Disease Notes

Plant Disease “Disease Notes” are originally published on-line and are available several weeks before being reprinted here. A note’s official date of publication is the date it was placed on-line. Information concerning on-line access appears at the front of this journal under *Editorial Policies*.

During April 1999, a foliar blight of onion (*Allium cepa* L. ‘Granex 33’) was reported in an early commercial planting under center pivot irrigation in the Limpopo Valley of the Northern Province of South Africa. Regular fungicide sprays failed to inhibit the progress of the disease. Foliar symptoms started as water-soaked lesions that elongated and coalesced and chlorotic foliage by tissue collapse in some leaves. Leaves often collapsed at the point of infection. Bulb size was severely reduced and premature leaf death caused irregular maturation and bulb size in the field. The symptoms were similar to those of Xanthomonas blight, described on the same cultivar in Hawaii (1). Microscopic examination of hand cut sections trough lesion margins showed bacterial streaming. Isolation on semi-selective diagnostic milk Tween agar (2) yielded almost pure cultures of a typical xanthomonad. The mucoid, yellow pigmented bacterium was rod shaped, gram negative, catalase positive, oxidase negative, utilized glucose oxidatively, and was lypolytic (Tween 80), proteolytic (skimmed milk), and amolytic. Biolog GN Microplate profiles as read by the MicroLog database release 3.50 (Biolog, Hayward, CA) were similar to those of a pathovar (similarity indices of 0.29 to 0.71).

Symptoms were successfully reproduced on glasshouse grown Granex 33 seedlings at the five-leaf stage by spray and syringe inoculations (1) and the pathogen reisolated as described above. Ten seedlings were used in the pathogenicity test, of which five served as controls. After inoculation, seedlings were covered overnight with plastic bags, after which bags were carefully removing the soil in the root zone. Mature *X. campestris pv. vesicatoria* was observed parasitizing several wild *Arachis* species in a field at the Chitedze Agricultural Research Station near Lilongwe, Malawi. These species were part of a germ plasm enhancement program that included *A. appressipilla* (ICRISAT Groundnut Accession number [ICG] 8127), *A. batizocoi* (ICG 8124), *A. bennisi* (ICG 13215), *A. cardenasi* (ICG 13164 and 13166), *A. correntina* (ICG 8918), *A. duranensis* (ICG 13200), *A. helodes* (ICG 8955 and 14917), *A. hoehnii* (ICG 13228), *A. magna* (ICG 8960), *A. pintoi* (ICG 13222 and 14914), *A. stenosperma* (ICG 13172 and 13223), and *A. valida* (ICG 13230). In addition, *A. vogelii* was observed parasitizing several wild *Arachis* species in a field at the Chitedze Agricultural Research Station near Lilongwe, Malawi. These species were part of a germ plasm enhancement program that included *A. appressipilla* (ICRISAT Groundnut. **References:**

Alectra vogelii Bentham. (Family: Scrophulariaceae) is a vascular hemi-parasite of various leguminous crops in Africa, including peanut (*Arachis hypogaea*), bambara groundnut (*Vigna subterranea*), cowpea (*Vigna unguiculata*), common bean (*Phaseolus vulgaris*), soybean (*Glycine max*), and mung bean (*Vigna radiata*) (1). It is a common parasite of peanut in Angola, Burkina Faso, Malawi, Mozambique, Nigeria, Swaziland, Zambia, and Zimbabwe (2). During April and May 2000, *A. vogelii* was observed parasitizing several wild *Arachis* species in a field at the Chitedze Agricultural Research Station near Lilongwe, Malawi. These species were part of a germ plasm enhancement program that included *A. appressipilla* (ICRISAT Groundnut Accession number [ICG] 8127), *A. batizocoi* (ICG 8124), *A. bennisi* (ICG 13215), *A. cardenasi* (ICG 13164 and 13166), *A. correntina* (ICG 8918), *A. duranensis* (ICG 13200), *A. helodes* (ICG 8955 and 14917), *A. hoehnii* (ICG 13228), *A. magna* (ICG 8960), *A. pintoi* (ICG 13222 and 14914), *A. stenosperma* (ICG 13172 and 13223), and *A. valida* (ICG 13230). In addition, *A. vogelii* was observed parasitizing several wild *Arachis* species in a field at the Chitedze Agricultural Research Station near Lilongwe, Malawi. These species were part of a germ plasm enhancement program that included *A. appressipilla* (ICRISAT Groundnut Accession number [ICG] 8127), *A. batizocoi* (ICG 8124), *A. bennisi* (ICG 13215), *A. cardenasi* (ICG 13164 and 13166), *A. correntina* (ICG 8918), *A. duranensis* (ICG 13200), *A. helodes* (ICG 8955 and 14917), *A. hoehnii* (ICG 13228), *A. magna* (ICG 8960), *A. pintoi* (ICG 13222 and 14914), *A. stenosperma* (ICG 13172 and 13223), and *A. valida* (ICG 13230). In addition, *A. vogelii* was observed parasitizing several wild *Arachis* species in a field at the Chitedze Agricultural Research Station near Lilongwe, Malawi. These species were part of a germ plasm enhancement program that included *A. appressipilla* (ICRISAT Groundnut Acknowledgments.

References:

Columbia root-knot nematode, Meloidogyne chitwoodi Golden et al. (1) was identified from potatoes, *Solanum tuberosum* L., collected from Dallam County, Texas in October 2000. Seed potatoes are the most likely source for this introduction. This nematode is currently found infecting potatoes grown in California, Colorado, Idaho, New Mexico, Nevada, Oregon, Utah, and Washington. Some countries prohibit import of both seed and table stock potatoes originating in states known to harbor *M. chitwoodi*. Lesions on the potatoes had discrete brown coloration with white central spots in the outer 1 cm of the tuber flesh. Female nematode densities averaged 3 per square centimeter of a potato section beneath the lesions. Nematodes were morphologically identified as *M. chitwoodi* based on the perineal pattern of mature females and the tail shape of juveniles per Golden et al. (1). Using polymerase chain reaction-RFLP of the rDNA ITS1 region and the mtDNA COII-16S rRNA region (2), individual juveniles were identified as *M. chitwoodi* based on their restriction fragment patterns. This is the first report of *Columbia root-knot nematode* infecting potatoes in Texas. The distribution of this nematode in potato fields throughout central United States should be determined.

References: