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Abstract 

Non-irrigated (rainfed) agriculture is the major crop production system worldwide. It occupies 
large proportion of total land areas in Asia (88 %) and Africa (99 %). In some important 
food legume growing countries in South Asia, r�ed lands range fr6m 33 to 75% of total 
agricultural land area. Drought of varying intensities and duration, and associated economic 
crop yield losses, are a recurrent phenomenon in food legumes crops that are grown generally 
on rainfed lands. 

A large variation in climate and soil physical conditions results in an equally large 
spatial and temporal variation in soil moisture availability in rainfed cropping systems. 
Characterization of drought-prone conditions in a target region, for probability of occurrence 
of various intensities and types of drought, is essential to relate rainfed Cool Season Food 
Legumes (CSFL) production with drought. It is also required for development of targeted 
genetic and agronomic management strategies and technologies. A useful application of 
infonnation technology in agriculture has been in relating soil physical conditions and climate 
with food legume production in South Asia. 

M. C. Kharkwal (ed.), Food Legumes for Nutritional Security and Sustainable Agriculture, 
Vol. 1: 661-677. © 2008 Indian Society of Genetics and Plant Breeding. Printed in India. 
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Substantial knowledge on genetic and agronomic management to mitigate drought effects 
in food crops has been accumulated. Focus in this paper is on genetic improvement of drought 
tolerance in food legumes, with emphasis on chickpea, the most important CSFL crop. Both 
conventional (traditional) and trait-based breeding (including molecular markers) approaches 
have been used in improving adaptation of legumes to water limiting conditions. An important 
contribution is the development of short- to extra-short duration varieties of food legumes 
that escape terminal drought. Drought tolerant chickpea germplasm with a yield advantage 
of 10-30%, and others with putative drought tolerant traits, have been identified. Rigorous 
evaluation of drought tolerant varieties in multi-location trials and release of the same as 
cultivars remains to be done. 

Drought tolerant cultivars, combined with tolerance/resistanceto other important biotic 
and abiotic stresses are an effective, easy to disseminate, and cost-effective technology, that 
would be affordable by resource-poor, small landholding, rainfed farmers. Efforts on 
quantitative characterization of global, regional, and national food legume growing areas 
(using tools of GIS and modeling) to classify the diverse and complex drought-prone 
environments into conditions with similar limiting-soil-moisture condition� and severity of 
evapo-transpiration demand of the atmosphere would be very rewarding. It would facilitate 
development of varieties with specific adaptation to target drought conditions, and 
dissemination of effective technologies Existing multidisciplinary Drought Research 
Networks need to be strengthened with Electronically Net-Working Groups (ENG) and, if 
necessary, establish new groups for a systematic and rapid progress. 

Introduction 

A holistic perspective of food security (including CSFL), sustainability, and availability 
encompasses the economics of sustainable crop production, imports to meet the demand, 
and above all the impact on income and well being of the people depending on agriculture 
for livelihood. Adoption of technologies depends not only on potential positive impact on 
increasing crop production but its relevance to prevailing socio-economic, soil and climate 
conditions. 

A large population (world: >52%, Africa and Asia: >60%) depends on agriculture for 
livelihood. Also, a sizeable fraction of the economically active population (world: 44%, 
Africa and Asia >55%) is engaged in agriculture (FAO 2003). However, a sizeable proportion 
of the global agricultural land area (>95 %) is rainfed, and rainfed crop production is uncertain 
because of insufficient rainfall and its non-uniform distribution. This uncertainty in rainfall 
not only affects food security but also has a very adverse impact on the household economy 
of the resource-poor and small land-holding farmers that generally dominate rainfed 
agriculture. 

On a global scale, food legumes occupy nearly 10% of total cereals and legumes (0.74 
billion ha) cropped area but contribute only 2.5% to the total (2.2 billion Mt) of cereals and 
legumes production (FAO 2003). Despite the small area and production, legumes are 
important crops in the sustainability of crop production systems and economy of the countries, 
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particularly i:p. the rainfed production systems in Asia and Africa. For example, India spent 

more than 50% of the total food imports on pulses in 1994, and in 1997 more than $162 

million were spent on import of pulse crops. Since pulse crops are grown mostly rainfed, 
technologies that focus on improving adaptation of these crops to water limiting conditions 

would have a significant and positive impact on increased CSFL availability, security, national 

economy, and most important of all on the well being of farmers. 

A Multidisciplinary team of scientists made a critical review of various aspects of 
rainfed legumes production, ranging from socio-economic aspects, climate characterization, 

and the agronomic and genetic management of drought at a workshop. Outcome of these 
deliberations were published in a book (Saxena, 2003). In this paper we present an overview 
\ 

of genetic improvement of CSFL crops, with emphasis on chickpea. It is not a comprehensive 
review on the subject but highlights the progress made and suggests areas of future research 

for a rapid progress in improvement of drought tolerance and sustainable CSFL production. 

Prioritization of CSFL Crops for Research and Development 
s 

The two most important CSFL crops worldwide are chickpea and dry peas on the basis of 
relative contribution to total crop area and production of pulse crops (Table 1). Grasspea 
(Lathyrus sativus), one of the five CSFL crops, does not seem to be important as food 

legume because crop statistics on it is not available in global crop databases (FAO 2003). 
Relative importance of CSF crops, based on area vary

-
as: chickpea>peas>lenti1>faba bean, 

and for production as: peas>chickpea>faba bean>lentil (Tables 2a apd 2b). 

Importance of chickpea and dry peas among CSFL crops is also obvious from the 

large number of scientific publications on these two crops. These publications also establish 
the significance of chickpea in improving soil health and fertility and sustainability of rainfed 

crop production systems. Considering these facts, two international agricultural research 
- I 

centers, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) located 

at Patancheru in India and International Center for Agriculture Research in Dry Areas 

(ICARDA) located at Alleppo in Syria, were established to focus research and development 

efforts on chickpea in semi-arid, dry, and arid agroecologies. 

Relative importance of various CSFL crops, however, varies from regions and countries. 

For example, while chickpea and lentil are important crops in Asia, faba beans are a dominant 
crop in Africa (Table 1). It is interesting to note that Lathyrus, which is not an important 
CSF crop on a global basis, is as important as peas in India, whereas faba bean does not 

feature as a CSFL crop (Table 2c). 

Characterization of Drought-Prone Environments 

Soil and climate under which CSFL are cultivated differ very widely across eco-regions and 

also within a country. These two factors of environment have a strong impact on the 

occurrence of important abiotic stresses, in particular drought. Drought is ubiquitous in its 

occurrence in rainfed production systems, irrespective of crops on global, eco-regional or 

national scales. In comparison, the biotic stresses of diseases and insect pests, in general, 
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Table 1. Ranking of various pulse crops in terms of area and production (FAO, 2003) 

Pulses area Pulses production 

Crop % of total Rank Crop % of total Rank 
pulse area pulse area 

Dry bean 37.1 1 Beans, Dry 30.6 1 
Chickpea 15.4 2 Peas, Dry 19.8 2 
Cowpea, dry 14.2 3 Chickpea 14.1 3 
Peas, dry 8.7 4 Broad beans, dry 7.0 4 
Pulses nes 6.7 5 Pulses nes 6.7 5 
Pigeonpea 6.4 6 Cowpeas, dry 6.5 6 
Lentil 5.6 7 Lentil 6.3 7 
Broad beans 3.3 8 Pigeonpea 5.5 8 
Vetches 1.3 9 Vetches 1.9 9 
Lupins 1.1 10 Lupins 1 .5 10 
Bambara bean 0.1 11 Bambara bean 0.1 11 
Pulses area (ha) 71136776 Pulses prod. Mt 60259943 

Table 2. Ranking of CSFL among the pulse crops grown in the world. A. Area (millions of ha) 
and B. Production (millions of tonnes) (FAO 2003) 

a.Area b. Production 

Crop Area % of total Rank Production % of total Rank: 
(m/ha) pulse area (m/t) pulses production 

Chickpea 10.98 15.4 2 8.48 14.1 
Peas 6.20 8.7 4 11.91 19.8 
Lentil 3.96 5.6 7 3.82 6.3 
Broad beans 2.34 3.3 8 4.24 7.0 

c. Ranking of area, production and yield of cool season food legumes in India 
(Source: India, 2000) 

Crop Area Production Yield 
(mJha) (million t) (kglha) 

Chickpea 6.82 5.13 750 
Lentil 1.20 0.79 657 
Lathyrus 0.93 0.50 531 
Peas and beans 0.64 0.60 933 

3 
2 
7 
4 

are crop specific. Solutions to efficient management of adverse drought effects in crop 

plants, therefore, would have a vast potential positive and significant impact on food 

production and sustainability. A quantitative characterization of rainfed or drought-prone 

conditions is an essential prerequisite for developing targeted agronomic or genetic 

management technologies suitable for water limiting situations. 

Drought Events 

Occurrence of drought of varying severity is common in one or the other region in the 

world. In parts of Asia and Africa, drought events are more frequent in occurrence than 

others. For example, in India 36 drought events occurred between the years 1876-1987, that 
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varied in intensity from mild «20% area affected), moderate (up to 40%) and calamitous 
(>40% area affected due to drought) (Katyal and VittaI2003). 

Yield Losses in CSFL due to Drought 

Drought events are known to cause huge losses in food, fodder and feed production, and 
also occasional famines. Loss in grain and shoot mass (fodder) yield due to varying intensities 

of drought in CSFL was studies in field experiments at ICARDA, Syria (Table 3). A gradient 
of drought was created by line-source method of irrigation in these experiments (Hanks et 
al. 1976). The average seed yield loss in CSFL was around 56% at the drier site, Breda (275 
mm rainfall) compared to 36% at Tel Hadya (348 mm rainfall). Reduction in shoot mass, 
and therefore fodder yield, was larger (6 1 % at Breda and 50% at Tel Hadya) compared to 

percent losses in seed yield (Table 3). Lathyrus was better adapted to water limiting conditions 

compared to all other CSFL, and faba bean was most sensitive to drought. Relative losses in 

seed yield due to drought at Breda varied as: lathryus<chickpea<peas = lentikfaba bean. 

Table 3. Differences in yield loss due to drought amJong eSFL crops at two locations in Syria 
(Source: Saxena, N.P. and Saxena, M.e. 1993) 

a. Loss (%) in seed yield and shoot mass in eSFL 

Seed yield loss (%) Shoot mass loss (%) 

Crop 

Chickpea 
Lentil 
Faba bean 
Peas 
Lathyrus 
LSD (<.05) 

Breda 

43.6 
60.2 
79.7 
59.3 
21.5 
21.02 

Tel Hadya Breda 

28.7 47.9 
54.6 65.0 
52.5 69.8 
35.5 59.3 

9.5 53.8 
21.06 12.73 

b. Mean loss (%) across eSFL crops 

Location 

Breda 
Tel Hadya 

Seed yield (%) 

56 
36 

Impact of Variation Environments on Drought 

Shoot mass (%) 

61 
50 

Tel Hadya 

43.0 
51.6 
54.9 
31.2 
56.6 
15.74 

Climate: Rainfall, the primary source of moisture in soil profile for crop growth in rainfed 

conditions, has a dominant effect on intensity of drought, duration and associated crop 
losses when compared to other factors of soil or climate. The unpredictability of occurrence 

of drought arises from the fact that there is a large annual and spatial variation in the amount 
and distribution of rainfall. 

For example, in west Asia (e.g., Syria), where �hickpea is grown as a traditional spring 

season crop, nearly 70-73% of the annual rainfall occurs during preceding winter crop 

season and around 30-35% in the spring season (Table 4). ICARD A introduced winter 
chickpea technology to take advantage of predominant rainfall in winter and early spring 
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seasons to nearly double chickpea yields over the yield of spring chickpea. Statistical analysis 

of long-term rainfall data ( 1974-2005) also reveal the high standard deviations (SD) values 

associated with the mean, maximum and minimum rainfall across the two locations (Table 

4). The dry location of Breda, receives 20% less rainfall compared to Tel Hadya. Evaporation 

and maximum and minimum temperatures, the other two important components of 

atmospheric drought, are more severe at Breda (3-4 mmlweek higher evaporation and 7° C 

higher maximum and 3° C higher minimum temperatures), compared to Tel Hadya. The SD 

of means for these three parameters are smaller (SD ±0.5-2.0) as compared to large SD of 

means associated with rainfalL 

Table 4. Variation in long-term rainfall (mm) at two locations in Syria ( Breda, 35° 55' N, 37° 
10' E, Alt. 350 m; and Tel Hadya, 35° 55' N, 36° 55' E, Alt( 362 m) 

Season Location Mean annual Mean of 1996-2005 
(1974-2005) Mean MinimumMaximum ±SD 

Winter chickpea Tel Hadya 348 254 189 356 53.0 
Breda 275 197 112 281 63.0 

Spring chickpea Tel Hadya 348 124 42 203 56.8 

Breda 275 90 31 157 38.0 

In the warmer subtropics of South Asia (e.g., India), rainfall occurs predominantly in 

the monsoon season (>80% of the total annual rainfall). Chickpea is planted in autumn or 

winter season after cessation of monsoon rainfall (Table 5). There is a great similarity in 

climate and soil moisture conditions in spring cultivation of chickpea in W. Asia and autumn! 

winter cultivation of chickpea in S. Asia. 

Table 5. Variation in long-term rainfall (mm), and evaporation (mm/week) at two locations in 
India (ICRISAT 17° 32' N, 78° 16' E,Alt. 542m; and Hisar, Haryana, 29° 10' N, 75° 44' 
E, Alt . 221 m) 

Basic statistics ICRISAT Center, Patancheru Haryana Agric. Dniv., Hisar 
Chickpea crop duration 90-95 days Chickpea crop duration >140 days 

Rainfall Evaporation Rainfall Evaporation 

Annual Crop Crop Annual Crop Crop 
(winter) (winter) (winter) (winter) 

Mean 889 136 34 448 74 25 
±SD 220.0 98.5 2.5 164.9 54.5 5.3 -, 
Minimum 558 9 29 140 15 18.9 
Maximum 1473 414 40 770 230 28-:-9 

The characteristic high inherent variation in rainfall is also evident in the large SD of 

means for annual and winter rainfall, as well as minimum and maximum rainfall at the two 

locations in India, ICRISAT center, Patancheru ( 18° N) and Haryana Agricultural University 
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(HAD), Hisar (29° N) (Table 5). Despite a higher rainfall (890 nun) at ICRISAT, Patancheru, 

which is almost twice compared to Hisar (450 mm), the length of chickpea crop duration at 

ICRISAT is only 90 days compared to 150 days, and yield 50% of HISAR. The high mean 

evaporation (31.7 mmlweek) and maximum (30.3°C) and minimum (14.3°C) temperatures 

at ICRISAT during crop season causes rapid loss of soil moisture and induces severe terminal 

drought compared to Hisar (evaporation 27.3 mmlweek; maximum, 27.3°C and minimum 

9.7°C) (Saxena, 2003). The high intrinsic variation in spatial and annual distribution in 

rainfall is also noticeable in the long-term data for India as well as the states or provinces in 

India (Figs. lA and lB). 
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Variation in Soil Types 

The soil types are known to vary widely across agricultural lands. Each soil type has its 

typical characteristic soil depth and other physico-chemical constants that detemrine the 

maximum water holding capacity and profile soil moisture available for crop growth. In 
India, there are at least 24 distinct soil groups. Around 15 -20% of the total land area in India 

is under major types of alluvium, sandy, loams, and black soils. In addition there are varying 

land area under problem soils (saline, acid, alkaline, calcareous, etc). (India, 2000). 

Soil Moisture 

Interaction between climate factors, in particular rainfall and evaporation, together with the 

soil types determines the maximum soil moisture available for crop growth and yield. 

Quantification of soil moisture profiles during crop season is an essential first step for 

developing targeted drought management technologies. 

Soil moisture, modeled using the inputs of rainfall and maximum water holding capacity 

of the soil (Keig and McAlpine 1976), are presented for two locations in Mediterranean 

climate of Syria (Fig. 2) and at two locations in warm subtropics of India in south Asia 

(Figs. 3). Winter chickpea in Syria grows on an increasing soil moisture availability regime, 

while the spring chickpea grows on rapidly declining soil moisture conditions, subjecting 

the spring season crop to severe terminal drought effects. Year to year variation in soil 

moisture availability, associated with variation in rainfall, and departure from the long-term 

average can also be seen (Fig. 3). 
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Fig. 2. Departure of year-te-year variation in simulated soil moisture from the long-term 

simulated soil mOisture (1979-2004) on a red Vertisol at Tel Hadya, Syria 
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The pattern of rapidly declining soil moisture availability, and the year to year variation 

at ICRISAT, in the warm sUbtropics of S. Asia, during chickpea growing season are shown 

in Fig. 3a. These are similar to spring chickpea crop season at Tel Hadya, Syria (Fig. 2). In 

the cooler winter cropping conditions, such as Risar in India or the in the western parts of 

Pakistan, the pattern of soil moisture depletion is modified because of relatively low 

temperatures and low evaporation conditions that prevail during crop season. This 

demonstrates the influence of atmospheric components of drought on progressive 

development of soil drought, and has been reported earlier (Saxena, 2003). 
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These results also point out to the limited utility of long-tenn averages ot ramtall or SOlI 
moisture data. These data may be good for making gross comparisons between locations, but 

has no practical value in planning strategies for management of drought in a given target 

area. Detailed analysis of soil moisture profIles, for probability of occurrence of various 

intensities of drought and identification of most frequently occurring (modal) pattern of drought 

are required for developing meaningful technology to minimize drought effects. 

Soil Moisture Simulation Models and GIS Tech nology in Management of 

Drought 

A significant development in agricultural research and development in the last decade is the 

progress made in the application of powerful tools of simulation models, statistical methods, 

and information technology (GIS and GPS, combined with remote sensing). Quantitative 

descriptions of target environment at national and eco-regional scales have been done using 

these methods. For example, lands that remain fallow after harvest of paddy in south Asia 

were identified using satellite imagery for introducing legumes and thereby increasing 

cropping intensity to increase CSFL production and to render sustainability to the production 

system through improved soil health (Subbarao et aZ. 2001). This opens opportunities for 

increasing CSFL production through area expansion, in particular for chickpea that has 

been consistently on decline. A large impact on chickpea production through area expansion 

by introducing chickpea in wheat fallow has been demonstrated in Turkey -an'd in Australia 

(Saxena et aZ. 2000). 

A significant development in practical use of combined application of simulation models 

and GIS has been in mapping soil moisture profIles on spatial and temporal scales for a few 

countries in South Asia (Nepal, Bangladesh, and Indo-gangetic plains ofIndia and Pakistan). 

(Chauhan et az', 2000). This in particular is very significant as it has relevance to CSFL 

crops because quantification of a relatively large proportion of available soil moisture (nearly 

70% or more of the crop season) can be determined at the time of planting in the Central 

and West Asia and North Africa (CWANA) or the monsoon rainfall regions in South Asia. 

It leaves relatively a small proportion of unpredictable soil moisture (20-30%) associated 
\ 

with rainfall that occurs during CSFL crop growing season. Using this technology it is 

relatively simple to compute soil moisture on farmers' scale, irrespective of the size of 

landholding, as it requires simple and a few inputs of rainfall, temperature or evaporation 

and maximum soil moisture holding capacity of the soil (Keig and McAlpine, 1976). 

Appropriate choice of a CSFL crop, or a variety within a CSFL crop, and deployment of 

effective agronomic management technology can then be based on informed judgment. 

Management of Drought 

Both agronomic and genetic management options are available for alleviating or .mitrimi:?ing 
the drought effects. Although the focus in this paper is on the genetic management options 
with reference to chickpea, a few agronomic management practices that have demonstrated 
large and significant impact on increasing rainfed CSFL crop production are highlighted. 
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Ag�onomic Management Options 

A linear relationship between evapotranspiration (ET) with yield as well as above ground 
shoot mass has been reported in many crops, and CSFL are no exception (Figs. 4a & 4b) 
This relationship shows that complete alleviation of drought is feasible with irrigation. 
However, irrigation is not a practical option in most of the rainfed production systems. 

3 Food legurres 3 Food legumes 

Faba bean  

O�----r----.----�--�----� O�----r----r----r---�----� 
150 200 250 3X) 350 400 150 200 250 3X) 350 400 

Seasonal Et (mn) Seasonal Et (rrrn) 

Fig. 4. Relationship between seasonal evapotranspiratiqn (ET mm) and seed yield of some 

cool season food and feed legumes in Syria. (Saxena and Saxena 1993) 

There are other agronomic management options for management of crops under rainfed 
conditions. For example, water-harvesting technologies, with ex-situ conservation of rainfall 
for supplemental or life-saving irrigations (Saxena, 2003); or increased in-situ conservation 
with methods of land management (tillage, mulches, contour bunds and others) and other 
related agronomic practices (Katyal and Vittal, 2003). 

Poor plant stands, below the optimum required, are known to be a major constraint to 
production in rainfed conditions. On farmers' field in India, most frequently occurring plant 
stand range between 13-20 plants m-2 compared to the optimum recommended of 30-35 

plants m-2 (Saxena et al., 2000). Improving plant stands would have a large and significant 
impact on yields of rainfed crops. Seed soaking in nutrient solutions (0.2-0.5% concentration 
of salts) showed an yield increase that ranged from 20-40% in chickpea (Saxena and Yadav, 
1975) Interest in seed soaking treatments with water, termed as seed priming. was revived 
in recent years. It has shown a large and significant impact on increasing yield of different 
crops in rainfed conditions. It proved to be a g09d non monetary technology in improving 
plant stands and yield of chickpea in on-arm trails in Bangladesh (Musa et al., 2001). The 
improvement in plant stands in chickpea ranged from 9-18% and yield from 15-32% 

�computed-tromthe-published-data; Musa et at:, 2001). 

Winter chickpea technology is another example of an effective non-monetary agronomic 
management technology that works in conjunction with varietal improvement for disease 
and cold tolerance. Advancing time of chickpea planting from traditional spring months 
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into winter! Autumn months takes advantage of the rainfall that occurs concurrent with crop 

growth and low evapotranspiration that prevail during winter months. It increased yield by 

60% in Spain (Calcagno et al., 1987), by 70% in Syria (Singh et aL 1997), and from 23-

188% in Greece (Iliadis, 2001). 

Genetic Management Options 

Relative differences in drought tolerance among CSFL crops are quite significant. Chickpea 

seems to be most drought tolerant followed by Lentil among food legumes in field 

experiments in which the response was studied by creating a gradient of drought using line 

source irrigation method (Saxena and Saxena 1993); (Fig. 5). Differences between CSFL 

crops were larger at the drier site of Breda compared to Tel Hadya. Greater responsive to 

increasing availability of irrigation in lentil suggests that this CSFL crop would take better 

advantage in the years when spring season rainfall is good. 
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Fig. 5. Response of cool season food legumes to a gradient of soil moisture applied through 

line-source sprinkler irrigation method on a red Vertisol at two locations in Syria (Saxena 

and Saxena 1993) 

Among feed legumes, lathyrus was most drought-tolerant on the criteria of lowest 

slope combined with high yield at the dry end wi h least available water Yield of rainfed 

lathyrus was similar to lentil. In lathyrus drought has a negative impact on grain quality as 

well. Percent BOAA content increased with increasing severity of drought (Saxena et al. 

1993), suggesting thereby an accumulation of neurotoxin under water limiting conditions. 

These data suggest that appropriate CSFL crop can be made as a frrst strategy to combat 

drought. 

Breeding Strategies 

Both empirical breeding for yield and trait-based or ideotype breeding approaches have been 

used in improving adaptation of CSFL to drought-prone conditions. Empirical breeding for 

yield is more widely practiced across national and international CSFL crop improvement 

programs because it is easy to practice. 
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The most significant impact of empirical breeding in adapting CSFL to drought-prone 
conditions has been the identification of short- and extra-short duration varieties of chickpea 
that escape terminal drought effects. Visual selection for escape in segregating populations is 
also simple to practice. In addition to short duration varieties, a large number of CSFL

i 

varieties with higher yield potential in water limited conditions have been identified with 
empirical selection for yield in rainfed experiments in international and national CSFL crop 
improvement programs (http://www.icarda.org/);http://www.icrisat.org/; Saxena et al. 2000). 

The empirical approach of breeding for high yield though has proved to be effective 
but is not the most efficient way of breeding for drought tolerance. Trait-based or ideotype 
breeding is recognized to be a systematic method for improving and enhancing drought 
tolerance through pyramiding traits or genes However, this strategy is not practiced widely 
as it is industrious and involves active participation of physiologists with breeders; and 
physiologists may or may not be available in many breeding programs. 

/deotype or Trait-Based Breeding for Drought Tolerance 

Field and laboratory methods of screening chickpea germplasm, and criteria for selection 
for advancing segregating populations, essential to implement an ideotype breeding program 
on drought tolerance are available and have been described (Saxena et al., 2002). Genotypic 
differences in drought tolerance within CSFL crops have been reported (Saxena and Saxena, 
1993). Genotypic differences in response to water supply in Kabuli chickpea (Silim and 
Saxena, 2003) and factors affecting yield of rainfed lentil have also been reported (Silim et 
at., 2002). More than 2000 accessions -of chickpea germplasm have been screened and 
Sources of drought tolerance have been identified (Saxena, 2003). 

Drought tolerant chickpea germplasm were characterized for morphological (large 
root system, fewer pinnules, narrow pinnules), physiological and function<il traits, such as, 
rapid dry matter partitioning into seed (Saxena 2003, Table 6). Drought tolerant traits have 
been combined with high yield and fusarium wilt disease resistance through conventional 
breeding methods by making a three way cross, back-cross and selection for drought tolerant 
traits, yield, disease resistance and enhancement of drought tolerance (Saxena et al. 1995, 

Saxena, 2003). 

Drought tolerance is generally considered synonymous to a large and deep root system 
to extract maximum soil moisture. Gregory et al. (1993) reviewed information on root 
characteristics in CSFL crops. Root traits are known to be quantitatively inherited. Recent 
studies on inheritance of root traits in chickpea at ICRISAT showed that additive, and additive 
x additive components account for nearly 33% of the variation in root length density (Gaur 
et aI., 2008). This is encouraging as it shows that breeding for root traits, which was 
considered impractical, seems now feasible. 

Using conventional methods of breeding, and employing non destructive laboratory 
methods of selecting for large root system for advancing generations (Saxena et at., 2002), 

germplasm enhanced for drought tolerance associated with large root system was developed 
in chickpea (Saxena et al., 1995). 
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Table 6. Sources and traits of drought tolerance in chickpea/avoidance 

Germplasm 

ICCV 2, ICCV 96029 

ICC 4958 and ICC 8261 

ICC 5680 

JG-62 and ICC 4958 

None 

None 
None 

None 

Trait 

Early and super 
early to escape 
terminal drought 
Large root system 

Small leaf size, fewer 
pinnules 
Rapid dry partitioning 
of matter into seed 
drought 
C13 discrimination as 
a surrogate trait of WUE 
Osmotic adjustment 
Thick leaves,high 
specific leaf weight 
Relative water content 
RWC 

Observations 

ICRISAT, 2000; Jagdish 
Kumar et al., 1996 

Inheritance shows that additive and 
additive x additive component 
account nearly 33% of variation in 
root size (Gaur et al., 2008) 
Reduces leaf area by 30 to 40% 
(Saxena, 2003) 
Adds on to rugh yield in early 
varieties that escape terminal 

Kashiwagi, 2006 

Morgan, 1991 
Reported in literature 

Reported in literature 

Progress has also been made in identification of molecular markers for larger root 
system. Recombinant Inbred Lines (Ril.s, n = 257) were developed in chickpea by crossing 
ICC 4958, a germplasm accession with large root system as one of the parent, with Annigeri, 
a cultivar that is well-adapted to short duration, peninsular Indian conditions (Serraj et al., 

2004). Using these RILS putative markers linked to root size have been identified (Chandra 
et al., 2004) This suggests that molecular breeding tool may become a reality for incorporation 
of root traits in future. 

A beginning has been made in identifying surrogate traits for transpiration efficiency 
(TE). Preliminary studies in chickpea at ICRISAT showed that a positive correlation exists 
(r = 0.857 p<O.O l )  between carbon discrimination (813C) and transpiration efficiency (TE) 
in ten genotypes with contrasting differences in root-trait (Kashiwagi et al., 2006). Carbon 
discrimination is an indirect measure of TE. Work is now in progress on screening chickpea 
minicore germplasm accessions (n = 211) for TE and 813C to explore opportunity of using 
813C in improving drought tolerance in chickpea. 

There are research reports in literature that drought tolerant genotypes generally 
maintain higher leaf relative water content (RWC) or have thicker leaves (high specific leaf 
weight -SLW), but these traits have not been used as selection criteria either in identifying­
sources of drought tolerance in germplasm or in trait-based breeding programs on drought 
tolerance. Another physiological traits of drought tolerance that received considerable 

attention in cereal crops is osmotic adjustment. In chickpea, there is only one report on 
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osmotic adjustment (Morgan et al., 1997) and it is difficult to evaluate the relevance and 
utility of this trait in breeding programs with the present state of our knowledge. 

Achievements and Future Thrust 

Progress made in quantitative characterization of drought-prone conditions is indeed significant. 
It is now feasible to develop targeted drought management strategies and technologies on a 
sound basis. Future thrust needs to be on clustering diverse drought-prone environments that 
are similar in intensity, duration, and probability of occurrence of drought, at national, regional, 
and global scales. This would be useful to upscale effective technologies and to facilitate 
their widespread adoption. 

The task of improving adaptation of crops to drought-prone conditions is challenging, 
and more so in less researched crops such as CSFL. Progress made in identifying early 
cultivars to escape terminal drought effects in all CSFL crops is commendable. Empirical 
breeding for yield has proved to be effective as many varieties of CSFL that either escape or 
produce high yield under drought-prone conditions were identified and released using this 
method. The thrust on this approach should continue. 

Trait-based or plant type breeding is highly recommended as a targeted approach to 
breed drought tolerant varieties but is not made use of. However, this method does not 
attract adequate research attention even in internatioIl,.al crop research programs despite the 
fact that all essential tools to implement such a program are available at least in chickpea. 
One reason why it is not applied is that it requires a multidisciplinary team effort, though 
highly desired but is not widely practiced. If development of drought tolerant and high 
yielding varieties of CSFL is indeed a high priority objective, trait-based breeding programs 
need to be established for incorporation of drought tolerant traits, using conventional and 
molecular assisted breeding methods. The current knowledge, information and tools already 

/ 

developed in chickpea should be intensively and extensively used and and applied in other 
CSFL crops. Greater emphasis on basic research, with clearly established end use of outputs 
research in applied breeding programs on drought tolerance must be clearly defined. A 
network of multidisciplinary teams of breeders, physiologists, and pathologists would ensure 
development of high yielding, drought tolerant CSFL with tolerance to important diseases 
in short term projects. 

References 

Calcagno, F.G., 1. Gallo, G. Raimonda, Venora and M. latani. 1987. Early planting to increase and stabilIze 
chickpea crop in hot dry environments. ENED La Coltura del Cece in Italia. 130-13 l .  

Chauhan, Y. S., F. T. Bantilan, R. Padrnaja, I. Ahmed and M .  Moinuddin. 2000. Spatial and temporal distribution 
of soil water availability in Bangladesh, Indo-Gangetic plains 01 Inilia, Pakistan and Sri Lanka. Patancheru, 
A.P. 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. 

FAO (Food and Agriculture Organization of the United Nations) 2003. FAO Production Year book 1998. Rome, 
Italy: FAO. 

Gaur, P.M., L. Krishnamurthy and J. Kashiwagi. 2008. Current status and challenges of Improving root traits in 
chickpea (Cicer arietinum L.). Plant Production Science, 11: 3-11. 



676 N. P. Saxena et aI., 

Gregory, P.I., N.P. Saxena, 1. Arihara and 1. Ito. 1994. Root form and function in reation to crop productivity in 
cool season food legumes. p. 809-820. In Muehlbauer, EJ. and Kaiser, w.J. (ed.). Expanding the 
Production on Cool Season Food Legumes Kulwer Academic Publishers, The Netherlands. 

Hanks, R.I., J. Kelter, VP. Rasmussen and GD. Wilson. 1 976. Line source sprinkler for continuous variable 
irrigation-crop production studies. Soil Science Society American Journal, 40: 426-429. 

ICRISAT (International Crops Research Institute for the Semi-Arid Tropics). 2000. Bringing hope to marginal 
environments: chickpea improvement at ICRISAT. Patancheru, AP. 502 324, India: International Crops 
Research Institute for the Semi-Arid Tropics. 

India, 2000. Government of India, Ministry of Agriculture, Department of Agriculture and Cooperation, Directorate 
of Economics and Statistics, Agriculture Statistics Division. 2000. Indian Agriculture in brief. 27th edn. 
New Delhi, India: Government of India, Ministry of Agriculture, Directorate of Economics and Statistics. 
29 1pp. 

Iliadis, C. 2001 .  Evaluation of six chickpea varieties for seed yield under autnmn and spring sowing. J. Agric. 
Sci. Cambridge, 137: 439-444. 

Jagdish Kumar, S.C. Sethi, e. Johansen, T.G Kelley, M.M. Rahman and H.A van Rheenen. 1996. Potential of 
short-duration Chickpea varieties. Indian I. Dryand Agric. Res., 11 : 28-32. 

Kashiwagi, I., L. Krishnamurthy, P.M. Gaur, H.D. Upadhyaya, I.D.S. Panwar, P.S. Basu, O. Ito and S. Tobita. 
2006. Relationships between transpiration efficiency and carbon isotope discrimination in chickpea (c. 
arietinum L.). Int. Chickpea and Pigeonpea Newsl.,  13: 19-21 .  

Katyal, J.C. and K.P.R.Vittal. 2003. Agronomic management strategies to minimize drought effects in grain 
legumes. p. 25-42. In Saxena, M.e. (ed.). Management of Agricultural Drought-Agronomic and Genetic 
options, Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi. 

Keig, G and I. R. McAlpine, 1976. WATBAL: A computer system for the estimation and analysis of soil 
moisture regimes from siruple climatic data. Second edition. Technical Memorandurn 74/4, CSIRO Division 
of Land Use Research, Canberra, Australia 45 pp. 

Morgan, J.M., B. Rodriguez-Maribona and E.J, Knights. 199 1 .  AdaptaTIon to water-deficit in chickpea breeding 
lines by osmoregulation: relationship to grain yields in the field. Field Crops Res., 27: 6 1-70. 

Musa, A M., D. Harris, C. Johansen and C. J. Kumar. 2001. Short duration chickpea to replace fallow after 
aman rice: The role of on-farm seed priming in the High Barind Tract of Bangladesh. Expt. Agric., 37: 
509-521. I 

Parthasarathy, B., A A Munot and D.R. Kothawale. 1 995. 'Monthly and seasonal rainfall series for All-India 
homogeneous regions and meteorological subdivisions: 1871-1994. Contributions from Indian Institute 
of Tropical Meteorolgy, Research Report RR-065, Aug. 1995, Pune 411 008, India. 

Saxena. N.P. 2003. Management of drought in chickpea - A holistic approach. p. 101-122. In Saxena (ed.). 
Management of Agricultural Drought - Agronomic and Genetic options, Oxford & IBH Publishing Co. 
Pvt. Ltd., New Delli. 

Saxena, N.P.,  W. Erskine, Jagdish Kumar and C. Johansen. 2000. Regional opportunities for.cool season food 
legumes for sustainable and enhanced food production, and crop diversification in Indo-Gangetic plain. 
p. 200-218. In Legumes in Rice and Wheat Cropping Systems of the Indo-Gangetic Plain: Constraints 
and Opportunities, ICRISAT, Patancheru 502 324, AP., India. 

Saxena, N.P. and M.C Saxena. 1993. Response of and genotypic differences in Food and Feed legumes to 
drought. p. 172-200. Legume Program, Annual Report for 1993. ICARDA. International Center for 
Agricultural Research in the Dry Area, P.O. Box, 5466, Syria. 



Charactenzation of drought and adaptation of cool season food legumes 677 

Saxena, N P., L. Krishnamurthy and C. Johansen. 2002. Genetic improvement of drought tolerance in chickpea 
at ICRlSAT. p. 128- 137. In Saxena, N. P. and O'Toole (ed.). Field Screening for Drought Tolerance m 
Crop Plants with Emphasis on Rice Proceedings of an International Workshop on Field Screening for 
Drought Tolerance on Rice. 11-14 Dec. 2000, ICRlSAT Patancheru, IndIa, Patancheru 502324, Andhra 
Pradesh, India. 

Saxena, N.P., M.C Saxena, and A. A. EI MoneIm, 1993. Effects of drought on BOA content of seeds of chicklmg. 
p. 203. Legume Program, Annual Report for 1993. ICARDA. International Center for Agricultural Research 
m the Dry Area, P.O. Box, 5466, Syna 

Saxena, N. P., S. C. Sethi, L. Krishnamurthy, C. Johansen and M. P. Haware, 1995. Physiological approaches 
to genetic improvement of drought resistance in chickpea. p. IXA 1-6. In Proc. Inter Drought 95, 
Montpellier, France. Station de Genetique et AmelioratIOn des Plantes, INRA, place Villa, 34060 
Montpellier cedex, France. 

Saxena, N.P. ,  M.C. Saxena and C. Johansen. 1997. ChIckpea Ideotypes for 10' I{ and input conditions. p. 217-
231. In Asthana, A.N. and Masood Ali (ed.). Recent Advances in Pulses Research. IndIan Society of 
Pulses Research and Develop Institute of Pulses Research, Kanpur, India. 

Silim, S.N. and Saxena M.C. 1993. AdaptaTIon of spring-sown chickpea to the Mediterranean basin. 1. Response 
to moisture supply. Field Crops Res., 34: 121-136. 

Silim, S.N. and Saxena, M.C. and Erskine, W. 1993. Adaptation of lentil to the Mediterranean environment. 1. 
Factors affecting yield under rainfed conditions. Expt. Agric., 29: 9-19. 

Singh, K.B., R.S. Malhotra, M.C. Saxena and G. Bejiga. 1997. S�Jleriority of winter sowmg over traditional 
spring sowing of chickpea in the Mediterranean region. Agron. J., 89: 112-1 18. 

Subbarao, G Y., J.Y.D.K. Kumar Rao, J. Kumar, C. Johansen, U.K. Deb, I. Ahmed, M V. Krishna Rao, I. 
Venkatramam, K. R. Hebbr, M.V.R.S. Sal and D. Harris. 2001. Spatial Distribution and Quantification of 
Rice-fallow in South Asia-Potential for Legumes. Patancheru 502 324, Andhra Pradesh, India. International 
Crops Research InsTItute for the SeIni-Arid Tropics, 3 16 pp. 


