
SOFTWARE

CropSyst: A Collection of Object-Oriented Simulation Models of Agricultural Systems
F. K. Van Evert* and G. S. Campbell

ABSTRACT
Simulation of whole agricultural systems is now widely used in agron-

omy. Construction and maintenance of the large simulation models re-
quired for agricultural systems may benefit from the application of mod-
ern programming methods. In particular, object-oriented programming
(OOP) methods claim several advantages over conventional procedural
methods. We sought a programming approach that would allow (i) inter-
changing of component models within and between whole-system mod-
els, (ii) incremental model building without rewriting existing code, (iii)
maintenance of more than one model of a component, and (iv) construc-
tion of a user-friendly interface from which all parameters can be as-
signed and component models run. Here we report results of an exper-
iment in which we used OOP to construct a cropping system model called
CropSyst. An OOP analysis of cropping systems led to the abstraction
of component systems (objects) with minimal and well-defined interfaces.
Examples of components, or objects, used in CropSyst are Time, Weather,
Crop, Soil, Crop residue, Tillage, Erosion, Aphid population, Aphid
immigration, Pesticide application, Planting, Crop rotation, and Out-
put. Different versions of CropSyst were implemented and used to simulate
production and erosion for cropping systems in eastern Washington,
and to simulate yield loss and pesticide dynamics associated with Rus-
sian Wheat Aphid infestation. These were constructed from existing
objects. Different versions of the Crop object simulated the different
crops in a rotation cycle. Parameters were assigned and models were
run from a commercially supplied user interface, which was also pro-
grammed using OOP. We were able to meet our objectives using OOP,
and found it useful for construction and maintenance of agricultural
systems models.

WHOLE-SYSTEM MODELS are typically large, complex,
and expensive to create and maintain. The complex-

ity of the model reflects the complexity of the system, and
is therefore not something the modeler can avoid. Mod-
F.K. Van Evert, ICRISAT Sahelian Center, B.P. 12404, Niamey, Niger (via
Paris); and G.S. Campbell, Dep. of Crop and Soil Sciences, Washington
State Univ., Pullman, WA 99164-6420. Contribution of the Washington Ag-
ric. Exp. Stn. Paper no. 9201-51. Received 24 July 1993. *Corresponding
author.

Published in Agron. J. 86:325-331 (1994).

eling tools are available, however, to help manage model
complexity and minimize expense. The objective of this
work was to investigate the use of object-oriented program-
ming (OOP) as a tool for creation and management of
whole-system models for agricultural applications. Spe-
cifically, we sought a programming approach that would
allow (i) interchanging of component models within and
between whole-system models, (ii) incremental model
building without rewriting existing code, (iii) maintenance
of more than one model of a component, and (iv) construc-
tion of a user-friendly interface from which all parame-
ters can be assigned and component models run. These
goals are not new to modelers, and are met to some extent
in existing models using conventional programming lan-
guages (Hodges et al., 1992; Buttler and Riha, 1989). How-
ever, an object-oriented approach (Booch, 1991; Wegner,
1990; Cox, 1986; Rossiter, 1991) seemed to provide the
tools to meet all of these objectives, and to provide a model
structure that in some ways was similar to the system be-
ing modeled. We report here some of the results of ex-
periments with OOP in construction of a cropping systems
model called CropSyst. While the components of this ver-
sion of CropSyst are available and easy to use, they are
intended primarily for use by modelers. A closely related
effort is directed at nonmodelers (Stockle et al., 1991).

OBJECT-ORIENTED ANALYSIS AND DESIGN
The goal of object-oriented analysis and design is to

model a real-world system using objects that are abstracted
from the problem domain. As such, it is different from
structured analysis and design, which focuses on data flows
and algorithms (Yourdon, 1989; DeMarco, 1979). An ob-
ject is an identifiable item, either real or abstract, with
a well-defined role and boundary or interface (Smith and

Abbreviations: 1C, integrated circuit; EMS, expanded memory; K, kilo-
byte; MB, megabyte; OOP, object-oriented programming.

326 AGRONOMY JOURNAL, VOL. 86, MARCH-APRIL 1994

Tockey, 1988; Cox, 1986). A useful analog is an integrated
circuit (IC) used in electronic design. The IC has a specific
function and interface. The circuit designer knows, from
published information, how to connect the IC and what
its output is for any specified input. This same IC can
be used in many different circuit designs without the de-
signer ever needing to know how the IC was designed.
Likewise, an object contains data and code that allow it
to function in a specified manner. The interface is pro-
vided by the object’s methods (called procedures, functions,
or subroutines in procedural languages). Since the inter-
Ihce and the function of an object are defined, the object
can be used in numerous applications without rewriting
the code, and the user need not be capable of producing
the object in order to use it.

While some features of OOP can be emulated in pro-
cedural languages, those languages which are designed
lbr OOP implement three unique features that are partic-
ularly useful in the construction and maintenance of agri-
cultural systems models. These are encapsulation, inheri-
tance, and polymorphism (Borland, 1990).

Encapsulation combines data and the computer code
that generates or manipulates that data into a single unit
called an object. Access to both the code and the data is
through the object’s methods. The user therefore never
needs to know whether a requested piece of information
was computed within the object or obtained from stored
records. As an example of the usefulness of this feature,
two weather objects might be maintained, one that sup-
plies daily temperature and precipitation data from a his-
torical file, and one that generates data using statistical
routines. For other objects using this information, the source
of the data is unimportant. As long as the interface is the
same for both weather objects, either object can be used
interchangeably with other objects. Changes and improve-
ments in the weather algorithms within the object can also
be made, but other objects will not be affected, so long
as the interface remains unchanged.

Inheritance allows the extension of object capabilities
without rewriting code. Descendent objects can inherit
methods and data from ancestor objects simply by spec-
ifying the name of the ancestor in the descendent object’s
code. In the descendent object, new methods can be added,
but, more importantly, methods in the ancestor object can
be redefined. As an example, we might have a weather
object with a method for computing potential evaporation
using a simple temperature-based method. A descendent
object might alter this method to compute evaporation using
solar radiation. The other methods in the weather object
that computed temperature or vapor pressure would not
have to be included in the new code, because these would
be inherited from the ancestor object.

Polymorphism allows two or more objects to share the
same interface definition, making it possible for the user
to replace one with another when the program runs, thus
achieving different results. To illustrate this feature, as-
sume that a model was developed with a single weather
object that reads daily weather data from a file and pro-
vides CropSyst with the temperature, evaporation, and va-
por pressure information required to run the model. Later,
another weather object is developed, perhaps by a differ-
ent person, that simulates weather variables. Polymorphism

Table 1. Examples of CropSyst objects with brief descriptions of
their function. The one-to-one correspondence of CropSyst’s
objects to components in the real world is emphasized.

Object Function

Time

Weather

Crop planting

Crop

Crop rotation

Crop residue

Soil

Tillage system

Soil erosion

Aphid population
Aphid immigration

Pesticide
application

Output

Keep track of time; supply other component
models with information about the current time.

Provide other component models with values for
meteorological variables.

If the current crop has not yet been planted:
monitor the environment and signal that the
crop should be planted when the time has come.

Simulate the crop growth and development
processes appropriate for the current stage of
development.

When the current crop has finished Rs life cycle:
replace current crop, crop planting and tillage
system objects with their successors in the crop
rotation.

Simulate decomposition of crop residue;
redistribution of surface and shallowly buried
residue when a tillage operation is performed;
interception of precipitation, as well as
evaporation of water held.

Soft water balance processes (surface runoff,
infiltration, surface evaporation, deep
percolation); adjust the value of the variable
describing the roughness of the soil surface
when a tillage operation is performed; pesticide
dynamics (degradation, transport, uptake).
Field operation.

If a tillage operation is scheduled for the current
day: make information about this operation
available to the other component models.

Calculate daily values of the C-factor of the
Universal Soil Loss Equation and sum these to
give an annual C-factor.

Simulate growth and development of aphids.
Provide the aphid population model with the

number of aphids immigrating per day.
Apply pesticide when the conditions for application

are met.
Collate state information from the various

component models; do disk and/or screen
output.

allows the user to replace the old weather object with the
new one, without having access to the code for the old
object.

Inheritance and polymorphism are particularly useful
for a cropping systems model. The common features of
crops can be placed in an ancestor crop object, and then
inherited by specific descendent crop objects that simu-
late the individual characteristics of the species and vari-
eties in the cropping system. The appropriate crop object
is then used at the appropriate time in a rotation or se-
quence as the management sequence unfolds in the sim-
ulation. Following is a descriptibn of CropSyst’s objects
and specifications, along with some discussion of how
the features of OOP helped to implement a cropping sys-
tems model.

PROGRAM DESCRIPTION

Simulation Models

Table I lists CropSyst’s components or objects and their
function. Four simulation models are currently imple-
mented in CropSyst using these objects. The first one sim-
ulates, crop growth during one life cycle and has the com-

VAN EVERT & CAMPBELL: OBJECT-ORIENTED SIMULATION MODELS 327

ponents weather, crop, crop planting, and soil. It is primarily
useful for testing modified crop or soil objects without
the interaction of other components. The second model
is an expansion of the first one and has a crop rotation
component. The third simulation model has the compo-
nents weather, crop, crop planting, crop rotation, soil,
soil erosion, soil tillage, and crop residue. We have used
this model to calculate crop yield and soil erosion in east-
ern Washington as a function of climate, tillage system,
and crop rotation (Van Evert, 1992). The last model has
components weather, crop, crop planting, soil, aphid popu-
lation dynamics, aphid immigration, and insecticide ap-
plication. It has been used to simulate the time course of
Russian wheat aphid infestation of small grains and the
resulting reduction in grain yield (Van Evert, 1992).

Time

Time is the driving variable of simulation models. In
CropSyst, time is represented as the number of days since
a fixed date. The integer variable that stores this number
is not visible to the user, but the time object provides meth-
ods to obtain information about the current time, either
as calendar day or month, day, year. It also contains a
method to advance the time. Weather objects (see below)
directly use the integer representation of time to index
the appropriate record of weather data. With time expressed
in this unique way, a daily time-step simulation model
can be written as a REPEAT... UNTIL TIME >= LASTDAY
loop, regardless of whether one growing season is to be
simulated (200 loop passes), or more than 100 yr (40
loop passes) for stochastic simulation.

Weather

It is the task of weather objects to provide information
about the current day’s weather. Weather data are stored
by year in ASCII files or generated stochastically. The
data for one year are held in memory at a time. At the
beginning of each simulated day, that day’s number is passed
to the weather object. It checks to see whether the data
for that day are in memory and, if not, loads the appro-
priate file or generates the data for the new year. Then
the values of derived weather parameters are calculated
for that day and temporarily stored.

We implemented three weather objects. The first requires
daily inputs of precipitation (mm) and maximum and min-
imum temperature (°C). The average daytime vapor den-
sity deficit (g -3) i s calculated from the difference be-
tween maximum and minimum daily temperature and the
slope of the saturated vapor density curve at the average
temperature (Campbell and Diaz, 1988). Solar radiation
(MJ -2 d-l) i s calculated f rom the difference i n daily
maximum and minimum temperature (Bristow and Camp-
bell, 1984). Potential evapotranspiration (kg -2 d-1) i s
calculated with the Priestley-Taylor equation (Priestley
and Taylor, 1972). The second weather object differs from
the first only in that it requires inputs in Imperial units:
i.e., precipitation in inches and temperatures in Fahren-
heit. This object is included because some of our weather
data are recorded in metric, others in Imperial units. The
third weather object implements a weather generator that
generates precipitation and daily minimum and maximum

BasisCrop
I i

Fallow SWB InterCrop
I

LeafClasses

DMPartition

CropWithAphids

Fig. 1. Diagram of crop objects in CropSyst illustrating inheritance in
object-oriented programming. Ancestors and descendants of each
crop object are shown.

temperatures. The weather generator generally follows
Richardson and Wright (1984), but some improvements
have been made (Van Evert, 1992). Derived weather pa-
rameters are calculated as described for the other two
weather classes.

Crop

The crop object hierarchy currently is the most exten-
sive one in CropSyst (Fig. 1). We will describe this hi-
erarchy in some detail as an illustration of the use of in-
heritance to derive detailed models from simpler ones
without having to rewrite code that does not change from
one model to another (Reynolds et al., 1989). At the top
of the hierarchy stands an object, CROP, whose only func-
tion it is to provide an interface to crop objects without
making any assumptions about how descendants might
be implemented. Its descendant BASISCROP implements the
interception of precipitation by the canopy. To this end it
needs to know the leaf area index, but an implementation
to calculate leaf area index is not provided. The BASISCROP
object has three descendants. The FALLOW object always
reports a leaf area index of zero and implements a life
cycle (as it were) that ends after a certain number of days.
The SWB object is a fully functional model of crop growth
based on that of Campbell and Diaz (1988) and extended
by Van Evert (1992). It is particularly suitable for the sim-
ulation of spring grain crops. SWB reports the current leaf
area index of the simulated crop. The INTERCROP object
is a model of two or more crops growing simultaneously.
These might be a commercial crop and one or more weeds;
two or more commercial crops; or several commercial
crops and one or more weeds. INTERCROP contains two
or more descendants of CROP and implements its behavior
by calling on these objects. To report its leaf area index,
for example, INTERCROP will query its crop objects about
their leaf area index and return the sum of these numbers.
To grow, it will calculate the amount of light intercepted
by each of the crop objects (Spitters, 1989) and call the
Grow method of each object with the light interception
as one of the parameters.

More detailed crop growth models were derived from
SWB by redefining some of its behavior. The LEAFCLASSES
object improves on the simulation of leaf area dynamics
by including leaf age classes (Van Keulen and Seligman,
1987). The DMPARTITION object introduces a dynamic
scheme of dry matter partitioning as a function of devel-

328 AGRONOMY JOURNAL, VOL. 86, MARCH-APRIL 1994

opment stage, growth rate and level of water stress (Van
Evert, 1992). As a descendant of the LEA~CLASSES object,
OM~’ARXIT~ON retains the leafage classes. Finally, the CRO~’-
WIa’rIA~’I-IIDS object models crop damage resulting from
aphid feeding by reducing the green leaf area index and
by increasing the resistance to water flow in the plant when
aphids are present (Van Evert, 1992).

Crop Planting

Two crop-planting models are provided. The first one
plants the crop on a fixed date and can be used to simulate
an experiment where the planting date is known. The sec-
ond planting model is intended to simulate a planting de-
cision in the spring, when the soil must be sufficiently
dry to allow planting equipment to enter the field, while
temperatures must be high enough to ensure rapid ger-
mination. This model calculates the 5-d moving averages
of precipitation and average air temperature, beginning
on 1 April. The crop is planted as soon as the moving
average precipitation is zero and the moving average tem-
perature is >_5.6°C (Yan, 1989).

Soil

Two soil models are provided in CropSyst. In both, the
soil is arbitrarily divided into a number of horizontal lay-
ers with volumetric water content as the state variable.
Both models assume constant physical properties in the
entire profile, though layer-specific properties could eas-
ily be accommodated if field data were available to describe
them. Infiltration of water is modeled with a cascading
layer concept (Campbell and Diaz, 1988), where the top
soil layer is wet to field capacity, the surplus of infiltration
water wets the next layer, and so on, until all water is used
or all layers have been wet to field capacity. In the latter
case, the remaining water becomes unavailable for use
by crops through deep drainage.

Surface runoff is calculated with the curve number
method (SCS, 1972) as implemented by Campbell and Diaz
(1988). Soil water evaporation is assumed to occur only
from the top layer, and depends on the fraction of radi-
ation that is not intercepted by crop or crop residue (Ritchie,
1972) and the wetness of the soil surface (Campbell and
Diaz, 1988). Crop water uptake from each soil layer is
calculated by the crop object. This information is passed
to the soil object, which updates the water contents of each
layer. The soil object also keeps track of the roughness
of the surface (a factor in the calculation of soil erosion)
as affected by tillage and wintering (D.K. McCool, Wash-
ington State University, personal communication, 1992).

The second soil model accounts for pesticide dynamics
using algorithms adapted from the PRZM model (Carsel
et al., 1985). Degradation is modeled as a first-order rate
process; transport is modeled as a convective process with
numerical dispersion, and uptake by plant roots is assumed
to be passive.

Soil Erosion

The soil erosion model calculates the C-factor of the
Universal Soil Loss Equation. The C- or cover-management

factor is defined as the ratio of soil erosion from a par-
ticular field to erosion from a clean-tilled, continuously
fallow field. The C-factor is calculated with an algorithm
developed by D.K. McCool (Washington State University,
personal commtmication, 1992) and described by Yan (1989)
for Pacific Northwest conditions.

Crop Residue

Two pools of crop residue that are effective in protect-
ing the soil are recognized: surface residue and shallowly
(0 to 10 cm) buried residue. The rate of decomposition
of residue depends on its water content, temperature, and
a time constant (Bristow et al., 1986; Stroo et al., 1989).
Residue may be moved from the surface pool to the shal-
low pool, and out of the shallow pool, when a tillage op-
eration is carried out. The fraction of surface residue bur-
ied and the fraction of shallow residue lost depend on the
tillage operation and are obtained from the soil tillage
model.

The crop residue on the surface intercepts a fraction
of the solar radiation incident on it and thus reduces evap-
oration from the soil surface. It also intercepts a fraction
of the precipitation and loses this water again via evap-
oration. If the residue becomes saturated with water, any
subsequent intercepted precipitation leaches onto the soil
surface.

Field Operation

Field operations include any mechanized operations.
Field operations may redistribute crop residue (see Crop
residue). They also may affect the roughness of the soil
surface. A field operation object’s behavior consists of re-
porting, to the soil tillage object, the change in surface
roughness and the fractions of residue to be moved.

Soil Tillage System

The tillage model compares the day and month of the
current date to the list of dates and field operations it has,
and, if it is found that an operation must be performed
today, it makes the following information available to the
other component models: the fraction of crop residue on
the soil surface to be buried in the top 10 cm of soil, and
the fraction of residue in the top 10 cm of soil to be buried
deeper (C-factor software, Soil Conservation Service, Spo-
kane, WA, personal communication, 1989; Yan, 1989).

Crop Rotation

When the current crop has finished its life cycle, a crop
rotation object replaces the current crop object with an
object representing the next crop in the rotation. At the
same time, other objects such as the tillage system or the
planting object may need to be replaced. There are three
crop rotation models. The first one replaces just the crop
and crop planting objects and is used in a weather-crop-soil
simulation. The second one replaces the tillage object in
addition to the crop and crop planting objects. The third
rotation model implements a flexible rotation (Young and
Van Kooten, 1989). It replaces a spring crop at the end
of its life cycle with a fallow object and then may replace

VAN EVERT & CAMPBELL: OBJECT-ORIENTED SIMULATION MODELS 329

the fallow object with another spring crop on a fixed date
in the spring. This second replacement takes place only
if the amount of plant-available water in the soil profile
is larger than a predetermined amount (Young and Van
Kooten, 1989).

Aphid Population

The model of aphid population dynamics is based on
that of Carter et al. (1982) for the English grain aphid [Si-
tobion avenae (Fabricius)]. We retained most of the struc-
ture of that model, but excluded predation and diseases.
Processes included are immigration, development, repro-
duction and survival. The time step for development and
survival is 1 h, the same as in the original model; for im-
migration and reproduction, we used 1 d. We derived
specific relationships for the Russian wheat aphid [Diu-
raphis noxia (Mordvilko)] from recent literature and sim-
ulated yield reduction of small grains resulting from in-
festation by this aphid (Van Evert, 1992).

Aphid Immigration

The aphid population of the model described above is
initialized when aphids immigrate. Our immigration model
calculates immigration from observed flight data.

........;/.

Fig. 2. Schematic representation of CropSyst. Edit, Run, and Plot are
the main functions of the shell. The Edit function accesses any of
the component models (denoted by rectangular, thin-line boxes); the
component models access and modify the information in the Param-
eters database (databases are denoted by thin-line, round-edged boxes).
The Run function accesses the simulation models; the dashed-line
box encloses the simulation object hierarchy. Arrows denote that an
object is part of another object: simulation models may contain crop,
soil, weather and several unnamed models. The Weather object ac-
cesses a database with weather data. When a simulation model is
executed, its output is stored in an output database. The Plot option
accesses this database to generate reports.

Pesticide Application

We implemented only one pesticide application model.
It applies a predetermined amount of pesticide when aphid
infestation reaches a predetermined threshold.

Output

Although not a component of agricultural systems, we
have included an output object in our simulation models.
This object collects and collates state information from
all the other objects. Several output classes are available
to provide different run-time graphical screens, as well
as file output for later study. One output object provides
no graphical output and is used if simulations are run in
batch mode. The state variables to be stored or plotted
are selected when a simulation is set up using the Crop-
Syst shell (see below).

Inter-Object Communication in CropSyst

While the bulk of information flow goes on inside the
objects, some exchange takes place between objects. Out-
put from an object is obtained through calls to its meth-
ods. Inputs are passed once every time step via a record
variable. All of CropSyst’s classes have a method that makes
the calculations for 1 d. While all descendants of, for
example, CROP, will have this method, their input needs
may be different. We use records to meet these different
needs. Each object accesses only those fields of the input
record that are needed. For each component system an
input record type is defined. For example, some of the
fields of the input record for the crop component are av-
erage air temperature, precipitation, soil water content,
and aphid population density. All crop models use the first

three inputs, but only the crop model that implements crop
response to the presence of aphids uses the last input.

A special case is the exchange of information about soil
water content, soil water potential, and water uptake from
the soil. This information is in vector form, with one ele-
ment for each soil layer. In order to increase efficiency,
we declare a global type SOILVECrOR and transfer pointers
to arrays rather than the arrays themselves.

CropSyst’s Shell

The main functions of the CropSyst shell are (i) to edit
an object (i.e., a component or simulation model), (ii)
to run a simulation model, and (iii) to store or plot the
results of a simulation on the computer screen. These func-
tions are invoked from a shell (Fig. 2).

Editing an object involves retrieving, viewing, and pos-
sibly modifying and storing the values of its parameters
and the initial values of its state variables (a parameter
set). Simulation models and component models can both
be edited. The edit process for a crop model is illustrated
in Fig. 3. The parameters for a simulation model are the
first and last day of the simulation, plus for each compo-
nent an identification of the model to be used and the pa-
rameter set to be used with that model.

In order to run a simulation model, the user must select
the simulation model and the parameter set to be used.
Both choices are made by picking from a list with names.
State variables to be stored during the simulation are also
specified. Once a model has been executed, output that
has been stored on disk can be retrieved and plotted on
the screen with the Plot option. This option has currently
only been implemented in a primitive manner.

330 AGRONOMY JOURNAL, VOL. 86, MARCH-APRIL 1994

Select a component system

Weather
Crop
Soil
Crop residue
Crop rotation
Soil
Soil tillage
Soil erosion
Field operation
Aphid population
Aphid immigration
Pesticide application
Output
Simulation

Select a parameter set for: SWS

Spring pea
Spring wheat
Spring barley

Select a model for: Crop

Fallow
SWB
Crop model with leaf age classes
Crop model with dynamic dry matter partitioning
Intercrop

Model: SWBParameter set: Spring wheat

Seeding rate 80 kg ha- 1

Degree-days at emergence 73 °C d
Degree-days at anthesis 960 °C d
Degree-days at maturity 1790 °C d
Maximum rooting depth 1.5 m
Maximum leaf area index 3.5 m2 m-2

Fig. 3. The steps in editing a component model. Top left: A view of the
computer screen after the Edit option from the main menu has been
selected; now the type of component model to be edited can be en-
tered (Crop is currently highlighted). Top right: The crop model type
has been selected and a list of available crop models is shown. Bottom
left: The user has chosen the SWB model; a list of parameter sets
available for this model is displayed. Bottom right: One of several
screens on which parameter values for the Spring Wheat parameter
set of the SWB model are shown. These values can now be altered.

SPECIFICATIONS

Software, Hardware, and Performance

The version of CropSyst described here was written in
Turbo Pascal, version 6.0 (Borland International, Scotts
Valley, CA), run under DOS 5.0. The Turbo Vision ap-
plication framework, which is included with Version 6
of Turbo Pascal, was used extensively to implement the
shell. Turbo Vision provides facilities for editing, reading
from and writing to files, displaying windows, and respond-
ing to mouse commands. A database management system
was therefore readily available for managing parameter sets.

The source code for CropSyst occupies 500K. Additional
code from the Turbo Vision system is also used. The size
of the executable code is 250K, of which 150K is overlaid.
An IBM-compatible computer with 1 MB of memory, DOS
3.3 or above, a hard-disk, and any monitor is required
to run the program. Much better performance is obtained
if a numerical coprocessor is available, DOS 5.0 is used
to free up low memory, and 0.5 MB or more of expanded
memory (EMS) is available to store the overlays. Com-
ponent model parameters and weather data (several hun-
dred kilobytes, depending on use) are stored on disk.
mouse may be used to make menu selections. A 1-yr sim-
ulation of a system with components weather, crop, crop
planting, crop rotation, crop residue, soil, soil tillage, soil
erosion, and graphical screen output takes <10 s on a
486-33MHz with DOS 5.0, 1 MB conventional memory
and I MB EMS.

Documentation

Details on implementation and use of OOP and Turbo
Vision are provided by Borland (1990). Details on the al-

gorithms used in CropSyst are described in Campbell and
Diaz (1988), Yan (1989) and Van Evert (1992). Some
formal technical documentation on CropSyst’s objects and
the implementation of the systems models described is
available directly from the corresponding author.

Software Availability

Contact the corresponding author for a free copy of the
source code, a compiled version of CropSyst, and a file
with technical documentation.

DISCUSSION AND CONCLUSIONS

Our analysis of an agricultural system led to the abstrac-
tion of object classes that correspond to simple subsystems
in the real-world system. Using object-oriented program-
ming, we were able to create components or objects that
simulated the behavior of these subsystems. These were
used in three different systems models. Several versions
were created for some objects, and these were interchanged,
depending on the requirements of a specific model.

Object-orientation facilitated the stepwise development
of CropSyst. Component systems could be modeled and
programmed separately in classes, which were later joined
via clear and limited interfaces. This means that, instead
of having to deal with the whole system at once, we could
start by implementing a small part of the system. For ex-
ample, at one time we had an aphid population model with-
out any other models around it. Inputs needed by the aphid
model were provided by supplying constant values to the
aphid model interface. Only after we had gained confidence
in the aphid model performance did we include other mod-
els to calculate the input values required by the aphid model.

Similar results can be obtained through a carefully de-
signed procedural analysis of an agricultural system (Hodges
et al., 1992; Buttler and Riha, 1989). However, proce-
dures do not allow the state of components to be specified
together with the code that acts on them. In order to trans-
fer or replace a component one would not only have to
replace the procedures, but also to identify all of the vari-
ables defining the state of the component and replace them
as well. This can be very difficult in large models.

Inheritance allowed us to meet our second objective,
the development of new (componen0 models without re-
writing existing code. Because a descendant model can
appear in place of oge of its ancestors, it was possible
to specify that a simulation model contains, for example,
a crop component model and to decide at run-time (after
compilation) which descendant crop model to use for
particular run.

We benefited extensively from inheritance in writing
the shell program. Having all models descend from a com-
mon ancestor made it possible to write code for parameter
inspection, editing, storage, and retrieval only once and
to pass this functionality on to all descendants. In the pro-
cess of developing a model, code is written and rewritten
many times. During that time, the number and type of
parameters used by the model may change. Because the
base object takes care of parameter input, checking, stor-
age, and retrieval, the shell was used to create and main-
tain parameter sets for the new model at all stages of de-

VAN EVERT & CAMPBELL: OBJECT-ORIENTED SIMULATION MODELS 331

velopment. This turned out to be an excellent tool for
maintaining an orderly organization of parameter values
during the sometimes very disorderly process of model
development.

An interesting result of our object-oriented analysis of
agricultural systems was the narrowing of the definition
of a crop model to comprise only crop processes such as
growth and development. This excluded some processes
that are often implicitly assumed to be part of crop mod-
els, namely weather, soil, and the crop planting decision
(e.g., Spitters et al., 1989). As a result, CropSyst's com-
ponent models should be more portable and more easily
used in whole-system models that use different soil,
weather, or crop planting models.

The degree of modularity made possible by object-
orientation may well make it possible to share models be-
tween developers more effectively than has previously been
possible. In our experience, it has been easier to reacquaint
ourselves with our own object-oriented code than with
our own procedure-oriented code. From this observation,
we deduce that it will be easier to share component mod-
els between individuals in object-oriented form than in
procedure-oriented form. However, in order to efficiently
exchange object-oriented models it will be necessary to
develop interface standards.

ACKNOWLEDGMENTS
Valuable comments on an early version of the manuscript were

received from Drs. D.J. Mulla and C.O. Stockle. The associate
editor and reviewers also made many helpful comments. Partial
support for this work was received from a USDA STEEP II grant.

	AJ Menu
	AJ Tables of Contents (Disc 6)
	Help
	Search

