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Abstract

The levels of resistance to spotted stem borer (Chilo partellus) in

sorghum are low to moderate. We therefore evaluated wild relatives of

sorghum to identify accessions with high levels of resistance to this pest

and studied the mechanisms of resistance. Heterosorghum (Sorghum

laxiflorum), Para-sorghum (S. australiense, S. purpureo-sericeum,

S. versicolor, S. matarankense, S. timorense, S. brevicallosum and

S. nitidum) and Stiposorghum (S. angustum, S. ecarinatum, S. extans,

S. intrans, S. interjectum and S. stipoideum) showed very high levels of

resistance to stem borer. Chaetosorghum (S. macrospermum), four wild

races of S. bicolor subsp. verticilliflorum and S. halepense were found

to be susceptible. Under no-choice conditions, egg laying was observed

on all accessions, which significantly differed among the species/

accessions. Accessions belonging to Stiposorghum and Para-sorghum

(S. purpureo-sericeum, S. versicolor and S. timorense) were signifi-

cantly less preferred for oviposition than the resistant control, IS

2205. Accessions belonging to Stiposorghum showed slight leaf-feeding,

but there was no deadheart formation. Although there was some

damage in Para-sorghum, very few deadhearts were formed, and a few

larvae that were recovered subsequently died. In Heterosorghum, the

two accessions of S. laxiflorum were highly preferred for oviposition,

and up to 82% deadhearts were recorded, but the six larvae that were

recovered died within a month. Accessions belonging to Eu-sorghum

showed maximum deadhearts, larval recovery and adult emergence.

The results suggested that some of the wild relatives of sorghum

possess high levels of resistance to C. partellus and both antixenosis

and antibiosis are major components of resistance to this pest.

Accessions showing high levels of resistance to stem borer can be

utilized to increase the levels and diversify the bases of resistance to

this pest in sorghum.

Key words: Chilo partellus — wild sorghums — host plant
resistance — resistance mechanisms — spotted stem borer

Sorghum bicolor (L.) Moench is one of the major grain crops in

the semi-arid tropics of Asia and Africa. It is known for its
versatility and diversity; forage varieties are used widely for cut
green fodder, silage and syrup production; stalks are used for
stover, roughage, thatch and fuel. It is primarily a crop of

resource-poor, small-scale farmers and is typically cultivated
on marginal lands with low input use under adverse condi-
tions. Pest problems pose a major challenge in achieving higher

production. Nearly 150 species of insects have been recorded
as pests on sorghum, and about 32% of the crop is lost because
of insect pest infestation in India. In monetary terms, losses

owing to insect pests have been estimated to be over $1000
million annually in the semi-arid tropics (ikisan.com 2000).

Global sorghum crop losses owing to stem borer damage have
been estimated at over US$ 300 million annually (ICRISAT,
1992; Sharma 1997). In general, yield losses range between 5%

and 10%, especially when the infestation occurs early. De Groote
et al. (2003) found that all stem borer species caused average
annual losses of 13.5% valued at US$ 80 million in Kenya.

The spotted stem borer Chilo partellus (Swinhoe)
(Lepidoptera: Pyralidae) is one of the economically most
damaging pests in Asia and Africa, attacking all parts of the
plant except the roots. Infestation starts approximately

2 weeks after seedling emergence. The first symptom of
damage is the presence of shot-holes caused by early instar
larval feeding, and the infested plants exhibit a ragged

appearance. Feeding and stem tunnelling by the stem borer
larvae on plants result in crop losses as a consequence of
destruction of the growing point, early leaf senescence and

interference with translocation of metabolites and nutrients
that result in peduncle breakage and production of completely
or partially chaffy panicles (Taneja and Leuschner 1985).

Sorghum accessions with resistance to spotted stem borer,
C. partellus, have been identified (Taneja and Leuschner 1985,
Sharma et al. 1992, 2003, Jalaluddin et al. 1995, Patel et al.
1996). Improved genotypes such as ICSV 705, SPV 135, CSV

8R, SPV 104, SPV 238 and SPV 842 with moderate levels of
resistance to stem borer have also been developed (Singh and
Rana 1989, Sharma 1993). Wild relatives of crops have

frequently been used as sources of resistance to insect pests,
and genes from wild relatives have played a key role in
developing crop cultivars with durable resistance to insect

pests (Goodman et al. 1987). Wild relatives of sorghum,
hitherto not systematically explored, may therefore offer
additional opportunities to identify sources of resistance for
developing sorghum cultivars with high and stable resistance

to the spotted stem borer.
Sorghum is a highly variable genus. It has 24 species

distributed in five sections: Eu-sorghum, Chaetosorghum,

Heterosorghum, Para-sorghum and Stiposorghum. The most
comprehensively studied section, Eu-sorghum, includes the
cultivated grain and fodder sorghums (Sorghum bicolor subsp.

bicolor), closely related wild annual sorghums (S. bicolor
subsp. verticilliflorum) from Africa, weedy perennial sorghums
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(S. halepense) from southern Europe and Asia and a perennial
wild species (S. propinquum) from South and South-East Asia
(Doggett 1988). The other four sections comprise wild species
that are distributed in Africa, Australia and Asia. Earlier

studies have identified wild relatives of sorghum with high
levels of resistance to sorghum shoot fly, Atherigona soccata
(Rondani) (Mote 1984, Kamala et al. 2009), sorghum midge,

Stenodiplosis sorghicola (Coq.) (Sharma and Franzmann
2001), and greenbug, Schizaphis graminum (Rondani) (Duncan
et al. 1991). This study investigated the potential of wild

sorghums as sources of resistance to the spotted stem borer. To
the authors� knowledge, this study is a maiden effort that
systematically evaluated a diverse array of wild sorghums for
resistance to spotted stem borer, C. partellus, and studied the

underlying resistance mechanisms.

Materials and Methods

This investigation consisted of four experiments, one in the field and

three in the greenhouse, all carried out at the International Crops

Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru,

Andhra Pradesh, India. All accessions assessed were obtained from the

ICRISAT Genebank. Fifty-five accessions representing 17 Sorghum

species distributed in five sections, viz. Eu-sorghum, Chaetosorghum,

Heterosorghum, Para-sorghum and Stiposorghum, were first evaluated in

1998 and 1999 for resistance to damage by the stem borer, C. partellus,

under artificial infestation in the field. Based on field responses, 27

accessions were evaluated in 1999 under greenhouse conditions for

antixenosis for oviposition under multi-choice conditions, and a subset

comprising of 14 accessions was tested under no-choice conditions.

Twenty-three accessions were assessed in 1999 for antibiosis component

of resistance under no-choice conditions. Cultivated sorghum, S. bicolor

cultivars, IS 2205 and ICSV 1 were used as resistant and susceptible

control genotypes, respectively, along with two improved cultivars (ICSV

700 and ICSV 708) with moderate levels of resistance to this pest.

Expression of resistance under field conditions: Field screening for

resistance to spotted stem borer was conducted in 1998 rainy and 1999

postrainy seasons. The experiments were laid out in a randomized

complete block design with three replications. Recommended cultiva-

tion practices were followed to maintain a good crop stand. Accessions

were planted in two row plots, 2 m long, with an inter-row distance of

75 cm. Plants were thinned to 20/row at 15 days after seedling

emergence. A modified version of the Bazooka applicator (Sharma

1997) was used for infestation. Blackhead-stage egg masses (approx-

imately 500) from the insect culture maintained in the laboratory

(following Sharma et al. 1992), along with 85 g of poppy seeds

(Papaver sp.), were kept overnight in a plastic jar with a tightly fitted

lid. In the morning, the first-instar larvae were gently mixed with the

carrier (poppy seeds) and transferred into the plastic bottle of the

Bazooka applicator. The seedlings were infested with neonate larvae at

20 days after seedling emergence. The nozzle of the Bazooka applica-

tor was placed close to the leaf whorl, and with a single stroke, each

plant was infested with 5–7 larvae, sufficient to cause over 90%

damage in the susceptible genotypes (Sharma 1997). The crop was

infested in the morning between 08:00 and 11:00 h to avoid larval

mortality because of high temperature. The Bazooka applicator was

rotated after every 10 strokes to ensure uniformity in larval distribu-

tion. The whorl was gently tapped before infestation to avoid

drowning of the larvae in water retained in the leaf whorl. A selective

insecticide (cypermethrin) was used to control shoot fly infestation

without causing any residual effect on stem borer establishment. One

week after artificial infestation, stem borer damage was recorded as

percentage of total number of plants showing leaf-feeding symptoms,

and intensity of leaf-feeding as leaf damage score (LDS) on a 1–9

visual rating scale (1 = <10% leaf area damaged and 9 = >80%

leaf area damaged). Plants showing deadhearts were recorded 20 days

after artificial infestation and expressed as a percentage of the total

number of plants (Sharma et al. 1992).

Ovipositional non-preference (antixenosis) under greenhouse condi-

tions: A subset of 22 accessions, representing 14 species belonging

to Hetero-, Para- and Stipo-sorghums, which did not produce any

deadhearts under artificial infestation in the field, was evaluated for

ovipositional preferences (antixenosis) under multi-choice conditions

in the greenhouse (23 ± 5�C and 65 ± 5% RH). In addition, five

accessions of Eu-sorghum, including one of S. halepense and one each

of the four wild races of S. bicolor ssp verticilliflorum (aethiopicum,

arundinaceum, verticilliflorum and virgatum), were also included in this

test, although they showed high level of deadheart formation after

artificial infestation in the field. Cultivars IS 2205 and ICSV 1 were

used as resistant and susceptible control genotypes, respectively. The

27 accessions were randomly assigned to three sets with 8, 9 and 10

accessions in each, respectively, thus giving the moths a choice of 10,

11 and 12 accessions for oviposition (including the susceptible, ICSV 1,

and resistant, IS 2205, controls in each set). The test entries were raised

in pots (30 cm diameter and 30 cm high) in the greenhouse, and the

seedlings were thinned to five seedlings/pot 10 days after emergence.

The potting mixture consisted of black soil, sand and farm yard

manure (2 : 1 : 1). Pots with 18-day-old plants were placed inside a

wooden cage (80 · 70 · 60 cm) at random along with the resistant and

susceptible controls. The wooden framed cages were covered with a

wire-mesh screen on three sides and a glass door in the front. Fifty

pairs of newly emerged adults were released inside each cage through a

window in the front. The insects were raised on artificial diet in the

insect-rearing laboratory following Sharma et al. (1992). Moths were

provided with water in a cotton swab. Moths after release into the cage

were allowed to oviposit on the plants for three nights. To avoid

predation by ants, TanglefootR was smeared on all the four legs of the

cages. The cages were placed on a table in a completely randomized

design. Accessions in each experiment were replicated thrice, and their

positions randomly changed everyday to minimize position effects.

Antixenosis for oviposition under no-choice conditions was studied

by allowing the moths a choice of only one accession of 14 accessions

(selected from 27 accessions based on low/nil oviposition in the multi-

choice tests). Each accession along with the resistant and susceptible

controls, IS 2205 and ICSV 1, respectively, was kept individually inside

an oviposition cage. The plants were grown in pots in the greenhouse

as described earlier, and there were five seedlings/pot. The oviposition

cages were arranged on the table in a completely randomized design

with three replications. Ten pairs of newly emerged adults were

released inside each oviposition cage and allowed to oviposit on the

test entries for three nights.

In both the multi- and no-choice experiments, the number of egg

masses and the number of eggs in each egg mass were recorded on five

plants and expressed as an average. The number of eggs/plant was

based on total number of eggs in the egg masses recorded on five plants

and expressed as average number of eggs per plant. The number of egg

masses on lower (adaxial) and upper (abaxial) surfaces was recorded

separately in the no-choice experiment.

Antibiosis under greenhouse conditions: Expression of antibiosis to

C. partellus was studied in greenhouse in terms of survival and

development of neonate larvae with 21 accessions representing 13

species (except S. brevicallosum as per Table 1). Also included for

comparison were the two susceptible accessions, one each of race

virgatum (S. bicolor ssp verticilliflorum) and S. halepense along with the

control resistant (IS 2205) and susceptible (ICSV 1) genotypes. The

experiment was laid out in a completely randomized design with three

replications. The plants were raised in trays (30 · 45 · 20 cm) in the

greenhouse. Ten days after seedling emergence, 20 plants were retained

in each tray. Urea (at 10 g per tray) was applied after thinning. The

plants were infested artificially with 10 first-instar larvae/plant using a

camel hairbrush at 20 days after seedling emergence. One week after

infestation, the plant damage was recorded as percentage of total
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number of plants showing leaf-feeding symptoms, and the intensity of

leaf-feeding was recorded as LDS on a 1–9 visual scale (1 = <10%

leaf area damage and 9 = >80% leaf area damage). Plants showing

deadhearts were recorded 20 days after artificial infestation and

expressed as a percentage of the total number of plants (Sharma et al.

1992). Observations on larval survival were recorded by cutting open

the stems with deadhearts 20 days after infestation. Live larvae were

provided with fresh stems of respective genotypes on alternate days till

pupation. Data were recorded on percentage pupation and adult

emergence.

Statistical analysis: Count and binomial percentage data, as required

to meet the ANOVA assumptions, were transformed to log (x + 1) and

angular scales, respectively, and subjected to analysis of variance

(ANOVA) in accordance with the experimental design used. The results

from transformed and original scales were similar, with ANOVA

assumptions reasonably met in both cases. Therefore, results from

original scales only are presented. Significance of differences in

accessions was tested using least significant difference (LSD) at 5%

level of significance. All analyses were conducted using GenStat 10.2

statistical software (Payne et al. 2007).

Results
Resistance under field conditions

There were significant differences among the wild relatives of

sorghum in their response to artificial infestation with first-
instar larvae of C. partellus in the field. The results of
individual seasons� and across-season analyses are presented

in Table 1. The accessions exhibited significant differences
(P < 0.001) for plants damaged, LDS and percentage dead-
hearts. The resistant (IS 2205) and susceptible (ICSV 1) control

genotypes differed significantly in the two seasons, except for
leaf damage in the 1998 rainy season. Stem borer damage was
greater in the 1998 rainy season than in the 1999 postrainy
season. The relative ranking of accessions in the two seasons

was consistent. This allowed identification of accessions with
stable resistance across seasons. Thirty-three accessions
belonging to Para-sorghum (S. australiense, S. purpureo-

sericeum, S. brevicallosum, S. timorense, S. versicolor,
S. matarankense and S. nitidum), Stiposorghum (S. angustum,
S. ecarinatum, S. extans, S. intrans, S. interjectum and

S. stipoideum) and Heterosorghum (S. laxiflorum) were highly
resistant to stem borer damage and did not suffer any damage
under multi-choice conditions in the field over the two seasons.
One accession of S. laxiflorum (TRC 243486) showed negligi-

ble stem borer damage. S. macrospermum of Chaetosorghum
along with the 21 accessions of Eu-sorghum representing
S. bicolor ssp verticilliflorum and S. halepense were highly

susceptible to the stem borer although some of the
Eu-sorghums were significantly less damaged than the suscep-
tible ICSV 1.

Ovipositional non-preference under greenhouse conditions

The accessions showed considerable variation in oviposition
non-preference by the C. partellus females under multi-choice
conditions in the greenhouse (Table 2). Ten accessions were
significantly less preferred for oviposition as compared to the

resistant control, IS 2205, particularly with respect to egg
masses per plant and eggs per plant. No eggs were laid on four
accessions belonging to Stiposorghum (S. extans – TRC-

243601) and Para-sorghum (S. versicolor – IS 14262 and IS
14275; and S. purpureo-sericeum – IS 18944). Six accessions

[Para-sorghum – S. purpureo-sericeum (RN 285, IS 18947, IS
18943 and IS 18945), S. australiense (IS 18956) and Stiposor-
ghum – S. interjectum (TRC 243461)] were significantly less
preferred for oviposition relative to the resistant control, IS

2205, in terms of the number of egg masses/plant. Other Para-
sorghum accessions including those of S. timorense, S. nitidum,
S. brevicallosum, S. purpureo-sericeum (RN 285, IS 18947, IS

18943, IS 18945) and S. australiense (IS 18956) had signifi-
cantly less number of egg masses/plant as compared to the
susceptible control, ICSV 1, but were comparable to the

resistant control, IS 2205. The two accessions of S. laxiflorum
(Heterosorghum) were highly preferred for egg laying as
compared to ICSV 1, both in terms of egg masses and number
of eggs/plant. In Eu-sorghum, all accessions of wild races of

Sorghum ssp verticilliflorum were highly preferred for ovipo-
sition, except for IS 14564 (race aethiopicum), which was
comparable with the resistant control, IS 2205, for eggs/plant.

Oviposition on S. halepense (IS 14212) did not differ signifi-
cantly from the resistant control, IS 2205. Responses of the
controls, resistant (IS 2205) and susceptible (ICSV 1), in terms

of number of egg masses/plant were significantly different from
each other in sets 2 and 3. They, however, did not differ with
respect to the number of eggs/egg mass. In set 1, responses of

both IS 2205 and ICSV 1 were similar for all three variables.
Accessions belonging to Para- and Stiposorghums that

exhibited antixenosis for oviposition under multi-choice tests
were significantly different for number of egg masses (0.1–4.3),

number of eggs/egg mass (2.7–64.8) and number of eggs/plant
(0.5–141.9) under no-choice conditions (Table 3). All four
accessions of Stiposorghum (S. ecarinatum, S. extans,

S. intrans and S. interjectum) and nine accessions of Para-
sorghum showed significantly less number of egg masses (0.3–
2.5), while TRC 243601 (S. extans) and IS 23177 and IS 14262

(S. versicolor) had significantly less number of eggs/egg mass
as compared to the resistant control, IS 2205. A few eggs were
laid on the three accessions, namely TRC 243601 (S. extans)

and IS 14262 and IS 14275 (S. versicolor), that showed no
oviposition under multi-choice conditions, but were signifi-
cantly less preferred than the resistant control, IS 2205.
Responses of the resistant and susceptible controls differed

significantly. There were also significant differences among the
accessions in terms of distribution of egg masses on the adaxial
and abaxial surfaces of the leaves (Table 4). Overall, there

were more egg masses and eggs on the adaxial surface of
the leaves, except for S. timorense (Para-sorghum) and
S. interjectum (Stiposorghum). The resistant and susceptible

control genotypes differed significantly for total number of
eggs/plant, but not for egg masses or eggs/egg mass on both
adaxial and abaxial surfaces of the leaves.

Antibiosis under greenhouse conditions

Under no-choice conditions, when plants were infested with

first-instar larvae in greenhouse (10 larvae per plant), there was
no plant damage (Table 5) in terms of leaf-feeding on any of
the Stiposorghums and one Para-sorghum (IS 18944). These

accessions also did not show any deadheart formation.
However, there was considerable variation in leaf damage
among other accessions of Para-sorghum. Sorghum austral-

iense (IS 18956), S. matarankense, S. purpureo-sericeum (IS
18943, IS 18944, IS 18945), S. timorense and S. versicolor
showed very low levels of leaf damage (LDS 1), while
accessions of S. nitidum (TRC 243514) and S. purpureo-
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sericeum (RN 285 and IS 18947) suffered moderate leaf
damage (2.7–6.0 LDS). All these accessions, however, pro-
duced very few deadhearts (0.0–14.8% deadhearts). In the two
accessions of Heterosorghum (TRC-243492 and IS 18958), leaf

damage was low (LDS 1.3 and 1.7, respectively). However,
TRC-243492 had only 15.3% deadhearts, while IS 18958
showed 82.5% deadhearts. Compared to the Stipo-, Para- and

Heterosorghums, accessions of Eu-sorghum were highly sus-
ceptible. Sorghum halepense (IS 14212) and race virgatum of
S. ssp. verticilliflorum (IS 18808) were highly susceptible

(98.4% and 98.2% deadhearts, respectively, and LDS 6.0 for
both) and were on par with the susceptible control, ICSV 1.

The resistant control IS 2205 suffered moderate levels of leaf
damage (LDS 6) and deadheart formation (43.4%).
When plants with deadhearts were cut open to check for the

presence of larvae 20 days after infestation, no larvae were

observed in 11 accessions of Para-sorghum, while one larva
each was recovered in two accessions IS 18945 (S. purpureo-
sericeum) and IS 18956 (S. australiense) (Table 5). These

larvae stopped feeding by the 24th day and died. In
S. laxiflorum (Heterosorghum), no larvae were observed in
the deadhearts of TRC-243492, but six larvae were recorded

from 20 deadhearts in IS 18958, which subsequently stopped
feeding and died in 28–30 days. There was no larval survival

Table 2: Oviposition by spotted stem borer on Sorghum species under multi-choice conditions in greenhouse

Section/Species/Subsp/Race Accession
Number of egg
masses per plant

Number of eggs
per egg mass

Number of eggs
per plant

Set 1
Heterosorghum
S. laxiflorum TRC-243492 3.3a 39.9ab 132.9a

IS 18958 2.9a 52.9a 158.9a
Para-sorghum
S. australiense IS 18955 3.1a 38.6ab 123.5ab
S. matarankense TRC-243576 2.4ab 45.9ab 106.3ab
S. purpureo-sericeum RN 285 0.3bc 19b 7.6b

IS 18947 0.4bc 19.3b 7.7b
S. versicolor IS 23177 1.1abc 37.9ab 48.5ab

Eu-sorghum
S. bicolor ssp. verticilliflorum
Race virgatum IS 18808 2.9a 49.9a 152.0a
S. bicolor (RC) IS 2205 1.7abc 59.3a 95.0ab
S. bicolor (SC) ICSV-1 2.2abc 53.3a 122.2ab

Fp 0.134 0.081 0.136
LSD (5%) 2.44 27.77 122.07
Set 2
Para-sorghum
S. versicolor IS 14262 0d 0d 0e

IS 14275 0d 0d 0e
S. purpureo-sericeum IS 18944 0d 0d 0e

IS 18943 0.5cd 30.5abcd 24.4cde
IS 18945 0.1d 7.7cd 71.5bc

S. australiense IS 18956 0.5cd 21.4abcd 18.2cde
Stiposorghum
S. angustum TRC-243499 1.9bc 37abc 62.1bcd
S. interjectum TRC-243461 0.3d 12.8bcd 10.2de

Eu-sorghum
S. halepense IS 14212 3.3b 39.6ab 113.5b
S. bicolor (RC) IS 2205 2.8b 40.8ab 91.1b
S. bicolor (SC) ICSV 1 5.5a 46.3a 249.3a

Fp <0.001 0.017 <0.001
LSD (5%) 1.56 30.94 56.44
Set 3
Para-sorghum
S. brevicallosum IS 18957 3.1abc 66.4ab 215.4ab
S. nitidum TRC-243514 2.2bcde 41.9bcd 104.6bcd
S. timorense TRC-243498 0.4ef 38.7bcd 14.9cd

Stiposorghum
S. extans TRC-243601 0f 0d 0d
S. ecarinatum TRC-243574 0.2f 24cd 7.5cd
S. stipoideum TRC-243399 1.6cdef 22.2cd 36.6bcd
S. intrans TRC-243571 0.8def 46.3bcd 62.1bcd

Eu-sorghum
S. bicolor ssp. verticilliflorum
Race aethiopicum IS 14564 2.4bcd 93.4a 204.4ab
Race arundinaceum IS 18826 3.7ab 51.8bc 192.5abc
Race verticilliflorum IS 18865 4.1ab 71.7ab 317.6a
S. bicolor (RC) IS 2205 1.7cdef 51.7bc 86.5bcd
S. bicolor (SC) ICSV 1 4.6a 42.3bcd 196abc

Fp <0.001 0.007 0.036
LSD (5%) 1.97 38.6 188.86

RC, resistant control; SC, susceptible control; LSD, least significant difference.
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beyond 30 days in the Para- and Heterosorghums, and
consequently no adult emergence. Among the Eu-sorghums,
65% and 55% larvae were obtained from S. halepense and race
virgatum, in comparison with 40% and 95% larvae recovered

from IS 2205 and ICSV 1, respectively. Larval period varied
from 37 to 43 days in race virgatum and 37–45 days in
S. halepense as compared to 30–36 days in the susceptible

ICSV 1. Pupation ranged from 66% in S. halepense to 100% in
race virgatum and ICSV 1. Pupal period varied from 8 to
12 days in S. halepense, 9–13 days in race virgatum and

7–8 days in ICSV 1. Adult emergence was 27% and 37.5%
in race virgatum and S. halepense, respectively, in comparison
with 63.2% in the susceptible ICSV 1.

Discussion

Thirty-three accessions representing 14 species of sorghum

showed high levels of resistance to the spotted stem borer,
C. partellus, under artificial infestation in the field, with some
accessions showing very high levels of resistance that were

close to immunity. Species/accessions belonging to Heterosor-
ghum, Para-sorghum and Stiposorghum suffered very low stem
borer damage, except for one accession of Heterosorghum,

which had 2% plants with deadhearts. In contrast, accessions
belonging to Chaetosorghum and Eu-sorghum were highly
susceptible to stem borer damage, suffering very high levels of

leaf damage and plant deadhearts. Overall, more damage was
observed in the 1998 rainy season than in the 1999 postrainy
season, although levels of infestation were similar. As repro-
duction in sorghum is photothermal responsive, panicle

initiation is usually earlier during the postrainy season than
in the rainy season because of cooler temperatures and a
shorter photoperiod. The early panicle initiation probably

accounted for low deadheart formation in the postrainy season
because of inability of the larvae to reach the growing point,
which would already have pushed up above larval entry point,

thus hampering the ability of the larvae to reach it. Thus,
although larvae may feed in the sorghum stem and cause
tunnelling, this activity alone may not cause deadhearts, the
critical damage factor associated with yield loss. This has been

shown to be one of the mechanisms of resistance to stem borer
in sorghum (Sharma and Nawanze 1997). In contrast, delayed
panicle initiation in the rainy season probably resulted in

greater deadheart formation. The absence of significant
differences in LDS and percentage plants with deadhearts
over the two seasons in accessions belonging to Hetero-, Para-

and Stipo-sorghums indicate stability in their response to

Table 4: Ovipositional preferences for adaxial and abaxial leaf surfaces of Sorghum species under no-choice conditions in greenhouse

Section/species Accession ID

Egg masses per plant Eggs per egg mass Eggs per plant

Adaxial Abaxial Adaxial Abaxial Adaxial Abaxial

Para-sorghum
S. australiense IS 18956 2.3a 1.9ab 19.3cdef 27.2def 44.1cd 50.8bcd
S. purpureo-sericeum IS 18944 1.2bcd 1.4abc 62.8ab 24.9def 79.9ab 40.5bcd

IS 18945 1.3bc 1.1bc 36.9abcde 41.1bcde 54.9bc 53.1bcd
IS 18943 0.5cde 0d 18.5def 0f 10.9de 0d
IS 18947 0.3de 0d 35.5bcdef 0f 14.2de 0d
RN285 0.5cde 0.5cd 48.4abcd 60.3abc 22.9cde 28.6cd

S. versicolor IS 23177 0.1e 0d 2.7f 0f 0.5e 0d
IS 14262 0.1e 0d 3.7f 0f 0.7e 0d
IS 14275 0.1e 0d 32bcdef 0f 6.4e 0d

S. timorense TRC-243498 0.7cde 1.9ab 68.7a 55.9abcd 45.3c 96.7b
Stiposorghum

S. ecarinatum TRC-243574 0.6cde 0.1d 53.1ab 21ef 32.9cde 4.2d
S. intrans TRC-243571 1.3bc 0.7cd 44.6abcde 30.9cdef 53.5bc 32.5cd
S. extans TRC-243601 0.3de 0.1d 13.3ef 2.7f 5.3e 0.5d
S. interjectum TRC-243461 0.1e 0.5cd 40abcde 68.8ab 8e 34.2cd

Eu-sorghum
S. bicolor (SC) ICSV 1 1.9ab 2.1a 56.5ab 81.5a 102.7a 185.1a
S. bicolor (RC) IS 2205 1.9ab 1.7ab 51.6abc 46.6bcde 96.3a 67.3bc

F Prob <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
LSD (5%) 0.78 0.94 32.99 32.31 33.47 60.58

RC, resistant control; SC, susceptible control; LSD, least significant difference.

Table 3: Oviposition by spotted stem borer on Sorghum species under
no-choice conditions in greenhouse

Section/species Accession
Egg masses
per plant

Eggs per
egg mass

Eggs per
plant

Para-sorghum
S. australiense IS 18956 4.3a 22.5cdef 94.9cd
S. purpureo-sericeum IS 18947 0.3e 53.3abc 14.2e

IS 18943 0.5e 18.5def 10.9e
RN285 0.9e 54.0ab 51.5de
IS 18945 2.5d 44.3abcd 108.0bc
IS 18944 2.6cd 47.0abcd 120.5bc

S. timorense TRC-243498 2.5d 57.7ab 141.9bc
S. versicolor IS 23177 0.1e 2.7f 0.5e

IS 14262 0.1e 3.7f 0.7e
IS 14275 0.1e 32.0cdef 6.4e

Stiposorghum
S. ecarinatum TRC-243574 0.7e 53.4abc 37.1de
S. intrans TRC-243571 2.1d 41.1abcde 86cd
S. extans TRC-243601 0.3e 11.6ef 5.9e
S. interjectum TRC-243461 0.7e 64.8ab 42.2de

Sorghum
S. bicolor (SC) ICSV 1 4.1ab 71.6a 287.7a
S. bicolor (RC) IS 2205 3.4bc 49.6abcd 163.7b

F Prob <0.001 <0.036 0.007
LSD (5%) 0.84 31.41 58.47

RC, resistant control; SC, susceptible control; LSD, least significant
difference.
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artificial infestation of stem borer larvae. As larval dispersal
occurs through silken threads by the first and second instars, it
is likely that the larvae started feeding in the whorl, but when
they found the host plant to be unsuitable, they migrated to

neighbouring plants in search of suitable hosts (Taneja and
Woodhead 1989). This mechanism probably accounted for the
low plant damage and absence of deadhearts in accessions with

high levels of resistance to stem borer damage. Field exper-
iments by Woodhead et al. (1980) showed that damage by
first-instar larvae placed directly into the whorl was inversely

correlated with the amount of HCN produced in the leaves.
Accessions of Eu-sorghum showed a wide variation in their
responses across the two seasons. Wild races/species in

Eu-sorghum have earlier been reported to be common hosts
of stem borers under natural conditions (Reddy 1985) and
probably serve as alternate hosts/reservoirs of this insect. ICSV

700, an improved variety bred for resistance to stem borer,
which showed significant differences in deadhearts in the two
seasons, exemplified the absence of durable resistance among
the cultivated sorghums in the present study.

Under greenhouse conditions, accessions of Heterosorghum,
Para-sorghum and Stiposorghum that suffered little plant
damage under field conditions exhibited wide variation in

plant damage, deadheart formation, larval survival and adult
emergence. These observations suggest a high level of antibi-
osis and/or antixenosis at the feeding site in most of the

accessions belonging to Stiposorghums (traces of leaf-feeding,
and no deadhearts), Para-sorghums (some plant damage, very
few deadhearts, two larvae recovered and no adult emergence)

and Heterosorghums (considerable plant damage, 82% plants
with deadhearts, six larvae recovered, no adult emergence). As
all plants were artificially infested directly in the whorl, the

Table 5: Adult emergence after artificial infestation with first-instar larvae under no-choice conditions in the greenhouse

Section/species Accession

Plants
damaged

(%)
Deadhearts

(%)

Leaf
damage
rating1

Larvae
recovered

(no.) Remarks

Heterosorghum
S. laxiflorum TRC-243492 29g 15d 1f 0

IS 18958 100a 83b 2e 6 Larvae died in 28–30 days
Para-sorghum
S. australiense IS 18955 23h 11de 1f 0

IS 18956 73c 11de 1f 1 Larva died on 24th day
S. matarankense TRC-243576 33fg 5f 1f 0
S. nitidum TRC-243514 94b 0j 3d 0
S. purpureo-sericeum RN 285 100a 11de 6b 0

IS 18943 38ef 0j 1f 0
IS 18944 0j 0j 0f 0
IS 18945 29g 13de 1f 1 Larva died on 24th day
IS 18947 61d 8ef 4c 0

S. timorense TRC-243498 22h 0j 1f 0
S. versicolor IS 23177 42e 0j 1f 0

IS 14262 8i 0j 1f 0
IS 14275 71c 15d 1f 0

Stiposorghum
S. angustum TRC-243499 0j 0g 0g 0
S. ecarinatum TRC-243574 0j 0g 0g 0
S. extans TRC-243601 0j 0g 0g 0
S. intrans TRC-243571 0j 0g 0g 0
S. interjectum TRC-243461 0j 0g 0g 0
S. stipoideum TRC-243399 0j 0g 0g 0

Eu-sorghum
S. bicolor subsp.
verticilliflorum
race virgatum

IS 18808 98ab 98a 6b 11 Larval period: 37–43 days.
Pupal period: 9–13 days.
Adults emerged:
2 normal males; 1 male
with malformed wings;
1 moth half emerged
from pupa; 7 pupae with
no emergence

S. halepense IS 14212 98ab 98a 6b 13 Larval period: 37–45 days.
Pupal period: 8–12 days.
Adult emergence: 3 males;
5 pupae with no emergence;
3 escaped; 2 died

S. bicolor (SC) ICSV-1 98ab 98a 7a 19 Larval period: 30–36 days.
Pupal period: 7–8 days.
Adult emergence: 6 males;
5 females; 3 egg masses;
larvae hatched

S. bicolor (RC) IS 2205 97ab 43c 6b 8 Larvae died by 30th day
F Prob <0.001 <0.001 <0.001
LSD (5%) 5.9 4.4 0.4

SC, susceptible control; RC, resistant control; LSD, least significant difference.
1Leaf damage score (1 = <10% leaf area damaged, and 9 = >80% leaf area damaged).
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larvae were not exposed to factors that otherwise could have
influenced their movement outside the plant. Wherever there
were traces of leaf damage in the form of pinholes (LDS 1), it is
possible that the larvae fed for a short time on the leaf tissue.

However, the absence of deadhearts and low larval recovery in
the Para-sorghums and Stiposorghums could be attributed to
either larval mortality because of antibiotic effect of chemicals

in the plant tissues or larval escape owing to their inability to
feed on the leaves/shoots because of anatomical features of the
stems. Similar observations have been made earlier on mech-

anisms of resistance in the cultivated sorghums (Lal and Pant
1980, Singh and Verma 1988, Taneja and Woodhead 1989).

Eu-sorghum accessions showed maximum plant damage and
deadhearts. There was 95% recovery of larvae and pupae from

susceptible control, ICSV 1, most of which survived to
adulthood. In resistant control, IS 2205, larval recovery was
low, and they did not survive. In accessions of S. halepense and

race virgatum, larval period was prolonged, and all pupae did
not develop into normal adult moths. Antibiosis in terms of
reduced larval survival and prolongation of larval develop-

ment has earlier been reported to be a component of resistance
to stem borer in sorghum (Dayal 1989, Taneja and Woodhead
1989, Saxena 1990, 1992, Verma et al. 1992).

The use of multi-choice and no-choice tests is useful to
confirm resistance to insects in a wide variety of plants (Smith
et al. 1994). Significant differences were observed among the
wild species/accessions of sorghum in terms of egg masses/

plant, eggs/egg mass and eggs/plant under no-choice condi-
tions. This clearly indicated the presence of antixenosis for
oviposition as one of the mechanisms of resistance to

C. partellus. Overall, more eggs were laid under no-choice
conditions than under multi-choice conditions. Further, under
no-choice conditions, egg laying was observed on all geno-

types, even on those which were not preferred for oviposition
under multi-choice conditions. Least egg laying was observed
on Stiposorghums, and in varying levels on Para-sorghums,

while wild accessions of Eu-sorghum were highly preferred for
egg laying. There was a poor correlation between number of
egg masses/plant, eggs/egg mass and eggs/plant. Van den Berg
and van den Westhuizen (1997) also did not observe any

correlation between the three variables for egg laying. The
gravid females of C. partellus prefer to lay eggs on susceptible
varieties of maize and sorghum than on the resistant ones (Lal

and Pant 1980, Dabrowski and Kidiavai 1983, Singh and Rana
1984, Saxena 1987, Taneja and Woodhead 1989, Van den Berg
and van den Westhuizen 1997, Rebe et al. 2004).

Differences in oviposition on different species/accessions
could be attributed to non-suitability of the given host for
oviposition. Leaf surface waxes are known to contribute
significantly to host specificity in which the presence of certain

compounds on the leaf may elicit oviposition and influence the
establishment of first-instar larvae in sorghum (Bernays and
Chapman 1994). Larval movement is influenced by trichomes,

while ligular hairs act as traps for young larvae (Sharma 1993,
Sharma and Nawanze 1997); the rate of establishment in a
plant is thus reduced (Bernays et al. 1983). Most of the

accessions of Para-sorghum, Stiposorghum and Heterosorghum
had a medium to high density mat of hairs on the abaxial and
the adaxial surfaces of the leaves. Kumar and Saxena (1985)

also observed differential distribution of egg masses on the
adaxial and abaxial leaf surfaces because of differences in
trichome density/hairiness. More eggs were observed on the
adaxial surface in the present study. However, Dabrowski and

Kidiavai (1983) observed an even distribution of eggs on
adaxial and abaxial leaf surfaces of some genotypes, while
Alghali (1985) reported that the females showed a preference
for egg laying on the adaxial leaf surface. Species/accessions,

which showed significantly reduced oviposition relative to the
resistant control, IS 2205, may be used to investigate physi-
cochemical stimuli involved in oviposition preference by the

C. partellus females. Moore (1928) demonstrated that volatile
chemicals emanating from corn foliage play an important
role in orientation of moths of the European corn borer,

O. nubilalis.
The present studies suggested that some of the accessions of

wild relatives of sorghum exhibited both oviposition non-
preference and antibiosis to C. partellus, suggesting that the

suitability of plants for feeding of the neonate larvae is not a
major factor in determining the choice of oviposition site by
the C. partellus females (Ampofo and Nyangiri 1986). While

the wild races/species within Eu-sorghum were highly preferred
for oviposition, it is possible that those accessions in which
there was prolonged larval development and reduced survival

contain some antibiotic compounds that are inimical to larval
growth and development. Reduction in feeding by first-instar
larvae of C. partellus on resistant sorghum cultivars has been

ascribed to high concentration of HCN in the plants
(Woodhead et al. 1980).
Studies by Van den Berg (2006), Rebe et al. (2004) and

Muyekho et al. (2005) have reported that indigenous wild

grasses in Africa are major hosts for the spotted stem borer,
with higher levels of oviposition on napier grass, blue
thatching grass and vetiver grass as compared to that on

cultivated maize or sorghum. Chilo partellus has also been
shown to develop on Sudan grass (Khan et al. 2000) and
S. arundinaceum, indicating their suitability as hosts. Sorghum

versicolor showed highest number of C. partellus larvae under
natural conditions (Muyekho et al. 2005). However, in our
greenhouse study, no larvae were recovered from the few

deadhearts obtained after artificial infestation on the acces-
sions of this species. While environmental conditions and
accessional differences could have contributed to this, it is
likely that population differences in larval behaviour could be

a major factor (Verma and Jotwani 1985). Therefore, these
wild species that are preferred for oviposition, but unsuitable
for larval development, have a considerable potential for use in

management of stem borers in cultivated sorghum by acting as
a barrier crop.
Sorghum improvement has hitherto relied on exploitation of

variability within the primary gene pool as gene transfer from
one background to another can be made quite readily. A few
accessions of wild/weedy races (IS 18808 and IS 14212)
expressing antibiosis could therefore be exploited for transfer-

ring resistance from wild relatives into the cultigen. However,
in the present studies, several accessions of wild sorghum
species with high levels of resistance to stem borer have been

identified, which could be exploited as a valuable source of
germplasm for sorghum improvement for insect resistance.
Thirty-three accessions of 14 species belonging to sections

Stiposorghum, Para-sorghum and Heterosorghum have been
identified as immune/highly resistant to the spotted stem borer.
Several of these species/accessions have also been reported to

possess resistance/immunity to the sorghum shoot fly (Kamala
et al. 2009). Further, various factors, traits and mechanisms
appear to contribute to insect resistance in wild relatives of
sorghum. These species belong to the tertiary gene pool and
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constitute the extreme outer limit of the potential genetic
resource for crop improvement. While their benefit to sorghum
improvement through conventional breeding may be limited,
recent breakthroughs in cellular and molecular biology have

now provided new tools to utilize these species for crop
improvement.
A wide range of insecticidal genes from Bt strains have been

used to control insect pests. Maize plants transformed with Bt
genes expressing Cry1Ab protein initially developed for
control of Ostrinia nubilalis (Hubner) and Diatrea grandoio-

sella (Dyar) have been found to provide effective control of
stem borers (Van Rensburg 1999, 2007, Van den Berg and Van
Wyk 2007). Although insect-resistant transgenic sorghums are
yet to hit the market, Girijashankar et al. (2005) as a start

reported partial tolerance against first instars of C. partellus in
transgenic sorghum plants developed by particle bombard-
ment of shoot apices expressing a synthetic Cry1Ac gene under

a wound-inducible promoter mpiC1.
Besides Bt genes, other biotechnological mediations for

insect control include the exploitation of enzymes including

protease inhibitors, alpha amylase inhibitors, plant lectins,
vegetative insecticidal proteins, toxins from predators, second-
ary metabolites and gene pyramiding (Sharma et al. 2000). In

addition, down-regulation of the expression of specific genes
through RNA interference (RNAi), where double-stranded
RNA (dsRNA) produced in planta can lead to targeted gene
silencing in Lepidoptera and Coleoptera (Baum et al. 2007,

Mao et al. 2007), is also a possible way forward for controlling
insect pests. Recent findings that the recessive iap allele
circumvents pollen-pistil incompatibilities in the genus

Sorghum, and hybrids can be used to make crosses between
sorghum and members of the tertiary gene pool (Kuhlman
et al. 2006, Price et al. 2005, 2006) auger well for utilizing the

enormous potential that exists within the wild Sorghum gene
pool to increase the levels of and diversify the bases of
resistance to C. partellus in sorghum.
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