weight, while 

significant negative correlation with grain yield (r = -0.41) in wheat. He further 

determined the association of grain zinc with days to 50 % flowering (r = -0.13), 1000-

grain weight (r = 0.03) and grain yield (r = -0.64) in wheat. 

Montezano et al. (2008) determined that the linear correlation coefficients 

between nutrient content and grain yield were significant and negative for Cu, Mn and 

Zn in maize. 

Velu et al. (2008) observed positive association of 1000-grain weight with 

grain Fe (r = 0.34 to 0.56) and grain Zn (r = 0.34 to 0.46) in pearl millet. He further 

found negative but non-significant association of days to 50 % flowering with grain Fe 

(r = -0.29) and grain Zn (r = -0.31) 

Govindaraj et al. (2009) found that the 100-grain weight was the most 

important trait for maximizing grain yield owing to its high significant positive 

association with grain yield in pearl millet. They further identified positive correlation 

between grain iron and zinc, suggesting simultaneous selection of grain iron and zinc. 

Gupta et al. (2009) found significant positive correlation between Fe and 

Zn content (r=0.81 to 0.82; P<0.01) in pearl millet suggesting the possibility of 

simultaneous effective genetic improvement of both micronutrients. They further 

reported non-significant correlation of grain iron and zinc contents with grain yield and 

1000-grain weight indicating that there would be no penalty on grain yield and seed 

size while breeding for grains rich in these micronutrients. 

Kumar et al. (2009) observed significant negative correlation of grain Fe  

(r = -0.36) and Zn contents (r = -0.46) with grain yield in sorghum.  

Zhao et al. (2009) found negative correlation between concentration of 

grain zinc and grain yield and positive correlation between grain zinc and iron 

concentrations in wheat.  

Bello (2010) observed strong positive correlation between yield 

components and nutritive characters (protein, carbohydrate, ash, fat and fibre) of 

sorghum.  

Chatzav et al. (2010) reported positive correlations among the 

concentrations of grain zinc, iron and protein in wheat, suggesting that all the three 

nutrients can be improved concurrently with no yield penalty.  



Kumar et al. (2010) observed highly significant positive correlation 

between grain iron and zinc content (r = 0.853; P<0.01). They also observed weak 

association of grain Fe and Zn with days to 50 % flowering, plant height, grain yield 

and grain size indicating that there would be no penalty for enhancing grain Fe and Zn 

contents in sorghum along with other agronomic traits such as grain size and grain yield 

in varied maturity backgrounds. 

Na et al. (2010) reported a negative genetic correlation between 

micronutrient content and 1000-grain weight and positive phenotypic correlation 

between micronutrient content and grain yield of wheat and further stated that the 

possibility for simultaneously improving grain contents of micronutrients, protein and 

yield in wheat. 

Yong et al. (2010) reported that grain iron concentration was highly 

significant and positively correlated with that of Zn in wheat, indicating high possibility 

to combine high Fe and Zn traits in wheat breeding. They further found strong positive 

correlations among the concentrations of Fe, Zn and protein content. 

Xian et al. (2010) observed significant and positive correlation between 

zinc and iron concentrations in wheat grain. 

Anandan et al. (2011) observed negative correlation between grain yield 

and mineral contents and positive correlation among the mineral elements Fe, Zn, Mn 

and Cu in rice. 

Feng et al. (2011) reported the positive correlations among grain Zn, Fe and 

protein contents in wheat, suggesting that all these three traits were combinable and 

could be simultaneously enhanced. 

Velu et al. (2011) found highly significant and positive correlation between 

zinc and iron concentrations (r=0.81; P<0.01) of pearl millet, indicating that 

simultaneous improvement of both the micronutrients would be effective.  

2.5 Path Co-efficient Analysis 

Path coefficient is a standard regression coefficient, which helps in 

specifying the actual forces acting in the cause and effect system and indicate their 

relative importance, instead of simply measuring the mutual relationship. Path analysis 

gives additional information on the magnitude of direct and indirect effects of the 

characters on yield. 

Gao (1984) reported that grain number/ear in sorghum had the greatest 

direct effect on grain yield, followed by 1000-grain weight. 

http://www.cabdirect.org/search.html?q=au%3A%22Zhang+Yong%22
http://www.cabdirect.org/search.html?q=au%3A%22Cao+YuXian%22
http://www.cabdirect.org/search.html?q=au%3A%22Xu+YunFeng%22


Amirthadevarathinam and Sankarapandian (1994) showed that 1000 grain 

weight had direct influence on plant yield in sorghum and further recorded the direct 

effect of number of grains in the primary branch fortified by its pronounced indirect 

effect through length of the primary branch. 

Veerabadhiran et al. (1994) found that the number of grains/panicle had 

maximum positive direct effect on yield followed by 1000 grain weight and days to 

50% bloom in sorghum.  

Chaudhary et al. (2001) reported direct effects of plant height on grain yield 

and high indirect effects of days to 50 % flowering via plant height in sorghum. 

Sheikh and Singh (2001) found that harvest index had largest direct effect 

on the grain yield per plant followed by total biomass and number of grains per ear in 

wheat. 

Deepalakshmi and Ganesamurthy (2007) observed that number of leaves 

per plant (0.820), earhead length (0.438), earhead weight (0.534), number of primaries 

per panicle (0.353) and grainmold score (0.306) had positive direct effect on seed yield. 

They further reported the maximum indirect effects of earhead weight were maximum 

through number of leaves per plant followed by number of primaries per panicle, 

earhead length and plant height on seed yield in sorghum. 

Ezeaku and Mohammed (2006) found that head weight of sorghum had the 

highest direct effect on grain yield (0.961), while 1000 grain mass contributed 

indirectly to grain yield via head weight (0.507). 

Chakraborti et al. (2009) observed that kernel number per ear row in maize 

had significant direct effect on grain yield, while kernel iron and zinc concentrations 

had no significant direct or indirect effects on grain yield.  

Moradi and Azarpour (2011) reported that ear length was most 

determinative and most effective trait with a positive effect on corn yield and also had 

an indirect effect on yield through rows per ear and 1000 grain weight. 
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Chapter III 

MATERIAL AND METHODS 

 

The present investigation was undertaken by conducting two field 

experiments during two postrainy seasons, 2010-11 and 2011-12 at ICRISAT farm, 

Patancheru, Hyderabad, Andhra Pradesh, India situated at 17.53
0 

N latitude, 78.27
0
 E 

longitude and altitude of 545 m above mean sea level. The experiments conducted 

include: 

1. Heterosis and combining ability studies for grain iron content 

2. Heterosis and combining ability studies for grain zinc content 

The details pertaining to the generation and evaluation of experimental 

material and the analysis of data carried out are described below: 

3.1 Generation of Breeding Material 

In each experiment, four inbred lines were grown in a crossing block 

(Table 3.1.) and mated in a full-diallel fashion to generate twelve (6 direct and 6 

reciprocal) crosses. As the sessile spikelets were bisexual, emasculation was done to 

remove anthers. Emasculation was done by using pencil technique in which tip of 

pencil is placed at the spikelet and rotated pointing upward, due to the pressure created, 

the anthers come out from the top of the spikelet and anthers are removed using 

forceps. Immediately after emasculation, the flower or inflorescence was covered with 

craft bags to prevent random cross-pollination. 

Viable pollen from panicles of male parents was then gently collected in 

butter paper bags by tapping the panicles and dusted the pollen over the female parents 

until adequate pollen was deposited on the stigmas of the emasculated spikelets.  This 

was normally done in the morning hours during anthesis.  The pollinated spikelets were 

then covered with fresh butter paper bags immediately after dusting to prevent further 

cross pollination if any.  



Table 3.1. Crossing block of parents in full-diallel mating design 

Parents P1 P2 P3 P4 

P1 S1 H1 (DC1) H2 (DC2) H3 (DC3) 

P2 H4 (RC1) S2 H5 (DC4) H6 (DC5) 

P3 H7 (RC2) H8 (RC3) S3 H9 (DC6) 

P4 H10 (RC4) H11 (RC5) H12 (RC6) S4 

Where, P = Parent   H = Hybrid  S = Selfing 

DC = Direct Cross  RC = Reciprocal Cross 

3.2 Evaluation of Experimental Material 

The evaluation of the hybrids along with their parental lines and 

standard check was carried out experimentwise for two successive postrainy seasons, 

2010-11 and 2011-12. During postrainy season, 2010-11, the evaluation was carried out 

using the experimental material that was already generated during postrainy season, 

2009-10 in ICRISAT farm. The evaluation was conducted for second time during 

postrainy season, 2011-12 using the same parents, check and the crosses that were 

generated from the crossing programme of postrainy season, 2010-11 to confirm the 

results obtained in the previous year.  

The experimentwise details pertaining to the parents used, methodology 

adopted and collection of data are furnished below:  

3.2.1 Experiment-I: Heterosis and Combining Ability Studies for Grain Iron 

Content 

3.2.1.1 Material: Four inbred lines with diversified levels of grain iron content were 

mated in a full-diallel fashion to generate twelve (6 direct and 6 reciprocal) crosses. 

The details of the parental lines used in this experiment are furnished in Table 3.2. 

Table 3.2. Details of parents with diversified levels of grain iron content 

Parental line Pedigree Iron density (mg kg
-1

) 

IS 2263 Landrace collected from United 

States of America 

34.83 

IS 13211 Landrace collected from United 

States of America 

35.39 

IS 10305 Landrace collected from India 30.50 

SPV 1359 RSLG 112-1-6 28.87 

Check (ICSR 40) (UChV2 X E35-1)-11-3-4 41.38 



3.2.1.2 Methodology: Four parental lines and twelve hybrids along with a standard 

check were evaluated for grain iron content and five important traits in a Randomized 

Block Design (RBD) with three replications in field under high fertility conditions 

during two successive postrainy seasons, 2010 and 2011. 

Each entry was sown in two row plots of 2 m length with 75 cm spacing 

between the rows and 10 cm between the plants, making the plot size of 1.5 m
2
. Two 

seeds were planted/hill with a spacing of 10 cm between the hills and thinned later to a 

single seedling/hill to obtain a population stand of 40 plants/plot. The crop was 

supplied with a fertilizer dose of 80 kg N and 40 kg P2O5 per hectare and nitrogen was 

applied in three split doses. 4 to 5 irrigations were given as and when required during 

the cropping season. Recommended and usual cultural practices were adopted to raise a 

good crop. 

3.2.1.3 Collection of data: The observations on the below mentioned characters were 

recorded as per the standard techniques at appropriate growth stages, replicationwise in 

each plot on all the parameters except on plant height for which observations were 

taken on five plants selected randomly in each genotype in each replication and the 

mean of those five plants were utilized for carrying out statistical analysis.  

3.2.1.3.1 Plant height (m): Plant height was measured in metres by using a meter scale 

from base of the plant to the tip of the flag leaf in each hill at the time of harvest. 

3.2.1.3.2 Days to 50 % flowering: The numbers of days taken from the day of sowing 

to first flowering in 50 per cent of plants were counted and recorded as days to 50 per 

cent flowering in each plot and in each replication. 

3.2.1.3.3 Plant aspect score: The agronomic desirability score was recorded on a scale 

of 1 to 5, where 1 = most desirable and 5 = least desirable was recorded in each plot 

and in each replication. 

3.2.1.3.4 100-grain weight (g): One hundred well filled grains were counted at random 

from each genotype per replication and weighed after thorough drying to 12 per cent 

moisture content and recorded in grams, with the help of electronic top pan balance 

(Precision of 0.01 g). 

3.2.1.3.5 Grain yield (t ha
-1

): The weight of filled grains harvested from the entire plot 

was recorded in grams after drying the grains to the required moisture content (12 %) 

and converted into tonnes per hectare. 

3.2.1.3.6 Grain iron content (mg kg
-1

): The panicles were harvested at maturity and 

the grain was threshed carefully without any contact with metal containers to avoid 

contamination. The cleaned seeds were collected in cloth bags and the iron content in 



them was measured with Oxford X-supreme 8000 model X-ray flourescence analyzer 

(XRF). Ten samples (each sample of 5-8 g.) were measured at a time and the grain iron 

content was displayed on the screen in mg kg
-1

. 

3.2.1.3.6.1 Working principle of X-ray flourescence analyzer: This is a non-

destructive bulk composition measurement instrument based on the X-ray flourescence 

principle. X-ray flourescence spectrometry is a technique used broadly for elemental 

analysis. During analysis, materials of interest are bombarded with X-rays energetic 

enough to eject one or more electrons from component atoms (thus ionizing them). 

Whenever an electron from inner orbital is ejected, electrons from higher energy 

orbitals fall to the lower energy orbital. An X-ray photon equal to the difference in 

energy of the orbitals is released. Thus, individual elements exposed to ionizing 

radiation emit photons of characteristic energies. For each element, the intensity of 

emitted radiation is proportional to the concentration of that element in the sample. 

3.2.2 Experiment-II: Heterosis and Combining Ability Studies for Grain Zinc 

Content 

3.2.2.1 Material: Four inbred lines with varied levels of grain zinc content were 

mated in a full-diallel fashion to generate twelve (6 direct and 6 reciprocal) crosses. 

The details of the parental lines used in this experiment are furnished in Table 3.3. 

Table 3.3. Details of parents with diversified levels of grain zinc content 

Parental line Pedigree Zinc density (mg/kg) 

IS 2248 Landrace collected from India 45.70 

IS 20843 Landrace collected from United States 

of America 

40.15 

PVK 801 [(IS 23528 X SPV 475) X (PS 

29154)]-4-2-2-4 

36.10 

ICSB 56 WAE 1067-3-5-1 29.72 

Check (ICSR 40) (UChV2 X E35-1)-11-3-4 29.90 

3.2.2.2 Methodology: Same as described in 3.2.1.2. 

3.2.2.3 Collection of data: The observations on the below mentioned characters were 

recorded as per the standard techniques at appropriate growth stages, replicationwise in 

each plot.  

3.2.2.3.1 Plant height (m): Same as mentioned in 3.2.1.3.1. 

3.2.2.3.2 Days to 50 % flowering: Same as described in 3.2.1.3.2. 

3.2.2.3.3 Plant aspect score: Same as furnished in 3.2.1.3.3. 



3.2.2.3.4 100-grain weight (g): Same as given in 3.2.1.3.4. 

3.2.2.3.5 Grain yield (t ha
-1

): Same as described in 3.2.1.3.5. 

3.2.2.3.6 Grain zinc content (mg kg
-1

): The panicles were harvested at maturity and 

the grain was threshed carefully without any contact with metal containers to avoid 

contamination. The cleaned seeds were collected in cloth bags and the zinc content in 

them was measured with Oxford X-supreme 8000 model X-ray flourescence analyzer 

(XRF). Ten samples (each sample of 5-8 g.) were measured at a time and the grain zinc 

content was displayed on the screen in mg kg
-1

. 

3.3 Statistical Analysis 

The data recorded on different traits was subjected to the following 

statistical analysis using SAS (version 9.2). Since, the data recorded on some 

observations i.e., plant height, days to 50 % flowering and plant aspect score in 

experiment-I and days to 50 % flowering and grain yield in experiment-II was 

significantly varied across the seasons due to environmental influence, homgenity test 

of variance was conducted to nullify the environmental influence and statistical 

analysis was done using that transformed data. 

3.3.1 Analysis of Variance 

The analysis of variance was carried out for Randomized Block Design 

(RBD) with three replications as suggested by Panse and Sukhatme (1985). 

Yij = m + gi + rj + eij 

Where, 

Yij = Phenotypic observation of i
th

 genotype in j
th

 replication 

m = General mean 

gi = Effect of i
th

 genotype 

rj = Effect of j
th

 replication 

eij = Random error 

The analysis of variance is as follows: 

Source d.f. MS F calculated 

Replications (r) (r-l) Mr Mr/Me 

Treatments (t) (t-l) Mt Mt/Me 

Error (e) (r-l) (t-l) Me  

Total (rt-l)   



Where, 

 r = number of replications 

 t = number of treatments (genotypes) 

 Mr = mean sum of squares of replications 

 Mt = mean sum of squares of treatments 

 Me = mean sum of squares of error 

 df = degrees of freedom 

 MS = mean sum of squares 

The significance of mean sum of squares for each character was tested 

against the corresponding error degrees of freedom using „F‟ test (Fisher and Yates, 

1963). 

3.3.2 Pooled Analysis of Variance 

Pooled analysis of variance for each character was done as per the SAS 

program (version 9.2) and the analysis of variance is as depicted below: 

Source d.f. MS F calculated 

Replication (r-2) Mr Mr/Me
1
 

Genotypes (G) (t-1) Mt Mt/Me
1
 

Environments (E) (e-1) Me Me/Me
1
 

G X E interaction (t-1) (e-1) Mge Mge/Me
1
 

Pooled error (r-2) (t-1) Me
1
  

Where, 

 r = total number of replications in two environments 

 t = number of treatments (genotypes) 

 Mr = mean sum of squares of replications 

 Mt = mean sum of squares of treatments 

 Me = mean sum of squares of environment 

 Mge = mean sum of squares of genotype environment interaction 

 Me
1
= mean sum of squares of pooled error 

 df = degrees of freedom 

 MS = mean sum of squares 

3.3.3 Estimation of Heterosis 

Heterosis was estimated for twelve hybrids for five characters in each 

experiment using the following formulae. 



3.3.3.1 Heterosis over Mid Parent: Heterosis was expressed as per cent increase or 

decrease observed in the F1 over the mid-parent as per the following formula. 

Heterosis over mid parent (%)  (H1) = 100x
MP

MPF1   

Where, 

1F     = Mean of F1 

MP = Mean of parents 

3.3.3.2 Heterosis over Better Parent: Heterosis over better parent was expressed as 

per cent increase or decrease observed in F1 over the better parent.  

Heterosis over better parent (%) (H2) =  100x
BP

BPF1   

Where, 

BP  = Mean of better parent (for days to 50% flowering, earliness is 

desirable so the early parents are taken as better parents). 

3.3.3.3 Heterosis over standard check: Heterosis over standard check was expressed 

as per cent increase or decrease observed in F1 over standard check. 

 Heterosis over standard check (%) (H3) =  100x
check ofMean 

check ofMean F1   

3.3.3.4 Test of significance of heterosis: To test the significance for different types of 

heterosis needs computation of standard error (SEm). The significance of heterosis over 

mid-parent, better parent and standard check was then tested by comparing the 

calculated „t‟- value with the tabulated student‟s „t‟ value for appropriate error degrees 

of freedom at 5 per cent and 1 per cent level of significance (0.05 and 0.01 level of 

probability). The differences in the magnitude of heterosis were tested, following the 

procedure given by Panse and Sukhatme (1985).                 

„t‟cal for mid-parent heterosis =  Mean of F1- Mean of mid-parent 

                                                                       SEm 

 

SEm  =   √3EMS 

              2r 

  t‟cal for  better parent heterosis =  Mean of F1- Mean of better parent 

                                                                            SEm 

                       

                                                        SEm  =   √2EMS 

           r 

 

t‟cal for  standard heterosis =  Mean of F1- Mean of standard check 

                                                                            SEm 

                                                         



                                                        SEm  =   √2EMS 

           r 

Where,  

EMS = Error mean of squares  

r = Number of replications           

3.3.3.5 Least Significance Difference (Critical Difference) for Heterosis 

 The significance of the difference between two estimates of heterosis were 

tested by computing the least significant difference (LSD) by multiplying the SEm with 

the appropriate student‟s „t‟ value of respective error degrees of freedom at desired 

level of probability. 

               CD = SE m x „t‟ table value at error degrees of freedom 

Where, SEm = Standard error  

3.3.4 Combining Ability Analysis 

The combining ability with one set of hybrids and parents was worked out 

according to Method-I and Model-I (fixed effects model) given by Griffing (1956).  

Yij = m+gi+gj+sij+rij+1/bc∑∑ eijkl 

Where,  

Yij = mean of i × jth genotype over k and l 

m = population mean 

gi = gca effect of ith parent 

gj = gca effect of jth parent 

sij = interaction i.e., sca effect 

rij = reciprocal effect and 

eijkl = mean error effect 

The analysis of variance is as follows: 

Source Degrees of freedom Mean sum of squares 

GCA p-1 Mg 

SCA p (p-1)/2 Ms 

Reciprocals p (p-1)/2 Mr 

Error (t-1) (r-1) Me
1
 

Where, p = number of parents 

             t = number of treatments (parents and their crosses) 

             r = number of replications 

 Mg = mean squares due to GCA 

 Ms = mean squares due to SCA 



 Mr = mean squares due to RCA 

 Me
1
= mean squares due to error 

3.3.4.1 Estimation of General and Specific Combining Ability Effects: The gca of 

the parents (gi) and the sca (sij) of the crosses were calculated as follows: 

gi (gca of i
th

  parent) = 1/2n (Yi.+Y.i)-1/n
2
Y .. 

sij (sca of the cross i X j
th
  parent) = ½ (Yij+ Yji) – 1/2n (Yi.+Y.i+Yj.+Yij) + 

1/n
2
Y..     

rij (reciprocal effect of the cross i X j
th
  parent) = ½( Yij – Yji)                       . 

Where, 

n = Number of parents used in diallel mating design 

Yi. = Female array total of the common parent 

Y.j = Male array total of the common parent 

Y.. = Overall total of the diallel table 

3.3.4.2 Test of significance of general and specific combining ability effects: To test 

the significance for gca, sca and reciprocal effects, standard error was need to be 

calculated. Their significance was then tested by comparing the calculated „t‟- value 

with the tabulated student‟s „t‟-value for appropriate error degrees of freedom at 5 per 

cent and 1 per cent level of significance (0.05 and 0.01 level of probability), 

respectively.      

  S.Egi        =     √(p-1) Me
1
   

                                                      2p
2
      

 

                       S.Esij      =      √(p-1)
2
 Me

1
   

                                                      p
2
      

 

                         S.Erji      =        √Me
1
   

                                                      2     

Calculated „t‟- value for gca effect =              gi 

                                                                    S.Egi   

 

                                   for sca effect =            si 

                                                                    S.Esij   

 

                                   For reciprocal effect = ri 

                                                                    S.Erji   

 

3.3.4.3 Estimation of General and Specific Combining Ability Variances: The 

variances of GCA and SCA were calculated using the following formulae. 

GCA variance (∑gi
2
) = Mg - Mg 

                                                       2p 

SCA variance (∑sij
2
) = Mg – Me 



RCA variance (∑rji
2
) = Mr – Me 

Where,  

 p = number of parents 

 Mg = mean squares due to GCA 

 Ms = mean squares due to SCA 

 Mr = mean squares due to RCA 

 Me
1
= mean squares due to error 

3.3.4.4 Estimation of Predictability Ratio 

Predictability ratio was computed using the following formula (Baker, 1978) 

Predictability ratio =     2σ
2
gca 

                                     (2σ
2
gca + σ

2
sca) 

Closer the predictability ratio to unity, better is the predictability of the 

crosses performed based on gca effects of their parents, which means predominance of 

additive genetic variance for that trait.  

3.3.5 Correlations 

Correlation coefficients were calculated at genotypic and phenotypic 

level using the formulae suggested by Falconer (1981). 

                                                                                                 σg (x.y) 

Genotypic coefficient of correlation (rg) =   -------------------------- 

                            √   σ
2

gx . σ
2

gy 

Where, 

 σg (x.y) = genotypic covariance between the variables x and y  

 σ
2

gx = genotypic variance of „x‟ 

 σ
2

gy = genotypic variance of „y‟  

                                           

      Treatment MS –Error MS 

 Genotypic variance =     ---------------------------------------------- 

                                                       Number of replications 

Similarly, 

                                           Treatment Cov – Error Cov 

Genotypic covariance =     ---------------------------------------------- 

                                             Number of replications                                                   

                                                                                   σp (x.y) 

Phenotypic coefficient of correlation (rg) =   -------------------------- 

             √   σ
2
px . σ

2
py 

Where, 

 σp (x.y) = phenotypic covariance between the variables x and y  

 σ
2

px = phenotypic variance of „x‟ 



 σ
2

py = phenotypic variance of „y‟   

3.3.6 Path Coefficient Analysis 

The direct and indirect effects both at genotypic and phenotypic levels 

were estimated by taking grain iron and zinc contents as dependent variables, using 

path coefficient analysis suggested by Wright (1921) and Dewey and Lu (1959). The 

following equations were formed and solved simultaneously for estimating the various 

direct and indirect effects. 

 

 

 

 

 

Where, 

 1, 2 ……………..n = Independent variables 

 y                               = Dependant variable 

 r1y, r2y ……….. rny = Coefficient of correlation between casual factors `1` to `n` 

on dependent  character 1 

 P1y, P2y …… Pny       = Direct effect of character 1 to n on character Y 

The above equation can be written in matrix form as: 

   A                                           C                                                  B 

 

  r1y                       1        r12        r13       ………. r1n                    P1y 

  r2y                       r21       1         r23       ……… r2n                     P2y 

   .                         .          .           .                                              . 

   .                         .          .           .                                              . 

   .                         .          .           .                                              . 

   rny                      rn1       rn2        rn3     ……….. 1                      Pny 

 

 

 

 

 

 

 

 

Then 

 B = (C) 
-1

 A  



 

Where, C
-1

 =                 c11            c12               c13 …………     c1n 

                                   c21            c22               c23 …………     c2n 

                                    .               .                   .                         . 

                                    :               :                   :                         : 

                                    :               :                   :                         : 

                              cn1            cn2               cn3 …………     cnn 

 

 

Direct effects were as follows: 

       P1y           =   
k 
Σ   c1i  riy 

           i=1 

 P2y           =  
 k
 Σ   c2i  riy 

            i=1 

 Pny            =  
 k
 Σ   c3i  riy 

             i=1 

Residual effect, which measures the contribution of characters not 

considered, was obtained as:  

     Pry      =    √   1-(P1y riy) - (P2y riy) -……- Pny rny 

Where, Pny   = direct effect of xn on Y 

       riy     = correlation coefficient of xn on Y 
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Chapter IV 

RESULTS AND DISCUSSION 

 

The present investigation was carried out by conducting two experiments, 

one with parents contrasting for grain iron and other with parents contrasting for grain 

zinc with an objective of identifying the relative ability of parental lines to produce 

desirable hybrid combinations using 4 x 4 diallel mating design. The results obtained 

are presented experimentwise separately hereunder: 

4.1 HETEROSIS AND COMBINING ABILITY STUDIES FOR 

GRAIN IRON IN SORGHUM USING CONTRASTING 

PARENTS FOR GRAIN IRON 

 The data collected on six characters, viz., plant height, days to 50 % 

flowering, plant aspect score, 100-grain weight, grain yield and grain iron content in the 

present study from evaluation of four parents and twelve crosses developed by crossing 

the parents in a full-diallel fashion along with one standard check (ICSR 40) were 

subjected to suitable statistical analyses and the results are presented below under the 

following heads. 

1. Analysis of variance 

2. Heterosis  

3. Combining ability analysis 

4. Character association 

5. Path coefficient analysis 

4.1.1 Analysis of Variance for Different Characters  

The analysis of variance (Tables 4.1. and 4.2.) indicated the existence of 

significant variability among the genotypes for all the characters studied in both the 

seasons.  

The combined analysis of variance (Table 4.3.) across the two postrainy 

seasons showed that the mean squares due to genotypes, environments and genotype x 

environment interaction were highly significant for all the characters except 100-grain 

weight. The mean squares due to environments were observed to be non-significant for 

100-grain weight. Thus, it is evident that the genotypes had enough variability for all  

 



 

 

 

Table 4.1. Analysis of variance for various agronomic characters and grain iron 

content in sorghum during postrainy season, 2010 

 

 

 

 

 

Table 4.2. Analysis of variance for various agronomic characters and grain iron 

content in sorghum during postrainy season, 2011 

 

 

* indicates significance @ 5 % level of probability;  

 

** indicates significance @ 1 % level of probability 

 

 

 

 

 

 

 

 

 

Source of 

variation 

Degrees of 

freedom 

Mean sum of squares 

Plant 

height  

(m) 

Days to  

50 % 

flowering 

100-grain 

weight  

(g) 

Grain 

yield  

(t ha
-1

) 

Grain iron 

(mg Kg
-1

) 

Replications 2 0.05 11.35** 0.28 1.13 65.16** 

Genotypes 16 0.63** 104.91** 1.03** 9.18** 94.41** 

Error  32 0.06 1.10 0.11 0.35 10.43 

Source of 

variation 

Degrees of 

freedom 

Mean sum of squares 

Plant 

height 

(m) 

Days to  

50 % 

flowering 

100-grain 

weight  

(g) 

Grain 

yield  

(t ha
-1

) 

Grain 

iron  

(mg Kg
-1

) 

Replications 2 0.04 10.06 0.01 0.32 21.37 

Genotypes 16 0.74** 187.92** 1.05** 6.35** 42.89** 

Error  32 0.02 10.41 0.05 0.32 9.78 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.3. Pooled analysis of variance for various agronomic characters and grain 

iron content in sorghum 

 

 

 

 

* indicates significance @ 5 % level of probability;  

 

** indicates significance @ 1 % level of probability 

 

 

 

 

 

 

 

 

 

 

 

Source of 

variation 

Degrees 

of 

freedom 

Mean sum of squares 

Plant 

height 

(m) 

Days to 

50 % 

flowering 

100-

grain 

weight 

(g) 

Grain 

yield  

(t ha
-1

) 

Grain iron 

(mg Kg
-1

) 

Replication  4 1.50 5.63** 0.14 0.72 43.26** 

Genotypes (G) 16 42.85** 53.30** 1.90** 13.36** 79.43** 

Environments (E) 1 1306.29*

* 

71408.18*

* 

0.20 92.49** 512.87** 

G X E interaction  16 9.03** 59.87** 0.19* 2.18** 57.87** 

Error 64 1.00 1.00 0.08 0.33 10.11 



 

the traits to estimate the nature of genetic variation and the performance of the 

genotypes varied significantly across the seasons. 

4.1.1.1 Mean Performance of Parents and Crosses: The mean performance of 

parents, hybrids and standard check for six characters (Tables 4.4., 4.5. and 4.6.) are 

discussed hereunder characterwise:  

4.1.1.1.1 Plant Height (m): The mean values for plant height varied from 1.00 m  

(IS 10305 X IS 13211) to 2.53 m (SPV 1359) with a grand mean of 1.88 m in 2010, 

1.00 m (IS 10305) to 2.60 m (SPV 1359 X IS 13211) with a grand mean of 1.96 m in 

2011 and from 1.04 m (IS 10305) to 2.52 m (IS 2263 X SPV 1359) with a general mean 

of 1.22 m across the seasons. Among the parents, SPV 1359 was significantly taller 

than all the other parents in both the seasons and across the seasons. All the parents 

were significantly taller than the check in both the seasons and across the seasons. The 

mean values for crosses ranged from 1.00 m (IS 10305 X IS 13211) to 2.50 m (IS 2263 

X SPV 1359) in 2010, from 1.57 m (IS 10305 X IS 13211) to 2.60 m (SPV 1359 X  

IS 13211) in 2011 and from 1.29 m (IS 10305 X IS 13211) to 2.52 m (IS 2263 X  

SPV 1359) across the seasons. Among the crosses, IS 2263 X SPV 1359 recorded 

highest plant height in 2010 (2.50 m) and across the seasons (2.52 m), while SPV 1359 

X IS 13211 recorded highest plant height (2.63 m) in 2011. IS 2263 X SPV 1359 was 

significantly taller than all the crosses except three crosses i.e., SPV 1359 X IS 10305, 

SPV 1359 X IS 2263 and SPV 1359 X IS 13211 in 2010, while it was significantly 

taller than all the crosses except SPV 1359 X IS 10305 followed by SPV 1359 X  

IS 2263 across the seasons. Almost all the crosses recorded significantly higher plant 

height in both the seasons and across the seasons than the check except IS 10305 X  

IS 13211 in 2010. Thus, the results obtained in the present investigation clearly 

indicated that the plant height of the crosses was highly influenced by the genotype of 

the parents. The crosses developed by involving SPV 1359 (the tallest parent) as one of 

the parents, were in general, taller than the remaining crosses, while the opposite results 

were observed with the involvement of the shortest parent, IS 10305. The taller hybrids 

can be utilised for dual purpose of grain and fodder.  The cross, IS 10305 X IS 13211 

recorded lowest plant height in both the seasons which might be due to the short stature 

of both of its parents. 

4.1.1.1.2 Days to 50 % Flowering: Days to 50 % flowering varied from 71.33 days  

(IS 2263 X IS 10305) to 93 days (IS 13211 X SPV 1359) with a grand mean of 77.71 

days in 2010, from 56 days (IS 13211 X IS 10305) to 83 days (IS 13211) with a grand  



 

 

 

 

 

 

Table 4.4. Mean performance of parents contrasting for grain iron and their 

hybrids for plant height (m) and 50 % flowering in postrainy seasons, 

2010, 2011 and pooled data 

 

Genotype 
Plant height (m) Days to 50 % flowering 

2010 2011 POOLED 2010 2011 POOLED 

PARENTS 

IS 2263 2.03 2.20 2.12 76.00 77.33 76.67 

IS 13211 1.87 1.43 1.65 77.67 83.00 80.34 

IS 10305 1.07 1.00 1.04 75.33 62.67 69.00 

SPV 1359 2.53 2.37 2.45 77.67 75.67 76.67 

MEAN 1.88 1.75 1.81 76.67 74.67 75.67 

DIRECT CROSSES 

IS 2263 X IS 13211 1.80 1.63 1.72 76.00 61.00 68.50 

IS 2263 X IS 10305 1.97 1.77 1.87 71.33 69.00 70.17 

IS 2263 X SPV 1359 2.50 2.53 2.52 76.67 75.00 75.84 

IS 13211 X IS 10305 1.83 1.63 1.73 75.33 56.00 65.67 

IS 13211 X SPV 1359 1.73 2.33 2.03 93.00 66.00 79.50 

IS 10305 X SPV 1359 1.87 2.23 2.05 75.67 67.33 71.50 

MEAN 1.95 2.02 1.99 78.00 65.72 71.86 

RECIPROCAL CROSSES 

IS 13211 X IS 2263 1.83 1.87 1.85 78.00 60.33 69.17 

IS 10305 X IS 2263 1.70 2.00 1.85 77.67 64.00 70.84 

IS 10305 X IS 13211 1.00 1.57 1.29 91.33 60.00 75.67 

SPV 1359 X IS 2263 2.27 2.50 2.39 75.33 75.67 75.50 

SPV 1359 X IS 13211 2.23 2.60 2.42 78.00 77.00 77.50 

SPV 1359 X IS 10305 2.43 2.50 2.47 76.67 66.67 71.67 

MEAN 1.91 2.17 2.04 79.50 67.28 73.39 

ICSR 40 (CHECK) 1.23 1.20 1.22 69.33 59.33 64.33 

GRAND MEAN 1.88 1.96 1.95 77.71 68.00 72.85 

C.V.% 13.22 6.79 10.01 1.35 4.75 3.05 

C.D. (5%) 0.41 0.22 0.32 1.75 5.37 3.56 

S Em 0.14 0.08 0.11 0.61 1.86 1.24 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Table 4.5. Mean performance of parents contrasting for grain iron and  

their hybrids for plant aspect score and 100-grain weight (g) in 

postrainy seasons, 2010, 2011 and pooled data 

 

Genotype 
Plant aspect score 100 grain weight (g) 

2010 2011 POOLED 2010 2011 POOLED 

PARENTS 

IS 2263 2.00 2.33 2.17 3.23 3.44 3.34 

IS 13211 3.00 4.00 3.50 2.67 2.22 2.45 

IS 10305 2.33 2.33 2.33 1.81 2.09 1.95 

SPV 1359 1.33 1.00 1.17 3.88 3.94 3.91 

MEAN 2.17 2.42 2.29 2.90 2.92 2.91 

DIRECT CROSSES 

IS 2263 X IS 13211 3.00 3.00 3.00 3.26 2.63 2.95 

IS 2263 X IS 10305 2.00 2.33 2.17 3.13 3.07 3.10 

IS 2263 X SPV 1359 2.00 1.67 1.84 3.67 3.61 3.64 

IS 13211 X IS 10305 2.33 3.00 2.67 2.67 2.59 2.63 

IS 13211 X SPV 1359 3.00 2.00 2.50 2.80 3.41 3.11 

IS 10305 X SPV 1359 2.00 2.00 2.00 2.94 3.57 3.26 

MEAN 2.39 2.33 2.36 3.08 3.15 3.11 

RECIPROCAL CROSSES 

IS 13211 X IS 2263 2.33 3.00 2.67 2.89 3.11 3.00 

IS 10305 X IS 2263 2.00 1.67 1.84 2.82 3.44 3.13 

IS 10305 X IS 13211 2.33 3.00 2.67 1.89 2.16 2.03 

SPV 1359 X IS 2263 1.67 1.33 1.50 3.61 3.74 3.68 

SPV 1359 X IS 13211 2.33 1.33 1.83 3.69 3.77 3.73 

SPV 1359 X IS 10305 2.00 1.67 1.84 3.56 3.38 3.47 

MEAN 2.11 2.00 2.06 3.08 3.27 3.17 

ICSR 40 (CHECK) 2.00 2.67 2.34 3.17 2.98 3.08 

GRAND MEAN 2.21 2.25 2.23 3.04 3.13 3.08 

C.V.% 15.32 23.85 19.59 10.69 7.46 9.08 

C.D. (5%) 0.56 0.89 0.73 0.54 0.39 0.47 

S Em 0.2 0.31 0.26 0.19 0.13 0.16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 4.6. Mean performance of parents contrasting for grain iron and  

their hybrids for grain yield (t ha
-1

) and grain iron (mg kg
-1

)  

in postrainy seasons, 2010, 2011 and pooled data 

 

Genotype 
Grain yield  (t ha

-1
) Grain iron  (mg kg

-1
) 

2010 2011 POOLED 2010 2011 POOLED 

PARENTS 

IS 2263 4.21 4.31 4.26 35.60 34.06 34.83 

IS 13211 3.36 0.58 1.97 32.00 38.77 35.39 

IS 10305 0.73 1.01 0.87 33.70 27.30 30.50 

SPV 1359 6.97 4.98 5.98 29.10 28.63 28.87 

MEAN 3.82 2.72 3.27 32.60 32.19 32.40 

DIRECT CROSSES 

IS 2263 X IS 13211 4.59 1.84 3.22 38.53 34.00 36.27 

IS 2263 X IS 10305 6.25 3.31 4.78 35.73 31.38 33.56 

IS 2263 X SPV 1359 5.24 4.62 4.93 41.40 27.93 34.67 

IS 13211 X IS 10305 4.02 1.24 2.63 44.30 27.27 35.79 

IS 13211 X SPV 1359 3.94 2.71 3.33 35.43 37.10 36.27 

IS 10305 X SPV 1359 7.09 3.24 5.17 29.17 28.30 28.74 

MEAN 5.19 2.83 4.01 37.43 31.00 34.21 

RECIPROCAL CROSSES 

IS 13211 X IS 2263 4.52 1.84 3.18 42.57 34.25 38.41 

IS 10305 X IS 2263 4.54 2.79 3.67 28.27 31.13 29.70 

IS 10305 X IS 13211 2.51 0.99 1.75 33.03 27.85 30.44 

SPV 1359 X IS 2263 6.41 5.07 5.74 31.23 31.55 31.39 

SPV 1359 X IS 13211 5.68 3.99 4.84 34.47 26.92 30.70 

SPV 1359 X IS 10305 6.93 3.18 5.06 33.07 27.82 30.45 

MEAN 5.10 2.98 4.04 33.77 29.92 31.85 

ICSR 40 (CHECK) 3.03 1.95 2.49 47.83 34.93 41.38 

GRAND MEAN 4.71 2.80 3.76 35.61 31.13 33.37 

C.V.% 12.53 20.23 16.38 9.07 10.05 9.56 

C.D. (5%) 0.98 0.94 0.96 5.37 5.20 5.29 

S Em 0.34 0.33 0.34 1.86 1.81 1.84 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 



 

mean of 68 days in 2011 and from 65.67 days (IS 13211 X IS 10305) to 80.34 days  

(IS 13211) with a general mean of 72.85 days across the seasons. Among the parents,  

IS 10305 was the earliest and it was significantly earlier than all other parents in both 

the seasons and across the seasons except IS 2263 in 2010. Among the hybrids, IS 2263 

X IS 10305 was the earliest (71.33 days) in 2010 and it was significantly earlier than all 

other crosses, while IS 13211 X IS 10305 (56.00 days) was the earliest in 2011 and 

significantly earlier than all other crosses except IS 2263 X IS 13211, IS 13211 X  

IS 2263 and IS 10305 X IS 13211. Across the seasons, IS 13211 X IS 10305 was the 

earliest and significantly earlier than all crosses except IS 2263 X IS 13211 and  

IS 13211 X IS 2263. Compared with standard check, all the genotypes exhibited 

delayed flowering in both the seasons. 

4.1.1.1.3 Plant Aspect Score: The plant aspect score ranged from 1.33 (SPV 1359) to 

3.00 (IS 13211, IS 2263 X IS 13211 and IS 13211 X SPV 1359) with a grand mean of 

2.21 in 2010, from 1.00 (SPV 1359) to 4.00 (IS 13211) with a grand mean of 2.25 in 

2011 and from 1.17 (SPV 1359) to 3.50 (IS 13211) with a general mean of 2.23 across 

the seasons. SPV 1359 was agronomically more desirable while, IS 13211 was 

agronomically least preferable among the parents in both the seasons and across the 

seasons compared to check and all other parents. Among the crosses, SPV 1359 X  

IS 2263 was the most desirable cross in 2010 and significantly superior than IS 2263 X 

IS 13211, IS 13211 X IS 10305, IS 13211 X SPV 1359, IS 13211 X IS 2263, IS 10305 

X IS 13211 and SPV 1359 X IS 13211. However, none of the crosses were 

agronomically desirable when compared to check in 2010, while SPV 1359 X IS 13211 

was most desirable in 2011 and significantly superior than IS 2263 X IS 13211,  

IS 13211 X IS 10305, IS 13211 X IS 2263, IS 10305 X IS 13211 and IS 2263 X  

IS 10305. SPV 1359 X IS 2263 was the most desirable cross across the seasons and 

significantly desirable than IS 2263 X IS 13211, IS 13211 X IS 10305, IS 13211 X  

IS 2263, IS 13211 X SPV 1359 and IS 10305 X IS 13211 and also check. SPV 1359 X 

IS 2263, SPV 1359 X IS 13211, IS 2263 X SPV 1359 and IS 10305 X IS 2263 were 

significantly superior to check with respect to plant aspect score across the seasons. 

4.1.1.1.4 100-Grain Weight (g): 100-grain weight varied from 1.81 g (IS 10305) to 

3.88 g (SPV 1359) with a grand mean of 3.04 g in 2010, from 2.09 g (IS 10305) to 3.94 

g (SPV 1359) with a grand mean of 3.13 g in 2011 and from 1.95 g (IS 10305) to 3.91 

g (SPV 1359) with a general mean of 3.08 g across the seasons. SPV 1359 recorded the 

highest grain weight among the parents and also recorded significantly higher grain 



weight than all other parents and check in both the seasons and across the seasons. In 

addition to this, IS 2263 recorded significantly higher grain weight than check in 2011. 

Since, SPV 1359 had bold grains, the crosses viz., SPV 1359 X IS 13211 recorded the 

highest grain weight followed by IS 2263 X SPV 1359 in 2010 and SPV 1359 X  

IS 13211 followed by SPV 1359 X IS 2263 in 2011 and across the seasons. As  

SPV 1359 followed by IS 2263 possessed higher grain weight than the check, most of 

the crosses involving SPV 1359 and IS 2263 as one of the parents exhibited higher 

grain weight than the check in both the seasons and across the seasons. SPV 1359 X IS 

13211 recorded significantly higher grain weight than all other crosses except IS 2263 

X SPV 1359, SPV 1359 X IS 2263, SPV 1359 X IS 10305 and IS 2263 X IS 13211 in 

2010, while it recorded significantly higher grain weight than all other crosses except 

SPV 1359 X IS 2263, IS 2263 X SPV 1359, IS 10305 X SPV 1359, IS 10305 X IS 

2263 and IS 13211 X SPV 1359 in 2011. Across the seasons, the same cross was 

significantly higher in grain weight than all other crosses except SPV 1359 X IS 2263, 

IS 2263 X SPV 1359 and SPV 1359 X IS 10305. None of the crosses recorded 

significantly higher grain weight than the check in 2010. More than 50 % of the crosses 

in 2010, six crosses (SPV 1359 X IS 13211, SPV 1359 X IS 2263, IS 10305 X SPV 

1359, IS 10305 X IS 2263, IS 13211 X SPV 1359 and SPV 1359 X IS 10305) in 2011 

and four crosses (SPV 1359 X IS 13211, SPV 1359 X IS 2263, IS 2263 X SPV 1359 

and SPV 1359 X IS 10305) across the seasons recorded significantly higher grain 

weight than the check. 

4.1.1.1.5 Grain Yield (t ha
-1

): The mean values of grain yield ranged from 0.73 t ha
-1

 

(IS 10305) to 7.09 t ha
-1

 (IS 10305 X SPV 1359) with a grand mean of 4.71 t ha
-1

 in 

2010, from 0.58 t ha
-1

 (IS 13211) to 5.07 t ha
-1

 (SPV 1359 X IS 2263) with a grand 

mean of 2.80 t ha
-1

 in 2011 and from 0.87 t ha
-1

 (IS 10305) to 5.98 t ha
-1

 (SPV 1359) 

with a general mean of 3.76 t ha
-1

 across the seasons. Among the parents, the highest 

grain yield was recorded by SPV 1359 in both the seasons and across the seasons.  SPV 

1359 recorded significantly higher grain yield than all other parents and check in 2010, 

while SPV 1359 followed by IS 2263 exhibited significantly higher grain yield than the 

other parents in 2011 and across the seasons. In 2010, IS 10305 X SPV 1359 recorded 

highest grain yield followed by SPV 1359 X IS 10305 and SPV 1359 X IS 2263 

recorded highest grain yield followed by IS 2263 X SPV 1359 in 2011 and across the 

seasons among the crosses. IS 10305 X SPV 1359 recorded highest grain yield and 

significantly higher grain yield than all other crosses except SPV 1359 X IS 10305,  

SPV 1359 X IS 2263 and IS 2263 X IS 10305 in 2010, while SPV 1359 X IS 2263 



exhibited highest grain yield and significantly higher grain yield than all other crosses 

except IS 2263 X SPV 1359 and its reciprocal cross in 2011 and all other crosses 

except IS 10305 X SPV 1359, SPV 1359 X IS 10305 and SPV 1359 X IS 13211 across 

the seasons. 

4.1.1.1.6 Grain Iron (mg kg
-1

): Grain iron widely varied from 28.27 mg kg
-1

 (IS 

10305 X IS 2263) to 44.30 mg kg
-1

 (IS 13211 X IS 10305) with a grand mean of 35.61 

mg kg
-1 

in 2010, from 26.92 mg kg
-1

 (SPV 1359 X IS 13211) to 38.77 mg kg
-1

 (IS 

13211) with a grand mean of 31.13 mg kg
-1 

in 2011 and from 28.74 mg kg
-1

 (IS 10305 

X SPV 1359) to 38.41 mg kg
-1

 (IS 13211 X IS 2263) with a general mean of 33.37 mg 

kg
-1 

across the seasons. The highest grain iron was found in IS 2263 (35.60 mg kg
-1

) 

followed by IS 10305 (33.70 mg kg
-1

) in 2010 and IS 13211 (38.77 mg kg
-1

) followed 

by IS 2263 (34.06 mg kg
-1

) in 2011 and across the seasons. Among the crosses, IS 

13211 X IS 10305 achieved highest grain iron (44.30 mg kg
-1

) followed by IS 13211 X 

IS 2263 in 2010 and IS 13211 X SPV 1359 (37.10 mg kg
-1

) followed by IS 13211 X IS 

2263 in 2011. However, IS 13211 X IS 2263 recorded highest grain iron (38.41 mg kg
-

1
) followed by IS 2263 X IS 13211 and IS 13211 X SPV 1359 across the seasons  

(Fig 4.1). None of the parents and crosses recorded higher grain iron than check in both 

the seasons and across the seasons. Among the parents, IS 2263 in 2010 and IS 13211 

in 2011 and across the seasons were significantly higher in grain iron than SPV 1359. 

In 2010, IS 13211 X IS 10305 recorded significantly higher grain iron than all crosses 

except IS 2263 X SPV 1359 and IS 13211 X IS 10305, while IS 13211 X SPV 1359 

recorded significantly higher grain iron than all crosses except IS 2263 X IS 13211 and 

its reciprocal cross in 2011. However, IS 13211 X IS 2263 was significantly higher in 

grain iron than SPV 1359 X IS 13211, SPV 1359 X IS 10305, SPV 1359 X IS 2263,  

IS 10305 X IS 13211, IS 10305 X SPV 1359 and IS 10305 X IS 2263 across the 

seasons. 

4.1.2 Heterosis 

 Heterosis is defined as the superiority in performance of hybrids over its 

parents, largely explained either due to dominance or over dominance effects. From 

practical standpoint, this definition of heterosis must translate into heterosis over better 

parent. Thus, for calculating heterosis over better parent for traits like plant height,  

100-grain weight, grain yield and grain iron and grain zinc concentrations, better 

parents would be those that have higher values, while for days to 50 per cent flowering 

better parent would be the one with lower value. The dominance model assumes that 

each of the inbred lines contains a combination of dominance and recessive alleles at  



 

 

 

 

 

 

 
 

Figure 4.1. Per se performance of promising hybrids along with parents for grain 

iron across the seasons 

P1 = Parent 1     P2 = Parent 2 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



different loci, which together in the F1 hybrid, lead to heterosis (Davenport, 1908 and 

Jones, 1918). The over dominance model suggests the heterozygous combination of 

alleles at a given locus is phenotypically superior to either of the homozygous 

combinations at that locus. The hybrid with either positive or negative heterosis over 

the mid-parent indicates partial dominance of alleles either with positive or negative 

effect. The magnitude of heterosis largely depends on the genetic diversity among the 

parents used in hybridization programme. The hybrid with significant heterosis either in 

positive or negative direction over mid-parent indicates the dominance of positive or 

negative genes. Similarly, the hybrid with significant positive or negative heterosis over 

better parent indicates over dominance of positive or negative genes. The hybrids with 

non-significant mid-parent heterosis reveal the involvement of additive gene effects. 

Heterosis of different quantitative traits among direct crosses and reciprocal 

crosses are presented in Tables 4.7 to 4.11 and are discussed hereunder: 

4.1.2.1 Plant Height: Plant height of varieties or hybrids is always of greater 

importance to plant breeders, particularly when sorghum is grown for dual purpose and 

in intercropping system. Increased plant height has direct relation with grain yield and 

total biomass production (Thombre and Patil, 1985). Heterosis over mid-parent for this 

trait varied from -31.82 % (IS 10305 X IS 13211) to 35.19 % (SPV 1359 X IS 10305) 

in 2010, from -10.09 % (IS 2263 X IS 13211) to 48.51 % (SPV 1359 X IS 10305) in 

2011 and from -40.06 % (SPV 1359 X IS 2263) to 85.45 % (IS 10305 X IS 13211) 

across the seasons. IS 10305 X IS 13211 and IS 13211 X SPV 1359 in 2010 and SPV 

1359 X IS 2263 across the seasons exhibited highly significant negative heterosis, 

while none of the crosses recorded significant negative heterosis in 2011. Only three 

crosses (SPV 1359 X IS 10305, IS 2263 X IS 10305 and IS 13211 X IS 10305) 

exhibited positive heterosis in 2010, while more than 50 per cent of the hybrids had 

significant positive heterosis in 2011 and across the seasons. Highest significant 

positive heterosis was exhibited by SPV 1359 X IS 10305 in both the seasons and IS 

13211 X IS 10305 across the seasons.  

 Heterosis over better-parent varied from -46.43 % (IS 10305 X IS 13211) to 

-1.32 % (IS 2263 X SPV 1359) in 2010, from -25.76 % (IS 2263 X IS 13211) to  

13.95 % (IS 13211 X IS 10305) in 2011 and from -43.56 % (SPV 1359 X IS 2263) to 

52.60 % (IS 10305 X IS 13211) across the seasons. None of the crosses recorded 

significant positive heterosis over better parent in both the seasons and across the 

seasons. However, IS 10305 X IS 13211 recorded significant positive heterosis across  



Table 4.7. Estimates of heterosis over mid-parent (H1), better parent (H2) and standard check (H3) for plant height (m)  

in sorghum across postrainy seasons, 2010 and 2011 

 
 

* indicates significance @ 5 % level of probability and ** indicates significance @ 1 % level of probability 

 
 

 

 

 

 

 

 

 

 

 

 

CROSS 
2010 2011 POOLED 

MEAN H1 H2 H3 MEAN H1 H2 H3 MEAN H1 H2 H3 

DIRECT CROSSES 

IS 2263 X IS 13211 1.80 -7.69 -11.48 45.95** 1.63 -10.09 -25.76** 36.11** 9.76 -9.21 -21.02** 39.61** 

IS 2263 X IS 10305 1.97 26.88* -3.28 59.46** 1.77 10.42 -19.70** 47.22** 10.59 16.05* -14.25* 51.58** 

IS 2263 X SPV 1359 2.50 9.49 -1.32 102.70** 2.53 10.95* 7.04 111.11** 14.54 10.44 3.99 108.12** 

IS 13211 X IS 10305 1.83 25.00* -1.79 48.65** 1.63 34.25** 13.95 36.11** 9.82 30.61** 7.47 40.57** 

IS 13211 X SPV 1359 1.73 -21.21** -31.58** 40.54* 2.33 22.81** -1.41 94.44** 12.25 5.92 -12.43* 75.26** 

IS 10305 X SPV 1359 1.87 3.70 -26.32** 51.35** 2.23 32.67** -5.63 86.11** 12.14 22.10** -13.19* 73.24** 



Table 4.7 (Contd.) 

 

CROSS 
2010 2011 POOLED 

MEAN H1 H2 H3 MEAN H1 H2 H3 MEAN H1 H2 H3 

RECIPROCAL CROSSES 

IS 13211 X IS 2263 1.83 -5.98 -9.84 48.65** 1.87 2.75 -15.15** 55.56** 10.70 -0.44 -13.39* 53.10** 

IS 10305 X IS 2263 1.70 9.68 -16.39 37.84* 2.00 25.00** -9.09 66.67** 10.93 19.75* -11.51 56.41** 

IS 10305 X IS 13211 1.00 -31.82** -46.43** -18.92 1.57 28.77** 9.30 30.56** 13.95 85.45** 52.60** 99.60** 

SPV 1359 X IS 2263 2.27 -0.73 -10.53 83.78** 2.50 9.49* 5.63 108.33** 7.89 -40.06** -43.56** 12.95 

SPV 1359 X IS 13211 2.23 1.52 -11.84 81.08** 2.60 36.84** 9.86 116.67** 14.26 23.29** 1.93 104.00** 

SPV 1359 X IS 10305 2.43 35.19** -3.95 97.30** 2.50 48.51** 5.63 108.33** 14.28 43.65** 2.13 104.41** 

C.D. (5%)  0.35 0.41 0.41  0.20 0.24 0.24  1.42 1.64 1.64 

C.D. (1%)  0.47 0.55 0.55  0.27 0.33 0.33  1.89 2.18 2.18 

 

* indicates significance @ 5 % level of probability and ** indicates significance @ 1 % level of probability 

 

 

 

 

 

 

 



Table 4.8. Estimates of heterosis over mid-parent (H1), better parent (H2) and standard check (H3) for days to 50 % flowering  

in sorghum across postrainy seasons, 2010 and 2011 

 
 

 

* indicates significance @ 5 % level of probability and ** indicates significance @ 1 % level of probability 

 

 

 

 

 

 

 

 

 

CROSS 
2010 2011 POOLED 

MEAN H1 H2 H3 MEAN H1 H2 H3 MEAN H1 H2 H3 

DIRECT CROSSES 

IS 2263 X IS 13211 76 -1.08 0.00 9.62** 61.00 -23.91** -21.12** 2.81 45.63 -6.87** -5.25** 8.13** 

IS 2263 X IS 10305 71.33 -5.73** -5.31** 2.88* 69.00 -1.43 10.11* 16.29** 44.65 -4.73** -2.03 5.81** 

IS 2263 X SPV 1359 76.67 -0.22 0.88 10.58** 75.00 -1.96 -0.88 26.40** 48.12 -0.64 -0.09 14.02** 

IS 13211 X IS 10305 75.33 -1.53 0.00 8.65** 56.00 -23.11** -10.64* -5.62 44.54 -6.63** -2.27 5.54** 

IS 13211 X SPV 1359 93 19.74** 19.74** 34.13** 66.00 -16.81** -12.78** 11.24* 54.50 10.62** 11.91** 29.15** 

IS 10305 X SPV 1359 75.67 -1.09 0.44 9.13** 67.33 -2.65 7.45 13.48** 46.46 -1.44 1.93 10.08** 



Table 4.8 (Contd.) 

 

CROSS 
2010 2011 POOLED 

MEAN H1 H2 H3 MEAN H1 H2 H3 MEAN H1 H2 H3 

RECIPROCAL CROSSES 

IS 13211 X IS 2263 78.00 1.52 2.63* 12.50** 60.33 -24.74** -21.98** 1.69 46.48 -5.14** -3.49* 10.14** 

IS 10305 X IS 2263 77.67 2.64* 3.10* 12.02** 64.00 -8.57* 2.13 7.87 46.89 0.05 2.89 11.11** 

IS 10305 X IS 13211 91.33 19.39** 21.24** 31.73** 60.00 -17.62** -4.26 1.12 47.59 -0.24 4.42* 12.77** 

SPV 1359 X IS 2263 75.33 -1.95 -0.88 8.65** 75.67 -1.09 0.00 27.53** 52.78 8.97** 9.58** 25.06** 

SPV 1359 X IS 13211 78.00 0.43 0.43 12.50** 77.00 -2.94 1.76 29.78** 49.07 -0.41 0.75 16.26** 

SPV 1359 X IS 10305 76.67 0.22 1.77 10.58** 66.67 -3.61 6.38 12.36** 46.83 -0.65 2.75 10.97** 

C.D. (5%)  1.51 1.75 1.75  4.64 5.36 5.36  1.42 1.64 1.64 

C.D. (1%)  2.03 2.35 2.35  6.24 7.20 7.20  1.89 2.18 2.18 

 

* indicates significance @ 5 % level of probability and ** indicates significance @ 1 % level of probability 

 

 

 

 

 

 

 



Table 4.9. Estimates of heterosis over mid-parent (H1), better parent (H2) and standard check (H3) for 100-grain weight  

in sorghum across postrainy seasons, 2010 and 2011 

 

* indicates significance @ 5 % level of probability and ** indicates significance @ 1 % level of probability 

 

 

 

 

 

 

 

 

 

 

CROSS 
2010 2011 POOLED 

MEAN H1 H2 H3 MEAN H1 H2 H3 MEAN H1 H2 H3 

DIRECT CROSSES 

IS 2263 X IS 13211 3.26 10.63 1.03 2.84 2.63 -6.89 -23.38** -11.73 2.95 2.05 -11.56 -4.23 

IS 2263 X IS 10305 3.13 24.50* -2.89 -1.16 3.07 11.16 -10.67* 2.91 3.10 17.52* -6.90 0.81 

IS 2263 X SPV 1359 3.67 3.33 -5.33 15.77 3.61 -2.12 -8.38 21.01** 3.64 0.55 -6.87 18.31* 

IS 13211 X IS 10305 2.67 19.23 0.00 -15.88 2.59 20.28* 16.67* -13.18* 2.63 19.74* 7.57 -14.57 

IS 13211 X SPV 1359 2.80 -14.31 -27.69** -11.57 3.41 10.71* -13.45** 14.30* 3.11 -2.18 -20.51** 0.98 

IS 10305 X SPV 1359 2.94 3.46 -24.16** -7.26 3.57 18.58** -9.31* 19.78** 3.26 11.24 -16.67** 5.85 



Table 4.9 (Contd.) 

CROSS 
2010 2011 POOLED 

MEAN H1 H2 H3 MEAN H1 H2 H3 MEAN H1 H2 H3 

RECIPROCAL CROSSES 

IS 13211 X IS 2263 2.89 -2.04 -10.54 -8.94 3.11 10.08 -9.41 4.36 3.00 3.90 -9.95 -2.49 

IS 10305 X IS 2263 2.82 11.92 -12.71 -11.15 3.44 24.68** 0.19 15.42** 3.13 18.60* -6.05 1.73 

IS 10305 X IS 13211 1.89 -15.65 -29.25** -40.48** 2.16 0.15 -2.85 -27.71** 2.02 67.43** 50.41** 19.45** 

SPV 1359 X IS 2263 3.61 1.55 -6.96 13.77 3.74 1.49 -4.99 25.47** 3.68 -44.15** -48.27** -34.29** 

SPV 1359 X IS 13211 3.69 12.68 -4.90 16.30 3.77 22.29** -4.40 26.26** 3.73 17.34** -4.65 21.13** 

SPV 1359 X IS 10305 3.56 25.40** -8.08 12.41 3.38 12.06* -14.30** 13.18* 3.47 18.53** -11.22 12.78 

C.D. (5%)  0.48 0.55 0.55  0.33 0.37 0.37  0.40 0.46 0.46 

C.D. (1%)  0.64 0.74 0.74  0.44 0.49 0.49  0.53 0.61 0.61 

 

* indicates significance @ 5 % level of probability and ** indicates significance @ 1 % level of probability 

 

 

 

 

 

 

 

 



Table 4.10. Estimates of heterosis over mid-parent (H1), better parent (H2) and standard check (H3) for grain yield  

in sorghum across postrainy seasons, 2010 and 2011 

 

 

* indicates significance @ 5 % level of probability and ** indicates significance @ 1 % level of probability 

 

 

 

 

 

 

 

 

 

CROSS 
2010 2011 POOLED 

MEAN H1 H2 H3 MEAN H1 H2 H3 MEAN H1 H2 H3 

DIRECT CROSSES 

IS 2263 X IS 13211 4.59 21.13 8.86 51.38** 1.84 -24.61 -57.23** -5.63 3.22 3.18 -24.56* 29.03 

IS 2263 X IS 10305 6.25 152.90** 48.26** 106.16** 3.31 24.44 -23.20* 69.45** 4.78 86.29** 12.12 91.77** 

IS 2263 X SPV 1359 5.24 -6.23 -24.77** 73.05** 4.62 -0.43 -7.10 136.69** 4.93 -3.60 -17.41* 97.99** 

IS 13211 X IS 10305 4.02 96.57** 19.54 32.56* 1.24 56.39 23.10 -36.35 2.63 85.32** 33.50 5.55 

IS 13211 X SPV 1359 3.94 -23.65** -43.42** 30.14 2.71 -2.46 -45.55** 38.74 3.33 -16.24 -44.31** 33.51 

IS 10305 X SPV 1359 7.09 84.32** 1.77 134.10** 3.24 8.13 -34.96** 65.70** 5.17 50.99** -13.53 107.29** 



 

 

Table 4.10 (Contd.) 

 

CROSS 
2010 2011 POOLED 

MEAN H1 H2 H3 MEAN H1 H2 H3 MEAN H1 H2 H3 

RECIPROCAL CROSSES 

IS 13211 X IS 2263 4.52 19.28 7.20 49.06** 1.84 -24.61 -57.23** -5.63 3.18 2.06 -25.38* 27.63 

IS 10305 X IS 2263 4.54 83.94** 7.83 49.94** 2.79 4.76 -35.34** 42.66 3.67 42.88** -14.00 47.09* 

IS 10305 X IS 13211 2.51 22.68 -25.40 -17.27 0.99 24.11 -2.31 -49.49* 1.75 23.08 -11.34 -29.90 

SPV 1359 X IS 2263 6.41 14.63 -8.03 111.55** 5.07 9.12 1.81 159.39** 5.74 12.16 -3.91 130.37** 

SPV 1359 X IS 13211 5.68 10.04 -18.46* 87.57** 3.99 43.61** -19.83* 104.27** 4.84 21.78* -19.03 94.11** 

SPV 1359 X IS 10305 6.93 80.16** -0.53 128.82** 3.18 6.13 -36.17** 62.63* 5.06 47.77** -15.37* 102.88** 

C.D. (5%)  0.86 0.98 0.98  0.81 0.94 0.94  0.82 0.94 0.94 

C.D. (1%)  1.15 1.31 1.31  1.10 1.26 1.26  1.09 1.25 1.25 

 

* indicates significance @ 5 % level of probability and ** indicates significance @ 1 % level of probability 

 

 

 

 

 



Table 4.11. Estimates of heterosis over mid-parent (H1), better parent (H2) and standard check (H3) for grain iron  

in sorghum across postrainy seasons, 2010 and 2011 

 

 

* indicates significance @ 5 % level of probability and ** indicates significance @ 1 % level of probability 

 

 

 

 

 

 

 

 

 

CROSS 
2010 2011 POOLED 

MEAN H1 H2 H3 MEAN H1 H2 H3 MEAN H1 H2 H3 

DIRECT CROSSES 

IS 2263 X IS 13211 38.53 14.00* 8.24 -19.44** 34.00 -6.62 -12.30 -2.67 36.27 3.31 2.50 -12.36 

IS 2263 X IS 10305 35.73 3.13 0.37 -25.30** 31.38 2.30 -7.85 -10.16 33.56 2.74 -3.65 -18.91** 

IS 2263 X SPV 1359 41.40 27.98** 16.29* -13.45* 27.93 -10.88 -17.98* -20.04** 34.67 8.85 -0.46 -16.23* 

IS 13211 X IS 10305 44.30 34.86** 31.45** -7.39 27.27 -17.46* -29.66** -21.95** 35.78 8.63 1.13 -13.53* 

IS 13211 X SPV 1359 35.43 15.97* 10.72 -25.93** 37.10 10.09 -4.30 6.20 36.27 12.89 2.49 -12.37 

IS 10305 X SPV 1359 29.17 -7.11 -13.45 -39.02** 28.30 1.19 -1.16 -18.99* 28.73 -3.20 -5.79 -30.57** 



Table 4.11 (Contd.) 

 

CROSS 
2010 2011 POOLED 

MEAN H1 H2 H3 MEAN H1 H2 H3 MEAN H1 H2 H3 

RECIPROCAL CROSSES 

IS 13211 X IS 2263 42.57 25.94** 19.57* -11.01 34.25 -5.94 -11.65 -1.96 38.41 9.41 8.55 -7.19 

IS 10305 X IS 2263 28.27 -18.42** -20.60** -40.91** 31.13 1.48 -8.58 -10.88 29.70 -9.07 -14.72 -28.23** 

IS 10305 X IS 13211 33.03 0.56 -1.98 -30.94** 27.85 -15.69* -28.16** -20.28** 30.44 -7.59 -13.97 -26.44** 

SPV 1359 X IS 2263 31.23 -3.45 -12.27 -34.70** 31.55 0.65 -7.36 -9.69 31.39 -1.44 -9.87 -24.15** 

SPV 1359 X IS 13211 34.47 12.82 7.71 -27.94** 26.92 -20.13** -30.57** -22.95** 30.70 -4.44 -13.24 -25.82** 

SPV 1359 X IS 10305 33.07 5.31 -1.88 -30.87** 27.82 -0.54 -2.85 -20.37** 30.45 2.58 -0.16 -26.42** 

C.D. (5%)  4.64 5.38 5.28  4.50 5.19 5.19  4.50 5.19 5.19 

C.D. (1%)  6.24 7.23 7.23  6.05 6.98 6.98  5.97 6.90 6.90 

 

* indicates significance @ 5 % level of probability and ** indicates significance @ 1 % level of probability 

 

 

 

 

 

 

 

 

 



 

the seasons. Highest negative significant heterosis was exhibited by IS 10305 X IS 

13211, IS 2263 X IS 13211 and SPV 1359 X IS 2263 in 2010, 2011 and across the 

seasons, respectively, while lowest heterosis was recorded by IS 10305 X IS 13211, IS 

2263 X IS 13211 and SPV 1359 X IS 2263 in 2010, 2011 and across the seasons, 

respectively. 

 Heterosis over standard check varied from -18.92 % (IS 10305 X IS 13211) 

to 102.70 % (IS 2263 X SPV 1359) in 2010, from 30.56 % (IS 10305 X IS 13211) to 

116.67 % (SPV 1359 X IS 13211) in 2011 and from 12.95 % (SPV 1359 X IS 2263) to 

108.12 % (IS 2263 X SPV 1359) across the seasons. All crosses exhibited significant 

positive heterosis over standard check in both the seasons and across the seasons except 

IS 10305 X IS 13211 in 2010 and SPV 1359 X IS 2263 across the seasons. Highest 

standard heterosis was recorded by IS 2263 X SPV 1359 in 2010 and across the seasons, 

SPV 1359 X IS 13211 in 2011, while lowest heterosis was exhibited by IS 10305 X IS 

13211 in both the seasons and SPV 1359 X IS 2263 across the seasons over the check 

because of its shortest stature among all the crosses.  

Most of the crosses were positively heterotic over standard check across the 

seasons. The crosses which showed significant positive heterosis over mid-parent also 

recorded significant positive heterosis over better parent. Similar results were reported 

by Bhagmal and Mishra (1985), Berenji (1988), Chinna and Phul (1988), Choudhari 

(1992) and Biradar (1995). Heterosis over better parent in positive direction was 

observed by Senthil and Palaniswamy (1993), Ganesh et al. (1996), Lokapur (1997) and 

Pawar (2000), while Patel et al. (1987), Desai (1991) and Belavatagi (1997) noticed 

significant positive heterosis over commercial check. Shivanna (1989) reported positive 

as well as negative heterosis in different crosses. Contrarily, Patel et al. (1990) observed 

negative heterosis for this trait.  

4.1.2.2 Days to 50 % Flowering: Negative heterosis for days to 50 % flowering is an 

indication of earliness of a hybrid. Early maturing hybrids are desirable as they produce 

more yields per day and fit well in multiple cropping systems.  Heterosis over mid-

parent varied from -5.73 % (IS 2263 X IS 10305) to 19.74 % (IS 13211 X SPV 1359) in 

2010, from -24.74 % (IS 13211 X IS 2263) to -1.09 % (SPV 1359 X IS 2263) in 2011 

and from 6.87 % (IS 2263 X IS 13211) to 10.62 % (IS 13211 X SPV 1359) across the 

seasons. Three crosses (IS 13211 X SPV 1359, IS 10305 X IS 13211 and IS 10305 X IS 

2263) recorded significant positive heterosis over mid-parent in 2010, while none of the 

crosses were positively heterotic over mid-parent in 2011. Across the seasons, IS 13211 



X SPV 1359 showed maximum significant positive heterosis over mid-parent. Most of 

the crosses were negatively heterotic across the seasons. Six crosses recorded negative 

heterosis for days to 50 % flowering consistently in both the seasons. Highest negative 

heterosis was recorded by IS 2263 X IS 10305, IS 13211 X IS 2263 and IS 2263 X IS 

13211 in 2010, 2011 and across the seasons, respectively. Highestpositive heterosis was 

exhibited by IS 13211 X SPV 1359 in 2010 and across the seasons.  

The range of heterosis over better parent was observed to be from -5.31 % 

(IS 2263 X IS 10305) to 21.24 % (IS 10305 X IS 13211) in 2010, from -21.98 % (IS 

13211 X IS 2263) to 10.11 % (IS 2263 X IS 10305) in 2011 and from -5.25 % (IS 2263 

X IS 13211) to 11.91 % (IS 13211 X SPV 1359) across the seasons. One cross (IS 2263 

X IS 10305) in 2010, four crosses (IS 13211 X IS 2263, IS 2263 X IS 13211, IS 13211 

X SPV 1359 and IS 13211 X IS 10305) in 2011 and two crosses (IS 2263 X  

IS 13211and IS 13211 X IS 2263) across the seasons recorded negative significant 

heterosis over better parent, which are desirable to attain early maturity, while four 

crosses (IS 10305 X IS 13211, IS 13211 X SPV 1359, IS 10305 X IS 2263 and IS 

13211 X IS 2263) in 2010, one cross (IS 2263 X IS 10305) in 2011 and three crosses 

(IS 13211 X SPV 1359, SPV 1359 X IS 2263 and IS 10305 X IS 13211) across the 

seasons showed significant positive heterosis. Highly negative heterotic crosses were  

IS 2263 X IS 10305, IS 13211 X IS 2263 and IS 2263 X IS 13211 in 2010, 2011 and 

across the seasons, respectively.  

 Heterosis over standard check ranged from 2.88 % (IS 2263 X IS 10305) to 

34.13 % (IS 13211 X SPV 1359) in 2010, from -5.62 % (IS 13211 X IS 10305) to 29.78 

% (SPV 1359 X IS 13211) in 2011 and from 5.54 % (IS 13211 X IS 10305) to 29.15 % 

(IS 13211 X SPV 1359) across the seasons. None of the crosses recorded significant 

negative heterosis over standard check in individual seasons and across the seasons 

indicating that all the crosses were either on par or late in maturity when compared to 

check. However, IS 13211 X IS 10305 showed negative but non-significant heterosis in 

2011, since this cross flowered earlier than the check during that season. All crosses 

showed significant positive heterosis over check in 2010 and across the seasons. Seven 

crosses exhibited significant positive heterosis over check in 2011. IS 13211 X SPV 

1359 in 2010 and across the seasons and SPV 1359 X IS 13211 in 2011 were highly 

heterotic crosses over standard check which might be due to the involvement of both 

late maturing parents in the development of these crosses.  

 Most of the hybrids showed negative heterosis over mid-parent and better 

parent in both the seasons and across the seasons. Naik et al. (1994), Lokapur (1997) 



and Pawar (2000) also reported the similar results, while Kanaka (1979), Atkins (1979), 

Rao et al. (1993), Biradar (1995) and Ganesh et al. (1996) noticed that hybrids recorded 

positive heterosis over better parent. However, Indi and Goud (1981), Desai et al. 

(1985), Kide et al. (1985), Shivanna and Patil (1988) and Belavatagi (1997) obtained 

positive heterosis over mid-parent and Rao et al. (1976), Pandit (1989), Senthil and 

Palaniswamy (1993), Badhe and Patil (1997) and Tiwari et al. (2003) documented 

positive heterosis over better parent. Since, check was earlier to flower than all the 

crosses, all crosses recorded positive heterosis over standard check. IS 2263 X IS 

10305, IS 13211 X IS 2263 and IS 2263 X IS 13211 showed highest negative heterosis 

over both mid-parent and better parent in 2010, 2011 and across the seasons, 

respectively. 

4.1.2.3 100-Grain Weight (g): Heterosis over mid-parent ranged from  

-15.65 % (IS 10305 X IS 13211) to 25.40 % (SPV 1359 X IS 10305) in 2010, from  

-6.89 % (IS 2263 X IS 13211) to 24.68 % (IS 10305 X IS 2263) in 2011 and from  

-44.15 % (SPV 1359 X IS 2263) to 67.43 % (IS 10305 X IS 13211) across the seasons. 

Two crosses (SPV 1359 X IS 10305 and IS 2263 X IS 10305) in 2010 and six crosses  

(IS 10305 X IS 2263, SPV 1359 X IS 13211, IS 13211 X IS 10305, IS10305 X SPV 

1359, SPV 1359 X IS 10305 and IS 13211 X SPV 1359) in 2011 recorded significant 

positive heterosis. More than 50 per cent of the crosses exhibited significant positive 

heterosis across the seasons. Highly heterotic crosses for 100-grain weight were SPV 

1359 X IS 10305, IS 10305 X IS 2263 and IS 10305 X IS 13211 in 2010, 2011 and 

across the seasons, respectively.  

Heterosis over better parent varied from -29.25 % (IS 10305 X IS 13211) to 

1.03 % (IS 2263 X IS 13211) in 2010, from -23.38 % (IS 2263 X IS 13211) to 16.67 % 

(IS 13211 X IS 10305) in 2011 and from -48.27 % (SPV 1359 X IS 2263) to 50.41 % 

(IS 10305 X IS 13211) across the seasons. None of the crosses recorded significant 

positive heterosis over better parent in both the seasons except IS 13211 X IS 10305 in 

2011 and IS 10305 X IS 13211 across the seasons. Three crosses (IS 10305 X IS 13211, 

IS 13211 X SPV 1359 and IS 10305 X SPV 1359) in 2010, five crosses (IS 2263 X IS 

13211, SPV 1359 X IS 10305, IS 13211 X SPV 1359, IS 2263 X IS 10305 and IS 

10305 X SPV 1359) in 2011 and three crosses (SPV 1359 X IS 2263, IS 13211 X SPV 

1359 and IS 10305 X SPV 1359) across the seasons recorded significant negative 

heterosis over better parent. IS 2263 X IS 13211, IS 13211 X IS 10305 and IS 10305 X 

IS 13211 were crosses with highest heterosis over better parent in 2010, 2011 and 

across the seasons, respectively.  



Heterosis over standard check ranged from -40.48 % (IS 10305 X IS 13211) 

to 16.30 % (SPV 1359 X IS 13211) in 2010, from -27.71 % (IS 10305 X IS 13211) to 

26.26 % (SPV 1359 X IS 13211) in 2011 and from -34.29 % (SPV 1359 X IS 2263) to 

21.13 % (SPV 1359 X IS 13211). None of the crosses in 2010 had significant positive 

heterosis, while seven crosses (SPV 1359 X IS 13211, SPV 1359 X IS 2263, IS 2263 X 

SPV 1359, IS 10305 X SPV 1359, IS 10305 X IS 2263, IS 13211 X SPV 1359 and SPV 

1359 X IS 10305) in 2011 and three crosses (SPV 1359 X IS 13211, IS 10305 X IS 

13211 and IS 2263 X SPV 1359) across the seasons recorded significant positive 

heterosis over standard check. Significant negative heterosis was exhibited by IS 10305 

X IS 13211 in 2010, IS 10305 X IS 13211 and its reciprocal cross in 2011 and  

SPV 1359 X IS 2263 across the seasons. Highest and lowest heterosis were recorded by 

SPV 1359 X IS 13211 and IS 10305 X IS 13211 in both the seasons, respectively due to 

the highest and lowest per se performance of the female parents viz., SPV 1359 and IS 

10305 involved in the development of these crosses. 

 Nearly 50 % of the hybrids showed heterosis over both the parents for 100-

grain weight. This result was in concordance with the reports of Shivanna (1989), Rao 

et al. (1993) and Biradar (1995) who noticed limited heterosis for this trait. Contrarily, a 

wide range of heterosis was reported by Rao (1970), Kanaka (1979), Desai et al. (1980), 

Desai et al. (1983), Shinde et al. (1983), Dinakar (1985) and Cabera and Miller (1985) 

for this trait. Only three crosses (IS 2263 X SPV 1359, IS 10305 X IS 13211 and  

SPV 1359 X IS 13211) were positively heterotic over check across the seasons and 

hence these crosses could be utilized to further improve the grain weight. Ganesh et al. 

(1996) also documented significant heterosis over check for this trait. However, these 

crosses were not positively heterotic over their respective better parents in both the 

seasons. Desai et al. (1985) also reported negative heterosis over the better parent for 

grain mass.  

4.1.2.4 Grain Yield (t ha
-1

): Heterosis over mid-parent for grain yield ranged from  

-23.65 % (IS 13211 X SPV 1359) to 152.90 % (IS 2263 X IS 10305) in 2010, from  

-24.61 % (IS 2263 X IS 13211) to 56.39 % (IS 13211 X IS 10305) in 2011 and from  

-16.24 % (IS 13211 X SPV 1359) to 86.29 % (IS 2263 X IS 10305) across the seasons. 

Five crosses (IS 2263 X IS 10305, IS 13211 X IS 10305, IS 10305 X SPV 1359,  

IS 10305 X IS 2263 and SPV 1359 X IS 10305) recorded highly significant positive 

heterosis over mid-parent in 2010 and across the seasons, while only one cross  

(SPV 1359 X IS 13211) recorded highly significant positive heterosis in 2011 and 

significant positive heterosis across the seasons. Only one cross (IS 13211 X SPV 1359) 



recorded highly significant negative heterosis in 2010. Highest heterosis was obtained 

with IS 2263 X IS 10305 in 2010 and across the seasons and IS 13211 X IS 10305 in 

2011.   

 Heterosis over better parent varied from -43.42 % (IS 13211 X SPV 1359) 

to 48.26 % (IS 2263 X IS 10305) in 2010, from -57.23 % (IS 2263 X IS 13211 and  

IS 13211 X IS 2263) to 23.10 % (IS 13211 X IS 10305) in 2011 and from -44.31 %        

(IS 13211 X SPV 1359) to 33.50 % (IS 13211 X IS 10305) across the seasons. None of 

the crosses exhibited significant positive heterosis over better parent in both the seasons. 

Most of the crosses involving high yielders i.e., either SPV 1359 or IS 2263 as one of 

the parents recorded significant negative heterosis over better parent. Highly heterotic 

crosses were IS 2263 X IS 10305 in 2010 and across the seasons and IS 13211 X  

IS 10305 in 2011.  

 Heterosis over standard check ranged from -17.27 % (IS 10305 X IS 13211) 

to 134.10 % (IS 10305 X SPV 1359) in 2010, from -49.49 % (IS 10305 X IS 13211) to 

159.39 % (SPV 1359 X IS 2263) in 2011 and from -29.90 % (IS 10305 X IS 13211) to 

130.37 % (SPV 1359 X IS 2263) across the seasons. All the crosses except IS 13211 X 

SPV 1359 and IS 10305 X IS 13211 had significant positive heterosis over standard 

check in 2010, while 50 % of the hybrids showed significant positive heterosis over 

standard check in 2011. However, only one cross, IS 10305 X IS 13211 showed 

significant negative heterosis in 2011. IS 10305 X SPV 1359 in 2010 and SPV 1359 X 

IS 2263 in 2011 and across the seasons were highly superior in grain yield compared to 

check. 

 The hybrids which showed significant positive heterosis over mid-parent 

also exhibited significant positive heterosis over standard check. Many earlier 

researchers also recorded significantly greater magnitude of heterosis for grain yield in 

sorghum (Indi and Goud, 1981 and Karthik, 2004). IS 2263 X IS 13211 and its 

reciprocal cross recorded similar per se performance for grain yield in 2011, suggesting 

the absence of maternal effect for this cross combination during that season. 

4.1.2.5 Grain Iron (mg kg
-1

): Heterosis over mid-parent for grain iron content ranged 

from -18.42 % (IS 10305 X IS 2263) to 34.86 % (IS 13211 X IS 10305) in 2010, from   

-20.13 % (SPV 1359 X IS 13211) to 10.09 % (IS 13211 X SPV 1359) in 2011 and from 

-9.07 % (IS 10305 X IS 2263) to 12.89 % (IS 13211 X SPV 1359) across the seasons. 

Five crosses (IS 13211 X IS 10305, IS 2263 X SPV 1359, IS 13211 X IS 2263,  

IS 13211 X SPV 1359 and IS 2263 X IS 13211) recorded significant positive heterosis 

over mid-parent in 2010, while none of the crosses exhibited significant positive 



heterosis in 2011 and across the seasons. However, IS 10305 X IS 2263 in 2010 and 

SPV 1359 X IS 13211, IS 13211 X IS 10305 and IS 10305 X IS 13211 in 2011 recorded 

significant negative heterosis over mid-parent. Highly heterotic crosses were IS 13211 

X IS 10305 in 2010 and IS 13211 X SPV 1359 in 2011 and across the seasons. 

 Heterosis over better parent varied from -20.60 % (IS 10305 X IS 2263) to 

31.45 % (IS 13211 X IS 10305) in 2010, from -30.57 % (SPV 1359 X IS 13211) to  

-1.16 % (IS 10305 X SPV 1359) in 2011 and from -14.72 % (IS 10305 X IS 2263) to 

8.55 % (IS 13211 X IS 2263) across the seasons. Three crosses (IS 13211 X IS 10305, 

IS 13211 X IS 2263 and IS 2263 X SPV 1359) recorded significant positive heterosis 

over better parent in 2010. None of the crosses exhibited significant positive heterosis in 

2011 and across the seasons. IS 10305 X IS 2263 in 2010 and SPV 1359 X IS 13211,  

IS 13211 X IS 10305, IS 10305 X IS 13211 and IS 2263 X SPV 1359 exhibited 

significant negative heterosis over better parent in 2011. Superior crosses over better 

parent were IS 13211 X IS 10305 in 2010 and IS 13211 X IS 2263 in 2011 and across 

the seasons (Fig 4.2). 

 Heterosis over standard check ranged from -40.91 % (IS 10305 X IS 2263) 

to -7.39 % (IS 13211 X IS 10305) in 2010, from -22.95 % (SPV 1359 X IS 13211) to 

6.20 % (IS 13211 X SPV 1359) in 2011 and from -30.57 % (IS 10305 X SPV 1359) to  

-7.19 % (IS 13211 X IS 2263) across the seasons. Almost all the crosses recorded 

negative heterosis over standard check in both the seasons. However, the cross IS 13211 

X SPV 1359 exhibited positive but non-significant heterosis in 2011. IS 2263 X  

SPV 1359, IS 10305 X SPV 1359, IS 10305 X IS 13211, SPV 1359 X IS 13211 and 

SPV 1359 X IS 10305 recorded significant negative heterosis consistently in both the 

seasons. However, IS 13211 X IS 2263 (-7.19 %), IS 2263 X IS 13211 (-12.36 %) and 

IS 13211 X SPV 1359 (-12.37 %) exhibited negative but non-significant heterosis 

across the seasons (Fig 4.3). 

 None of the crosses recorded significant positive heterosis over mid-parent, 

better parent and standard check across the seasons. These results indicated that there 

would be little opportunity to exploit heterosis for improving grain iron content in 

sorghum. Negative heterosis for grain iron was reported earlier in pearl millet by Velu 

(2006) and Rai et al. (2007) and in maize by Chakraborti et al. (2009).  

4.1.3 Combining Ability Analysis 

Combining ability analysis gives the information about the general combining 

ability of parents and specific combining ability of hybrids, which is useful for the 

selection of desirable parents for hybridization programme. It gives an indication of the  



 

 
 

 

Figure 4.2. Heterosis over mid-parent, better parent and standard check exhibited 

by promising hybrids for grain iron across the seasons 

 

H1: Heterosis over mid-parent;    H2: Heterosis over better parent;  

H3: Heterosis over standard check 

 

 

 

 
 

 

Figure 4.3. Heterosis over standard check exhibited by promising hybrids for grain 

iron across the seasons 

 

 

 



variation due to GCA and SCA, which represents a relative measure of additive 

and non-additive gene actions, respectively. It is an established fact that dominance is a 

component of non-additive genetic variance (breeding value). Breeders use these 

variance components to infer the gene action and to assess the genetic potentialities of 

the parents in combination. The ultimate choice of parents to be used in a breeding 

programme is determined by per se performance and their behaviour in hybrid 

combination. It is therefore, necessary to assess the genetic potentialities of the parents 

in hybrid combination through systematic studies in relation to general and specific 

combining abilities. Generally diallel and line x tester mating designs are employed to 

generate the material necessary for the estimation of combining ability effects, which 

provide the basic idea about the genetic potential of parents. Diallel mating design was 

used in the present study for estimating combining abilities. 

4.1.3.1 Analysis of Variance for Combining Ability: The analysis of variance for 

combining ability (Table 4.12. and 4.13.) revealed that the mean sum of squares due to 

GCA of parents was significant for all the characters in both the seasons. The mean sum 

of squares due to SCA was non-significant for plant height and 100-grain weight in 

2010 and for grain yield in 2011. The mean sum of squares due to reciprocal crosses 

was significant for all the traits in both the seasons except grain yield in 2011. 

The pooled analysis of variance (Table 4.14.) across the seasons for 

combining ability indicated that the mean sum of squares due to GCA, SCA and 

reciprocal crosses were highly significant for all the traits except the mean sum of 

squares due to SCA for grain iron. 

The variance due to SCA was more than the variance due to GCA for days 

to 50 % flowering in both the seasons and grain yield and grain iron content in 2010, 

indicating the predominance of non-additive gene action in controlling the expression of 

these traits.  

4.1.3.2. Gene Action and gca, sca and Reciprocal Effects: The gene action for various 

quantitative traits and their gca, sca and reciprocal effects are presented in Tables 4.15. 

and 4.16. and are discussed hereunder. 

4.1.3.2.1 Plant Height: Plant height significantly varied among parents, direct crosses 

and reciprocal crosses in both the seasons and across the seasons. However, there was 

no significant variation among the direct crosses in postrainy season, 2010. For plant 

height, GCA variance was higher than the SCA variance in 2010 and across the seasons, 

suggesting the operation of additive gene action in controlling this trait.  Further, 

predictability ratio (0.74) obtained for this trait revealed the predominant role of  



 

 

 

 

 

Table 4.12. Analysis of variance for combining ability estimates for various 

agronomic characters and grain iron content in sorghum during 

postrainy season, 2010 

 

 

 

* indicates significance @ 5 % level of probability;  

 

** indicates significance @ 1 % level of probability 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source of 

variation 

Degrees 

of 

freedom 

Mean sum of squares 

Plant 

height  

(m) 

Days to 

50 % 

flowering 

100-

grain 

weight 

(g) 

Grain 

yield  

(t ha
-1

) 

Grain 

iron  

(mg Kg
-1

) 

GCA 3 0.64** 36.56** 1.37** 8.03** 24.91** 

SCA 6 0.05 18.57** 0.06 2.85** 18.48** 

Reciprocal 6 0.12** 43.99** 0.17 ** 0.80** 26.54** 

Error 30 0.02 0.39 0.04 0.12 3.56 

GCA variance  0.08 4.52 0.17 0.99 2.67 

SCA variance  0.02 18.18 0.02 2.73 14.92 

GCA/ SCA  4 0.25 8.5 0.36 0.18 

Predictability 

ratio 

 0.89 0.33 0.94 0.42 0.26 



 

 

 

 

 

 

Table 4.13.   Analysis of variance for combining ability estimates for various 

agronomic characters and grain iron content in sorghum  

during postrainy season, 2011 

 

 

* indicates significance @ 5 % level of probability;  

 

** indicates significance @ 1 % level of probability 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Source of 

variation 

Degrees 

of 

freedom 

Mean sum of squares 

Plant 

height 

(m) 

Days to 

50 % 

flowering 

100-grain 

weight 

(g) 

Grain 

yield  

(t ha
-1

) 

Grain iron 

(mg Kg
-1

) 

GCA 3 0.82** 111.37** 1.52** 10.21** 37.51** 

SCA 6 0.12** 84.44** 0.11** 0.23 7.02 

Reciprocal 6 0.02** 13.61** 0.06* 0.18 9.79* 

Error 30 0.01 3.63 0.02 0.11 3.41 

GCA variance  0.1 13.47 0.19 1.26 4.26 

SCA variance  0.11 80.81 0.09 0.12 3.61 

GCA/ SCA  0.91 0.17 2.11 10.5 1.18 

Predictability ratio  0.65 0.25 0.81 0.95 0.70 



 

 

 

Table 4.14. Pooled analysis of variance for combining ability estimates for various 

agronomic characters and grain iron content in sorghum 

 

 

 

* indicates significance @ 5 % level of probability;  

 

** indicates significance @ 1 % level of probability 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Source of 

variation 

Degrees of 

freedom 

 Mean sum of squares  

Plant 

height 

(m) 

Days to 

50 % 

flowering 

100-grain 

weight  

(g) 

Grain 

yield  

(t ha
-1

) 

Grain 

iron  

(mg Kg
-1

) 

GCA 3 48.82** 22.86** 2.83** 17.80** 58.87** 

SCA 6 4.45** 7.57** 0.14** 1.58** 2.98 

Reciprocal 6 2.19** 16.29** 0.13** 0.83** 15.45** 

Error 60 0.17 0.17 0.01 0.06 1.74 

GCA variance  6.08 2.84 0.35 2.22 7.14 

SCA variance  4.28 7.4 0.13 1.52 1.24 

GCA/ SCA  1.42 0.38 2.69 1.46 5.76 

Predictability 

ratio 

 0.74 0.43 0.84 0.74 0.92 



Table 4.15. Estimates of general and specific combining ability effects for plant height, days to 50 % flowering and 100-grain weight  

in sorghum in postrainy seasons, 2010, 2011 and pooled data 

Genotype 
Plant height (m) Days to 50 % flowering 100 grain weight (g) 

2010 2011 POOLED 2010 2011 POOLED 2010 2011 POOLED 

gca effects 

IS 2263 0.10* 0.08** 0.48** -2.35** 1.42* -0.87** 0.20** 0.18** 0.19** 

IS 13211 -0.15** -0.20** -1.02** 2.65** -0.25 1.19** -0.22** -0.37** -0.29** 

IS 10305 -0.30** -0.30** -1.70** -0.90** -5.00** -1.17** -0.45** -0.34** -0.40** 

SPV 1359 0.35** 0.42** 2.24** 0.60** 3.83** 0.86** 0.47** 0.53** 0.50** 

S.E (parents) 0.05 0.02 0.09 0.19 0.58 0.09 0.06 0.04 0.03 

sca effects 

IS 2263 X IS 13211 -0.05 -0.14** -0.63** -1.52** -9.04** -2.07** 0.06 -0.07 -0.00 

IS 2263 X IS 10305 0.12 0.09* 0.58** -0.48 1.54 0.01 0.20 0.28** 0.24** 

IS 2263 X SPV 1359 0.02 0.01 0.08 -0.48 1.54 0.01 -0.06 -0.17* -0.12* 

IS 13211 X IS 10305 -0.05 0.09* 0.21 3.35** -5.29** 0.75** -0.09 -0.05 -0.07 

IS 13211 X SPV 1359 -0.13 0.24** 0.62** 4.02** -0.63 1.77** -0.04 0.29** 0.12** 

IS 10305 X SPV 1359 0.19* 0.24** 1.24** -1.77** -0.38 -0.88** 0.20 0.14 0.17** 

S.E (Direct crosses) 0.08 0.04 0.16 0.35 1.06 0.16 0.11 0.08 0.05 



 

 

Table 4.15. (Contd.) 

 

Genotype 
Plant height (m) Days to 50 % flowering 100 grain weight (g) 

2010 2011 POOLED 2010 2011 POOLED 2010 2011 POOLED 

Reciprocal effects 

IS 13211 X IS 2263 -0.02 -0.12* -0.47* -1.00* 0.33 -0.41* 0.19 -0.24* -0.03 

IS 10305 X IS 2263 0.13 -0.12* -0.17 -3.17** 2.50 -1.09** 0.16 -0.19* -0.01 

IS 10305 X IS 13211 0.42** 0.03 0.94** -8.00** -2.00 -4.00** 0.39** 0.22* 0.30** 

SPV 1359 X IS 2263 0.12 0.02 0.29 0.67 -0.33 0.26 0.03 -0.07 -0.02 

SPV 1359 X IS 13211 -0.25* -0.13* -0.99** 7.50** -5.50** 2.64** -0.44** -0.18 -0.31** 

SPV 1359 X IS 10305 -0.28** -0.13* -1.05** -0.50 0.33 -0.18 -0.31* 0.10 -0.11 

S.E (Reciprocal crosses) 0.1 0.05 0.20 0.44 1.35 0.20 0.13 0.10 0.06 

 

* indicates significance @ 5 % level of probability;      ** indicates significance @ 1 % level of probability 

 



 

Table 4.16. Estimates of general and specific combining ability effects for grain 

yield and grain iron in sorghum in postrainy seasons, 2010, 2011 and 

pooled data 

 

 

Genotype 

Grain yield (t ha
-1

) Grain iron (mg kg
-1

) 

2010 2011 POOLED 2010 2011 POOLED 

gca effects 

IS 2263 0.18 0.66** 0.42** 1.27* 1.40* 1.34** 

IS 13211 -0.82** -1.13** -0.97** 1.69** 2.22** 1.96** 

IS 10305 -0.71** -0.76** -0.74** -0.98 -2.35** -1.66** 

SPV 1359 1.34** 1.24** 1.29** -1.98** -1.28* -1.63** 

S.E (parents)  0.11 0.1 0.05 0.58 0.57 0.29 

sca effects 

IS 2263 X IS 13211 0.37 -0.53** -0.08 2.74** -0.39 1.17* 

IS 2263 X IS 10305 1.11** 0.30 0.70** -3.14** 1.31 -0.91 

IS 2263 X SPV 1359 -0.51** 0.09 -0.21* 2.18* -1.27 0.45 

IS 13211 X IS 10305 -0.02 0.15 0.07 3.10** -3.21** -0.05 

IS 13211 X SPV 1359 -0.53** 0.39* -0.07 0.39 0.17 0.28 

IS 10305 X SPV 1359 1.57** -0.13 0.72** -0.77 0.80 0.01 

S.E (Direct crosses) 0.19 0.18 0.09 1.05 1.03 0.52 

Reciprocal effects 

IS 13211 X IS 2263 0.04 -0.00 0.02 -2.02 -0.13 -1.07 

IS 10305 X IS 2263 0.85** 0.26 0.56** 3.73** 0.13 1.93** 

IS 10305 X IS 13211 0.76** 0.13 0.44** 5.63** -0.29 2.67** 

SPV 1359 X IS 2263 -0.58* -0.22 -0.40** 5.08** -1.81 1.64* 

SPV 1359 X IS 13211 -0.87** -0.64** -0.76** 0.48 5.09** 2.79** 

SPV 1359 X IS 10305 0.08 0.03 0.06 -1.95 0.24 -0.85 

S.E (Reciprocal 

crosses) 
0.24 0.23 0.12 1.33 1.31 0.66 



additive gene action. The present results are in line with the earlier reports of Borikar 

and Bhale (1982), Nayakar (1985), Chandrashekharappa (1987), Shivanna and Patil 

(1988), Sakhare et al. (1992), Shivanna et al. (1992) and Senthil and Palaniswamy 

(1994). Contrarily, the importance of non-additive gene action with pronounced SCA 

variance was reported by Berenji (1988), Iyanar et al. (2001) and Umakanth et al. 

(2002). The variances due to both GCA and SCA were almost similar in 2011, 

indicating the influence of both additive and non-additive gene actions on this trait 

which was in agreement with the reports of Rao and Goud (1977), Giriraj and Goud 

(1983), Dabholkar and Lal (1987), Dinakar (1985), Sahib and Reddy (1986) and Chand 

(1996) for this character.  

The general combining ability (gca) effects for plant height ranged from      

-0.30 (IS 10305) to 0.35 (SPV 1359) in 2010, from -0.30 (IS 10305) to 0.42 (SPV 1359) 

in 2011 and from -1.70 (IS 10305) to 2.24 (SPV 1359) across the seasons. IS 10305 

followed by IS 13211 exhibited significant negative gca effects in individual seasons 

and across the seasons and hence they can be used as parents (general combiners) in 

further crossing programmes if short stature is desirable, while SPV 1359 followed by 

IS 2263 exhibited significant positive gca effects in both the seasons and across the 

seasons and hence they can be used as parents for fodder improvement programmes. 

Thorough observation of the per se performance of plant height with gca effects in 

2010, 2011 and across the seasons clearly indicated that the parents with tall stature 

(SPV 1359 and IS 2263) recorded significant positive gca effects, whereas parents with 

short stature (IS 10305 and IS 13211) exhibited significant negative gca effects.  

 The sca effects for plant height ranged from -0.13 (IS 13211 X SPV 1359) 

to 0.19 (IS 10305 X SPV 1359) in 2010, from -0.14 (IS 2263 X IS 13211) to 0.24  

(IS 13211 X SPV 1359 and IS 10305 X SPV 1359) in 2011 and from -0.63 (IS 2263 X 

IS 13211) to 1.24 (IS 10305 X SPV 1359) across the seasons. IS 10305 X SPV 1359 

followed by IS 2263 X IS 10305 in 2010, IS 13211 X SPV 1359 and IS 10305 X  

SPV 1359 in 2011 and IS 10305 X SPV 1359 followed by IS 13211 X SPV 1359 across 

the seasons recorded highest positive sca effects, while IS 13211 X SPV 1359 in 2010 

and IS 2263 X IS 13211 in 2011 and across the seasons exhibited highest negative sca 

effects. IS 2263 X IS 10305, IS 13211 X SPV 1359 and IS 10305 X SPV 1359 recorded 

significant positive sca effects consistently in 2011 and across the seasons. In addition 

to these crosses, IS 10305 X SPV 1359 and IS 13211 X IS 10305 showed significant 

positive sca effects in 2010 and 2011, respectively. Among these hybrids, IS 2263 X  

IS 10305, IS 13211 X SPV 1359 and IS 10305 X SPV 1359 had one of their parents as 



good general combiner and other parent as poor combiner for tallness. Involvement of at 

least one parent with high gca effects indicated that a good general combiner in the 

cross combination might result in good specific combinations. Peng and Virmani (1990) 

also reported the possibility of interaction between positive alleles from good combiner 

and negative alleles from poor combiner in good x poor combiner crosses and suggested 

for exploitation of heterosis in F1 generation. One cross, IS 2263 X IS 13211 recorded 

significant negative sca effects in 2011 and across the seasons, which had a good 

general combiner as one of the parents and a poor combiner as the other parent. This 

cross can be used to further reduce the plant height, wherever mechanical harvesting is 

to be done. 

Reciprocal effects varied from -0.28 (SPV 1359 X IS 10305) to 0.42  

(IS 10305 X IS 13211) in 2010, from -0.13 (SPV 1359 X IS 13211 and SPV 1359 X  

IS 10305) to 0.03 (IS 10305 X IS 13211) in 2011 and from -1.05 (SPV 1359 X  

IS 10305) to 0.94 (IS 10305 X IS 13211) across the seasons. IS 10305 X IS 13211 

followed by IS 10305 X IS 2263 in 2010 and IS 10305 X IS 13211 followed by  

SPV 1359 X IS 2263 in 2011 and across the seasons exhibited highest positive 

reciprocal effect, while SPV 1359 X IS 10305 recorded highest negative reciprocal 

effect consistently in both the seasons and across the seasons. IS 10305 X SPV 1359 

was identified to be the best cross with the highest positive sca effect across the seasons 

for plant height involving a good general combiner as one of the parents and a poor 

combiner as the other parent. SPV 1359 X IS 13211 and SPV 1359 X IS 10305 

recorded significant negative sca effects consistently in individual seasons and across 

the seasons. Besides these crosses, IS 13211 X IS 2263 in 2011 and across the seasons 

and IS 10305 X IS 2263 in 2011 recorded significant negative sca effects. IS 10305 X 

SPV 1359 and its reciprocal cross showed very high significant variation for plant 

height, suggesting possible role of maternal effect in controlling this trait. It is noticed 

from the above results that there is no clear cut relationship between gca effects of the 

parents and sca effects of the hybrids at least in the material used in this study. As the 

additive gene action was predominant, hybridization followed by simple selection 

through pedigree method of breeding might be useful for the improvement of this trait. 

4.1.3.2.2 Days to 50 % Flowering: The character, days to 50 % flowering varied 

significantly among the parents and crosses in individual seasons and across the 

seasons. Low ratio of GCA to SCA variances for days to 50 % flowering suggested that 

this trait is under the control of non-additive gene action in both the seasons and across 

the seasons.  Predictability ratio (0.43) obtained for this trait further supported the role 



of non-additive gene action in controlling this character. These results are in conformity 

with the earlier reports of Kide et al. (1985), Shivanna (1989), Naik et al. (1994), 

Belavatagi (1997), Biradar (1995) and Kanawade et al. (2001). Contrarily, importance 

of additive gene action for days to 50% flowering was reported by Nayakar (1985), 

Dabholkar and Usha (1988), Shivanna et al. (1992), Senthil and Palaniswamy (1994) 

and Siddiqui and Baig (2001), while Kanaka (1979) and Patel et al. (1995) found the 

importance of both additive and non-additive components of genetic variances for days 

to 50 per cent flowering.  

 The negative estimates of gca and sca are considered to be favourable for 

days to 50 % flowering as they give rise to early duration hybrids. gca effects for days 

to 50 % flowering ranged from -2.35 (IS 2263) to 2.65 (IS 13211) in 2010, from -5.00  

(IS 10305) to 3.83 (SPV 1359) in 2011 and from -1.17 (IS 10305) to 1.19 (IS 13211) 

across the seasons. IS 2263 followed by IS 10305 in 2010, IS 10305 followed by  

IS 13211 in 2011 and IS 10305 followed by IS 2263 across the seasons exhibited 

highest negative gca effects. Hence, they can be used as good general combiners to 

attain early maturity. Significant positive gca effects were recorded by IS 13211 

followed by SPV 1359 in 2010 and across the seasons and SPV 1359 followed by  

IS 2263 in 2011. 

 The sca effects varied from -1.77 (IS 10305 X SPV 1359) to 4.02 (IS 13211 

X SPV 1359) in 2010, from -9.04 (IS 2263 X IS 13211) to 1.54 (IS 2263 X IS 10305 

and IS 2263 X SPV 1359) in 2011 and from -2.07 (IS 2263 X IS 13211) to 1.77  

(IS 13211 X SPV 1359) across the seasons. IS 10305 X SPV 1359 followed by IS 2263 

X IS 13211 in 2010, IS 2263 X IS 13211 followed by IS 13211 X IS 10305 in 2011 and 

IS 2263 X IS 13211 followed by IS 10305 X SPV 1359 across the seasons were the best 

crosses with early flowering with highest negative significant sca effects. All these 

crosses were the result of good x poor or poor x good combiners. Highest positive 

significant sca effects were recorded by IS 13211 X SPV 1359 followed by IS 13211 X 

IS 10305 in 2010 and across the seasons, while none of the crosses recorded significant 

positive sca effects in 2011. Due to seasonal effect, IS 13211 X IS 10305 recorded high 

positive significant sca effect and high negative significant sca effect in 2010 and 2011, 

respectively. 

 Reciprocal effects varied from -8.00 (IS 10305 X IS 13211) to 7.50  

(SPV 1359 X IS 13211) in 2010, from -5.50 (SPV 1359 X IS 13211) to 2.50 (IS 10305 

X IS 2263) in 2011 and from -4.00 (IS 10305 X IS 13211) to 2.64 (SPV 1359 X  

IS 13211) across the seasons. IS 10305 X IS 13211 followed by IS 10305 X IS 2263 in 



2010 and across the seasons and SPV 1359 X IS13211 in 2011 were desirable crosses 

with highest significant negative reciprocal effects. In addition to these crosses,  

IS 13211 X IS 2263 exhibited significant negative reciprocal effect in 2010 and across 

the seasons. There was no significant variation between the direct crosses and reciprocal 

crosses for days to 50 % flowering. IS 10305 X IS 13211 was found to be the early 

cross among all the crosses with the highest negative sca effects which involved the 

parents with good x poor general combiners suggesting the existence of genetic 

diversity in the form of a number of heterozygous loci in both the parents. Since, this 

trait was governed by non-additive gene action, pedigree and bulk method with 

recurrent selection or diallel selective or through exploitation of heterosis breeding can 

be followed to further improve the earliness of the hybrids.  

4.1.3.2.3 100-Grain Weight (g): Test weight (100-grain weight) is an important 

component character of grain yield. 100-grain weight significantly varied among all the 

parents and crosses in individual seasons and across the seasons. However, direct 

crosses did not reveal significant variation in 2010. The variance for combing ability 

indicated the greater GCA variance than the SCA variance pointing out the importance 

of additive gene action in the inheritance of this trait, since this trait was strongly 

supported by the higher value of predictability ratio. These results are in confirmity with 

the earlier reports of Nayakar (1985), Dabholkar and Usha (1988), Jagadishwar and 

Shinde (1992) and Shivanna et al. (1992). Negating the results obtained in the present 

study, non-additive gene action was reported by Patil and Thombre (1984), Shivanna 

(1989) and Patel et al. (1990).  

 For 100-grain weight, gca effects varied from -0.45 (IS 10305) to 0.47  

(SPV 1359) in 2010, from -0.37 (IS 13211) to 0.53 (SPV 1359) in 2011 and from -0.40 

(IS 10305) to 0.50 (SPV 1359) across the seasons. Among the parents, SPV 1359 

followed by IS 2263  recorded significant positive gca effects, while IS 10305 followed 

by IS 13211 exhibited significant negative gca effects in 2010 and across the seasons.  

 For direct crosses, sca effects varied from -0.09 (IS 13211 X IS 10305) to 0.20 

(IS 2263 X IS 10305 and IS 10305 X SPV 1359) in 2010, from -0.17 (IS 2263 X SPV 

1359) to 0.29 (IS 13211 X SPV 1359) in 2011 and from -0.12 (IS 2263 X  

SPV 1359) to 0.24 (IS 2263 X IS 10305) across the seasons. None of the crosses 

showed significant sca effects in 2010. IS 13211 X IS 10305 recorded highest negative 

but non-significant sca effect in 2010. IS 2263 X IS 10305 and IS 10305 X SPV 1359 in 

2010, IS 13211 X SPV 1359 followed by IS 2263 X IS 10305 in 2011 and IS 2263 X  

IS 10305 followed by IS 10305 X SPV 1359 across the seasons showed highest positive 



sca effects.  In all these crosses, at least one parent had good general combining ability 

for this trait. One cross, IS 2263 X SPV 1359 recorded significant negative sca effect in 

2011 and across the seasons. Even though, the cross recorded significant negative sca 

effect, both of its parents were with high positive significant gca effects. This might be 

due to the presence of genetic diversity in the form of a number of heterozygous loci in 

the parents as reported by Pathak et al. (1993). Gupta (1981) also observed that gca of 

the parents in general had no bearing on the sca effects of the cross i.e., the crosses 

involving parents with high gca recorded less sca effects, while the parents with poor 

gca effect exhibited high sca effects.   

 Reciprocal effects ranged from -0.44 (SPV 1359 X IS 13211) to 0.39  

(IS 10305 X IS 13211) in 2010, from -0.24 (IS 13211 X IS 2263) to 0.22 (IS 10305 X 

IS 13211) in 2011 and from -0.31 (SPV 1359 X IS 13211) to 0.30 (IS 10305 X  

IS 13211) across the seasons. IS 10305 X IS 13211 recorded highest significant positive 

reciprocal effect consistently in both the seasons and across the seasons which could be 

ascribed to the involvement of good general combiners as parents. However, it did not 

show significant positive sca effect in reverse direction indicating the influence of 

maternal effect. SPV 1359 X IS 13211 in 2010, IS 13211 X IS 2263 in 2011 and  

SPV 1359 X IS 13211 across the seasons exhibited significant negative sca effects with 

a good general combiner as one of the parents indicating that both parents need not have 

high gca to explore good sca. Among all the crosses, IS 10305 X IS 13211 was 

identified to be the best cross with highest positive sca effects involving both the 

parents with poor combining ability. The superiority of poor x poor combinations might 

be due to concentration and interaction of favourable genes contributed by the parents. 

As additive gene action was found to play a major role in governing this trait, 

hybridization followed by simple selection through pedigree method of breeding may be 

followed to further improve the grain weight. 

4.1.3.2.4 Grain Yield (t ha
-1

): Grain yield is the most important trait which determines 

the worthiness of a hybrid. High grain yield forms the major objective in any plant 

breeding programme. Both parents and crosses varied significantly for grain yield in 

2010 and across the seasons, while only parents varied significantly in 2011. GCA 

variance was lower than SCA variance in 2010, whereas in 2011 and across the seasons, 

SCA variance was lower than GCA variance. As a whole, grain yield was controlled by 

additive gene action, since predictability ratio obtained was closer to unity (0.74) across 

the seasons. Similar trend of results were reported by Palaniswamy and Subramanian 

(1986), Senthil and Palaniswamy (1994) and Iyanar et al. (2001), whereas Ross et al. 



(1983), Dinakar (1985), Dabholkar and Usha (1988), Swarnalatha and Rana (1988), 

Patel et al. (1990), Jagadishwar and Shinde (1992), Sakhare et al. (1992),  

Shivanna et al. (1992), Rao et al. (1994) and Naik et al. (1994) opined that both GCA 

and SCA variances were important for grain yield. Yet, interestingly Rao and Goud 

(1977), Wilson et al. (1978), Patil and Thombre (1984), Kishan and Borikar (1988), 

Shivanna (1989), Armugam et al. (1995) and Siddiqui and Baig (2001) observed 

preponderance of non-additive gene action controlling grain yield. In this study, the 

magnitude of GCA variance was larger in proportion, which suggested the 

predominance of additive and additive x additive gene effects for this trait. A parent 

with high per se performance was mostly a good general combiner though it may not 

produce good specific combinations always. It was observed that at least one good 

general combining parent was involved in desirable specific combination. Similarly, a 

good combiner when included in hybrid combination as one of the parent, the resultant 

hybrid possessed mostly high sca effects (Ravindrababu et al. 2001). 

Wide range of gca effects for grain yield from -0.82 (IS 13211) to 1.34  

(SPV 1359) in 2010, from -1.13 (IS 13211) to 1.24 (SPV 1359) in 2011 and from -0.97 

(IS 13211) to 1.29 (SPV 1359) across the seasons were obtained. Among the parents, 

SPV 1359 followed by IS 2263 and IS 13211 followed by IS 10305 recorded highest 

significant positive and negative gca effects, respectively in both the seasons and across 

the seasons. SPV 1359 could be considered as good general combiner among all the 

parents. 

The sca effects varied from -0.53 (IS 13211 X SPV 1359) to 1.57 (IS 10305 

X SPV 1359) in 2010, from -0.53 (IS 2263 X IS 13211) to 0.39 (IS 13211 X SPV 1359) 

in 2011 and from -0.21 (IS 2263 X SPV 1359) to 0.72 (IS 10305 X SPV 1359) across 

the seasons. Among the six direct crosses, IS 10305 X SPV 1359 followed by IS 2263 X 

IS 10305 exhibited highest significant positive sca effects in 2010 and across the 

seasons, while IS 13211 X SPV 1359 recorded significant positive sca effect in 2011. 

All these crosses had at least one parent with high gca.  

The reciprocal effects ranged from -0.87 (SPV 1359 X IS 13211) to 0.85  

(IS 10305 X IS 2263) in 2010, from -0.64 (SPV 1359 X IS 13211) to 0.26 (IS 10305 X 

IS 2263) in 2011 and from -0.76 (SPV 1359 X IS 13211) to 0.56 (IS 10305 X IS 2263) 

across the seasons. IS 10305 X IS 2263 followed by IS 10305 X IS 13211 recorded 

highest positive reciprocal effects across the seasons and hence, these are the best 

crosses with respect to yield. IS 10305 X IS 2263 possessed only one parent with good 

gca, while IS 10305 X IS 13211 had both of its parents with good gca. SPV 1359 X  



IS 2263 in 2010 and across the seasons and SPV 1359 X IS 13211 in both the seasons 

and across the seasons recorded significant negative reciprocal effects. IS 10305 X  

SPV 1359 was found to be the superior cross with highest positive sca effects involving 

one parent with higher gca and the other with lower gca. This might be due to the 

possibility of interaction between positive alleles from good combiner and negative 

alleles from poor combiner in good x poor combiner crosses suggesting the possibility 

for exploitation of heterosis for improving the grain yield. 

4.1.3.2.5 Grain Iron (mg kg
-1

): Parents and reciprocal crosses varied significantly in 

individual seasons and across the seasons, while direct crosses had significant variation 

in 2010. GCA variance was significantly lower than SCA variance in 2010, whereas in 

2011 and across the seasons, SCA variance was lower than GCA variance suggesting 

that grain iron was controlled by additive gene action across the seasons. Higher 

predictability ratio (0.92) obtained for grain iron strongly supports the role of additive 

gene action for this trait. This result was in conformity with the reports of Velu (2006), 

Velu et al. (2011), Long et al. (2004) and Chen et al. (2007), however contradictory 

results were obtained by Aruselvi et al. (2009) and Zhang et al. (1996). 

 Among the parents, gca effects ranged from -1.98 (SPV 1359) to 1.69  

(IS 13211) in 2010, from -2.35 (IS 10305) to 2.22 (IS 13211) in 2011 and from -1.66 

(IS 10305) to 1.96 (IS 13211) across the seasons. IS 13211 followed by IS 2263 

recorded highest significant positive gca effects consistently in both the seasons and 

across the seasons and hence, those parents could be considered as best parents.  

SPV 1359 in 2010 and IS 10305 in 2011 and across the seasons recorded highest 

significant negative gca effects. 

 The sca effects varied from -3.14 (IS 2263 X IS 10305) to 3.10 (IS 13211 X 

IS 10305) in 2010, from -3.21 (IS 13211 X IS 10305) to 1.31 (IS 2263 X IS 10305) in 

2011 and from -0.91 (IS 2263 X IS 10305) to 1.17 (IS 2263 X IS 13211) across the 

seasons. sca effects obtained in 2010 and 2011 indicated the role of seasonal influence 

on grain iron content. IS 13211 X IS 10305 followed by IS 2263 X IS 13211 in 2010,  

IS 2263 X IS 10305 followed by IS 10305 X SPV 1359 in 2011 and IS 2263 X  

IS 13211 followed by IS 2263 X SPV 1359 across the seasons recorded highest positive 

sca effects. All these crosses had one parent as good combiner. However, IS 2263 X  

IS 13211 was the resultant of a cross involving two good combiners as parents, whereas  

IS 10305 X SPV 1359 was obtained by involving both poor combiners as parents, 

suggesting that there was no correlation between gca effects and sca effects. Two poor 

combiners can also give rise to a hybrid with high positive sca effects which might be 



due to the better nicking ability of the parents.  The poor general combiners tend to 

produce significant sca effects in the hybrids, wherein the parental combinations 

provided environment for full expression of genes controlling this trait, though the 

parents themselves could not express any superiority for this trait. Accumulation of 

favourable genes may be the cause of parents with poor gca giving rise to hybrids with 

higher sca effects. IS 2263 X IS 13211 in 2010 and across the seasons and IS 2263 X 

SPV 1359 and IS 13211 X IS 10305 in 2010 exhibited significant positive sca effects. 

Highest significant negative sca effect was shown by IS 2263 X IS 10305 and IS 13211 

X IS 10305 in 2010 and 2011, respectively. None of the crosses showed negative 

significant sca effects across the seasons. 

 Reciprocal effects ranged from -2.02 (IS 13211 X IS 2263) to 5.63  

(IS 10305 X IS 13211) in 2010, from -1.81 (SPV 1359 X IS 2263) to 5.09 (SPV 1359 X 

IS 13211) in 2011 and from -1.07 (IS 13211 X IS 2263) to 2.79 (SPV 1359 X IS 13211) 

across the seasons. IS 10305 X IS 13211 in 2010 and SPV 1359 X IS 13211 in 2011 and 

across the seasons recorded highest positive significant reciprocal effects and hence, 

could be considered as good specific combiners with one of their parents as good 

general combiner. SPV 1359 X IS 13211 had high grain iron and showed highest 

positive significant sca effects among all the crosses across the seasons (Fig 4.4). 

Though, it was the resultant of poor x good general combiner, the high performance of 

cross might be due to the interaction between positive alleles from good combiner and 

negative alleles from poor combiner. As additive gene action predominates in 

controlling grain iron, improvement of this trait can be done through hybridization 

followed by simple selection through pedigree method of breeding. 

 4.1.4 Character Association 

Among the phenotypic and genotypic correlations, correlations at 

phenotypic level are important. Hence correlations were calculated at phenotypic level 

among seven characters studied to know the nature of association existing among them. 

Since, two dependent characters (grain iron and grain zinc) were present in this 

experiment, correlations and path analyses were done separately for these two 

dependent characters by including only one dependent character in each experiment. 

But to know the relationship between these two dependent characters (grain iron and 

grain zinc), correlation was done using all the seven characters studied irrespective of 

dependent character. These results are presented in Table 4.17 and are discussed 

hereunder. 

 



 

 

 

 

 

 

 

 

 
 

 

Figure 4.4. sca effects of promising hybrids along with the gca effects of both their 

parents for grain iron across the seasons 

 

P1 = Parent 1     P2 = Parent 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 4.17. Phenotypic and genotypic correlation co-efficient matrix of grain iron 

content with various agronomic traits during postrainy seasons, 2010 

and 2011  

 

Characte

r 

Plant 

height 

(m) 

Days to 

50 % 

flowerin

g 

Plant 

aspect 

score 

100-grain 

weight  

(g) 

Grain 

yield  

(t ha
-1

) 

Correlati

on with 

grain 

iron 

Plant 

height 

(m) 

1.000 

-0.318* 

(-

0.459**) 

-0.337* 

(-0.555*) 

0.870** 

(1.000**) 

0.714** 

(0.877**) 

0.064 

(-0.013) 

Days to 

50 % 

flowering 

0.377** 

(0.468**) 
1.000 

0.331* 

(0.436**) 

-0.307* 

(-0.405**) 

-0.330* 

(-0.356*) 

-0.049 

(-0.093) 

Plant 

aspect 

score 

-0.696** 

(-0.788**) 

-0.191 

(-0.320*) 
1.000 

-0.382** 

(-0.484**) 

-0.425** 

(-0.637**) 

0.237 

(0.404**) 

100-grain 

weight  

(g) 

0.877** 

(0.953**) 

0.370** 

(0.447**) 

-0.757** 

(-0.882**) 
1.000 

0.764** 

(0.880**) 

-0.047 

(-0.010) 

Grain 

yield  

(t ha
-1

) 

0.811** 

(0.873**) 

0.472** 

(0.581**) 

-0.767** 

(-0.891**) 

0.901** 

(0.922**) 
1.000 

-0.228 

(-0.220) 

Grain 

iron  

(mg kg
-1)

 

-0.133 

(-0.154) 

0.224 

(0.275) 

0.372** 

(0.580**) 

-0.097 

(-0.163) 

-0.177 

(-0.234) 
1.000 

 

„*‟ indicates significance at 5 % probability i.e., r=>0.2845 

„**‟ indicates significance at 1 % probability i.e., r=>0.3683 

Values in parenthesis indicates genotypic correlation co-efficients 

Values above diagonal represent the correlations among various characters in post-rainy 

season, 2010 and below diagonal represent the correlations among various characters in 

post-rainy season, 2011 

 

 

 

 



4.1.4.1 Grain Iron with all the Agronomic Characters: The correlation between plant 

height and grain iron was positive (r = 0.064) in 2010, whereas negative (r = -0.133) in 

2011. Similarly, negative association was observed between days to 50 % flowering and 

grain iron (r = -0.049) in 2010, while positive association (r = 0.223) was found in 2011. 

This type of contradictory results in two seasons indicated high influence of 

environment on phenotypic expression of these characters. The non-significant 

association of plant height and days to 50 % flowering with grain iron indicated that 

sorghum grain iron and zinc contents could be improved in different maturity and plant 

stature backgrounds. Grain iron showed negative association with 100-grain weight and 

grain yield consistently in both the seasons. Their non-significant and lower magnitude 

of negative correlation with grain iron suggested that it is possible to enhance grain iron 

and zinc contents in high yielding backgrounds with large grain, which was in 

agreement with the report of Reddy et al. (2005). 

4.1.4.2 Correlation among all the Agronomic Characters: Highly significant positive 

correlation was observed between plant height and 100-grain weight (r = 0.870) 

followed by 100-grain weight and grain yield (r = 0.764) and plant height and grain 

yield (r = 0.714) in 2010. Days to 50 % flowering showed negative correlation with 

both grain weight and grain yield in 2010 which would be desirable. However, there 

were no negative correlations among the agronomic characters in 2011. Highest 

significant positive correlations were recorded by 100-grain weight with grain yield  

(r = 0.901) followed by plant height with 100-grain weight (r = 0.877), plant height with 

grain yield (r = 0.811), days to 50 % flowering with grain yield (r = 0.472) and days to 

50 % flowering with 100-grain weight (r = 0.370). Days to 50 % flowering showed 

contrary results between the two seasons in association with other characters.  

Liang et al. (1969), Patel et al. (1980) and Haris (2001) observed significant positive 

correlation between days to flowering and grain yield. There was found to be consistent 

positive significant association for plant height with 100-grain weight and grain yield 

and for 100-grain weight with grain yield in both the seasons indicating the possibility 

to develop high yielding varieties with tall stature and bold grains. These results were in 

agreement with the reports of Nimbalkar et al. (1988), Asthana et al. (1997), 

Jeyaprakash et al. (1997), Haris (2001), Patil et al. (1995) and Veerabadhiran et al. 

(1994). 

4.1.5 Path Analysis 

The correlation co-efficient measures the relationship existing between pair 

of characters. A dependent character is an interaction product of many mutually 



associated component characters and change in any one component will disturb whole 

network of cause and effect system. The path co-efficient analysis, a statistical device 

developed by Wright (1921), which takes into account the cause and effect relation 

between the variable, is unique in partitioning the association into direct and indirect 

effects through other independent variables. The path co-efficient analysis also 

measures the relative importance of causal factors involved. This is simply a 

standardized partial regression analysis, wherein total correlation value is subdivided 

into causal scheme. In the present study, the path co-efficient analysis was carried out 

for two dependent characters separately in each season at phenotypic level and the 

results are discussed below. By partitioning the phenotypic correlation, the direct effect 

of a chosen trait on grain iron and zinc and its indirect effect through other characters 

were computed and are presented in Tables 4.18 and 4.19.  

4.1.5.1 During postrainy season, 2010: Among all the characters, only plant height had 

positive direct effect (0.506) on grain iron and also it had positive indirect effect 

through days to 50 % flowering (0.046) on grain iron. Hence, plant height can be used 

for direct selection to enhance the grain iron content. However, it had negative effect 

through grain yield (-0.344) followed by 100-grain weight (-0.069). Highest negative 

direct effect was showed by grain yield (-0.482) followed by days to 50 % flowering  

(-0.144) and 100-grain weight (-0.079), suggesting that there was improper relationship 

between yield and grain iron and it is difficult to improve the micronutrients in high 

yielding background. However, grain yield had positive effect through plant height 

(0.361) followed by days to 50 % flowering (0.047), while negative effect through  

100-grain weight (-0.061) on grain iron. Days to 50 % flowering had negative effect 

through plant height (-0.161), while positive effect through grain yield (0.159) followed 

by 100-grain weight (0.024). 100-grain weight had positive effect on grain iron through 

plant height (0.440) followed by days to 50 % flowering (0.044) suggesting the role of 

grain weight in increasing the grain iron content. However, it had negative effect 

through grain yield. 

4.1.5.2 During postrainy season, 2011: 100-grain weight (0.743) followed by days to 

50 % flowering (0.331) had highest positive direct effect, while grain yield (-0.464) 

followed by plant height (-0.167) had highest negative direct effect on grain iron. 

Hence, grain weight can be used in direct selection for increasing the grain iron. Both 

plant height and days to 50 % flowering were positively influenced through 100-grain 

weight and negatively influenced the grain iron through grain yield. Plant height was 

positively influenced through days to 50 % flowering (0.125), while days to 50 %  



 

 

 

 

 

Table 4.18. Phenotypic path matrix showing direct and indirect effects of various 

agronomic traits on grain iron during postrainy season, 2010  

 

 

Character 

Plant 

height 

(m) 

Days to  

50 % 

flowering 

Plant 

aspect 

score 

100-

grain 

weight 

(g) 

Grain 

yield 

(t ha
-1

) 

Correlation 

with grain 

iron 

Plant 

height 

(m) 

0.506 0.046 -0.074 -0.069 -0.344 0.064 

Days to 

 50 % 

flowering 

-0.161 -0.144 0.073 0.024 0.159 -0.049 

Plant 

aspect 

ratio 

-0.170 -0.048 0.220 0.030 0.205 0.237 

100-grain 

weight (g) 
0.440 0.044 -0.084 -0.079 -0.368 -0.047 

Grain 

yield  

(t ha
-1

) 

0.361 0.047 -0.093 -0.061 -0.482 -0.228 

 

Residual effect = 0.836 

Bold values in diagonal represents direct effects 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Table 4.19. Phenotypic path matrix showing direct and indirect effects of various 

agronomic traits on grain iron during postrainy season, 2011  

 

 

Character 

Plant 

height 

(m) 

Days to  

50 % 

flowering 

Plant 

aspect 

score 

100-

grain 

weight 

(g) 

Grain 

yield  

(t ha
-1

) 

Correlation 

with grain 

iron 

Plant 

height (m) 
-0.167 0.125 -0.366 0.651 -0.376 -0.133 

Days to  

50 % 

flowering 

-0.063 0.331 -0.101 0.275 -0.219 0.224 

Plant 

aspect 

score 

0.116 -0.063 0.526 -0.562 0.356 0.372 

100-grain 

weight (g) 
-0.146 0.123 -0.398 0.743 -0.418 -0.097 

Gain yield  

(t ha
-1

) 
-0.135 0.157 -0.403 0.670 -0.464 -0.177 

 

 

Residual effect = 0.836 

Bold values in diagonal represents direct effects 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



flowering was negatively influenced through plant height (-0.063). Both 100-grain 

weight and grain yield were positively influenced through days to 50 % flowering, 

while negatively influenced through plant height. 100-grain weight was negatively 

influenced through grain yield (-0.418), while grain yield was positively influenced 

through 100-grain weight (0.670). All characters which had positive direct effect on 

grain iron showed positive correlation and vice-versa. However, due to the higher 

overall negative indirect effects through other characters than its positive direct effect, 

100-grain weight showed negative correlation with grain iron (r = -0.096). In such a 

situation, direct selection for this trait should be practiced to reduce the undesirable 

indirect effect. Indirect effects of all characters through plant height and grain yield 

were negative, while through days to 50 % flowering and 100-grain weight were 

positive. 

 Grain yield showed negative direct effect on grain iron in both seasons. 

Plant height was positively effected through days to 50 % flowering, while negatively 

effected through grain yield. However, days to 50 % flowering was negatively effected 

through plant height. 100-grain weight was negatively influenced through grain yield in 

both the seasons. All these results indicated that there is meagre possibility to increase 

the grain iron content by increasing the grain yield.  

4.2 HETEROSIS AND COMBINING ABILITY STUDIES FOR GRAIN ZINC IN   

SORGHUM USING CONTRASTING PARENTS FOR GRAIN ZINC  

 The data collected on six characters, viz., plant height, days to 50 % 

flowering, plant aspect score, 100-grain weight, grain yield and grain zinc content in the 

present study on evaluation of four parents and twelve crosses developed by crossing 

the parents in a full-diallel fashion along with one standard check (ICSR 40) were 

subjected to suitable statistical analyses and the results are presented below under the 

following heads. 

1. Analysis of variance 

2. Heterosis  

3. Combining ability analysis 

4. Character association 

5. Path coefficient analysis 

4.2.1 Analysis of Variance for Different Characters 

The analysis of variance (Table 4.20 and 4.21) revealed the presence of 

significant genetic differences among the genotypes for all the characters studied in this  

 



 

 

 

 

 

 

Table 4.20. Analysis of variance for various agronomic characters and grain zinc 

content in sorghum during postrainy season, 2010 

 

 

 

 

 

Table 4.21. Analysis of variance for various agronomic characters and grain zinc 

content in sorghum during postrainy season, 2011 

 

 

* indicates significance @ 5 % level of probability;  

** indicates significance @ 1 % level of probability 

 

 

 

 

 

 

Source of 

variation 

Degrees of 

freedom 

Mean sum of squares 

Plant 

height (m) 

Days to 

50 % 

flowering 

100-

grain 

weight 

(g) 

Grain 

yield  

(t ha
-1

) 

Grain zinc 

(mg Kg
-1

) 

Replications 2 0.07 5.55** 0.09 1.71 30.15 

Genotypes 16 0.48** 69.84** 0.82** 10.39** 349.82** 

Error  32 0.02 0.49 0.17 0.71 30.02 

Source of 

variation 

Degrees of 

freedom 

Mean sum of squares 

Plant 

height  

(m) 

Days to 

50 % 

flowering 

100-grain 

weight (g) 

Grain 

yield  

(t ha
-1

) 

Grain zinc 

(mg Kg
-1

) 

Replications 2 0.00 3.55 0.44 0.43 7.91 

Genotypes 16 0.52** 1.37 0.49* 9.96** 444.42** 

Error  32 0.03 3.30 0.22 0.27 27.23 



investigation in both the postrainy seasons, 2010 and 2011. However, days to 50 % 

flowering had non-significant variation among the genotypes during postrainy season, 

2011.The pooled analysis of variance (Table 4.22) across the two postrainy seasons 

showed that the genotypes exhibited significant variation for all the traits under study. 

The genotype x environment interaction was highly significant for all the characters. 

However, environment was found to have non-significant influence on 100-grain weight 

and grain zinc content. 

4.2.1.1 Mean Performance of Parents and Crosses: The mean performance of 

parents, hybrids and standard check for seven characters (Tables 4.23, 4.24 and 4.25) 

are discussed hereunder characterwise:  

4.2.1.1.1 Plant Height (m): The mean values for plant height varied from 1.10 m 

(ICSB 56) to 2.40 m (IS 20843) with a grand mean of 2.05 m in 2010, from 1.13 m 

(ICSB 56) to 2.50 m (IS 20843 X IS 2248) with a grand mean of 1.96 m in 2011 and 

from 1.12 m (ICSB 56) to 2.42 m (IS 20843 X IS 2248) with a general mean of 2.00 m 

across the seasons. IS 20843 recorded significantly higher plant height and it was 

significantly taller than all other parents in both the seasons and across the seasons 

except IS 2248 in 2010. All the crosses recorded significantly higher plant height than 

the check in both the seasons and across the seasons. Among the crosses, IS 2248 X  

IS 20843, IS 2248 X PVK 801 and PVK 801 X IS 20843 (2.37 m) recorded highest 

plant height in 2010 and recorded significantly higher plant height than all other crosses 

except IS 20843 X PVK 801, IS 2248 X PVK 801, PVK 801 X IS 2248 and IS 2248 X 

PVK 801 in 2010 recorded highest plant height, while IS 20843 X IS 2248 was 

significantly taller than IS 2248 X ICSB 56, PVK 801 X ICSB 56, ICSB 56 X IS 2248, 

ICSB 56 X IS 20843 and ICSB 56 X PVK 801 in 2011 and across the seasons. 

4.2.1.1.2 Days to 50 % Flowering: Days to 50 % flowering varied from 73 days  

(PVK 801 X IS 2248) to 93.67 days (IS 20843) with a grand mean of 78.27 days in 

2010, from 67.33 days (IS 20843) to 70.33 days (PVK 801 and ICSB 56 X PVK 801) 

with a grand mean of 69.45 days and from 71.34 days (PVK 801 X IS 2248) to 80.50 

days (IS 20843) with a general mean of 73.86 days. Among the parents, IS 2248 was the 

earliest and it was significantly earlier than other parents in 2010 and across the seasons. 

IS 20843 was the earliest to flower and it was significantly earlier than PVK 801 in 

2011. Among the hybrids, PVK 801 X IS 2248 was the earliest and significantly earlier 

than all other crosses in 2010 and across the seasons. PVK 801 X ICSB 56, IS 20843 X 

IS 2248 and PVK 801 X IS 20843 were earliest among crosses but, none of these  

 



 

 

 

 

 

 

 

 

Table 4.22. Pooled analysis of variance for various agronomic characters and grain 

zinc content in sorghum 

 

 

 

 

* indicates significance @ 5 % level of probability;  

 

** indicates significance @ 1 % level of probability 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Source of 

variation 

Degrees 

of 

freedom 

Mean sum of squares 

Plant 

height 

(m) 

Days to  

50 % 

flowering 

100-

grain 

weight 

(g) 

Grain 

yield  

(t ha
-1

) 

Grain zinc 

(mg Kg
-1

) 

Replication  4 0.03 6.24** 0.26 1.99 19.03 

Genotypes (G) 16 0.92** 67.91** 0.74** 34.68*

* 

461.00** 

Environments (E) 1 0.22** 139572.78

** 

0.13 71.62*

* 

107.06 

G X E interaction  16 0.08** 76.06** 0.56** 16.62*

* 

333.24** 

Error 64 0.02 1.00 0.19 1.00 28.62 



 

 

 

 

Table 4.23. Mean performance of parents contrasting for grain zinc and  

their hybrids for plant height (m) and days to 50 % flowering  

in postrainy seasons, 2010, 2011 and pooled data 

 

Genotype 
Plant height (m) Days to 50 % flowering 

2010 2011 POOLED 2010 2011 POOLED 

PARENTS 

IS 2248 2.17 1.57 1.87 78.00 69.67 73.84 

IS 20843 2.40 2.05 2.23 93.67 67.33 80.50 

PVK 801 1.53 1.47 1.50 80.67 70.33 75.50 

ICSB 56 1.10 1.13 1.12 80.33 69.67 75.00 

MEAN 1.80 1.56 1.68 83.17 69.25 76.21 

DIRECT CROSSES 

IS 2248 X IS 20843 2.37 2.33 2.35 77.67 69.67 73.67 

IS 2248 X PVK 801 2.37 2.17 2.27 80.00 69.67 74.84 

IS 2248 X ICSB 56 2.17 2.08 2.13 79.67 69.67 74.67 

IS 20843 X PVK 801 2.33 2.3 2.32 76.33 69.67 73.00 

IS 20843 X ICSB 56 1.90 2.27 2.09 77.00 69.67 73.34 

PVK 801 X ICSB 56 2.10 1.8 1.95 77.67 69.00 73.34 

MEAN 2.21 2.16 2.18 78.06 69.56 73.81 

RECIPROCAL CROSSES 

IS 20843 X IS 2248 2.33 2.50 2.42 77.67 69.00 73.34 

PVK 801 X IS 2248 2.30 2.17 2.24 73.00 69.67 71.34 

PVK 801 X IS 20843 2.37 2.40 2.39 78.33 69.00 73.67 

ICSB 56 X IS 2248 2.10 2.03 2.07 76.67 69.67 73.17 

ICSB 56 X IS 20843 2.07 2.17 2.12 76.33 69.67 73.00 

ICSB 56 X PVK 801 2.00 1.60 1.80 78.33 70.33 74.33 

MEAN 2.20 2.15 2.17 76.72 69.56 73.14 

ICSR 40 (CHECK) 1.22 1.22 1.22 69.33 69.00 69.17 

GRAND MEAN 2.05 1.96 2.01 78.27 69.45 73.86 

C.V.% 7.15 8.33 7.74 0.89 2.62 1.76 

C.D. (5%) 0.24 0.27 0.26 1.16 3.02 2.09 

S Em 0.08 0.09 0.09 0.40 1.05 0.73 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Table 4.24. Mean performance of parents contrasting for grain zinc and  

their hybrids for plant aspect score and 100 grain weight (g)  

in postrainy seasons, 2010, 2011 and pooled data 

 

Genotype 
Plant aspect score 100 grain weight (g) 

2010 2011 POOLED 2010 2011 POOLED 

PARENTS 

IS 2248 3.00 2.67 2.84 3.19 2.97 3.08 

IS 20843 3.33 2.67 3.00 2.14 3.20 2.67 

PVK 801 2.33 1.67 2.00 3.59 3.15 3.37 

ICSB 56 2.33 2.67 2.50 2.69 2.75 2.72 

MEAN 2.75 2.42 2.58 2.90 3.02 2.96 

DIRECT CROSSES 

IS 2248 X IS 20843 3.00 3.00 3.00 3.48 3.61 3.55 

IS 2248 X PVK 801 3.00 2.67 2.84 3.41 3.77 3.59 

IS 2248 X ICSB 56 2.67 3.67 3.17 4.10 3.20 3.65 

IS 20843 X PVK 801 3.33 2.00 2.67 3.80 3.58 3.69 

IS 20843 X ICSB 56 3.00 1.67 2.34 2.68 3.11 2.90 

PVK 801 X ICSB 56 2.33 1.33 1.83 3.47 2.60 3.04 

MEAN 2.89 2.39 2.64 3.49 3.31 3.40 

RECIPROCAL CROSSES 

IS 20843 X IS 2248 3.00 2.00 2.50 3.56 3.61 3.59 

PVK 801 X IS 2248 2.33 1.67 2.00 3.95 3.55 3.75 

PVK 801 X IS 20843 3.00 1.33 2.17 3.09 3.77 3.43 

ICSB 56 X IS 2248 2.33 1.67 2.00 3.64 2.36 3.00 

ICSB 56 X IS 20843 3.00 2.33 2.67 2.64 3.19 2.92 

ICSB 56 X PVK 801 2.00 1.33 1.67 3.47 3.08 3.28 

MEAN 2.61 1.72 2.17 3.39 3.26 3.33 

ICSR 40 (CHECK) 2.00 3.33 2.67 3.03 3.20 3.12 

GRAND MEAN 2.70 2.22 2.46 3.29 3.22 3.25 

C.V.% 19.83 19.92 19.88 12.61 14.49 13.55 

C.D. (5%) 0.89 0.73 0.81 0.69 0.78 0.74 

S Em 0.31 0.25 0.28 0.24 0.27 0.26 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Table 4.25. Mean performance of parents contrasting for grain zinc and  

their hybrids for grain yield (t ha
-1

) and grain zinc (mg kg
-1

)  

in postrainy seasons, 2010, 2011 and pooled data 

 

Genotype 
Grain yield (t ha

-1
) Grain zinc  (mg kg

-1
) 

2010 2011 POOLED 2010 2011 POOLED 

PARENTS 

IS 2248 4.50 2.42 3.46 58.67 32.73 45.70 

IS 20843 3.28 4.75 4.02 47.73 32.57 40.15 

PVK 801 6.67 5.41 6.04 49.13 23.07 36.10 

ICSB 56 2.69 2.78 2.74 34.03 25.40 29.72 

MEAN 4.29 3.84 4.06 47.39 28.44 37.92 

DIRECT CROSSES 

IS 2248 X IS 20843 5.93 3.57 4.75 51.87 58.20 55.04 

IS 2248 X PVK 801 4.61 2.93 3.77 37.60 53.47 45.54 

IS 2248 X ICSB 56 8.62 1.48 5.05 22.17 53.80 37.99 

IS 20843 X PVK 801 7.69 7.52 7.61 34.13 29.27 31.70 

IS 20843 X ICSB 56 7.91 6.92 7.42 33.47 28.67 31.07 

PVK 801 X ICSB 56 7.07 6.16 6.62 30.13 23.00 26.57 

MEAN 6.97 4.76 5.87 34.90 41.07 37.98 

RECIPROCAL CROSSES 

IS 20843 X IS 2248 5.48 3.17 4.33 54.43 45.77 50.10 

PVK 801 X IS 2248 6.10 4.55 5.33 31.63 52.83 42.23 

PVK 801 X IS 20843 6.05 7.33 6.69 31.40 28.50 29.95 

ICSB 56 X IS 2248 6.05 3.61 4.83 40.57 40.03 40.30 

ICSB 56 X IS 20843 6.95 6.28 6.62 35.37 28.67 32.02 

ICSB 56 X PVK 801 8.80 5.00 6.90 23.00 23.87 23.44 

MEAN 6.57 4.99 5.78 36.07 36.61 36.34 

ICSR 40 (CHECK) 3.01 3.59 3.30 29.57 30.23 29.90 

GRAND MEAN 5.97 4.56 5.26 37.94 35.89 36.91 

C.V.% 14.14 11.43 12.79 14.44 14.54 14.49 

C.D. (5%) 1.40 0.87 1.14 9.11 8.68 8.90 

S E m 0.49 0.30 0.40 3.16 3.01 3.09 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 



crosses were significantly earlier than all other crosses in 2011. Across the seasons, 

cross PVK 801 X IS 2248 was earliest to flower and it was significantly earlier than  

IS 2248 X PVK 801, IS 2248 X ICSB 56, ICSB 56 X PVK 801, IS 2248 X IS 20843 

and PVK 801 X IS 20843. Compared to check, all the genotypes flowered late in both 

the seasons and across the seasons. 

4.2.1.1.3 Plant Aspect Score: The scoring ranged from 2.00 (ICSB 56 X PVK 801) to 

3.33 (IS 20843 and IS 20843 X PVK 801) with a grand mean of 2.71 in 2010, from 1.33 

(PVK 801 X ICSB 56, PVK 801 X IS 20843 and ICSB 56 X PVK 801) to 3.67  

(IS 2248 X ICSB 56) with a grand mean of 2.22 in 2011 and from 1.67 (ICSB 56 X 

PVK 801) to 3.17 (IS 2248 X ICSB 56) with a general mean of 2.46 across the seasons. 

PVK 801 and ICSB 56 were agronomically desirable among all the parents and 

significantly desirable than IS 20843 in 2010, while PVK 801 in 2011 and across the 

seasons was most agronomically desirable among the parents and significantly desirable 

than all other parents. Among the crosses, ICSB 56 X PVK 801 was the most desirable 

in 2010 and across the seasons. This was significantly desirable than all crosses except 

IS 2248 X PVK 801, PVK 801 X ICSB 56, PVK 801 X IS 2248 and ICSB 56 X  

IS 2248 in 2010 while, significantly desirable than all other crosses except PVK 801 X 

ICSB 56, PVK 801 X IS 2248, ICSB 56 X IS 2248, PVK 801 X IS 20843 and IS 20843 

X ICSB 56 across the seasons. Compared to check, none of the crosses were 

agronomically desirable in 2010, while all crosses were agronomically desirable in 

2011. 

4.2.1.1.4 100-grain weight (g): 100-grain weight varied from 2.14 g (IS 20843) to 4.10 

g (IS 2248 X ICSB 56) with a grand mean of 3.29 g in 2010, from 2.36 g (ICSB 56 X IS 

2248) to 3.77 g (IS 2248 X PVK 801 and PVK 801 X IS 20843) with a grand mean of 

3.22 g in 2011 and from 2.67 (IS 20843) to 3.75 g (PVK 801 X IS 2248) with a general 

mean of 3.25 g across the seasons. PVK 801 recorded the highest grain weight in 2010 

and across the seasons and IS 20843 in 2011 recorded the highest grain weight among 

the parents. PVK 801 recorded significantly higher grain weight than IS 20843 and 

ICSB 56 in both the seasons and across the seasons. IS 2248 X ICSB 56 in 2010,  

IS 2248 X PVK 801 and PVK 801 X IS 20843 in 2011 and PVK 801 X IS 2248 across 

the seasons recorded the highest grain weight among the crosses. Compared to check, 

none of the genotypes recorded higher grain weight in both the seasons and across the 

seasons, barring crosses, IS 2248 X ICSB 56, IS 20843 X PVK 801 and PVK 801 X  

IS 2248 in 2010. IS 2248 X ICSB 56 recorded significantly higher grain weight than 

PVK 801 X IS 20843, IS 20843 X ICSB 56 and ICSB 56 X IS 20843 in 2010 while, 



PVK 801 X IS 20843 recorded significantly higher grain weight than PVK 801 X ICSB 

56 and ICSB 56 X IS 2248 in 2011. Across the seasons, PVK 801 X IS 2248 recorded 

significantly higher grain weight than IS 20843 X ICSB 56 and its reciprocal cross.  

4.2.1.1.5 Grain Yield (t ha
-1

): The mean values of grain yield ranged from 2.69 t ha
-1

 

(ICSB 56) to 8.80 t ha
-1

 (ICSB 56 X PVK 801) with a grand mean of 5.97 t ha
-1

 in 2010, 

from 1.48 t ha
-1

 (IS 2248 X ICSB 56) to 7.52 t ha
-1

 (IS 20843 X PVK 801) with a grand 

mean of 4.56 t ha
-1

 in 2011 and from 2.74 t ha
-1

 (ICSB 56) to 7.61 (IS 20843 X PVK 

801) with a general mean of 5.26 t ha
-1

 across the seasons. The highest grain yield was 

recorded by PVK 801 in both the seasons and across the seasons, among the parents and 

also recorded significantly higher grain yield than the check and other parents in both 

the seasons and across the seasons. ICSB 56 X PVK 801 in 2010 and IS 20843 X  

PVK 801 in 2011 and across the seasons recorded the highest grain yield among the 

crosses. All crosses recorded higher grain yield than check in 2010. More than 50 % of 

the crosses recorded significantly higher grain yield than the check across the seasons. 

IS 20843 X PVK 801 exhibited significantly higher grain yield than all crosses except 

IS 20843 X ICSB 56, ICSB 56 X PVK 801 and PVK 801 X IS 20843 in 2011 and 

except IS 20843 X ICSB 56, ICSB 56 X IS 20843 and PVK 801 X ICSB 56 across the 

seasons.  

4.2.1.1.6 Grain Zinc (mg kg
-1

): Grain zinc ranged from 22.17 mg kg
-1 

(IS 2248 X 

ICSB 56) to 58.67 mg kg
-1 

(IS 2248) in 2010 with a grand mean of 37.94 mg kg
-1

, from 

23.00 mg kg
-1 

(PVK 801 X ICSB 56) to 58.20 mg kg
-1 

(IS 2248 X IS 20843) with a 

grand mean of 35.89 mg kg
-1

in 2011 and from 23.44 mg kg
-1 

(ICSB 56 X PVK 801) to 

55.04 mg kg
-1 

(IS 2248 X IS 20843) with a grand mean of 36.91 mg kg
-1

 across the 

seasons. Among the parents, IS 2248 recorded the highest grain zinc consistently in 

both the seasons and across the seasons. All the parents except ICSB 56 recorded 

significantly higher grain zinc than the check in 2010, while none of the parents 

recorded significantly higher grain zinc than the check in 2011. Among the crosses,  

IS 20843 X IS 2248 recorded the highest grain zinc and recorded significantly higher 

grain zinc than all other crosses except its reciprocal cross in 2010 and across the 

seasons. IS 2248 X IS 20843 recorded significantly higher grain zinc than all other 

crosses except IS 2248 X ICSB 56, IS 2248 X PVK 801 and PVK 801 X IS 2248 in 

2011. Across the seasons also, the same cross, IS 2248 X IS 20843 exhibited 

significantly superior performance over all the other crosses except IS 20843 X IS 2248 

(Fig 4.5). 

 



 

 

 

 

 

 

 

 

 
 

Figure 4.5. Per se performance of promising hybrids along with parents for grain 

zinc across the seasons 

P1 = Parent 1     P2 = Parent 2 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4.2.2 Heterosis 

Heterosis of different quantitative traits among direct crosses and reciprocal 

crosses are presented in Tables 4.26 to 4.30 and are discussed hereunder: 

4.2.2.1 Plant Height (m): Heterosis over mid-parent ranged from 2.19 % (IS 20843 X 

IS 2248) to 59.49 % (PVK 801 X ICSB 56) in 2010, from 23.08 % (ICSB 56 X  

PVK 801) to 54.32 % (IS 2248 X ICSB 56) in 2011 and from 14.95 % (IS 2248 X IS 

20843) to 49.04 % (PVK 801 X ICSB 56) across the seasons. Almost all crosses 

recorded significant positive heterosis over mid-parent in both the seasons, barring three 

crosses (IS 20843 X ICSB 56, IS 2248 X IS 20843 and IS 20843 X IS 2248) which 

exhibited non-significant positive heterosis in 2010.  PVK 801 X ICSB 56 in 2010 and 

across the seasons and IS 2248 X ICSB 56 in 2011 showed highest positive heterosis, 

while lowest heterosis was recorded by IS 20843 X IS 2248, ICSB 56 X PVK 801 and 

IS 2248 X IS 20843 in 2010, 2011 and across the seasons, respectively.  

Heterosis over better parent varied from -20.83 % (IS 20843 X ICSB 56) to 

36.96 % (PVK 801 X ICSB 56) in 2010, from 5.69 % (ICSB 56 X IS 20843) to 38.30 % 

(IS 2248 X PVK 801 and PVK 801 X IS 2248) in 2011 and from -6.37 % (IS 20843 X 

ICSB 56) to 30.00 % (PVK 801 X ICSB 56) across the seasons. Highest positive 

significant heterosis was recorded by PVK 801 X ICSB 56 in 2010 and across the 

seasons and IS 2248 X PVK 801 and PVK 801 X IS 2248 in 2011. Two crosses  

(PVK 801 X ICSB 56 and ICSB 56 X PVK 801) recorded significant positive heterosis 

over better parent in 2010. IS 2248 X PVK 801, IS 2248 X ICSB 56, and PVK 801 X  

IS 2248 exhibited significant positive heterosis in 2011 and across the seasons. In 

addition to these crosses, IS 20843 X IS 2248, PVK 801 X IS 20843 and ICSB 56 X  

IS 2248 in 2011 and ICSB 56 X PVK 801 across the seasons recorded significant 

positive heterosis, while least heterosis was exhibited by IS 20843 X ICSB 56 in 2010 

and across the seasons and ICSB 56 X IS 20843 in 2011.  

Heterosis over standard check ranged from 56.16 % (IS 20843 X ICSB 56) 

to 94.79 % (IS 2248 X IS 20843) in 2010, from 31.51 % (ICSB 56 X PVK 801) to 

105.48 % (IS 20843 X IS 2248) in 2011 and from 47.95 % (ICSB 56 X PVK 801) to 

98.63 % (IS 20843 X IS 2248) across the seasons. All the crosses recorded highly 

significant positive heterosis over standard check in individual seasons. Maximum 

standard heterosis was recorded by IS 2248 X IS 20843 in 2010 and its reciprocal cross 

in 2011 and across the seasons, while minimum heterosis over check was exhibited by 

IS 20843 X ICSB 56 in 2010 and ICSB 56 X PVK 801 in 2011 and across the seasons.  

 



Table 4.26. Estimates of heterosis over mid-parent (H1), better parent (H2) and standard check (H3) for plant height  

in sorghum across postrainy seasons, 2010 and 2011 

 

* indicates significance @ 5 % level of probability and ** indicates significance @ 1 % level of probability 

 

 

 

 

 

 

 

 

 

 

CROSS 
2010 2011 POOLED 

MEAN H1 H2 H3 MEAN H1 H2 H3 MEAN H1 H2 H3 

DIRECT CROSSES 

IS 2248 X IS 20843 2.37 3.80 -1.25 94.79** 2.33 29.03** 13.82 91.78** 2.35 14.95** 5.69 93.29** 

IS 2248 X PVK 801 2.37 27.93** 9.23 94.52** 2.17 42.86** 38.30** 78.08** 2.27 34.65** 21.43** 86.30** 

IS 2248 X ICSB 56 2.17 32.65** 0.00 78.08** 2.08 54.32** 32.98** 71.23** 2.13 42.46** 13.84* 74.66** 

IS 20843 X PVK 801 2.33 18.64** -2.78 91.78** 2.30 30.81** 12.20 89.04** 2.32 24.38** 4.12 90.41** 

IS 20843 X ICSB 56 1.90 8.57 -20.83** 56.16** 2.27 42.41** 10.57 86.30** 2.08 24.69** -6.37 71.23** 

PVK 801 X ICSB 56 2.10 59.49** 36.96** 72.60** 1.80 38.46** 22.73* 47.95** 1.95 49.04** 30.00** 60.27** 



Table 4.26 (Contd.) 

 

CROSS 
2010 2011 POOLED 

MEAN H1 H2 H3 MEAN H1 H2 H3 MEAN H1 H2 H3 

RECIPROCAL CROSSES 

IS 20843 X IS 2248 2.33 2.19 -2.78 91.78** 2.50 38.25** 21.95** 105.48** 2.42 18.13** 8.61 98.63** 

PVK 801 X IS 2248 2.30 24.32** 6.15 89.04** 2.17 42.86** 38.30** 78.08** 2.23 32.67** 19.64** 83.56** 

PVK 801 X IS 20843 2.37 20.34** -1.39 94.52** 2.40 36.49** 17.07* 97.26** 2.38 27.96** 7.12 95.89** 

ICSB 56 X IS 2248 2.10 28.57** -3.08 72.60** 2.03 50.62** 29.79** 67.12** 2.07 38.55** 10.71 69.86** 

ICSB 56 X IS 20843 2.07 18.10** -13.89** 69.86** 2.17 36.13** 5.69 78.08** 2.12 26.68** -4.87 73.97** 

ICSB 56 X PVK 801 2.00 51.9** 30.43** 64.38** 1.60 23.08* 9.09 31.51** 1.80 37.58** 20.00* 47.95** 

C.D. (5%)  0.20 0.24 0.24  0.24 0.29 0.29  0.20 0.24 0.24 

C.D. (1%)  0.27 0.33 0.33  0.33 0.38 0.38  0.27 0.33 0.33 

 

* indicates significance @ 5 % level of probability and ** indicates significance @ 1 % level of probability 

 

 

 

 

 

 

 



Table 4.27. Estimates of heterosis over mid-parent (H1), better parent (H2) and standard check (H3) for days to 50 % flowering  

in sorghum across postrainy seasons, 2010 and 2011 

 

* indicates significance @ 5 % level of probability and ** indicates significance @ 1 % level of probability 

 

 

 

 

 

 

 

 

 

 

CROSS 
2010 2011 POOLED 

MEAN H1 H2 H3 MEAN H1 H2 H3 MEAN H1 H2 H3 

DIRECT CROSSES 

IS 2248 X IS 20843 77.67 -9.51** -0.43 12.02** 69.67 1.70 3.47 0.97 74.85 -6.88** -0.32 8.93** 

IS 2248 X PVK 801 80.00 0.84 2.56** 15.38** 69.67 -0.48 0.00 0.97 76.52 0.51 1.91 11.40** 

IS 2248 X ICSB 56 79.67 0.63 2.14** 14.90** 69.67 0.00 0.00 0.97 76.29 0.47 1.59 11.05** 

IS 20843 X PVK 801 76.33 -12.43** -5.37** 10.10** 69.67 1.21 3.47 0.97 73.90 -9.25** -4.26** 7.57** 

IS 20843 X ICSB 56 77.00 -11.49** -4.15** 11.06** 69.67 1.70 3.47 0.97 74.37 -8.43** -3.11** 8.27** 

PVK 801 X ICSB 56 77.67 -3.52** -3.32** 12.02** 69.00 -1.43 -0.96 0.00 74.67 -3.00** -2.73* 8.70** 



Table 4.27 (Contd.) 

 

CROSS 
2010 2011 POOLED 

MEAN H1 H2 H3 MEAN H1 H2 H3 MEAN H1 H2 H3 

RECIPROCAL CROSSES 

IS 20843 X IS 2248 77.67 -9.51** -0.43 12.02** 69.00 0.73 2.48 0.00 74.67 -7.11** -0.56 8.70** 

PVK 801 X IS 2248 73.00 -7.98** -6.41** 5.29** 69.67 -0.48 0.00 0.97 71.51 -6.08** -4.77** 4.09** 

PVK 801 X IS 20843 78.33 -10.13** -2.89** 12.98** 69.00 0.24 2.48 0.00 74.14 -8.96** -3.95** 7.92** 

ICSB 56 X IS 2248 76.67 -3.16** -1.71* 10.58** 69.67 0.00 0.00 0.97 75.15 -1.03 0.07 9.39** 

ICSB 56 X IS 20843 76.33 -12.26** -4.98** 10.10** 69.67 1.70 3.47 0.97 73.90 -9.02** -3.74** 7.57** 

ICSB 56 X PVK 801 78.33 -2.69** -2.49** 12.98** 70.33 0.48 0.96 1.93 75.51 -1.90* -1.63 9.93** 

C.D. (5%)  1.00 1.16 1.16  2.61 3.01 3.01  1.42 1.64 1.64 

C.D. (1%)  1.34 1.56 1.56  3.50 4.05 4.05  1.89 2.18 2.18 

 

* indicates significance @ 5 % level of probability and ** indicates significance @ 1 % level of probability 

 

 

 

 

 

 

 



Table 4.28. Estimates of heterosis over mid-parent (H1), better parent (H2) and standard check (H3) for 100-grain weight  

in sorghum across postrainy seasons, 2010 and 2011 

 

* indicates significance @ 5 % level of probability and ** indicates significance @ 1 % level of probability 

 

 

 

 

 

 

 

 

 

 

CROSS 
2010 2011 POOLED 

MEAN H1 H2 H3 MEAN H1 H2 H3 MEAN H1 H2 H3 

DIRECT CROSSES 

IS 2248 X IS 20843 3.48 30.71** 9.20 14.96 3.61 17.00 12.80 12.92 3.55 23.35* 32.81* 13.91 

IS 2248 X PVK 801 3.41 0.64 -4.93 12.54 3.77 22.96* 19.45 17.81 3.59 11.24 16.44 15.20 

IS 2248 X ICSB 56 4.10 39.42** 28.42* 35.20** 3.20 11.94 7.74 0.10 3.65 25.86* 34.27* 17.17 

IS 20843 X PVK 801 3.80 32.71** 5.95 25.41* 3.58 12.74 11.86 11.98 3.69 22.21* 38.18** 18.51 

IS 20843 X ICSB 56 2.68 10.91 -0.37 -11.66 3.11 4.59 -2.81 -2.71 2.90 7.42 8.36 -7.06 

PVK 801 X ICSB 56 3.47 10.63 -3.25 14.52 2.60 -12.03 -17.65 -18.85 3.03 -0.36 11.59 -2.62 



Table 4.28 (Contd.) 

 

CROSS 
2010 2011 POOLED 

MEAN H1 H2 H3 MEAN H1 H2 H3 MEAN H1 H2 H3 

RECIPROCAL CROSSES 

IS 20843 X IS 2248 3.56 33.71** 11.70 17.60 3.61 16.89 12.70 12.81 3.59 24.68* 34.25* 15.14 

PVK 801 X IS 2248 3.95 16.67 10.22 30.47* 3.55 15.89 12.58 10.94 3.75 16.30 21.74 20.44 

PVK 801 X IS 20843 3.09 7.80 -13.94 1.87 3.77 18.62 17.69 17.81 3.43 13.49 28.32* 10.06 

ICSB 56 X IS 2248 3.64 23.99** 14.21 20.24 2.36 -17.53 -20.63 -26.25* 3.00 3.51 10.42 -3.64 

ICSB 56 X IS 20843 2.64 9.39 -1.74 -12.87 3.19 7.28 -0.31 -0.21 2.92 8.23 9.17 -6.37 

ICSB 56 X PVK 801 3.47 10.52 -3.35 14.41 3.08 4.46 -2.22 -3.65 3.28 7.58 20.48 5.14 

C.D. (5%)  0.59 0.69 0.69  0.67 0.77 0.77  0.62 0.72 0.72 

C.D. (1%)  0.79 0.93 0.93  0.90 1.04 1.04  0.82 0.96 0.96 

 

* indicates significance @ 5 % level of probability and ** indicates significance @ 1 % level of probability 

 

 

 

 

 

 

 



Table 4.29. Estimates of heterosis over mid-parent (H1), better parent (H2) and standard check (H3) for grain yield  

in sorghum across postrainy seasons, 2010 and 2011 

 

* indicates significance @ 5 % level of probability and ** indicates significance @ 1 % level of probability 

 

 

 

 

 

 

 

 

 

 

CROSS 
2010 2011 POOLED 

MEAN H1 H2 H3 MEAN H1 H2 H3 MEAN H1 H2 H3 

DIRECT CROSSES 

IS 2248 X IS 20843 5.93 52.51** 31.78* 96.79** 3.57 -0.46 -24.89** -0.46 6.94 20.78 39.11* 32.76* 

IS 2248 X PVK 801 4.61 -17.49 -30.90** 52.88* 2.93 -25.04* -45.75** -18.22 5.54 -21.51* 11.14 6.07 

IS 2248 X ICSB 56 8.62 139.67** 91.56** 186.06** 1.48 -43.21** -46.88** -58.83** 6.53 41.04** 53.03** 24.82 

IS 20843 X PVK 801 7.69 54.68** 15.35 155.20** 7.52 48.03** 39.09** 109.67** 11.77 50.53** 81.04** 125.22** 

IS 20843 X ICSB 56 7.91 164.99** 141.40** 162.50** 6.92 83.63** 45.51** 92.84** 11.32 110.36** 165.60** 116.64** 

PVK 801 X ICSB 56 7.07 51.07** 6.05 134.62** 6.16 50.57** 14.00 71.84** 10.10 50.78** 136.97** 93.29** 



Table 4.29 (Contd.) 

 

CROSS 
2010 2011 POOLED 

MEAN H1 H2 H3 MEAN H1 H2 H3 MEAN H1 H2 H3 

RECIPROCAL CROSSES 

IS 20843 X IS 2248 5.48 41.02* 21.85 81.97** 3.17 -11.52 -33.24** -11.52 6.29 9.55 26.17 20.41 

PVK 801 X IS 2248 6.10 9.19 -8.55 102.32** 4.55 16.18 -15.91* 26.77* 7.98 12.91 59.87** 52.57** 

PVK 801 X IS 20843 6.05 21.62 -9.30 100.66** 7.33 44.36** 35.64** 104.46** 7.05 -9.88 8.38 34.83* 

ICSB 56 X IS 2248 6.05 68.30** 34.52* 100.88** 3.61 38.72* 29.74 0.56 10.62 129.56** 149.08** 103.16** 

ICSB 56 X IS 20843 6.95 132.83** 112.11** 130.64** 6.28 66.73** 32.12** 75.09** 10.15 88.45** 137.93** 94.07** 

ICSB 56 X PVK 801 8.80 88.03** 32.00** 192.04** 5.00 22.07* -7.58 39.31** 10.01 49.37** 134.76** 91.48** 

C.D. (5%)  1.22 1.41 1.41  0.75 0.86 0.86  1.42 1.64 1.64 

C.D. (1%)  1.64 1.89 1.89  1.01 1.15 1.15  1.89 2.18 2.18 

 

* indicates significance @ 5 % level of probability and ** indicates significance @ 1 % level of probability 

 

 

 

 

 

 

 



Table 4.30. Estimates of heterosis over mid-parent (H1), better parent (H2) and standard check (H3) for grain zinc  

in sorghum across postrainy seasons, 2010 and 2011 

 

* indicates significance @ 5 % level of probability and ** indicates significance @ 1 % level of probability 

 

 

 

 

 

 

 

 

 

 

CROSS 
2010 2011 POOLED 

MEAN H1 H2 H3 MEAN H1 H2 H3 MEAN H1 H2 H3 

DIRECT CROSSES 

IS 2248 X IS 20843 51.87 -2.50 -11.59 75.42** 58.20 78.25** 77.80** 92.50** 55.04 28.23** 37.09** 84.08** 

IS 2248 X PVK 801 37.60 -30.24** -35.91** 27.17 53.47 91.64** 63.34** 76.85** 45.54 11.33 26.15* 52.31** 

IS 2248 X ICSB 56 22.17 -52.18** -62.22** -25.03 53.80 85.09** 64.36** 77.95** 37.99 0.75 27.84 27.06 

IS 20843 X PVK 801 34.13 -29.52** -30.53** 15.45 29.27 5.21 -10.13 -3.20 31.70 -16.85 -12.19 6.02 

IS 20843 X ICSB 56 33.47 -18.14 -29.88** 13.19 28.67 -1.09 -11.98 -5.18 31.07 -11.07 4.54 3.90 

PVK 801 X ICSB 56 30.13 -27.54** -38.67** 1.92 23.00 -5.09 -9.45 -23.93 26.57 -19.27 -10.60 -11.15 



Table 4.30 (Contd.) 

CROSS 
2010 2011 POOLED 

MEAN H1 H2 H3 MEAN H1 H2 H3 MEAN H1 H2 H3 

RECIPROCAL CROSSES 

IS 20843 X IS 2248 54.43 2.32 -7.22 84.10** 45.77 40.17** 39.82** 51.38** 50.10 16.72 24.79* 67.56** 

PVK 801 X IS 2248 31.63 -41.31** -46.08** 6.99 52.83 89.37** 61.41** 74.75** 42.23 3.26 16.99 41.25** 

PVK 801 X IS 20843 31.40 -35.17** -36.09** 6.20 28.50 2.46 -12.49 -5.73 29.95 -21.44* -17.04 0.17 

ICSB 56 X IS 2248 40.57 -12.48 -30.85** 37.20* 40.03 37.72** 22.29 32.40* 40.30 6.87 35.61* 34.78* 

ICSB 56 X IS 20843 35.37 -13.49 -25.90** 19.62 28.67 -1.09 -11.98 -5.18 32.02 -8.35 7.74 7.08 

ICSB 56 X PVK 801 23.00 -44.69** -53.19** -22.21 23.87 -1.51 -6.04 -21.06 23.44 -28.77* -21.12 -21.61 

C.D. (5%)  7.88 9.11 9.11  7.52 8.68 8.68  7.55 8.73 8.73 

C.D. (1%)  10.60 12.24 12.24  10.10 11.66 11.66  10.04 11.60 11.60 

 

* indicates significance @ 5 % level of probability and ** indicates significance @ 1 % level of probability 

 

 

 

 

 



ICSB 56 X PVK 801 recorded lowest heterosis over mid-parent, better parent and 

standard check in 2011. 

Almost all the crosses recorded highly significant positive heterosis in both 

the seasons for plant height. Similar results were reported by Bhagmal and Mishra 

(1985), Berenji (1988), Chinna and Phul (1988), Choudhari (1992), Biradar (1995) and 

Salunke and Deore (1998). Heterosis over better parent in positive direction was 

observed by Senthil and Palaniswamy (1993), Ganesh et al. (1996), Lokapur (1997) and 

Pawar (2000), while, Patel et al. (1987), Desai (1991) and Belavatagi (1997) noticed 

significant heterosis over commercial check. Shivanna (1989) reported positive as well 

as negative heterosis in different crosses. Contrarily, Patel et al. (1990) observed 

negative heterosis for this character. Significant heterosis over mid parent was obtained 

by Kanaka (1979), while Giriraj and Goud (1981) observed non-significant heterosis 

over mid parental values. PVK 801 X ICSB 56, IS 2248 X ICSB 56 and IS 20843 X  

IS 2248 recorded highest significant positive heterosis over mid-parent, better parent 

and standard check, respectively across the seasons. IS 2248 X IS 20843 recorded 

lowest heterosis over both their mid-parent and better parent. This cross occupied 

second position with regard to standard heterosis next to IS 20843 X IS 2248 suggesting 

that there was no significant maternal effect in the genetic control of plant height. 

Hence, these two crosses would be suitable for further improving the plant height for 

fodder purpose.  

4.2.2.2 Days to 50 % Flowering: Days to 50 % flowering indicates relative duration of 

the genotypes. Early flowering genotypes are usually physiologically more efficient 

than late flowering ones and therefore it is a preferred trait. Heterosis over mid-parent 

for days to 50 % flowering ranged from -12.43 % (IS 20843 X PVK 801) to 0.84 % (IS 

2248 X PVK 801) in 2010, from -1.43 % (PVK 801 X ICSB 56) to 1.70 %  

(IS 2248 X IS 20843, IS 20843 X ICSB 56 and ICSB 56 X IS 20843) in 2011 and from 

-9.25 % (IS 20843 X PVK 801) to 0.51 % (IS 2248 X PVK 801) across the seasons. All 

the crosses recorded significant negative desirable heterosis except IS 2248 X PVK 801 

and IS 2248 X ICSB 56 in 2010. Almost all the crosses, barring two crosses i.e.,  

IS 2248 X PVK 801 and IS 2248 X ICSB 56 exhibited negative heterosis across the 

seasons, while none of the crosses exhibited significant heterosis over mid-parent in 

2011. Highest negative heterosis was exhibited by IS 20843 X PVK 801 in 2010 and 

across the seasons and PVK 801 X ICSB 56 in 2011. None of the crosses recorded 

significant positive mid-parent heterosis in both the seasons. Highest positive heterosis 



was recorded by IS 2248 X PVK 801 in 2010, IS 2248 X IS 20843, IS 20843 X  

ICSB 56 and ICSB 56 X IS 20843 in 2011 and IS 2248 X PVK 801 across the seasons.  

Heterosis over better parent showed variation from -6.41 % (PVK 801 X  

IS 2248) to 2.56 % (IS 2248 X PVK 801) in 2010, from -0.96 % (PVK 801 X ICSB 56) 

to 3.47 % (ICSB 56 X IS 20843, IS 2248 X IS 20843, IS 20843 X PVK 801 and  

IS 20843 X ICSB 56) in 2011 and from -4.77 % (PVK 801X IS 2248) to 1.91 %  

(IS 2248 X PVK 801) across the seasons. Out of ten significant crosses, eight were 

negatively heterotic in 2010, while six crosses (IS 20843 X PVK 801, IS 20843 X  

ICSB 56, PVK 801 X ICSB 56, PVK 801 X IS 2248, PVK 801 X IS 20843 and  

ICSB 56 X IS 20843 recorded significant negative heterosis over better parent across 

the seasons. However, none of the crosses recorded significant heterosis in 2011.  

IS 2248 X PVK 801 in 2010 and across the seasons and IS 2248 X IS 20843, IS 20843 

X PVK 801, IS 20843 X ICSB 56 and ICSB 56 X IS 20843 in 2011 recorded highest 

heterosis over better parent, while highest negative heterosis was observed in PVK 801 

X IS 2248 in 2010 and across the seasons and PVK 801 X ICSB 56 in 2011. 

Heterosis over standard check ranged from 5.29 % (PVK 801 X IS 2248) to 

15.38 % (IS 2248 X PVK 801) in 2010, from 0.00 % (PVK 801 X ICSB 56, IS 20843 X 

IS 2248 and PVK 801 X IS 20843) to 1.93 % (ICSB 56 X PVK 801) in 2011 and from 

4.09 % (PVK 801 X IS 2248) to 11.40 % (IS 2248 X PVK 801) across the seasons. All 

the crosses exhibited significant positive heterosis in 2010 and across the seasons, while 

none of the crosses recorded significant heterosis over standard check in 2011. Highest 

heterosis over standard check was observed in IS 2248 X PVK 801 in 2010 and across 

the seasons and ICSB 56 X PVK 801 in 2011, while lowest heterosis was recorded by 

PVK 801 X IS 2248 in 2010 and across the seasons and PVK 801 X ICSB 56, IS 20843 

X IS 2248 and PVK 801 X IS 20843 in 2011. 

More than 50 per cent of the crosses recorded significant negative heterosis 

over mid-parent in 2010. These results were in similarity with the earlier reports of  

Naik et al. (1994), Lokapur (1997) and Pawar (2000) who noticed that hybrids recorded 

negative heterosis over better parent. Kanaka (1979), Atkins (1979), Rao et al. (1993), 

Biradar (1995) and Ganesh et al. (1996) also found that the hybrids came to flowering 

earlier than their parents. However, in the present investigation, all the crosses exhibited 

significant positive heterosis over standard check across the seasons, since none of the 

crosses were earlier to flower than the check. Indi and Goud (1981), Desai et al. (1985), 

Kide et al. (1985), Shivanna and Patil (1988) and Belavatagi (1997) reported positive 

heterosis over mid-parent, while Rao et al. (1976), Pandit (1989), Senthil and 



Palaniswamy (1993), Badhe and Patil (1997) and Tiwari et al. (2003) documented 

positive heterosis over better parent.  

4.2.2.3 100-Grain Weight (g): Heterosis over mid-parent for 100-grain weight ranged 

from 0.64 % (IS 2248 X PVK 801) to 39.42 % (IS 2248 X ICSB 56) in 2010, from  

-17.53 % (ICSB 56 X IS 2248) to 22.96 % (IS 2248 X PVK 801) in 2011 and from  

-0.36 % (PVK 801 X ICSB 56) to 25.86 % (IS 2248 X ICSB 56) across the seasons.  

IS 2248 X ICSB 56, IS 20843 X IS 2248, IS 20843 X PVK 801 and IS 2248 X IS 20843 

recorded significant positive heterosis over mid-parent in 2010 and across the seasons. 

In addition to these crosses, ICSB 56 X IS 2248 exhibited significant positive heterosis 

in 2010. Only one cross (IS 2248 X PVK 801) exhibited significant positive heterosis in 

2011. IS 2248 X ICSB 56 was highly heterotic to mid-parent among all crosses in 2010 

and across the seasons. However, IS 2248 X PVK 801 recorded highest heterosis in 

2011 and lowest heterosis in 2010, indicating high influence of environment on grain 

weight. 

Heterosis over better parent had variation from -13.94 % (PVK 801 X  

IS 20843) to 28.42 % (IS 2248 X ICSB 56) in 2010, from -20.63 % (ICSB 56 X  

IS 2248) to 19.45 % (IS 2248 X PVK 801) in 2011 and from 8.36 % (IS 20843 X  

ICSB 56) to 38.18 % (IS 20843 X PVK 801) across the seasons. Five crosses (IS 20843 

X PVK 801, IS 2248 X ICSB 56, IS 20843 X IS 2248, IS 2248 X IS 20843 and  

PVK 801 X IS 20843) across the seasons and IS 2248 X ICSB 56 in 2010 recorded 

significant positive heterosis over better parent. However, none of the crosses exhibited 

significant heterosis in 2011. IS 2248 X ICSB 56, IS 2248 X PVK 801 and IS 20843 X 

PVK 801 were highly superior to better parent in 2010, 2011 and across the seasons, 

respectively. 

Heterosis over standard check varied from -12.87 % (ICSB 56 X  

IS 20843) to 35.20 % (IS 2248 X ICSB 56) in 2010, from -26.25 % (ICSB 56 X  

IS 2248) to 17.81 % (IS 2248 X PVK 801 and PVK 801 X IS 20843) in 2011 and from  

-7.06 % (IS 20843 X ICSB 56) to 20.44 % (PVK 801 X IS 2248) across the seasons. 

The crosses, IS 2248 X ICSB 56, PVK 801 X IS 2248 and IS 20843 X PVK 801 

recorded significant positive heterosis over standard check in 2010. IS 2248 X ICSB 56 

in 2010, IS 2248 X PVK 801 and PVK 801 X IS 20843 in 2011 and PVK 801 X  

IS 2248 across the seasons were highly heterotic over standard check. 

Nearly 50 per cent of the hybrids exhibited significant positive heterosis 

over both mid-parent and better parent. Significant positive relative heterosis for the 

trait was also evidenced by Lokapur (1997). Limited heterosis was noticed by Shivanna 



(1989), Rao et al. (1993) and Biradar (1995). Contrarily, a wide range of heterosis was 

reported by Rao (1970), Kanaka (1979), Desai et al. (1980), Desai et al. (1983),  

Shinde et al. (1983), Dinakar (1985) and Cabera and Miller (1985). Cross combination,  

IS 20843 X PVK 801 which gave the highest heterotic effect for 100-grain weight over 

better parent ranked second over the standard check across the seasons. IS 2248 X  

ICSB 56 showed highest heterosis over mid-parent, better parent and standard check in 

2010, while, IS 2248 X PVK 801 recorded highest heterosis over mid-parent and better 

parent in 2011 and IS 20843 X PVK 801 exhibited maximum heterosis over better 

parent and second highest heterosis next to the PVK 801 X IS 2248 over standard 

check. Hence these crosses were identified to be the best in 2010, 2011 and across the 

seasons, respectively for this trait. 

4.2.2.4 Grain Yield (t ha
-1

): Grain yield is the complex quantitative character largely 

influenced either directly or indirectly by many component traits. Grain yield showed 

mid-parent heterosis in the range of -17.49 % (IS 2248 X PVK 801) to 164.99 %  

(IS 20843 X ICSB 56) in 2010, from -43.21 % (IS 2248 X ICSB 56) to 83.63 %  

(IS 20843 X ICSB 56) in 2011 and from -21.51 % (IS 2248 X PVK 801) to 129.56 % 

(ICSB 56 X IS 2248) across the seasons. More than 50 % of the hybrids recorded 

significant positive heterosis over mid-parent in both the seasons and across the seasons, 

while IS 2248 X PVK 801 consistently showed negative heterosis among all the crosses 

in both the seasons. IS 20843 X ICSB 56 in both seasons and ICSB 56 X IS 2248 across 

the seasons were highly heterotic for grain yield over mid-parent.  

Heterosis over better parent varied from -30.90 % (IS 2248 X PVK 801) to 

141.40 % (IS 20843 X ICSB 56) in 2010, from -46.88 % (IS 2248 X ICSB 56) to  

45.51 % (IS 20843 X ICSB 56) in 2011 and from 8.38 % (PVK 801 X IS 20843) to 

165.60 % (IS 20843 X ICSB 56) across the seasons. IS 20843 X ICSB 56 and its 

reciprocal cross showed significant positive heterosis consistently in both the seasons 

and across the seasons over better parent (IS 20843). One cross (IS 2248 X PVK 801) in 

2010 and four crosses (IS 2248 X ICSB 56, IS 2248 X PVK 801, IS 20843 X IS 2248 

and IS 2248 X IS 20843) in 2011 showed significant negative heterosis. Highest 

heterosis was recorded by IS 20843 X ICSB 56 in both the seasons and across the 

seasons over the better parent.  

Heterosis over standard check ranged from 52.88 % (IS 2248 X PVK 801) 

to 192.04 % (ICSB 56 X PVK 801) in 2010, from -58.83 % (IS 2248 X ICSB 56) to 

109.67 % (IS 20843 X PVK 801) in 2011 and from 6.07 % (IS 2248 X PVK 801) to 

125.22 % (IS 20843 X PVK 801) across the seasons. All the crosses recorded 



significant positive heterosis over standard check in 2010. More than 50 per cent of the 

hybrids exhibited significant positive heterosis over standard check in 2011 and across 

the seasons. However, IS 2248 X ICSB 56, IS 2248 X PVK 801, IS 20843 X IS 2248 

and IS 2248 X IS 20843 exhibited negative heterosis in 2011. ICSB 56 X PVK 801 in 

2010 and IS 20843 X PVK 801 in 2011 and across the seasons were highly superior to 

standard check.  

Most of the hybrids showed significant positive heterosis over mid-parent, 

better parent and standard check in both the seasons and across the seasons. Many 

earlier researchers recorded significantly greater magnitude of heterosis for grain yield 

in sorghum (Indi and Goud, 1981 and Karthik, 2004). IS 20843 X ICSB 56 was highly 

superior over better parent in both the seasons and across the seasons. Further, this cross 

ranked second over the standard check across the seasons with its per se performance 

closer to the high yielding hybrid i.e., IS 20843 X PVK 801 developed in this study.  

IS 20843 X PVK 801 topped in heterotic effect over standard check with its highest per 

se performance among all crosses.  

4.2.2.5 Grain Zinc (mg kg
-1

): Heterosis over mid-parent ranged from -52.18 % (IS 

2248 X ICSB 56) to 2.32 % (IS 20843 X IS 2248) in 2010, from -5.09 % (PVK 801 X 

ICSB 56) to 91.64 % (IS 2248 X PVK 801) in 2011 and from -28.77 % (ICSB 56 X 

PVK 801) to 28.23 % (IS 2248 X IS 20843) across the seasons. None of the crosses 

recorded significant positive heterosis in 2010. Fifty per cent of the hybrids (IS 2248 X 

PVK 801, PVK 801 X IS 2248, IS 2248 X ICSB 56, IS 2248 X IS 20843, IS 20843 X 

IS 2248 and ICSB 56 X IS 2248) exhibited significant positive heterosis in 2011, while 

IS 2248 X IS 20843 showed significant positive heterosis across the seasons. All the 

crosses involving PVK 801 as one of the parent and the cross, IS 2248 X ICSB 56 

recorded significant negative heterosis in 2010. Due to seasonal effect, more than 50 % 

of the hybrids exhibited contrary results in 2010 and 2011. IS 20843 X IS 2248, IS 2248 

X PVK 801 and IS 2248 X IS 20843 recorded the highest heterosis in 2010, 2011 and 

across the seasons, respectively. Across the seasons, only one cross, IS 2248 X  

IS 20843 (28.23 %) exhibited significant positive heterosis over its mid-parent (Fig 4.6). 

Heterosis over better parent varied from -62.22 % (IS 2248 X ICSB 56) to  

-7.22 % (IS 20843 X IS 2248) in 2010, from -12.49 % (PVK 801 X IS 20843) to 77.80 

% (IS 2248 X IS 20843) in 2011 and from -21.12 % (ICSB 56 X PVK 801) to 37.09 % 

(IS 2248 X IS 20843) across the seasons. None of the crosses exhibited positive 

heterosis over better parent in 2010. IS 2248 X IS 20843, IS 2248 X ICSB 56, IS 2248 

X PVK 801, PVK 801 X IS 2248 and IS 20843 X IS 2248 recorded significant positive  



 

 

 

 

 

 

 

 
 

Figure 4.6. Heterosis over mid-parent, better parent and standard check exhibited 

by promising hybrids for grain zinc across the seasons 

 

H1: Heterosis over mid-parent;    H2: Heterosis over better parent;  

 

H3: Heterosis over standard check 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



heterosis in 2011, while IS 2248 X IS 20843, ICSB 56 X IS 2248, IS 2248 X PVK 801 

and IS 20843 X IS 2248 exhibited significant positive heterosis across the seasons. 

Almost all the crosses recorded significant negative heterosis over better parent except 

IS 2248 X IS 20843 and its reciprocal cross in 2010. IS 2248 X IS 20843 had 

consistently high heterosis in both the seasons and across the seasons when compared to 

all the remaining crosses.  

Heterosis over standard check varied from -25.03 % (IS 2248 X ICSB 56) to 

% (IS 2248 X IS 20843) in 2011 and from -21.61 % (ICSB 56 X PVK 801) to 84.08 

%(IS 2248 X IS 20843) across the seasons. IS 20843 X IS 2248, IS 2248 X IS 20843 

and ICSB 56 X IS 2248 showed significant positive heterosis over standard check in 

both the seasons. Besides these crosses, IS 2248 X PVK 801, IS 2248 X ICSB 56 and  

PVK 801 X IS 2248 exhibited significant positive heterosis in 2011. IS 2248 X  

IS 20843, IS 20843 X IS 2248, IS 2248 X PVK 801, PVK 801 X IS 2248 and ICSB 56 

X IS 2248 showed significant heterosis in positive direction across the seasons  

(Fig 4.7). None of the crosses recorded significant negative heterosis over standard 

check in both the seasons and across the seasons. IS 20843 X IS 2248 in 2010 and IS 

2248 X IS 20843 in 2011 and across the seasons showed highest heterotic effect over 

standard check.  

IS 2248 X IS 20843 was highly heterotic in grain zinc since it showed 

highest heterosis over better parent and standard check across the seasons. Even though 

most of the hybrids were positively heterotic, only few (<50 %) hybrids showed 

significant heterosis. Similar results were reported by Velu (2006) and Rai et al. (2007) 

in pearl millet and Chakraborti et al. (2009) in maize. These results indicated that there 

would be a little opportunity to exploit heterosis for grain zinc. Most of the crosses that 

recorded negative heterosis in 2010 showed positive heterosis in 2011 indicating high 

influence of environment on the grain zinc content. 

4.2.3 Combining Ability Analysis 

4.2.3.1 Analysis of Variance for Combining Ability 

The analysis of variance for combining ability (Tables 4.31 and 4.32) 

revealed that the mean sum of squares due to GCA of parents and SCA of crosses were 

significant for all the characters in 2010, while mean sum of squares due to GCA of 

parents and SCA of crosses were significant for all the characters except days to 50 % 

flowering in 2011. The mean sum of squares due to reciprocal crosses was consistently 

significant for grain yield and grain zinc in both the seasons. In addition to these  

 



 

 

 

 

 

 

 

 
 

Figure 4.7. Heterosis over standard check exhibited by promising hybrids for grain 

zinc across the seasons 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Table 4.31. Analysis of variance for combining ability estimates for various 

agronomic characters and grain zinc content of parents in sorghum  

during postrainy season, 2010 

 

 

* indicates significance @ 5 % level of probability;  

 

** indicates significance @ 1 % level of probability 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source of 

variation 

Degrees 

of 

freedom 

Mean sum of squares 

Plant 

height 

(m) 

Days to 

50 % 

flowering 

100-grain 

weight (g) 

Grain 

yield  

(t ha
-1

) 

Grain zinc 

(mg Kg
-1

) 

GCA 3 0.35** 22.95** 0.74** 1.70** 274.33** 

SCA 6 0.13** 31.21** 0.26** 5.54** 124.50** 

Reciprocal 6 0.00 5.24** 0.08 1.30** 36.89** 

Error 30 0.01 0.16 0.06 0.25 10.46 

GCA variance  0.04 2.85 0.09 0.18 32.98 

SCA variance  0.12 31.05 0.2 5.29 114.04 

GCA/ SCA  0.33 0.09 0.45 0.03 0.29 

Predictability 

ratio 

 0.4 0.16 0.47 0.06 0.37 



 

 

 

 

 

 

Table 4.32. Analysis of variance for combining ability estimates for various 

agronomic characters and grain zinc content in sorghum 

during postrainy season, 2011 

 

 

* indicates significance @ 5 % level of probability;  

 

** indicates significance @ 1 % level of probability 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

Source of 

variation 

Degrees 

of 

freedom 

Mean sum of squares 

Plant 

height 

(m) 

Days to 

50 % 

flowering 

100-grain 

weight (g) 

Grain 

yield  

(t ha
-1

) 

Grain zinc 

(mg Kg
-1

) 

GCA 3 0.33** 1.16 0.44** 11.49** 380.98** 

SCA 6 0.19** 0.38 0.13 2.18** 170.06** 

Reciprocal 6 0.01 0.22 0.09 0.76** 28.83** 

Error 30 0.01 1.17 0.08 0.09 7.29 

GCA variance  0.04 -0.00 0.05 1.43 46.71 

SCA variance  0.18 -0.79 0.05 2.09 162.77 

GCA/ SCA  0.22 0.00 1 0.68 0.29 

Predictability 

ratio 

 0.31 0.00 0.67 0.58 0.36 



characters, days to 50 % flowering and grain iron showed significant variation for 

reciprocal crosses in 2010. 

The pooled analysis of variance (Table 4.33) across the seasons for 

combining ability indicated that the mean sum of squares due to GCA, SCA and 

reciprocal crosses were highly significant for all the characters except the mean sum of 

squares due to reciprocal crosses for plant height and grain zinc. 

The variance due to SCA was more than the variance due to GCA for almost 

all the characters except 100-grain weight in both the seasons, indicating the 

predominance of non-additive gene effect in controlling the expression of these traits. 

The variances due to GCA and SCA revealed that 100-grain weight was governed by 

non-additive gene action in 2010, while both non-additive and additive gene actions in 

2011.  

4.2.3.2 gca, sca and Reciprocal Effects: The gca, sca and reciprocal effects are 

presented in Tables 4.34 and 4.35 and are discussed hereunder. 

4.2.3.2.1 Plant Height (m): Plant height significantly varied among parents and direct 

crosses but not among reciprocal crosses, consistently in both the seasons and across the 

seasons. SCA variance was higher than the GCA variance suggesting the presence of 

non-additive gene action for this trait, consistently in individual seasons and across the 

seasons, which was in true with the results of low predictability ratio (0.37) across the 

seasons. These results were in agreement with the reports of Berenji (1988), Iyanar et 

al. (2001) and Umakanth et al. (2002). Interestingly, importance of additive gene action 

for this trait was reported by Borikar and Bhale (1982), Nayakar (1985), 

Chandrashekharappa (1987), Shivanna and Patil (1988), Sakhare et al. (1992), Shivanna 

et al. (1992) and Senthil and Palaniswamy (1994), while both additive and non-additive 

type of gene action was reported by Rao and Goud (1977), Giriraj and Goud (1983), 

Dabholkar and Lal (1987), Dinakar (1985), Sahib and Reddy (1986) and Chand (1996) 

for this character.  

Plant height ranged in gca effects from -0.28 (ICSB 56) to 0.17  

(IS 20843) in 2010, from -0.23 (ICSB 56) to 0.26 (IS 20843) in 2011 and from -0.25 

(ICSB 56) to 0.21 (IS 20843) across the seasons for parents. IS 20843 followed by  

IS 2248 and ICSB 56 followed by PVK 801 recorded highest significant positive and 

negative gca effects, respectively in both the seasons and across the seasons. Among all 

four parents, IS 2248 and PVK 801 showed non-significant gca effects in 2011 and 

2010, respectively. High positive and negative gca effects are desirable for increasing 

and decreasing the plant height, respectively. 



 

 

 

 

 

 

 

 

 

Table 4.33. Pooled analysis of variance for combining ability estimates for various 

agronomic characters and grain zinc content in sorghum 

 

* indicates significance @ 5 % level of probability;  

** indicates significance @ 1 % level of probability 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source of 

variation 

Degrees 

of 

freedom 

Mean sum of squares 

Plant 

height 

(m) 

Days to  

50 % 

flowering 

100-

grain 

weight 

(g) 

Grain 

yield  

(t ha
-1

) 

Grain zinc 

(mg Kg
-1

) 

GCA 3 0.66** 19.85** 0.62** 26.57** 603.36** 

SCA 6 0.27** 29.72** 0.25** 12.54** 81.63** 

Reciprocal 6 0.01 5.35** 0.10* 1.50** 9.06 

Error 60 0.00 0.17 0.03 0.17 4.44 

GCA variance  0.08 2.46 0.07 3.3 74.87 

SCA variance  0.27 29.55 0.22 12.37 77.19 

GCA/ SCA  0.30 0.08 0.32 0.27 0.97 

Predictability ratio  0.37 0.14 0.39 0.35 0.66 



Table 4.34. Estimates of general and specific combining ability effects for plant height, days to 50 % flowering and 100-grain weight  

in sorghum in postrainy seasons, 2010, 2011 and pooled data 

 

Genotype 
Plant height (m) Days to 50 % flowering 100 grain weight (g) 

2010 2011 POOLED 2010 2011 POOLED 2010 2011 POOLED 

gca effects 

IS 2248 0.15** 0.05 0.10** -1.25** 0.10 -0.86** 0.26** 0.04 0.15** 

IS 20843 0.17** 0.26** 0.21** 2.50** -0.56 1.63** -0.36** 0.19* -0.09* 

PVK 801 -0.03 -0.08** -0.06** -0.71** 0.27 -0.43** 0.24** 0.11 0.18** 

ICSB 56 -0.28** -0.23** -0.25** -0.54** 0.19 -0.34** -0.13 -0.34** -0.24** 

S.E (parents) 0.03 0.03 0.01 0.12 0.33 0.09 0.08 0.08 0.04 

sca effects 

IS 2248 X IS 20843 -0.07 0.11* 0.02 -2.42** 0.31 -1.64** 0.32* 0.16 0.24** 

IS 2248 X PVK 801 0.12* 0.20** 0.16** -0.38 -0.19 -0.32* -0.12 0.29 0.08 

IS 2248 X ICSB 56 0.17** 0.23** 0.20** 1.13** -0.10 0.78** 0.44** -0.14 0.15* 

IS 20843 X PVK 801 0.11* 0.17** 0.14** -3.29** 0.15 -2.31** 0.26 0.15 0.21** 

IS 20843 X ICSB 56 -0.00 0.18** 0.09** -4.13** 0.56 -2.80** -0.15 0.08 -0.03 

PVK 801 X ICSB 56 0.27** 0.00 0.14** 0.42 -0.27 0.23 0.06 -0.15 -0.05 

S.E (Direct crosses) 0.05 0.05 0.03 0.23 0.60 0.16 0.14 0.15 0.07 

 

 

 

  



Table 4.34. (Contd.) 

 

Genotype 

Plant height (m) Days to 50 % flowering 100 grain weight (g) 

2010 2011 POOLED 2010 2011 POOLED 2010 2011 POOLED 

Reciprocal effects 

IS 20843 X IS 2248 0.02 -0.08 -0.03 0.00 0.33 0.09 -0.04 0.00 -0.02 

PVK 801 X IS 2248 0.03 0.00 0.02 3.50** 0.00 2.50** -0.27 0.11 -0.08 

PVK 801 X IS 20843 -0.02 -0.05 -0.03 -1.00** 0.33 -0.63** 0.36* -0.09 0.13 

ICSB 56 X IS 2248 0.03 0.02 0.03 1.50** 0.00 1.07** 0.23 0.42* 0.32** 

ICSB 56 X IS 20843 -0.08 0.05 -0.02 0.33 0.00 0.24 0.02 -0.04 -0.01 

ICSB 56 X PVK 801 0.05 0.10 0.07* -0.33 -0.67 -0.42* 0.00 -0.24 -0.12 

S.E (Reciprocal crosses) 0.06 0.07 0.03 0.29 0.76 0.20 0.17 0.19 0.09 

 

* indicates significance @ 5 % level of probability;       ** indicates significance @ 1 % level of probability 

 

 

 

 

 

 

 

 

 

 



Table 4.35. Estimates of general and specific combining ability effects for grain 

yield and grain zinc in sorghum in postrainy seasons, 2010, 2011 and 

pooled data 

 

 

* indicates significance @ 5 % level of probability;  

 

** indicates significance @ 1 % level of probability 

Genotype 
Grain yield (t ha

-1
) Grain zinc (mg kg

-1
) 

2010 2011 POOLED 2010 2011 POOLED 

gca effects 

IS 2248 -0.43** -1.60** -1.76** 5.99** 9.96** 7.97** 

IS 20843 -0.33* 0.92** 0.68** 3.56** -0.71 1.42** 

PVK 801 0.56** 0.92** 1.19** -2.69** -4.11** -3.40** 

ICSB 56 0.20 -0.24** -0.11 -6.86** -5.14** -6.00** 

S.E (parents) 0.15 0.09 0.09 0.99 0.83 0.46 

sca effects 

IS 2248 X IS 20843 0.31 -0.57** -0.35* 5.14** 6.50** 5.82** 

IS 2248 X PVK 801 -0.93** -0.20 -0.73** -7.15** 11.06** 1.96* 

IS 2248 X ICSB 56 1.41** -0.23 0.60** -6.22** 5.86** -0.18 

IS 20843 X PVK 801 0.49 0.97** 1.20** -6.56** -2.54 -4.55** 

IS 20843 X ICSB 56 1.41** 1.30** 2.05** -0.74 -1.72 -1.23 

PVK 801 X ICSB 56 1.03** 0.28 0.87** -2.34 -3.56* -2.95** 

S.E (Direct crosses) 0.28 0.17 0.16 1.81 1.51 0.83 

Reciprocal effects 

IS 20843 X IS 2248 0.22 0.20 0.32 -1.28 6.22** 2.47* 

PVK 801 X IS 2248 -0.75* -0.81** -1.19** 2.98 0.32 1.65 

PVK 801 X IS 20843 0.82* 0.09 0.57** 1.37 0.38 0.88 

ICSB 56 X IS 2248 1.28** -1.07** -0.26 -9.20** 6.88** -1.16 

ICSB 56 X IS 20843 0.48 0.32 0.58** -0.95 0.00 -0.47 

ICSB 56 X PVK 801 -0.86* 0.58** 0.05 3.57 -0.43 1.57 

S.E (Reciprocal 

crosses) 
0.35 0.22 0.20 2.29 1.91 1.05 



Direct crosses varied for sca effects from -0.07 (IS 2248 X IS 20843) to 

0.27 (PVK 801 X ICSB 56) in 2010, from 0.00 (PVK 801 X ICSB 56) to 0.23 (IS 2248 

X ICSB 56) in 2011 and from 0.02 (IS 2248 X IS 20843) to 0.20 (IS 2248 X ICSB 56) 

across the seasons. PVK 801 X ICSB 56 followed by IS 2248 X ICSB 56 in 2010,  

IS 2248 X ICSB 56 followed by IS 2248 X PVK 801 in 2011 and across the seasons 

recorded highest positive significant sca effects. Most of the crosses exhibited 

significant positive sca effects in both the seasons and across the seasons. IS 2248 X 

PVK 801, IS 2248 X ICSB 56 and IS 20843 X PVK 801 recorded significant positive 

sca effects consistently in both the seasons and across the seasons. All these crosses had 

only one parent with positive gca effect. Among all the direct crosses, only one cross 

(IS 2248 X IS 20843) showed negative sca effect in 2010, suggesting that all the crosses 

resulted in tallness. None of the crosses showed significant negative sca effects in both 

the seasons and across the seasons. 

Reciprocal effects ranged from -0.08 (ICSB 56 X IS 20843) to 0.05 (ICSB 

56 X PVK 801) in 2010, from -0.08 (IS 20843 X IS 2248) to 0.10 (ICSB 56 X PVK 

801) in 2011 and from -0.03 (IS 20843 X IS 2248 and PVK 801 X IS 20843) to 0.07 

(ICSB 56 X PVK 801) across the seasons. ICSB 56 X PVK 801 followed by ICSB 56 X 

IS 2248 in 2010 and across the seasons and ICSB 56 X PVK 801 followed by ICSB 56 

X IS 20843 in 2011 recorded highest positive reciprocal effects. ICSB 56 X IS 20843 in 

2010 and IS 20843 X IS 2248 in 2011 and across the seasons showed highest negative 

reciprocal effects among all the reciprocal crosses. Apart from these crosses, PVK 801 

X IS 20843 also recorded the highest negative reciprocal effect across the seasons. None 

of the crosses recorded significant reciprocal effects except ICSB 56 X PVK 801 across 

the seasons. IS 2248 X ICSB 56 was found to be the best cross with the highest positive 

sca effects across the seasons with the involvement of good x poor general combiners as 

its parents indicating the necessity of parents with high gca effects to explore good  sca 

effect in the cross.  

4.2.3.2.2 Days to 50 % Flowering: Both parents and crosses revealed significant 

variation for days to 50 % flowering in 2010 and across the seasons, but not in 2011. 

The ratio of GCA variance to SCA variance was low, suggesting that this trait was 

predominantly governed by non-additive gene action. Low predictability ratio (0.14) 

obtained for this trait suggested the predominant role of non-additive gene action in 

controlling this trait. Since, non-additive gene action was found to be governing this 

trait, breeding methods involving selection, intermating among the selected ones and 

reselection may help to improve this trait besides exploitation of heterosis breeding. 



Conformity results were reported by Kide et al. (1985), Shivanna (1989), Naik et al. 

(1994), Belavatagi (1997), Biradar (1995) and Kanawade et al. (2001). Contrarily, 

importance of additive gene action for days to 50% flowering was reported by Nayakar 

(1985), Dabholkar and Usha (1988), Shivanna et al. (1992), Senthil and Palaniswamy 

(1994) and Siddiqui and Baig (2001), while Kanaka (1979) and Patel et al. (1995) found 

the importance of both additive and non-additive components of genetic variances for 

days to 50 per cent flowering.  

 gca effects ranged from -1.25 (IS 2248) to 2.50 (IS 20843) in 2010, from 

-0.56 (IS 20843) to 0.27 (PVK 801) in 2011 and from -0.86 (IS 2248) to 1.63  

(IS 20843) across the seasons. Contrasting results were obtained for this trait in both the 

seasons due to environmental influence. IS 2248 followed by PVK 801 in 2010 and 

across the seasons, while IS 20843 in 2011 showed highest negative gca effects. These 

parents can thus be used as good combiners in crossing programmes. Highest positive 

gca effects were exhibited by IS 20843 in 2010 and across the seasons and PVK 801 in 

2011. 

 Direct crosses varied for sca effects from -4.13 (IS 20843 X ICSB 56) to 

1.13 (IS 2248 X ICSB 56) in 2010, from -0.27 (PVK 801 X ICSB 56) to 0.56 (IS 20843 

X ICSB 56) in 2011 and from -2.80 (IS 20843 X ICSB 56) to 0.78 (IS 2248 X ICSB 56) 

across the seasons. IS 20843 X ICSB 56 followed by IS 20843 X PVK 801 in 2010 and 

across the seasons and PVK 801 X ICSB 56 followed by IS 2248 X PVK 801 in 2011 

recorded highest negative sca effects with one of its parents with high negative gca 

effects. 

Reciprocal effects ranged from -1.00 (PVK 801 X IS 20843) to 3.50 (PVK 

801 X IS 2248) in 2010, from -0.67 (ICSB 56 X PVK 801) to 0.33 (IS 20843 X IS 2248 

and PVK 801 X IS 20843) in 2011 and from -0.63 (PVK 801 X IS 20843) to 2.50 (PVK 

801 X IS 2248) across the seasons. PVK 801 X IS 20843 followed by ICSB 56 X PVK 

801 in 2010 and across the seasons and ICSB 56 X PVK 801 in 2011 recorded highest 

negative reciprocal effects. Significant positive reciprocal effects were exhibited by 

PVK 801 X IS 2248 and ICSB 56 X IS 2248 in 2010 and across the seasons. IS 20843 

X ICSB 56 could be regarded as the best hybrid with high negative significant sca effect 

among twelve crosses across the seasons,  which resulted due to the involvement of 

good general combiner as one of its parents, while the other parent was a poor general 

combiner. The interaction between the favourable alleles from both the parents might 

result in cross with high sca effects. Selection, intermating among the selected ones and 



reselection might be helpful to improve this trait besides exploitation of heterosis 

breeding because of the importance of non-additive gene action for this trait. 

4.2.3.2.3 100-Grain Weight (g): Significant variation was observed among the parents 

for 100-grain weight in both the seasons and across the seasons, while only direct 

crosses in 2010 and both direct and reciprocal crosses across the seasons recorded 

significant variation. 100-grain weight was governed by non-additive gene action since 

GCA variance was lower than the SCA variance and also due to its lower predictability 

ratio (0.39) across the seasons. These results were in line with the reports of Patil and 

Thombre (1984), Shivanna (1989) and Patel et al. (1990), while the importance of 

additive gene action for this trait was reported by Nayakar (1985), Dabholkar and Usha 

(1988), Jagadishwar and Shinde (1992) and Shivanna et al. (1992). However, GCA 

variance was equal to SCA variance in 2011, suggesting equal importance of both 

additive and non-additive gene actions in governing this trait.  

Parents varied in gca effects for 100-grain weight from -0.36 (IS 20843) to 

0.26 (IS 2248) in 2010, from -0.34 (ICSB 56) to 0.19 (IS 20843) in 2011 and from -0.24 

(ICSB 56) to 0.18 (PVK 801) across the seasons. IS 2248 followed by PVK 801 in 

2010, IS 20843 in 2011 and PVK 801 followed by IS 2248 across the seasons recorded 

highest significant positive gca effects, while significant negative gca effects were 

exhibited by IS 20843 in 2010, ICSB 56 in 2011 and IS 20843 followed by ICSB 56 

across the seasons. PVK 801, which exhibited high positive significant gca effect across 

the seasons, could be considered as the best parent among the parents with more grain 

weight. 

 Wide variation of sca effects ranging from -0.15 (IS 20843 X ICSB 56) to 

0.44 (IS 2248 X ICSB 56) in 2010, from -0.15 (PVK 801 X ICSB 56) to 0.29 (IS 2248 

X PVK 801) in 2011 and from -0.05 (PVK 801 X ICSB 56) to 0.24 (IS 2248 X  

IS 20843) across the seasons. The crosses, IS 2248 X ICSB 56 followed by IS 2248 X 

IS 20843 in 2010 and IS 2248 X IS 20843 followed by IS 20843 X PVK 801 across the 

seasons exhibited highest significant positive sca effects with one of their parents as 

good general combiner. None of the crosses recorded significant negative sca effects in 

both the seasons and across the seasons. 

 Reciprocal effects ranged from -0.27 (PVK 801 X IS 2248) to 0.36  

(PVK 801 X IS 20843) in 2010, from -0.24 (ICSB 56 X PVK 801) to 0.42 (ICSB 56 X 

IS 2248) in 2011 and from -0.12 (ICSB 56 X PVK 801) to 0.32 (ICSB 56 X IS 2248) 

across the seasons. Significant positive reciprocal effects were recorded by PVK 801 X 

IS 20843 in 2010 and ICSB 56 X IS 2248 in 2011 and across the seasons. Out of the 



twelve crosses, ICSB 56 X IS 2248 could be considered as the best cross with high 

positive significant sca effect across the seasons. ICSB 56 X IS 2248 was superior to all 

the other crosses with highest positive sca effect in respect of grain weight. Though, it 

was the result of crossing between poor and good general combiners, its high 

performance might be due to the interaction of favourable alleles from both of its 

parents. Selection, intermating among the parents and reselection might be useful to 

further improve the grain weight.  

4.2.3.2.4 Grain Yield (t ha
-1

): Both parents and crosses varied significantly for grain 

yield in both the seasons and across the seasons. Predominantly, non-additive gene 

action was governing this trait, since GCA variance was lower than SCA variance in 

individual seasons and across the seasons, which was further strongly supported by the 

lower value of predictability ratio (0.35). Similar trend of results were reported by Rao 

and Goud (1977), Wilson et al. (1978), Patil and Thombre (1984), Kishan and Borikar 

(1988), Shivanna (1989), Armugam et al. (1995) and Siddiqui and Baig (2001). 

Contrary results were obtained by Palaniswamy and Subramanian (1986), Senthil and 

Palaniswamy (1994) and Iyanar et al. (2001), whereas, Ross et al. (1983), Dinakar 

(1985), Dabholkar and Usha (1988), Swarnalatha and Rana (1988), Patel et al. (1990), 

Jagadishwar and Shinde (1992), Sakhare et al. (1992), Shivanna et al. (1992), Rao et al. 

(1994) and Naik et al. (1994) opined that both GCA and SCA variances were important 

for grain yield. 

 Grain yield significantly varied in gca effects from -0.43 (IS 2248) to 0.56  

(PVK 801) in 2010, from -1.60 (IS 2248) to 0.92 (IS 20843 and PVK 801) in 2011 and 

from -1.76 (IS 2248) to 1.19 (PVK 801) across the seasons. PVK 801 consistently 

recorded highest significant positive gca effect in both the seasons and across the 

seasons with its highest per se performance among the parents. Hence, it could be 

considered as the best parent for grain yield. In addition to PVK 801, IS 20843 

exhibited significant positive gca effect in 2011 and across the seasons. Highest 

significant negative gca effects were recorded by IS 2248 consistently in both the 

seasons and across the seasons. 

 sca effects varied from -0.93 (IS 2248 X PVK 801) to 1.41 (IS 2248 X 

ICSB 56 and IS 20843 X ICSB 56) in 2010, from -0.57 (IS 2248 X IS 20843) to 1.30 

(IS 20843 X ICSB 56) in 2011 and from -0.73 (IS 2248 X PVK 801) to 2.05 (IS 20843 

X ICSB 56) across the seasons. IS 20843 X ICSB 56 consistently had highest 

significant positive sca effect in both the seasons and across the seasons and hence it 

can be suggested as the best cross among the twelve crosses. Besides this cross, IS 2248 



X ICSB 56 and PVK 801 X ICSB 56 in 2010 and across the seasons and IS 20843 X  

PVK 801 in 2011 and across the seasons exhibited significant positive sca effects.  

IS 2248 X PVK 801 in 2010 and across the seasons and IS 2248 X IS 20843 in 2011 

recorded highest negative sca effects. 

  Reciprocal effects ranged from -0.86 (ICSB 56 X PVK 801) to 1.28 (ICSB 

56 X IS 2248) in 2010, from -1.07 (ICSB 56 X IS 2248) to 0.58 (ICSB 56 X PVK 801) 

in 2011 and from -1.19 (PVK 801 X IS 2248) to 0.58 (ICSB 56 X IS 20843) across the 

seasons. Season had great influence on grain yield since, the cross that recorded positive 

sca effect in one season showed negative sca effect in the other season. ICSB 56 X  

IS 2248 followed by PVK 801 X IS 20843 in 2010, ICSB 56 X PVK 801 in 2011 and 

ICSB 56 X IS 20843 followed by PVK 801 X IS 20843 across the seasons recorded 

high significant and positive reciprocal effects. All the crosses that showed highest 

significant positive reciprocal effects had one parent with good combining ability. 

Highest significant negative reciprocal effects were exhibited by ICSB 56 X PVK 801, 

ICSB 56 X IS 2248 and PVK 801 X IS 2248 in 2010, 2011 and across the seasons, 

respectively. IS 20843 X ICSB 56 was identified to be the best cross in respect of grain 

yield with positive sca effects with the involvement of a good general combiner as one 

of the parent and a poor general combiner as the other, indicating the necessity of at 

least one of the parents with good gca to get good sca in the hybrid. Since, non-additive 

gene action was found to be governing the trait, hybridization followed by selection, 

biparental mating in F2 followed by single plant selection would facilitate the 

improvement of grain yield besides heterosis breeding. 

4.2.3.2.5 Grain Zinc (mg kg
-1

): Significant variation was observed among the parents 

and crosses for grain zinc in both the seasons and across the seasons. However, 

reciprocal crosses did not show significant variation across the seasons. SCA variance 

was slightly higher than the GCA variance across the seasons, suggesting that this trait 

was governed by non-additive gene action. However, predictability ratio (0.66) obtained 

indicated the predominant role of additive gene action with little role of non-additive 

gene action in governing this trait. This result was in conformity with the report of 

Majumdar et al. (1990). Additive gene action for this trait was reported by Velu (2006), 

Rai et al. (2007), Velu et al. (2011), Zhang et al. (2000), Gregorio (2002) and Gregorio 

and Htut (2003) and non-additive gene action for this trait was reported by  

Aruselvi et al. (2009) and Zhang et al. (1996). 

 gca effects ranged from -6.86 (ICSB 56) to 5.99 (IS 2248) in 2010, from  

-5.14 (ICSB 56) to 9.96 (IS 2248) in 2011 and from -6.00 (ICSB 56) to 7.97 (IS 2248) 



across the seasons. IS 2248 followed by IS 20843 consistently had significant positive 

gca effects in both the seasons and across the seasons. However, the gca effect of  

IS 20843 which was significantly positive in 2010, was found to be negative and non-

significant in 2011. Significant negative gca effects were recorded by ICSB 56 followed 

by PVK 801 consistently in individual seasons and across the seasons. Among the 

parents, IS 2248 was the best parent since, it showed high positive significant gca effect 

consistently in both the seasons and across the seasons. 

 Direct crosses varied significantly in sca effects from -7.15 (IS 2248 X  

PVK 801) to 5.14 (IS 2248 X IS 20843) in 2010, from -3.56 (PVK 801 X ICSB 56) to 

11.06 (IS 2248 X PVK 801) in 2011 and from -4.55 (IS 20843 X PVK 801) to 5.82  

(IS 2248 X IS 20843) across the seasons. IS 2248 X IS 20843 in 2010, IS 2248 X  

PVK 801 followed by IS 2248 X IS 20843 and IS 2248 X ICSB 56 in 2011 and IS 2248 

X IS 20843 followed by IS 2248 X PVK 801 across the seasons recorded high 

significant positive sca effects. All these crosses had only one parent as good combiner 

except IS 2248 X IS 20843 in 2010 and across the seasons which was the result of good 

x good combiner. IS 2248 X PVK 801, PVK 801 X ICSB 56 and IS 20843 X PVK 801 

exhibited highest significant negative sca effects in 2010, 2011 and across the seasons, 

respectively. 

Reciprocal effects ranged from -9.20 (ICSB 56 X IS 2248) to 3.57 (ICSB 56 

X PVK 801) in 2010, from -0.43 (ICSB 56 X PVK 801) to 6.88 (ICSB 56 X IS 2248) in 

2011 and from -1.16 (ICSB 56 X IS 2248) to 2.47 (IS 20843 X IS 2248) across the 

seasons. ICSB 56 X IS 2248 (poor x poor) followed by IS 20843 X IS 2248 (poor x 

good) in 2011 and IS 20843 X IS 2248 (good x good) across the seasons recorded 

significant positive reciprocal effects. The superiority of poor x poor combinations 

(ICSB 56 X IS 2248) might be due to the concentration and interaction between 

favourable genes contributed by the parents, while none of the reciprocal crosses 

exhibited significant negative effects. Out of the twelve crosses, IS 2248 X IS 20843 

was the best cross with high positive significant sca effect across the seasons (Fig 4.8). 

Both the parents involved in the development of this cross were found to be good 

general combiners. The high frequency of dominant alleles from both the parents would 

result in the hybrid with high positive sca effect. This holds good when a trait is 

governed by additive gene action. As additive gene action predominates in controlling 

grain zinc, improvement of this trait can be done through hybridization followed by 

simple selection through pedigree method of breeding. 

 



4.2.4 Character Association 

These results are presented in Table 4.36 and are discussed hereunder. 

4.2.4.1 Grain zinc with all the agronomic characters: Days to 50 % flowering  

(r = 0.226) followed by plant height (r = 0.092) in 2010, while plant height (r = 0.439) 

followed by 100-grain weight (r = 0.271) showed highest positive correlation with grain 

zinc in 2010 and 2011, respectively. Grain zinc had significant negative association with 

grain yield in both the seasons consistently. It had positive but non-significant 

association (r = 0.092) and positive significant association with plant height (r = 0.439) 

in 2010 and 2011, respectively. Days to 50 % flowering and 100-grain weight showed 

contrary results with grain zinc in both seasons indicating the environmental effect on 

the expression of grain zinc with these characters. 

4.2.4.2 Correlation among all the agronomic characters: Highest significant and 

positive association was observed for 100-grain weight with grain yield (r = 0.390) and 

plant height (r = 0.503) in 2010 and 2011, respectively, while positive but non-

significant correlations were observed for plant height with 100-grain weight (r = 0.184) 

followed by grain yield (r = 0.128) and days to 50 % flowering (r = 0.020) in 2010 and 

for grain yield with plant height (r = 0.257) followed by 100-grain weight (r =0.075) 

and days to 50 % flowering (r = 0.002) in 2011. Days to 50 % flowering showed 

significant negative correlation with 100-grain weight (r = -0.498) followed by grain 

yield (r = -0.447) in 2010, while negative but non-significant correlation with 100-grain 

weight (r = -0.135) followed by plant height (r = -0.034) in 2011. These results 

suggested that there was less possibility to develop the hybrids with all desirable 

characters. However, Liang et al. (1969), Patel et al. (1980) and Haris et al. (2001) 

observed significant positive correlation for days to 50 % flowering with grain yield. 

Patel et al. (1994) also observed the similar results by reporting negative correlation of 

days to 50 % flowering with grain yield. These results indicated that there is a limited 

scope to develop the early varieties with large grain size. 

4.2.5 Path Co-efficient Analysis 

Direct and indirect effects of various characters on grain zinc are presented 

in Tables 4.37 and 4.38 and are discussed hereunder. 

4.2.5.1 During postrainy season, 2010: Plant height (0.083) followed by days to  

50 % flowering (0.019) and 100-grain weight (0.008) showed highest positive direct 

effects on grain zinc, while grain yield had negative direct effect (-0.396) on grain zinc 

among all the characters and also highest negative association with grain zinc. Its 

negative association with grain zinc (r =-0.418) was mainly due to its negative direct  



 

 

 

 

 

 

Table 4.36. Phenotypic and genotypic correlation co-efficient matrix of grain zinc 

content with various agronomic traits during postrainy seasons, 2010 

and 2011  

 

Character 

Plant 

height 

(m) 

Days to 

50 % 

flowering 

Plant 

aspect 

score 

100-grain 

weight  

(g) 

Grain 

yield  

(t ha
-1

) 

Grain 

zinc 

(mg kg
-1)

 

Plant 

height 

(m) 

1.000 
0.020 

(0.006) 

0.378** 

(0.835**) 

0.184 

(0.244) 

0.128 

(0.168) 

0.092 

(0.139) 

Days to 

50 % 

flowering 

-0.034 

(0.350*) 
1.000 

0.208 

(0.476**) 

-0.498** 

(-0.649**) 

-0.447** 

(-0.497**) 

0.226 

(0.241) 

Plant 

aspect 

score 

-0.051 

(0.014) 

0.033 

(0.204) 
1.000 

-0.239 

(-0.583**) 

-0.175 

(-0.332*) 

0.256 

(0.653**) 

100-grain 

weight  

(g) 

0.503** 

(0.766**) 

-0.135 

(-0.131) 

0.050 

(0.247) 
1.000 

0.390** 

(0.590**) 

-0.178 

(-0.205) 

Grain 

yield  

(t ha
-1

) 

0.257 

(0.273) 

0.002 

(0.095) 

-0.587** 

(-0.749**) 

0.075 

(0.207) 
1.000 

-0.418** 

(-0.629**) 

Grain 

zinc  

(mg kg
-1)

 

0.439** 

(0.544**) 

-0.012 

(-0.004) 

0.471** 

(0.596**) 

0.272 

(0.649**) 

-0.538** 

(-0.617**) 
1.000 

 

„*‟ indicates significance at 5 % probability i.e., r=>0.2845 

„**‟ indicates significance at 1 % probability i.e., r=>0.3683 

Values in parenthesis indicates genotypic correlation co-efficients 

Values above diagonal represent the correlations among various characters in post-rainy 

season, 2010 and below diagonal represent the correlations among various characters in 

post-rainy season, 2011 

 

 
 



 

 

 

 

 

Table 4.37. Phenotypic path matrix showing direct and indirect effects of various 

agronomic traits on grain zinc during postrainy season, 2010  

 

Character 

Plant 

height 

(m) 

Days to  

50 % 

flowering 

Plant 

aspect 

score 

100-

grain 

weight 

(g) 

Grain 

yield 

(t ha
-1

) 

Correlation 

with grain 

zinc 

Plant 

height 

(m) 

0.083 0.000 0.058 0.002 -0.051 0.092 

Days to 

 50 % 

flowering 

0.002 0.019 0.032 -0.004 0.177 0.226 

Plant 

aspect 

ratio 

0.031 0.004 0.153 -0.002 0.070 0.256 

100-grain 

weight (g) 
0.015 -0.010 -0.037 0.008 -0.155 -0.178 

Grain 

yield  

(t ha
-1

) 

0.011 -0.009 -0.027 0.003 -0.396 -0.418** 

 

Residual effect = 0.886 

Bold values in diagonal represents direct effects 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Table 4.38. Phenotypic path matrix showing direct and indirect effects of various 

agronomic traits on grain zinc during postrainy season, 2011 

 

Character 

Plant 

height 

(m) 

Days to  

50 % 

flowering 

Plant 

aspect 

score 

100-

grain 

weight 

(g) 

Grain 

yield  

(t ha
-1

) 

Correlation 

with grain 

zinc 

Plant 

height (m) 
0.596 -0.000 -0.007 0.006 -0.156 0.439** 

Days to  

50 % 

flowering 

-0.020 0.007 0.005 -0.002 -0.001 -0.012 

Plant 

aspect 

score 

-0.030 0.000 0.143 0.001 0.357 0.471** 

100-grain 

weight (g) 
0.299 -0.001 0.007 0.012 -0.046 0.272 

Gain yield  

(t ha
-1

) 
0.153 0.000 -0.084 0.001 -0.608 -0.538** 

 

Residual effect = 0.584 

Bold values in diagonal represents direct effects 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



effect (-0.396) and also negative indirect effect through days to 50 % flowering  

(-0.009). This shows that increasing grain yield through selection may not necessarily 

lead to proportionate increase in grain zinc. Plant height was positively effected through 

100-grain weight (0.002) followed by days to 50 % flowering (0.001), while negatively 

effected through grain yield (-0.051). Days to 50 % flowering was positively effected 

through grain yield (0.177) followed by plant height (0.002), while negatively effected 

through 100-grain weight (-0.004). 100-grain weight and grain yield had positive effect 

through plant height and negative effect through days to 50 % flowering. In addition to 

these effects, 100-grain weight showed negative effect through grain yield (-0.155), 

while grain yield showed positive effect through 100-grain weight (0.003) on grain zinc. 

Due to the high negative indirect effects via other characters, 100-grain weight showed 

negative correlation (r = -0.179) with its positive direct effect on grain zinc (0.008). In 

such a situation, direct selection for this trait should be practiced to reduce the 

undesirable indirect effect on grain zinc. 

4.2.5.2 During postrainy season, 2011: Highest positive direct effects were exhibited 

by plant height (0.596) followed by 100-grain weight (0.012) and days to 50 % 

flowering (0.007), while negative direct effect was showed by grain yield (-0.608). Plant 

height and 100-grain weight had negative effects on grain zinc through grain yield 

followed by days to 50 % flowering. Though, days to 50 % flowering had positive 

direct effect (0.007) on grain zinc, it negatively affected grain zinc through plant height 

(-0.020) followed by100-grain weight (-0.002) and grain yield (-0.001). Contrastingly, 

grain yield directly influenced the grain zinc in negative direction, while positively 

effected via plant height followed by 100-grain weight and grain yield. Because of high 

negative effects via other characters, days to 50 % flowering showed negative 

correlation (r = -0.011), even though it had positive direct effect on grain zinc. As a 

whole, plant height was considered as desirable trait, while grain yield was undesirable 

character during selection for the enhancement of mineral nutrients in grain sorghum. 

Plant height had positive direct effect on grain zinc in both the seasons, 

while negative direct effect was showed by grain yield, but grain yield showed positive 

indirect effect through 100-grain weight. Though, 100-grain weight had positive direct 

effect on grain zinc, it negatively influenced the grain zinc through days to 50 % 

flowering. 

High residual effects were observed in both the experiments, when grain 

iron/zinc was considered as dependent character in both the seasons. It revealed that 



some more characters, which were closely associated with grain iron and zinc contents, 

need to be included in this study apart from the characters studied.  
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Chapter V 

SUMMARY AND CONCLUSIONS 

 

The research work entitled “Heterosis and combining ability studies for 

grain iron and zinc contents in grain sorghum (Sorghum bicolor (L.) Moench)” was 

carried out at the ICRISAT farm, Patancheru, Hyderabad in 4 x 4 full-diallel in two 

experiments using contrasting parents for grain iron in the first experiment and those for 

grain zinc in the second experiment with the aims of estimating the magnitude of 

heterosis, studying the nature of gene action and combining ability of parents and 

crosses, determining the correlation of grain iron and zinc contents with grain yield and 

other important traits and direct and indirect effects of these characters on grain iron and 

zinc contents in sorghum. In both the experiments, data were recorded for days to 50 % 

flowering on plot basis (i.e., plants having fully exerted stigmas on the main panicles) 

and 100-grain weight was recorded on a sample of 100 randomly selected grains from 

each replication. Plant height was measured from five randomly selected plants from 

each plot. Plant aspect score was recorded on a 1 to 5 scale where 1 = most desirable 

and 5 = least desirable. Grain yield was measured on plot basis from all the panicles 

harvested and dried to 12 % moisture level. The panicles were harvested at maturity and 

the grain was threshed carefully without any contact with metal or dust to avoid 

contamination. The cleaned seeds of each genotype were used to measure the iron 

content with Oxford X-supreme 8000 model X-ray flourescence analyzer (XRF). 

Heterosis over mid-parent, better parent and standard check were calculated for twelve 

hybrids in both experiments. The combining ability in diallel analysis was worked out 

according to Method-I and Model-I (fixed effects model) suggested by Griffing (1956). 

Correlation coefficients were calculated at phenotypic level using the formulae 

suggested by Falconer (1981). The direct and indirect effects at phenotypic level were 

estimated by taking grain iron content as dependent variable, using path coefficient 

analysis as suggested by Wright (1921) and Dewey and Lu (1959). 

During postrainy seasons, 2010-11 and 2011-12, four parental lines  

(IS 2263, IS 13211, IS 10305 and SPV 1359) and the resultant twelve crosses generated 

by crossing in full-diallel fashion along with standard check (ICSR 40) were evaluated 

in the first experiment in Randomized Block Design (RBD) with three replications. The 

pooled analysis of variance revealed the significant variation among genotypes, 



genotype x environment interaction and environment for all the five characters studied 

(plant height, days to 50 % flowering, 100-grain weight, grain yield and grain zinc) 

except 100-grain weight. Heterosis for grain iron varied from -9.07 % to 12.89 % over 

mid-parent, -14.72 % to 8.55 % over better parent and from -7.19 % to 30.57 % over 

standard check across the seasons. Heterosis was found to be non-significant over mid-

parent and better parent for grain iron indicating that additive gene action had a 

predominant role in the inheritance of this trait. Most of the hybrids recorded significant 

heterosis over standard check. Barring few crosses, none of the hybrids outperformed 

significantly the parents that had high levels of grain iron indicating that there would be 

little opportunity, if any, to exploit heterosis for improving this trait. 

The pooled analysis of variance for combining ability revealed significant 

differences among parents, direct crosses and reciprocal crosses revealing the existence 

of wider variability in the material under study for all the characters. However, direct 

crosses did not show significant variation for grain iron. The ratio of GCA/SCA 

variances revealed that additive gene action was predominant in the inheritance of all 

the characters studied barring days to 50 % flowering. Predictability ratio revealed that 

grain iron content was found to be governed by additive gene action indicating the need 

to improve the parents for developing high iron containing sorghum hybrids. IS 2263 

and IS 13211 were found to be promising general combiners for grain iron based on gca 

effects and SPV 1359 X IS 13211, IS 10305 X IS 13211, IS 10305 X IS 2263, SPV 

1359 X IS 2263 and IS 2263 X IS 13211 were found to be promising hybrids for grain 

iron based on sca effects. Correlation studies revealed that plant height showed positive 

association, while days to 50 % flowering had negative correlation with grain iron 

during postrainy season, 2010. Plant height, 100-grain weight and grain yield exhibited 

negative correlation, while days to 50 % flowering showed positive association with 

grain iron content in 2011. This difference in the association of traits might be attributed 

to the influence of environment on these traits. Path coefficient analysis studies revealed 

that plant height, days to 50 % flowering and 100-grain weight showed controversial 

direct effects on grain iron in two postrainy seasons due to environmental influence. 

Grain yield showed negative direct effect on grain iron content consistently in both the 

seasons. The higher magnitude of residual effect in both the seasons indicated that it 

might be necessary to include some more characters closely related with grain iron 

content.  

In second experiment, four parental lines contrasting for grain zinc  

(IS 2248, IS 20843, PVK 801 and ICSB 56) were crossed among each other in full-



diallel fashion and the resultant twelve crosses along with their parents and standard 

check (ICSR 40) were evaluated during postrainy seasons, 2010-11 and 2011-12 in 

Randomized Block Design (RBD) with three replications. Analysis of variance studies 

revealed that genotypes and genotype x environment interaction were significant for all 

the characters studied and environment was significant for plant height, days to 50 % 

flowering and grain yield. Heterosis for grain zinc ranged from -28.77 % to 28.23 % 

over mid-parent, from -21.12 % to 37.09 % over better parent and from -21.61 % to 

84.08 % over standard check across the seasons. But majority of hybrids did not show 

significant heterosis over mid-parent, better parent and standard check suggesting that 

additive gene action governed the inheritance of this trait. Barring few crosses, none of 

the hybrids outperformed significantly the parents which had high level of grain zinc, 

indicating that there would be little opportunity, if any, to exploit heterosis for 

improving this trait. 

The combined analysis of variance for combining ability in this experiment, 

revealed significant differences among parents, direct crosses and reciprocal crosses 

indicating the existence of wider variability in the material under study for all the 

characters. However, reciprocal crosses did not exhibit significant variation for plant 

height and grain zinc. The ratio of GCA/SCA variances revealed that non-additive gene 

action was predominant in controlling all characters studied barring grain zinc. 

Predictability ratio revealed that grain zinc content was found to be governed by 

additive gene action with little role of non-additive gene action. IS 2248 and IS 20843 

were found to be promising general combiners based on gca effects and three hybrids 

viz., IS 2248 X IS 20843, IS 20843 X IS 2248 and IS 2248 X PVK 801 were proven to 

be superior for grain zinc based on per se performance, significant sca effects and 

heterosis over standard check. Plant height and 100-grain weight had positive 

correlation with grain zinc, while days to 50 % flowering showed negative correlation 

with grain zinc during both the postrainy seasons, 2010 and 2011, indicating the 

possibility to enhance the grain zinc content in tall genotypes with early crop duration. 

Grain yield showed positive correlation in 2010, while negative correlation in 2011 with 

grain zinc. This difference in association of grain yield with grain zinc can be attributed 

to the influence of environment on these traits. Partitioning of correlation coefficients of 

grain yield and other important traits with grain zinc content into direct and indirect 

effects revealed that plant height showed positive direct effect, while days to 50 % 

flowering and grain yield showed negative direct effect on grain zinc consistently in 

both the seasons. Grain yield showed negative direct effect on grain zinc content 



consistently in both the seasons. Many of the characters had positive indirect effects 

through plant height, while negative direct effects through grain yield on grain zinc. 

Direct selection of plant height might be rewarding for enhancement of grain zinc 

content since it revealed true relationship with grain zinc content. Higher magnitude of 

residual effect in both the seasons indicated that it might be necessary to include some 

more characters closely related with grain zinc. 

Conclusions and Future Strategy: 

IS 13211 and IS 2263 were found to be promising parents with high gca 

effects for grain iron and SPV 1359 X IS 13211, IS 10305 X IS 13211 and IS 10305 X 

IS 2263 were found to be promising hybrids with high sca effects for grain iron in the 

first experiment. Grain iron was found to be governed by additive gene action 

suggesting that this trait could be improved by hybridization followed by simple 

selection through pedigree method of breeding. 

IS 2248 and IS 20843 were found to be promising parents with high gca 

effects for grain zinc and IS 2248 X IS 20843, IS 20843 X IS 2248 and IS 2248 X PVK 

801 were found to be promising hybrids for grain zinc with the desirable sca effects, 

heterosis and per se performance in the second experiment. Grain zinc was found to be 

governed by additive gene action with little role of non-additive gene action indicating 

that this trait could be improved by hybridization followed by simple selection through 

pedigree method of breeding.  

There would be little opportunity for exploitation of heterosis for improving 

grain iron in first experiment and grain zinc in second experiment, considering the 

preponderance of additive gene action in conditioning these two traits in two separate 

experiments, though heterosis for grain yield and other traits is widely exploited in 

sorghum. Both female and male parents need to be improved for iron and zinc contents 

for enhancing these micronutrients in the hybrids. The knowledge and material 

generated in the investigation could be utilized in future sorghum breeding programmes.  
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