
E L S E V I E R  Field Crops Research 43 (1995) 67-76 

F i e l d  
Crops  
R e s e a r c h  

Water uptake by pearl millet in a semiarid environment 

B.D. McIntyre a, S.J. Riha a,., D.J. Flower b 
a Department of Soil, Crop and Atmospheric Sciences, Cornell University, Ithaca, NY 14853, USA 

b International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andra Pradesh 502 324, India 

Received 18 November 1994; accepted 22 June 1995 

Abstract 

Crops during drought may not utilize water at depth. This under-utilization of deep water may result from slow rates of root 
extension, low root density, or a decline in soil water potential or associated phenomena. The importance of several of these 
factors on pearl millet (Pennisetum glaucum (L.) R. Br., cv. CIVT) water uptake and growth from panicle initiation to flowering 
was studied on a sandy soil in northem Nigeria during two dry seasons. Half of the crop was irrigated while the other half 
received no water after panicle initiation. Soil water content, stomatal conductance and stem extension were measured periodi- 
cally. 

A potential-driven water uptake model, which assumes a static, exponential distribution of roots and couples transpiration to 
leaf water potentials, described in both seasons the observed pattem and timing of water uptake, as well as predawn leaf water 
potential and actual transpiration. As the soil dried, estimated transpiration declined below potential transpiration and modeled 
and measured predawn leaf water potential declined. There was close agreement between observed and modeled predawn leaf 
water potential and soil water uptake. Analysis using the model indicated that decreased water uptake at depth was attributable 
to root distribution throughout the soil profile, as well as to low root length density at depth. 
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1. Introduct ion  

Analyses  of  the water uptake of  crops subjected to 
extended drought indicate that many crops appear to 
under-utilize watepin the lower depths of  the soil profile 
(Passioura,  1983). This phenomenon has been noted 
by several researchers, e.g., Barraclough and Weir  
(1988) ,  and has been variously attributed to low root 
density at depth (Jordan and Miller, 1980; Robertson 
et al., 1993a), the onset of  crop maturity before deep 
water extraction commences  ( Robertson et al., 1993 a) ,  
uneven root distribution, and high root axial resistance 
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to water flow (Passioura,  1983; Hamblin and Tennant, 
1987). 

Under-util ization of  deep water is of  particular inter- 
est in the sandy soils of  the millet-growing regions of  
West  Africa ( > 1 l °50 'N) ,  which usually receive less 
than 750 mm of  unimodally distributed rainfall per  year 
(Kowal  and Knabe, 1972). Crops in this zone are often 
subjected to protracted lapses between rainfall events. 
Under these conditions, under-utilization of  deep water 
could substantially limit crop growth and yield. 

To study the under-utilization of  deep water by pearl 
millet, the rate and extent of  stored soil water uptake 
were measured in field experiments. The crop was irri- 
gated until panicle initiation in order to ensure estab- 
lishment and vigorous root growth. After  panicle 
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initiation, water was withheld from half the crop while 
irrigation continued on the other half. Water uptake 
patterns in the drought treatment were analyzed with a 
potential-driven water uptake model (Campbell, 
1985). In this model, plant water potential is a function 
of  the transpiration rate and the rate of  water flow to 
roots. As plant water potential changes, transpiration 
changes as a function of  the impact of  plant water 
potential on stomatal conductance. With this potential- 
driven approach, the impact of  both above- and below- 
ground processes on water uptake can be considered. 

2. M a t e r i a l s  a n d  m e t h o d s  

2.1. Experimental  site, design, and cultural pract ices 

Research was conducted at the Kano substation of  
the International Institute for Tropical Agriculture 
( I ITA) on experimental plots in Minjibir, Nigeria 
(12°8'N, 8°40'E; 500 m asl). The site is well-drained 
with 0 to 1% slope and the soil is a hypothermic, ustic 
Plinthic Quartzipsamment (USDA taxonomy) com- 
prised of  86% sand, 7% silt, and 7% clay. Bulk density 
was 1.6 Mg m - 3  throughout the profile with an iron- 
stone layer occurring between 1.0 and 1.2 m. The pH 
of the soil in water was slightly acidic ranging from 6.1 
at the surface to 6.7 at 1 m. Organic matter (carbon lost 
on ignition) ranged between 1.1% at the surface to 
2.2% at 1 m. 

Both experiments took place during dry seasons. Cli- 
matic conditions occurring during the two experiments 
are presented in Table 1. Irrigated plots were separated 
from nonirrigated plots by approximately 18 m to pre- 
vent lateral movement of  water into the nonirrigated 
area. There were four replications. Plot size was 6 × 5 
m, A 3-m border of  maize surrounded the experimental 
plots. 

Plots were disc-harrowed and then raked level by 
hand. Fertilizer (30 kg N, 13 kg P, and 25 kg K h a -  1) 
was broadcast prior to sowing. Three to six seeds were 
sown per hill in 0.75-m rows with an in-row spacing of  
0.25 m. After thinning to one plant per hill 2 weeks 
after sowing, the final density was 53 300 plants h a -  1. 
This stand density is commonly used for millet by the 
Institute for Agriculture Research, Zaria, Nigeria. 
Weeding was done by hand as required. 

Table 1 
Sowing date, mean daily climatic conditions, and mean daily poten- 
tial evapotranspiration and mean daily estimated transpiration during 
two 18-day experimental periods in northern Nigeria 

Variables Expt 1 Expt 2 

Sowing date 10 Oct 89 28 Mar 90 
Temperature (°C) 

Air (2 m) 22 32 
Soil (0.05 m) 23 34 

Vapor pressure deficit (kPa) 3.7 5.2 
Solar radiation (MJ m 2 day- 1 ) 20 22 
Potential evapotranspiration, ET* (mm 6.3 9.2 
day - 1 ) a 

Estimated transpiration, T (mm day- 1)b 3.8 4.2 

apenman-Monteith equation. 
bEstimated from soil water depletion. 

Crops were irrigated with sprinklers on a 3- to 4- 
day schedule to replace water lost to evapotranspira- 
tion. Irrigation was withheld from nonirrigated plots at 
the beginning of  GS2 (panicle initiation, as determined 
by dissection) in Expt 1 and 7 days after panicle initi- 
ation in Expt 2 (21 and 33 days after sowing, respec- 
tively). The last day of  irrigation on the henceforth 
nonirrigated plots is referred to as Day 0. Irrigation on 
the control plots continued on a 3- to 4-day schedule 
until the experiments were concluded on Day 18. 

Seed of  pearl millet (cv. CIVT; this acronym stands 
for Composite Intervarietal de Tarna, a composite 
developed at Tarna by Niger 's  national program) were 
obtained from the ICRISAT (International Center for 
Crops Research in the Semiarid Tropics) S ahelian Cen- 
ter (Niamey, Niger). This cultivar requires 50 to 55 
days for flowering and is suited to the Sudano-Sahelian 
environment. 

2.2. Measurements  

Soil water content (@) was measured daily, begin- 
ning at 0700 h on plots assigned to the nonirrigated 
treatment. The surface 0.20 m was measured gravi- 
metrically with a piston-type corer. A neutron probe 
(Didcot Instrument, Oxford, UK) was used to measure 
water content every 0.15 m throughout the profile until 
the ironstone layer was reached (approximately 1.2 
m).  Four aluminum access tubes (16 tubes per treat- 
ment) were installed in each plot. Two of the four 
access tubes were within rows (midway between 
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plants) and two were midway between rows. Data pre- 
sented are means of measurements made from all four 
tubes. Because soil evaporation was determined to be 
negligible by 2 to 4 days after an irrigation (Mclntyre, 
1992), transpiration was estimated as the daily water 
loss from the entire profile as measured with the neutron 
probe. Estimated transpiration and potential transpira- 
tion are reported as 3-day running means. Upper and 
lower limits of extractable soil water (from 0 to 1.12 
m) were determined to be 193 mm and 51 mm, respec- 
tively (Mclntyre, 1992). 

Air temperature, relative humidity, wind speed and 
incoming solar radiation were measured every 5 min 
and hourly averages were recorded. The sensors were 
located approximately 10 m from the plots and 2 m 
above the ground. Photosynthetically active radiation 
was measured mid-day above and below the canopy 
with a 0.8-m linear probe comprised of 80 sensors at 
0.01-m intervals (Sunfleck Ceptometer, Decagon 
Devices, Pullman, Washington) in Expt 2 and in the 
beginning of Expt 1. After the first 10 days of Expt 1, 
intercepted radiation was predicted from leaf area index 
measurements (Mclntyre et al., 1993). Potential eva- 
potranspiration (ET*) was calculated from hourly 
averages using the Penman-Monteith equation. ET* 
was then multiplied by the measured fraction of radi- 
ation intercepted by the canopy to estimate potential 
transpiration (T*).  

After irrigation was terminated on the drought treat- 
ment, predawn leaf water potential (~leaf) was meas- 
ured with a pressure chamber (PMS, Corvallis, 
Oregon) on both irrigated and nonirrigated plots. The 
measurements were made every 3 days between 0400 
and 0530 h on young, fully expanded leaves from four 
plants per plot. Leaves were cut, wrapped in plastic film 
and transported to the pressure chamber. Measurements 
were made within m.inutes of excision from the plant. 
Stomatal conductance was measured daily between 
1300 and 1400 h on young, fully expanded and exposed 
leaves of six plants per plot with a calibrated transient 
porometer (FET MK3, Delta-T Devices, Cambridge, 
UK).  

Stem + leaf extension (hereafter referred to as stem 
extension) was measured daily on seven plants in each 
plot. Metal pegs secured in the ground provided a con- 
sistent reference height and the length was measured 
from leaf tip to reference. When a new leaf emerged 
from the whorl, the older leaf was measured for the 

final time and measurements commenced on the new 
leaf. This procedure provided a continuous measure- 
ment of extension rate. 

Four 0.15-m X 0.55-m X 0.15-m soil samples were 
taken in 0.15-m depth increments (two samples within 
rows and two between rows) to a total depth of 1.05 m 
in each plot to estimate root length density (L). Sam- 
pies were collected on Day 4 to 7 in Expt 1 and Day 3 
to 6 in Expt 2. Roots were separated from the soil by 
washing the soil through sieves and root length was 
determined with a Comair scanner (Commonwealth 
Aircraft, Melbourne, Australia). L is reported as the 
average of all four samples at a given depth increment. 

3. Simulation model 

3.1. Description o f  the model 

The basic structure and implementation of the model 
used in this study were presented in detail by Campbell 
(1985). In the model, root water uptake is considered 
directly proportional to the potential gradient between 
the soil and root xylem and inversely proportional to 
the sum of soil and radial root resistances (Gardner, 
1965). Soil resistance assumes a cylindrical flow of 
water to the roots that varies with L, root diameter, and 
soil hydraulic conductivity (Cowan, 1965). Soil 
hydraulic conductivity is a function of soil water poten- 
tial. The soil is divided into layers so that L may be 
varied with depth and soil water potential may vary 
with depth and time. Therefore, soil resistance can 
change with both soil depth and time. 

Root xylem water potential is calculated from T*, 
root and soil resistances, and soil water potentials using 
the approach of Childs et al. (1977). No lower limit is 
set for leaf or root xylem water potential. Stomatal 
conductance is assumed to decrease as leaf water poten- 
tial declines (Fisher et al., 1981). This function is in 
turn used to lower the transpiration rate in the next time 
step (Stockle and Campbell, 1985; Buttler and Riha, 
1992). 

3.2. Implementation 

The following values were taken from Campbell 
( 1985) as inputs for the plant component of the model: 
Rr (root resistance per unit root length) = 2.5 × 10 ~° m 4 



70 B.D. Mclntyre et al. /Fie ld  Crops Research 43 (1995) 67-76 

s -  ~ k g -  ~, R L (leaf resistance) = 2 × 106 m 4 S- l k g -  
and ~cnt = - 1 . 5  MPa. Values for root length were 
derived from experimental data, which indicated an 
exponential decline with soil depth below the surface 
0.15 m: 

Lz = Lo exp( - ctz), 

where L~ is the density at depth z, Lo is the surface ( 0 -  
0.15 m) density, and a is the reciprocal of  the depth at 
which L: is 63% of the surface Lo (Gerwitz and Page, 
1974). Lo was not measured because of  organic matter 
contamination. Rather it was assigned a value of  5 × 104 

m m -3 as in Campbell (1985).  The decline in meas- 
ured L with depth in the profile below the surface 0.15 
m was described well with a = 3.5 m -  1 (data not pre- 
sented). Values of  L~ for each layer of  the profile were 
held constant over the time of  the simulation. Rooting 
depth was also not increased during the simulation 
because at the time simulation began (Day 0; onset of  
GS2),  roots existed to a depth of  approximately 1 m in 
Expt 1 and 0.7 m in Expt 2. 

Soil hydraulic properties were obtained from soil 
moisture release curves of  the experimental soil fit to 
1/fm: 1/¢e([~/19s) -b where qZr~ and ~e are, respec- 
tively, the soil matrix and air-entry water potentials, 19s 
is the saturated soil water content, and b is the slope of  
In ~ versus In 19. A value of  2.4 was used for b and 
- 2 . 7  J k g - i  used for 19e for all soil depths. Upper 
drained limit was determined through water content 
measurements made during the rainy season and then 
used in the model to derive saturated hydraulic con- 
ductivity (1 × 10 -4 kg s m - 3 ) .  
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Fig. 1. Simulated (light bar) and measured (dark bar) changes in 
soil water for 0.15-m layers centered at depths 0.15, 0.30, 0.45, 0.60, 
0.75, 0.90 and 1.05 m in (a) Expt 1 and (b) Expt 2. 

4.2. Soil water content 

4. Results 

4.1. Environmental conditions 

The mean daily receipt of  short wave radiation was 
similarly high in both experiments as the result of  rel- 
atively cloud-free skies (Table 1). Mean ET* was 
46% greater in Expt 2 than in Expt 1 (Table 1 ), how- 
ever, due to advective conditions. Crops in the nonir- 
rigated plots were forced to rely on stored soil water in 
an increasingly dry profile because no rainfall occurred 
during the experimental periods. 

Although mean ET* was 46% greater in Expt 2 than 
in Expt 1, mean estimated transpiration (i.e., measured 
soil water depletion) differed between the two experi- 
ments by only 10% (Table 1). By Day 18 in both 
experiments roots had reached 1.0 to 1.2 m, but meas- 
ured water uptake was not much greater below 0.9 m 
in Expt 2, compared to Expt l, despite greater ET* 
(Fig. 1 ). 

Measured soil water content with depth and time 
followed similar patterns in both experiments. Soil 
water content declined most rapidly in soil layers clos- 
est to the surface, with uptake at depth lagging behind. 
In general, predicted soil water content with depth fol- 
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lowed a similar pattern (Fig. 1). Regression of pre- 
dicted values against measured data for all soil depths 
indicated a high degree of correlation ( r  2 = 0.985 for 
Expt 1 and 0.978 for Expt 2) and correspondence 
(slope = 1.02 for Expt 1 and 1.03 for Expt 2 when 
regressions were forced through zero). 

4.3. Plant response 

Predicted and measured predawn ~/~leaf of nonirri- 
gated millet were similar, decreasing gradually to - 0.4 
MPa by the end of both experiments (Fig. 2). A 
decrease in predicted midday ~ e  began after irriga- 
tion was terminated on the nonirrigated plots, with mid- 
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Fig. 2. Measured predawn leaf water potentials presented with sim- 
ulated potentials of leaves at predawn and midday and soil water at 
0.15 m and 0.60 m in Expts 1 and 2. Standard errors of measured 
predawn values are depicted by horizontal lines bracketing the values 
unless the errors are smaller than the symbols. 

day a/t]eaf falling to -- 1.5 MPa in Expt 1 and - 1.6 MPa 
in Expt 2. Predicted midday 1/fsoil at 0.15 m declined to 
approximately - 0 . 8  MPa and - 1 . 0  MPa over the 
course of Expt 1 and 2, respectively. By contrast, there 
was little change in predicted midday ~soi~ at 0.6 m 
depth until after Day 12, with ~soiJ in this layer declin- 
ing to - 0.2 MPa in Expt 1 and - 0.4 MPa in Expt 2. 

By Day 8 to 9, measured midday stomatal conduc- 
tance in the nonirrigated plots began to decrease rela- 
tive to irrigated pearl millet in both experiments 
(Fig. 3). In the model used in this study, a decrease in 
simulated stomatal conductance occurs as ~e~f 
approaches a critical value and declines more rapidly 
below this value. This decrease in stomatal conduc- 
tance results in predicted transpiration decreasing rel- 
ative to potential transpiration. A decline in the ratio of 
simulated to potential transpiration was predicted to 
occur by Day 9 in Expt 1 and Day 7 in Expt 2, which 
was similar to what was observed (Fig. 4). Thereafter, 
measured (with exception of Day 9 in Expt 2) and 
simulated transpiration rates remained below potential 
transpiration rates until measurements were discontin- 
ued on Day 18. By that time, there was a substantially 
larger difference between potential and estimated rates 
of transpiration in Expt 2 compared to Expt 1. After 
Day 9, the simulated transpiration rate was slightly 
greater in Expt 1 and less in Expt 2, compared to that 
measured. 

A decrease in the ratio of estimated to potential tran- 
spiration is usually considered an indicator of stress, as 
is a decline in stem extension rate. In this study, meas- 
ured stem extension rates in nonirrigated millet of Expt 
2 decreased relative to rates in irrigated millet by Day 
4, while stem extension rates in nonirrigated millet of 
Expt 1 never fell below irrigated millet throughout the 
18-day measurement period (Fig. 5). This decline in 
relative rates of stem extension in Expt 2 was paralleled 
by a difference in surface soil temperatures between 
irrigated and nonirrigated plots (McIntyre et al., 1993). 
The temperature effect was evident on Day 4, after the 
irrigated plots received water on Day 3 and the nonir- 
rigated did not (i.e., after the first differential irriga- 
tion). 

5 .  D i s c u s s i o n  

This study focused on factors limiting soil water 
uptake from lower depths of a drying soil. Measured 
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Fig. 3. Relative midday stomatal conductance (nonirrigated/irrigated) during the course of Expts 1 and 2. 

and modeled results indicate that although roots were 
present at depths greater than 0.7 m throughout the 
experimental period, minimal water uptake occurred 
from the deeper layers. At the conclusion of both exper- 
iments, plant-available water remained at depth 
(approximately -0 .03  MPa) and yet estimated tran- 
spiration had fallen below potential by Day 9. If roots 
and water were present at depth, why did estimated 
transpiration decrease below potential transpiration? 

Factors other than rooting depth capable of limiting 
soil water uptake include the rate of transport of water 
to roots (root density and/or soil hydraulic conductiv- 
ity), and/or phenomena related to a decline in soil 
water potential. To explore the impact of these factors, 
simulations were repeated using data from Expt l, but 
with modified values for L~. When the L z used in sim- 
ulating Expt l (Simulation A) was doubled at each 
depth in the profile (Simulation B), similar distribu- 
tions of profile water remained at the end of the simu- 
lation (Fig. 6). Total water remaining in the profile 
when L: was doubled was only marginally less than 
that predicted in the original simulation of Expt 1 (81 
mm versus 88 ram; Fig. 6). However, estimated tran- 
spiration remained within 98% of potential transpira- 

tion throughout the simulated period. This indicates 
that merely increasing L does not necessarily result in 
large differences in water uptake with depth if the rel- 
ative root distribution remains unchanged. 

In Simulation C (Fig. 6), L was increased to 4 x 10 3 

m m-3  for the layers centered at 0.9 m and 1.05 m 
(from 2 x  10 3 and 1 X 10 3 m m -3, respectively), 
whereas in shallower layers L was assigned the same 
value as in Simulation A. This root distribution resulted 
in more water uptake at depth than Simulations A or 
B. Total water remaining in the profile was only slightly 
less than Simulation A (84 mm versus 88 mm).  The 
ratio of predicted/potential transpiration decreased 
below 1.0 two days later than in Simulation A and 
remained approximately 10% higher than Simulation 
A. In two additional simulations, roots were uniformly 
distributed throughout the profile at low (4 X 10 3 m 

m - 3 ;  Simulation D; Fig. 6) and moderate L (8 x 10 3 

m m-3;  Simulation E; not illustrated). In Simulations 
D and E, L was less than the average L (12X 10 3 m 

m -3) of the exponentially distributed roots in Simu- 
lation A. Both Simulations D (Fig. 6) and E resulted 
in more water being taken up at depth than in the pre- 
vious simulations. For Simulation D, predicted tran- 
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spiration decreased relative to potential transpiration 
by the second day of the simulation and total water left 
in the soil profile was greater (93 mm) thanin other 
simulations. In Simulation E, predicted transpiration 
did not fall below potential transpiration for the 18-d 
experimental period. 

These analyses indicate that water uptake at depth 
can be enhanced by increased deep rooting or a more 
uniformly distributed root system. For example, root 
length densities below 0.6 m and plant-atmosphere 
conditions were the same in Simulations C and D; yet 
specific root water uptake was greater in Simulation C 
where roots were uniformly distributed throughout the 
profile. This implies that it is not possible to evaluate 
the impact of L on water uptake at a given soil depth 
without considering root distribution within the whole 
soil profile. In addition, model simulations indicate that 

root density distribution can influence the timing and 
extent of a decline in transpiration relative to potential 
transpiration without substantial impact on total water 
uptake. 

Monteith et al. (1989) proposed a model to examine 
rooting behavior and soil water uptake of crops grown 
on stored soil water. Their approach has been used to 
analyze water uptake in a range of crops (pearl millet, 
sorghum, chickpea and sunflower), environments 
(subhumid tropics to semiarid tropics), and soils 
(heavy clay to light sandy soils) (Robertson et al., 
1993a; Meinke et al., 1993). The Monteith et al. 
(1989) approach assumes an apparent water extraction 
front characterized by a constant downward velocity 
closely corresponding to the rooting front. In a study 
of water uptake by grain sorghum, however, the water 
extraction front lagged behind the rooting front until a 
depth of approximately 1 m was reached (Robertson 
et al., 1993b). A similar lag phase was observed in the 
millet study reported here: water uptake did not imme- 
diately reflect the downward extension of roots. 

In the model proposed by Monteith et al. (1989), 
when the extraction front arrives at a new soil layer, 
the water content of the layer begins to decline expo- 
nentially with time. This decline is dependent on L and 
the diffusivity of water flow to roots, and is generally 
held constant over the period during which water is 
removed from a layer. Robertson et al. (1993b) indi- 
cated that as the apparent water-extraction front 
descends in the soil profile, the water uptake pattern is 
described better by a sigmoidal function than by an 
exponential decay. The measured water uptake patterns 
reported in this study indicate a similar behavior. The 
Campbell potential-driven water uptake model, which 
assumes an exponential root distribution, well 
describes this pattern of a more gradual decline in water 
uptake with depth (Fig. 1 and Fig. 2). 

Although the extraction-front model of Monteith et 
al. (1989) can be a useful tool for characterizing pat- 
terns of soil water uptake, the patterns observed in this 
study are more consistent with predictions from the 
potential-driven model of Campbell (1985) with a 
static root mass and an exponential decline in L with 
depth. In addition, the Campbell model accurately pre- 
dicted the timing of stomatal closure. Such a prediction 
is important as a decrease in stomatal conductance can 
result in a reduction in water uptake. 
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On  Day  4 in Expt  2, soil  water  potent ial  (as obta ined 

f rom the mois ture  re lease curve)  was approximate ly  

- 0 . 7  M P a  in the surface 0.15 m, but  r emained  less 

negat ive ,  (i .e.,  > - 0 . 1  M P a )  throughout  the rest o f  

the profile. A comparab le  soil  water  potent ial  was 

reached by Day  6 in Expt  1. Ye t  s tomatal  conduc tance  

did not  decrease  in ei ther  exper iment  until  after Day  8 

and s tem extens ion did not  dec l ine  throughout  Expt  1. 

In mode l  simulations,  s tomatal  c losure  was control led  

solely by leaf  water  potential .  This  indicates  that sto- 
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Fig. 6. Water (ram) remaining in soil profile (0.15-m increments) at end of Expt 1 under four different root density simulations: (A) exponential 
decline in roots with depth (B) root density used in Simulation A doubled throughout profile (C) as in Simulation A except root densities in 
layers centered at 0.9 m and 1.05 m increased to 4 × 103 m m-3 from 2 × l 0  3 and 1 × 103 m m-3, respectively, and (D) uniform distribution of 
roots with depth (4 × 10 3 m m 3). 
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matal  c losure in response  to a signal genera ted  by roots 

in a drying soil  (Go l l an  et al., 1986) wou ld  be difficult  

to dis t inguish f rom stomatal  c losure s t imulated by 

dec l in ing  leaf  water  potent ial  ( Johnson  et al., 1992).  

6. Conclusions 

A potent ia l -dr iven water  uptake model ,  which  

assumes  a static root densi ty  exponent ia l ly  decreas ing 

with  soil depth,  predic ted  the pattern o f  water  uptake 

with soil  depth,  the onset  o f  a decrease  in stomatal  

conductance ,  and the change  in p redawn ~leaf during 

an 18-day drought  imposed  post -panic le  ini t iat ion in 

mil le t  g rowing  in a semiar id  cl imate.  

The  s imulat ion mode l  was used to analyze  factors 

l imi t ing water  uptake at depth in the soil profile. The  

addi t ion o f  more  roots at depth increased water  utili- 

zat ion at depth. Howeve r ,  the mode l  also predic ted  that 

water  uptake at depth could  be enhanced  by a more  

un i fo rm distr ibution o f  f ewer  roots. 

In practice,  the impact  o f  a more  un i fo rm distr ibution 

o f  roots wou ld  have  to be cons idered  in l ight  o f  nutrient  

uptake and la te-season use o f  s tored soil water.  In addi- 

tion, the extent  that improved  soil  m a n a g e m e n t  (e.g. ,  

amendmen t s  a imed at increas ing soil  porosi ty  and 

improv ing  soil  fert i l i ty)  can alter root  distr ibution ( in  

contrast  to plant genotypic  cont ro l )  remains  an impor-  

tant subject  for further research.  

G iven  the diff icult ies in measur ing  root  densi ty with 

depth ove r  t ime and in relat ing root  densi ty  to water  

uptake, s imple  measurements  o f  soil water  uptake pat- 

terns appear  to be a more  useful  tool than root  densi ty 

measuremen t s  for  eva lua t ion  o f  ge rmplasm with rela- 

t ion to ut i l izat ion o f  deep  water.  
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