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Abstract 

An effort has been made to understand the genetics of fertility restoration (Fr) and linking 

molecular markers with this trait in pigeonpea. A set of 159 A-, B- and R- lines were 

screened for polymorphism with 148 simple sequence repeat (SSR) markers to choose the 

most diverse crossing parents. In total, 41 SSR markers showed polymorphism with 2 to 6 

alleles and 0.01 to 0.81 polymorphism information content value across the lines surveyed. 

Two parental combinations for each early (ICPA 2039 × ICPR 2438 and ICPA 2039 × ICPR 

2447) and late (ICPA 2043 × ICPR 2671 and ICPA 2043 × ICPR 3467) maturing groups 

were identified. Segregation data for male fertility/sterility of BC1F1 and F2 populations 

showed involvement of two duplicate dominant genes in governing male-fertility. Two 

genetic maps based on ICPA 2039 × ICPR 2447 and ICPA 2043 × ICPR 2671 mapping 

populations with 82 and 117 SSR loci, respectively were developed. QTL analysis of the F2 

mapping populations based on ICPA 2039 × ICPR 2447 and ICPA 2043 × ICPR 2671  

detected six (four major and two minor) and four (one major and three minor) QTLs involved 

in the fertility restoration, respectively. 
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I. INTRODUCTION 

 

Pigeonpea [Cajanus cajan (L.) Millspaugh] is a short-lived perennial shrub that is 

traditionally cultivated primarily as an annual crop for its grains in Asia, Africa, Caribbean 

region and Latin America. Considering the vast natural genetic variability available in 

pigeonpea and presence of its wild relatives in the region, it has been postulated that 

pigeonpea originated in India and it is concluded as primary center of origin (van der Maesen 

1980). It is a hardy, widely adapted and drought tolerant crop. There is a large variation in its 

maturity that helps in its wide adaptation including diverse locations and cropping systems. 

Generally, the short-duration (100-140 days) cultivars of pigeonpea are grown as a sole crop, 

while the medium (160-180 days) and long-duration (> 200 days) types are invariably grown 

as intercrop or mixed crop with other short-duration cereals and legumes. Besides its main 

use as dehulled split peas (locally called as dhal), its immature seeds and pods are also 

consumed as fresh vegetable. The broken and damaged seeds are fed to animals, while green 

leaves are used as quality fodder. The dry stems of pigeonpea are used as fuel wood. Apart 

from these uses, perennial type pigeonpea is also grown on sloping mountains for reducing 

soil erosion (Saxena 2006a; 2008).  

 

Globally, pigeonpea is cultivated on 4.68 m ha of land with an annual production of 3.35 m t 

and productivity of 780 kg ha
-1

(www.fao.org). India is the major pigeonpea growing country 

in the world and it accounts for 3.5 m ha area and 2.4 m t of production. The pigeonpea area, 

production and productivity trends in India in the last five decades showed about 2% annual 

increase in its area, but the yield levels have remained low and unchanged at around 700 kg 

ha
-1

 (Saxena et al. 2005; Saxena 2008). In India, Maharashtra stands first with an area of 1.04 



m ha followed by Karnataka (0.53 m ha) and Andhra Pradesh (0.52 m ha). The state of 

Maharashtra also stands first (0.69 m t) in its total production followed by Uttar Pradesh 

(0.40 m t) and Andhra Pradesh (0.21 m t) (www.fao.org). 

 

Efforts have been made in past to increase the average productivity by developing a number 

of high yielding pure varieties and in spite of releasing more than 100 varieties, the yield 

levels remained unchanged (Saxena 2006b). In this scenario, like many cereal crops the use 

of hybrid technology in enhancing productivity has a potential. A stable male-sterility system 

in conjunction with existing natural out-crossing can make it possible. Since in pigeonpea no 

male-sterility system was available at the commencement of hybrid programme, a deliberate 

search for male-sterile genotypes was made at International Crops Research Institute for the 

Semi-Arid Tropics (ICRISAT) in the germplasm that led to the identification of male-sterile 

plants in ICP 1596. In this accession the genetic male-sterility (GMS) was associated with 

translucent anthers and it was controlled by a single recessive gene ms
1 

(Reddy et al. 1978). 

Later, another source of male-sterility, characterized by brown anthers and controlled by non-

allelic single recessive gene ms
2
, was also reported (Saxena et al. 1983). These GMS sources 

were used for developing hybrids and the world’s first pigeonpea hybrid ICPH 8 was released 

by ICRISAT for cultivation in 1991 (Saxena 1992). Since in any pulse crop no commercial 

hybrid is available, the release of ICPH 8 is considered a milestone in the history of legume 

breeding. In spite of high yield ICPH 8 could not become popular with seed producers due to 

large-scale seed production problems. To overcome such constraints, it was found necessary 

to have a cytoplasmic nuclear male sterility (CMS) system. ICRISAT took an initiative using 

wide-hybridization technology. So far seven different cytoplasmic sources have been 

identified for the utilization in practical pigeonpea hybrid breeding programme (KB Saxena 

et al. 2010a). These are (i) Cajanus sericeus from which CMS with A
1 

cytoplasm was 



developed (Saxena et al. 1997), (ii) C. scarabaeoides from which CMS with A
2 

cytoplasm 

was developed (Tikka et al. 1997; Saxena and Kumar 2003), (iii) C. volubilis from which 

CMS with A
3 

cytoplasm (Wanjari et al. 2001), (iv) C. cajanifolius from which the most stable 

CMS with A4
 
cytoplasm was developed (Saxena et al. 2005), (v) Cajanus cajan (L.) Millsp. 

from which A5 cytoplasm was developed, (vi) C. lineatus from which A6 cytoplasm  was 

developed (Saxena et al. unpublished), and (vii) Cajanus platycarpus  from which A7 

cytoplasm was developed (Mallikarjuna et al. 2006). C. cajanifolius is reported to be 

genetically closest to the cultivated pigeonpea and differs only by a solitary gene (De 1974). 

The male-sterile plants in this (developed from C. cajanifolius) material showed no 

morphological deformity and produced plenty of pollen grains in hybrid combinations with 

the restorers. This male-sterile source has been reported to be stable at different locations and 

it is capable of producing high-yielding hybrids. Therefore, it has a great potential for use in 

commercial hybrid pigeonpea programs. It was also observed that the frequency of fertility 

restorers of this CMS source is higher than that of other sources.  

 

Cytoplasmic nuclear male–sterility is a maternally inherited trait that is characterized by inability of 

plants to produce viable and/or functional pollen grains. This trait was first discovered in 1921 in two 

strains of flax (Linum usitatissimum L.) (Bateson and Gairdner 1921). Now this CMS has been 

reported in more than 150 plant species (Kaul 1988). CMS results from interaction of sterile (S) 

cytoplasm with homozygous recessive alleles (fr/fr) of nuclear fertility restorer genes. When a 

dominant nuclear fertility restorer allele (Fr) is present, male fertility is restored in plant irrespective 

of a sterile (S) or normal (N) cytoplasm. Because of their value in hybrid seed production, CMS 

systems have been identified and characterized in many crop species, such as maize (Levings and 

Pring 1976), sorghum (Chen et al. 1995), rice (Tan et al. 1998), rapeseed (Erickson et al. 1986), wheat 

(Harold et al. 1993), sunflower (Rieseberg et al. 1994), rye (Dohmen et al. 1994), common bean 



(Hervieu et al. 1993), tobacco (Nikova et al. 1991), petunia (Edwardson and Warmke 1967), pearl 

millet (Sujata et al. 1994) and more recently in pigeonpea (Saxena et al. 2005). 

 

Molecular markers are reliable diagnostic tools for various plant breeding applications and it allows 

to analyze thousands of genotypes during a breeding season rapidly and effectively. Molecular 

maker techniques provide powerful tools to identify and map the target genes. Molecular markers 

tightly linked to fertility restoration (Fr) loci will have several applications in breeding programmes. 

Molecular markers that are tightly linked to fertility restorer genes have been identified in several 

crops like maize (Sisco 1991; Wise and Schnable 1994), sorghum (Wen et al. 2002), rice (Akagi et al. 

2004), brassica (Delourme et al. 1998), cotton (Zhang and Stewart 2004), petunia (Bentolila et al. 

2002), wheat (Ma and Sorrells 1995; Ahmed et al. 2001), pepper (Wang et al. 2004), coffee 

(Coulibaly et al. 2003), suger beet (Hjerdin-Panagopoulos et al. 2002) and winter rye (Miedaner et al. 

2000). However so far similar linkage analyses have not been reported in pigeonpea because of 

lower level of polymorphism among the cultivated genotypes and absence of ample amount of 

genomics tools such as mapping populations, molecular markers and linkage maps etc. In the past 

only 10 SSR markers were available in pigeonpea (Burns et al. 2001). Therefore, with an objective to 

enrich genomics resources in pigeonpea, SSR markers were developed from genomic enriched 

libraries (Odeny et al. 2007; 2009; RK Saxena et al. 2010a) and Bacterial Artificial Chromosome (BAC) 

libraries (Bohra et al. 2010). As a result > 3000 SSR markers were developed for use in pigeonpea. 

 

The mapping of fertility restoration in various crops have been carried out using different types of 

mapping populations like F2 and/or F2-derived generations, BC and/or BC-derived generations, NILs 

and RILs developed from either A × R crosses or B × R crosses in the later case, the phenotyping has 

been done by testcrosses.  



 

Although knowledge of the genetics of male-sterility and fertility restoration behaviour of the CMS 

systems would have considerable impact on breeding hybrid parents with greater efficiency; the 

current knowledge regarding the genetics of CMS, the linkage between fertility restorer gene(s), if 

any is not well understood in pigeonpea. The identification of molecular markers tightly linked to 

fertility restoration loci would further enhance the breeding efficiency by enabling for the 

classification of inbred lines or germplasm as either maintainer (B- line) or restorer (R- line) without 

field evaluation of their test crosses; and it would also permit their rapid backcross transfer of 

fertility restoration genes in elite inbred lines. 

 

Resolving the genetics of CMS systems and identification of molecular markers that are closely 

linked to fertility restorer genes will represent an important step towards increasing the efficiency of 

breeding cytoplasmically diverse and stable male-sterile lines as well as restorer lines for the 

eventual development of hybrid cultivars. The present study is designed to investigate the genetics 

of A4 CMS system because A4 CMS is already an established system for commercial hybrid 

exploitation at ICRISAT.  

 

Therefore, the study has following objectives: 

 

• Development of the mapping population segregating for fertility restorer 

gene(s) 

• Investigation of the inheritance of fertility restoration in A4 CMS system in 

pigeonpea 



• Identification of molecular markers linked to fertility restorer (Fr) gene(s) of 

the A4 CMS system 

 



 

 II. REVIEW OF LITERATURE 

 

The objective of this review is to provide a brief description of pigeonpea and its male-sterility 

systems. The nature of genetic control of fertility restoration and molecular mapping of fertility 

restorer genes in pigeonpea and other crops are also reviewed.  

 

2.1 Pigeonpea 

Pigeonpea is one of the major grain legumes of tropics and sub-tropics and second most important 

pulse crop of India. It ranks second in area, production and productivity after chickpea. India 

occupies more than 90% of the world’s area and production in pigeonpea.  Since pigeonpea is widely 

grown in Indian sub-continent and has a variety of end usages, special attention needs to be given to 

this crop for enhancing its productivity. The deep roots of pigeonpea can break the hard plough 

pans, to improve soil structure. It can tolerate salinity and alkalinity but not excessive acidity. It has 

special mechanism to use phosphorus from soil to meet its needs (Saxena 2008). Extensive ground 

cover by pigeonpea prevents soil erosion by wind and water and encourages filtration and minimizes 

sedimentation. Being a legume crop, pigeonpea fixes nitrogen and the leaf fall at maturity not only 

adds to the organic matter in the soil but also provides additional nitrogen for the succeeding crop. 

It has been estimated that around 40 kg nitrogen ha-1 added from the leaf fall and nitrogen fixation 

(Kumar Rao et al. 1981).    

 

2.1.1 Botanical characteristics 

Pigeonpea is a perennial shrub with grooved silky branches. The point on the main stem where 

branching starts, the number of secondary branches and the angle at which these are given off also 



vary. The root consists of a deep, strong, woody tap root with well developed lateral roots in the 

superficial layers of the soil. Roots are nodulated by rhizobia, usually by a slow growing Rhizobium 

species. Stem is woody and straited, branching normally begins from sixth to tenth node. In 

spreading types the basal branches arise at an angle of 60 - 70⁰ and in erect type branching takes 

place at angle of 30 - 40⁰. The first two leaves are simple, opposite and caduceus. They are narrowly 

ovate with a chordate to truncate base and an acute to acuminate apex. Subsequent leaves are 

compound, trifoliate and arranged in a two to five types of spiral. Terminal leaflets are mostly 

symmetrical, but the side leaflets are broader than other leaves. Terminal leaflets are usually bigger 

than lateral leaflets. Inflorescence is terminal or axillary racemes carried on long peduncles. 

Peduncles are one to eight cm long. Flowers are predominantly yellow. The calyx tube is 

componulate with glandular hairs. The corolla is zygomorphic and generally yellow in colour. The 

petals are imbricate in the bud. The standard petals are erect and spreading more or less orbicular, 

base clawed, biauriculate with two callosities. Stamens are 10 and diadelphous (9+1). Anthers are 

ellipsoid, dorsifixed and yellow in colour. The ovary is superior with two to nine ovules. The stigma is 

capitate and glandular-papillate. The style is long, filiform, upturned beyond the middle and 

glabrous. Pods are oblong, straight or sickle shaped, green at the younger stage but mature pods 

vary as dark purple, purple and green. Pod length varies from two to eight cm and pod width ranges 

from 0.4 to 1 cm. The seed shape generally varies in four namely oval, pea, square and elongate. The 

oval shape is most common. Seed coat colour ranges from white to black. Germination is hypogeal 

and cotyledons remain under ground. Under suitable conditions the seedlings appear above the 

ground in five to six days. 

 

2.1.2 Pollination behaviour 

Unlike most legume species, pigeonpea flowers are prone to natural out-crossing and thus it is 

considered as a partially cross-pollinated species. Self pollination occurs in the bud before the 



flowers open while cross pollination takes place after the opening of flowers with the help of insects. 

In the young buds stigma lies above the level of anthers and the style is so curved at the tip that the 

stigmatic surface is directed towards the anthers. These are arranged around the style in two groups 

of five in each. As the bud develops, the filaments elongate, bringing the top five anthers dehisce in 

the bud a day before the flowers open. Thus, self pollination takes place. Although the stigma is 

completely covered with the pollen of its own flower, considerable out- crossing occurs in pigeonpea 

(Saxena et al. 1990). The percentage of “selfs” was negligible when flower buds were pollinated with 

foreign pollen without emasculation (Reddy and Mishra 1981). This indicates that foreign pollen has 

an advantage over native pollen in fertilization.  Although anthers dehisce during the bud stage, they 

do not start germinating until the flowers start to wither 24 to 28 hours after dehiscence (Onim 

1981).  It has been found that the receptivity of stigma starts 68 hours before anthesis and continues 

for 20 hours after anthesis (Prasad et al. 1977). These mechanisms provide a sufficient gap for 

foreign pollen to be introduced onto stigma and thus favour out-crossing in pigeonpea.  

2.2 Male-sterility systems  

Male-sterility in plants is a phenomenon where the individuals are unable to reproduce through 

natural means due to their defective male-reproductive parts.  Such plants reproduce only when 

fertile pollen from other plants is placed on the stigmatic surface of the male-sterile flowers through 

any mechanical means such as deliberate manual efforts, wind or insects.  The phenomenon of 

male-sterility was recorded as early as 1763 by Kolreuter. Different kinds of male-sterility systems 

have been reported in plants such as genetic male-sterility (GMS), cytoplasmic-nuclear male-sterility 

(CMS), cytoplasmic-genetic male-sterility (CGMS), transgenic male-sterility and chemical induced 

male-sterility. 

 

Genetic male-sterility is governed by nuclear genes, in most of the cases by single gene. The gene 

causing male sterility are ordinarily recessive (ms) and rarely dominant. A- line (mm) is genetic male 



sterile line. B- line is heterozygous male fertile line (Mm). A- line is maintained by crossing it with B- 

line, the cross produces male sterile and male fertile lines in 1:1 ratio. It has been observed in wheat 

(Athwal et al. 1967), maize (Sjofjan et al. 1966), barley (Hermsen 1965), cotton (Richmond and Kohcl 

1961) and pigeonpea (Saxena et al. 1983).  

 

Cytoplasmic male-sterility is governed by cytoplasmic or plasma genes. Progeny of male-sterile plant 

is always male-sterile, as its cytoplasm is derived from female gamete. The male- sterile line is also 

known as A- line. The line used to maintain male-sterile line is male-fertile, B- line. The A- line is 

maintained by crossing it with B- line (pollinator used as recurrent parent in the backcross program), 

as its nuclear genotype is identical with that of A- line. The restorer (R-) line only can provide fertility 

in F1. It is stable i.e. not influenced by environmental factors. It has been observed in maize, wheat, 

rice, sorghum, cotton and pigeonpea etc.  

 

Cytoplasmic-genetic male-sterility is controlled by both nuclear and cytoplasmic genes. Here, nuclear 

genes for fertility restoration (Fr) are available. The fertility restorer gene is dominant and is found in 

certain lines of the species, or may be transferred from a related species. This gene restores male-

fertility in the male-sterile line, hence it is known as restorer gene. There are commonly two types of 

cytoplasm, normal (F) and sterile (S). There are restorers of fertility (Fr) genes, which are distinct 

from genetic male sterility genes (Fig. 1). The Fr genes do not have their own expression of any kind 

unless sterile cytoplasm is present. It is used in commercial production of hybrid seeds in rice, maize, 

sorghum, pigeonpea and bajra etc. The one with cytoplasmic male-sterility would be included in the 

cytoplasmic genetic system as and when restorer genes for it discovered.  

 



2.2.1 Genetic male-sterility (GMS) systems in pigeonpea 

All the GMS systems reported so far in pigeonpea have come from spontaneous mutations.  This 

happens when a male-fertility controlling dominant (Fr) nuclear gene mutates to its recessive form 

under the influence of some natural forces and with subsequent natural selfing of heterozygote 

(Frfr) the male-sterile genotypes (frfr) appear within the population. Such genotypes, if not cross-

pollinated by fertile pollen, are eliminated from its parental population.  In comparison to highly self-

pollinated crops, the elimination of frfr genotypes is gradual in out-crossed species. Therefore, such 

elimination processes depend on the rate of natural out-crossing in a given population.  In 

comparison to recessive genes, the frequency of dominant male-sterile genes in nature is very low 

(Kaul 1988).  There are many instances where progenies of some inter-specific and inter-generic 

crosses have also produced male-sterile segregants.  In genus Cajanus also, a number of such wide 

crosses have produced male-sterile segregants.  These cases, however, were hardly pursued further 

(Reddy et al. 1990; Dundas 1990) for use in breeding programs. 

 

The male-sterile mutants have also been reported in some mutagen-induced populations.  In most 

cases such mutants could not be maintained either due to their tight association with female-

sterility or reproductive abnormalities such as chromosome addition or deletion (Dundas 1990).  If 

for some reason, a chromosome with male-fertility (Fr) gene is lost then male-sterility trait with frfr 

alleles will express but such plants hardly reach their maturity due to poor vigor and abnormal 

growth.  In contrast, if the male-sterile mutant gene is dominant then it is eliminated rapidly from 

the population, particularly in a self-pollinated species. Therefore, most spontaneous male-sterile 

mutants that have been detected so far, are recessive. Relatively high occurrence of non-allelic 

recessive male-sterility genes in suggests that the frequency of such natural mutations is quite high 

and their deletion from the parental populations is rather slow. The male-sterility in legumes that is 

controlled by recessive genes has reported in broad bean [Vicia faba (L.)], grass pea [Lathyrus sativus 



(L.)], groundnut [Arachis hypogea (L.)], sunhemp [Crotalaria juncea (L.)], soybean [Glycine max (L.) 

Merr.], pea [Pisum sativum (L.)] white clover [Trifolium repens (L.)], common bean [Phaseolus 

vulgaris (L.)], alfalfa [Medicao sativa (L.) spp. sativa] etc.; while dominant genetic control of male-

sterility was reported in Trifolium repens (Kaul 1988). The first spontaneous mutant could not be 

maintained because of its tight linkage with female-sterility (Deshmukh 1959). A deliberate search 

for male-sterility in 7,216 germplasm accessions sown at ICRISAT in 1974 provided 75 single plants 

which remained green till the end of season and had a few pods, suggesting absence of self-

fertilization of flowers to affect normal pod setting (Reddy et al. 1977).  These selections were 

female-fertile and had different types of anthers with variable fertility levels.  Among these, six 

plants with fully grown translucent anthers and no pollen grains were selected for further studies 

and use in hybrid breeding programs. 

 

Dundas et al. (1982) reported a male-sterile mutant within a photo-insensitive pigeonpea breeding 

line.  At about the same time yet another genetic male-sterile spontaneous mutant was selected in a 

breeding line B15B (Saxena et al. 1983).  This mutant was characterized by brown coloured arrow-

head shape anthers. Another recessive male-sterile mutant in a population of cultivar UPAS 120 had 

translucent anthers, sparse podding and delayed flowering (Verulkar and Singh 1997).   

 

A genetic male-sterile mutant that was selected from an inbred population of cultivar ICPL 85010 

was characterized by small light yellow anthers with no pollen grains (Saxena and Kumar 2001). 

Perhaps the similar male-sterile gene was linked to a characteristic of obcordate leaves 

(Venkateswarlu et al. 1981; Pandey et al. 1994).  In a segregating population of cross between 

obcordate leaf genotype and cultivar HY 3C, a total of 13 obcordate leaf type plants were found with 

60 - 100% pollen sterility (Venkateswarlu et al. 1981).  The authors postulated a linkage between 



male-sterility and obcordate leaf trait.  They further observed that all the male-sterile plants had 

modified keel that exposed the flowers for out-crossing.  Partial male-sterile plants with sparse 

pollen production in an F2 population of cross MS 4A × QPL-1 showed pollen-sterility in a range of 40 

– 80% and there was no intra-plant variation for pollen-sterility.  The pod set on these plants varied 

in accordance with their pollen-fertility (Saxena et al. 1981).  The anthers of the identified 11 male-

sterile plants in a population of cross 0DT × ICPL 86 were small, white (later turned brown) and non-

dehiscent (Gupta and Faris 1983).  Authors also reported another mutant with non-dehiscent type of 

male-sterility where the pollen grains were released only when the mature anthers were physically 

ruptured.  The pollen thus obtained was 70 – 80% sterile.  These mutants were not studied further. 

 

2.2.2 Cytoplasmic-nuclear male-sterility (CMS) systems in pigeonpea 

The CMS systems can arise either through spontaneous mutation, intra-specific crosses, inter-

specific crosses, or inter-generic crosses.  The wide hybridization programs such as inter-specific and 

inter-generic crosses have been found to produce a greater proportion (about 75%) of CMS systems 

(Kaul 1988). Scanning of literature on this subject shows that in the dicots most CMS cases have 

arisen through inter-specific crosses, while in monocots it is the inter-generic hybrids that have 

yielded most CMS sources (Kaul 1988).  Since the expression of CMS requires two different genetic 

systems, one each in cytoplasm and nucleus, to come together in a single cell; the frequency of 

spontaneously occurring mutants simultaneously in both the entities (i.e., nucleus and cytoplasm) is 

quite low.  On the contrary in GMS system, only a single nuclear mutation can lead to the 

development of male-sterility. Unlike GMS controlling genes, the influence of environment 

(temperature and/or photoperiod) on CMS controlling nuclear fr and Fr genes is more prominent.  

This may lead to instability of the expression of male-sterility and its fertility restoration.  Such 

unstable expressions are also sometimes influenced by the genetic background of an individual. 

 



First attempt to breed a CMS line in pigeonpea was done by crossing a cultivated type (as female) 

with pollen from two different wild relatives, Atylosia sericea and A. scarabaeoids (Reddy and Faris 

1981).  The fertile F1 plants of these two crosses were used as male parent to produce backcrosses 

with wild species as female parents.  The resultant BC1F1 plants were male fertile while their BC1F2 

progenies segregated for male-sterility and fertility.  The maternally inherited male-sterility in these 

segregants was found to be tightly linked with various floral abnormalities such as petaloid anthers, 

free stamen or heterostyly.  They also reported that these segregants had different degrees of 

female-sterility and could never be stabilized as pure lines therefore, could not be used in hybrid 

breeding programs. In order to develop CMS through chemical and physical mutagens, a GMS line 

with ms2 gene, when treated with 0.025% sodium azide or 500 mg kg-1 of streptomycin sulphate, 

showed mutational changes and expressed male-sterility that was maternally inherited 

(Ariyanayagam et al. 1993).  This male-sterility was maintained only by heterozygote sibs that raised 

doubts about its nature and use in hybrid breeding program.  The proportion of male-sterile plants in 

these mutagenic progenies varied a lot and no good male-sterile line could be derived subsequently, 

a few CMS systems were developed in pigeonpea and these are briefly described below: 

 

An accession of Cajanus sericeus (A1) was crossed with an advanced breeding line of pigeonpea.  The 

F1 progeny of this cross showed partial male-sterility but in F2 generation a few segregants expressed 

100% pollen-sterility (Ariyanayagam et al. 1993).  In the subsequent backcross generations, for some 

reasons, these male-sterile plants could not maintain their high levels of male-sterility. In addition, it 

was also observed that some male-sterile plants reverted back to male-fertility when local 

environment, particularly temperatures and photoperiods changed. To stabilize the male-sterile 

trait, besides conventional backcrossing, multiple cross genome transfer methodology was also 

implemented (Ariyanayagam et al. 1995).  Both these approaches yielded certain proportion of 

male-sterile segregants, but the backcross derivatives were also found to be female-sterile and failed 



to set any pod.  The progenies derived from the genome transfer scheme also produced a few male-

sterile segregants which were maintained by other pigeonpea inbred lines.  These male-sterile 

segregants led to the development of male-sterile lines such as CMS 85010A, CMS 88034A and CMS 

13091A (K. B. Saxena, unpublished). From these populations, male-sterile lines that revert back to 

full male-fertility under low temperature and shorter days and again to full male-sterility under high 

temperature and longer days were selected (Saxena 2006a).  

 

In an attempt to develop a stable CMS line, Cajanus scarabaeoids (A2) as female parent crossed with 

a pigeonpea line ICPL 85030.  The F1 plants were partial male-sterile.  In the backcross progenies 

some promising male-sterile plants were identified but no stable CMS line could be bred 

(Ariyanayagam et al. 1993).  The development of a CMS line by crossing a cultivated type with its 

wild relative C. scarabaeoides as a female parent was also reported.  The resultant F1 plant was 

partial male-sterile and in F2 a number of male-sterile segregants were recovered. Subsequently, a 

perfect male-sterile maintainer line ICPL 288 was also identified.  The fertility restoration of this 

male-sterile line was also found among fertile F2 segregants (Tikka et al. 1997).  This male-sterile 

source was used in developing experimental hybrids in Gujarat state of India. C. scarabaeoides as a 

female parent was also crossed with four pigeonpea cultivars. Among F1s, a progeny derived from 

cross C. scarabaeoides × ICPL 88039 was completely male-sterile.  To stabilize this source of male-

sterility, backcrosses were made with ICPL 88039 as recurrent parent and all the plants in BC1F1 

through BC6 F1 generations were male-sterile (Saxena and Kumar 2003).  They also reported eight 

fertility restorers and six male-sterility maintainers.  This allowed breeding of genetically diverse 

hybrids for different cropping systems.  The fertility restoration in hybrids involving this CMS was not 

perfect and a large variation (50 – 95%) was observed for pollen fertility.  This variation could be due 

to differential inter-genomic or cytoplasmic-genomic interactions (Saxena 2008). Differences arising 



due to genes, can also yield inconsistent expressions of both male-sterility and fertility restoration 

(Abdalla and Hermsen 1972). 

 

A number of male-sterile segregants with maternal inheritance from a cross involving Cajanus 

volubilis (A3) and a cultivated type were selected (Wanjari et al. 2001).  These selections, however, 

could not be used in any hybrid breeding program due to lack of fertility restoring genotypes. 

 

In an attempt to develop CMS line from Cajanus cajanifolius (A4) as male parent with a GMS line as 

female parent, the progenies from this cross were male-fertile and could not be used further 

(Rathnaswamy et al. 1999).  Whereas, ICPW 29 an accession of C. cajanifolius, a wild relative of 

pigeonpea, as female parent crossed with pigeonpea line ICPL 28 (Saxena et al. 2005). C. cajanifolius 

resembles with cultivated types in most morphological traits and differs by only a solitary gene (De 

1974).  The inter-specific F1 hybrid plants grown in 2001 expressed variable extents of pollen-sterility 

and one plant with 60% pollen-sterility was backcrossed to ICPL 28.  This was followed by six 

backcrosses to substitute the nuclear genome of wild species with that of the cultivated type.  This 

substitution led to enhanced male-sterility that was fully maintained by its recurrent pigeonpea 

parent.  This male-sterile source is the best among those identified so far and it was designated as 

ICPA 2039.  It was found to be highly stable male-sterile line across environments and years and 

never showed any morphological deformity (Saxena 2008, Dalvi et al. 2008a). To develop diverse 

pigeonpea hybrids this male-sterile source has now been transferred into a number of genetic 

backgrounds. 

 

A GMS line crossed with C. acutifolius as male parent and all the F1 plants were male-fertile 

(Rathnaswamy et al. 1999).  While using C. acutifolius as a female parent in a cross with pigeonpea 



accession Cajanus cajan (A5) ICP 1140, only 1.5% pod set was observed. The use of gibberellic acid 

(@ 50 mgL-1) in backcrosses enhanced the pod set to 6% but the seeds, thus obtained, were under 

developed and failed to germinate (Mallikarjuna and Saxena 2002).  To overcome this problem, the 

developing embryos were rescued and successfully cultured in artificial media.  Encouraged with the 

success of embryo rescue technology, authors again crossed six pigeonpea cultivars as female parent 

with two accessions (ICPW 15613, ICPW 15605) of C. acutifolius.  The F1s involving pigeonpea lines 

ICPL 85010, ICPL 85030, and ICPL 88014 produced a few male-steriles with some plants exhibiting up 

to 100% pollen-sterility.  The anthers of these male-sterile plants were shrunken and pale yellow in 

colour.  Such male-steriles maintained their sterility when crossed to their respective wild relative 

accessions. Most of the cultivated accessions when crossed to these male-steriles restored the male-

fertility of the plants.  An exception to this was HPL 24, where F1 progeny produced both male-sterile 

and fertile plants.  This suggests the presence of both fr and Fr genes in its nuclear genome 

(Mallikarjuna and Saxena 2005).  Further backcrossing with this line and selection for pollen-sterility 

helped in stabilizing the male-sterility. Interestingly, HPL 24 was bred from a cross involving C. 

sericeus, another wild species (Saxena et al. 2010c), and this suggested that besides C. acutifolius the 

fr genes may also be present in C. sericeus.  

 

In 2002 rainy season, a naturally out-crossed partial male-sterile plant was observed in an open-

pollinated population of Cajanus lineatus (A6) (K.B. Saxena, unpublished) and the morphology of this 

plant was very different from rest of the population.  The vegetative cuttings of this plant were 

raised in a glasshouse and out of five cuttings planted only two survived and the plants were found 

to be male-sterile.  These were crossed with pigeonpea line ICPL 99044 and produced normal pod 

set. The F1 plants grown in 2004 season were partial male-sterile.  Back-crosses (BC1F1) were made 

with ICPL 99044 and out of 20 plants grown five were partial male- sterile.  In BC4F1 generation 167 

plants were examined for pollen viability and it ranged from 92 – 100%.  The plants showing 100% 



male-sterility were crossed with four pigeonpea lines in 2008 season.  At present this CMS source is 

in BC5F1 stage with perfect male-sterility maintenance system available. 

 

Cajanus platycarpus (A7), a wild species in the tertiary gene pool of pigeonpea, is cross incompatible 

with cultivated types and, therefore, hormone- aided pollinations coupled with embryo rescue 

techniques were employed to obtain viable F1 and BC1F1 progenies (Mallikarjuna et al. 2006). In BC2F1 

generation a progeny (BC2-E) with low pollen fertility was selected. Within this progeny two plants 

with 100% pollen sterility were selected and crossed with a set of pigeonpea cultivars.  The 

examination of their F1s showed that the hybrid involving cultivar ICPL 85010 maintained complete 

male-sterility, whereas cultivars ICPL 88014 and ICP 14444 restored male-fertility. The detailed 

studies on this new CMS source are in progress.  

 

2.2.3 Cytological studies on male-sterile genotypes 

A number of bio-chemical changes are responsible for the development of pollen mother cell (PMC) 

from the meristematic tissues.  Further, it is followed by a series of developmental changes which 

lead to the mature pollen grains.  In the determination of male-sterility in crop plants, the anther 

wall and in particular the tapetum, plays an important role of producing and transporting critical 

enzymes, hormones and nutrients that are essential for the growth of PMCs and any abnormality in 

the anther wall development leads to the production of defective pollen grains. During the process 

of meiosis any abnormality in the supply of nutrients generally leads to aberrant outputs such as 

large and more number of PMCs (Vasil 1967). Fusion of cells into in to multi-nuclear syncytia or 

abnormal vacuolization or degeneration of the tapetal layer leads to the abnormal development and 

separation of PMCs. The normal development of PMCs in general is arrested either pre-meiotic, 

during meiosis, or in post-meiotic stages of growth.  



 

The cytological studies on the fertile and sterile siblings showed that the microsporogenesis in the 

two genotypes was similar up to tetrad formation stage.  The differences between the two emerged 

when the tetrads in the male-sterile plants failed to be released and leading to degeneration of 

tetrads through vacuolation. The tapetum continued to persist even when the tetrads degenerated. 

On the contrary, in the fertile plants, tapetum began to degenerate during the formation of tetrad 

and disappeared during male gametophyte development. In case of male-sterility the callose is 

synthesized due to the presence of high concentrations of cellular calcium (Worral et al. 1992).  

Further studies conducted on the persistence of callose and tapetum in the ms1 type of male- 

sterility concluded the accumulation of callose and persistent tapetum during post-meiotic stages 

(Ketti et al. 1994). They further deliberated that a gradual reduction in the concentration of 

polysaccharides and RNA proteins in the tetrads were responsible for disorientation of cytoplasm 

leading to malnutrition and poor tetrad growth.  The degeneration of microspores occurred at the 

tetrad stage through rupturing of nuclear membrane and resulting in to collapse of the outer wall 

(Dundas et al. 1981). While reporting a new source of GMS, in the male-sterile plants the PMCs 

count was almost double than their fertile counterparts (Dundas et al. 1982).  The abnormal 

enlargement of PMCs and their number was associated with the failure of adjacent PMC walls to 

separate. The breakdown of microsporogensis of this male-sterile occurred at prophase I.  The 

delayed and incomplete anther wall development appeared to be responsible for PMC 

degeneration. Similar observations were also reported in cotton (Murthi and Weaver 1974).  In the 

male-sterile plants, however, PMC degeneration occurred at young tetrad stage with the rupturing 

of nuclear membrane and collapse of outer cell walls.  The vacuoles developed in the tapetal cells 

metaphase I and by tetrad stage the entire cell gets vacuolated.  In this case, the precocious 

degeneration of tapetum ending its role as a nutrient source for PMCs (Echlin 1971) could be 

responsible for tetrad breakdown.  Similar results were also reported in Hordeum vulgare (Kaul and 



Singh 1966); Sorghum (Overman and Warmke 1972) and Pennisitum typhoides (Reddy and Reddi 

1974). 

 

In all the three GMS systems the blockages in the microsporogenesis occured at different stages of 

development which also determined their anther morphology.  Studies showed that if an individual 

plant carries two male-sterility inducing genes, then the one which expresses first and hinders the 

normal process of microsporogenesis, determines the phenotype of the anthers and the other genes 

become redundant as far as their expression is concerned (Saxena et al. 1983; Saxena and Kumar 

2001).  Cytological examination of sparse pollen producing flowers revealed that their tetrad 

formation was normal but soon after this, only a portion of microscopores collapsed.  Further, the 

locules of anthers within individual flowers varied in the proportions of microspore degeneration 

(Saxena et al. 1981).  The cause of this partial breakdown of microsporogeneis could not be 

ascertained. Ariyanayagam et al. (1995) working with a C. sericeus derived CMS lines, reported that 

meiosis in the male-sterile plants proceeded normally until the release of microspores and this was 

followed by vacuolation and degeneration of protoplasm.  Cytological investigations with C. 

acutifolius derived CMS showed that the process of meiosis in the male-sterile plants proceeded 

normally till the onset of tetrad stage but their further growth was arrested and the tetrads 

remained inside the tapetum layer.  This resulted in the loss of cell contents and collapse of the 

process of microsporogenesis (Mallikarjuna and Saxena 2005). 

 

A detailed study identified two different kinds of male-sterile plants in a cross involving a cultivated 

pigeonpea as female parent and C. acutifolius as male parent (Mallikarjuna and Kalpana 2004).  

These two male-sterile variants had different anther morphology.  In Type I, the anthers were 

shrivelled with brown colour, while in Type II male-steriles, the plants had pale white shrivelled 



anthers. These variants also differed in their microsporogenesis.  The PMCs of Type I male-sterile 

plants remained in prophase stage and subsequent processes of meiosis were arrested. The PMCs 

enlarged normally and once nucleus grew, further cell division did not take place.  In these plants 

persistence of tapetum was also observed.  In Type II plants, the anthers were translucent and 

microsporogenesis continued up to tetrad stage but the tetrads failed to separate and produce 

pollen grains.  This was followed by collapse of anther development process, a sort of post-meiotic 

arrest of microspore development.  Cytogenetic studies of A4 CMS revealed an early breakdown of 

tapetum (Fig. 2). In these plants the anthers were under- developed and the male-sterility expressed 

at tetrad stage, where the tetrad wall failed to degenerate and resulted in the degeneration of its 

contents (Dalvi et al. 2008b).   

 

It can be concluded that two primary reasons are responsible to produce GMS in pigeonpea.  The 

first process is characterized by the development of brown and shrivelled anthers followed by pre-

meiotic breakdown of PMCs. In the other process the anthers are pale white or translucent 

accompanied by post-meiotic breakdown of PMCs.   

It has been widely assumed that the CMS trait is expressed due to impairment of pollen formation 

processes that result from interaction of the nuclear and the mitochondrial genomes. Pollen 

maturation requires great amounts of energy (Zhao et al. 2000).  This is evident by the many fold 

increase in the number of mitochondria in the tapetal tissue and PMCs during pollen development.  

In sugar beet and wheat, low temperatures cause CMS like microspore disturbances as microspores 

and tapetum cells are more sensitive than the female reproductive organs and oxidative processes 

are responsible for this development (Kuranouchi et al. 2000).  It is also believed that the 

mitochondria have a major role to play in the expression of CMS trait.  In pigeonpea there is only 

one report (Sivaramakrishnan et al. 2002) that deals with the assessment of mitochondrial genome 

of the CMS plants. 



 

2.3 Inheritance of fertility restorer genes 

Fertility restoration systems can be classified as being either sporophytic or gametophytic: 

sporophytic systems act prior to meiosis in saprophytic tissues while gametophytic systems act post 

meiosis in microspores or pollen grains. These differences lead to very distinct transmission patterns. 

A diploid plant containing heterozygous restorer gene will produce two classes of pollen grains: one 

that carry restorer allele for the gene and second do not. In the case of a sporophytic restorer, both 

genotypic classes can restore fertility in hybrids.  

 

2.3.1 Population genetics of restorers 

Information regarding allelic frequencies of restorer genes can prove beneficial in order to 

understand their evolutionary origins and to search for new genes. For example, although the Rf1 

restorer allele, which confers pollen fertility in T-cytoplasm of maize, is quite rare among maize 

inbred lines, the restorer allele of Rf2 gene for this cytoplasm is widely present in maize inbred lines, 

even though most of these lines have never been exposed to the T- cytoplasm. This indicates that 

restorer alleles of Rf2 gene have been maintained during evolution by selection and must therefore 

have a important function independent of pollen fertility restoration (Schnable and Wise 1994). The 

ogu, pol and nap cytoplasms of B.napus induce male-sterility in all, some and only a few cultivars 

respectively (Jean et al. 1997). Hence it can be inferred that the ogu restorer (Rfo) is absent from 

B.napus germplasm, pol restorers are rare and nap restorers are more abundant.  

 

In pigeonpea A4 CMS system is already established and commercially exploited due to high 

frequency of maintainers and restorers as compared to other male sterility systems detected 

(K.B.Saxena pers. comm.).  



 

 2.3.2 Mechanisms of fertility restoration 

The mechanisms of fertility restoration are very diverse; the possible mechanisms of male-sterility 

maintenance male-fertility restoration have been described in several reviews (Schnable and Wise 

1998; Budar et al. 2003; Hanson and Bentolila 2004). Fertility restorer genes could overcome male 

sterility through the following mechanisms: 

 

I) Physical loss of CMS associated genes from mitochondria (He et al. 1995).  

II) Processing of CMS associated transcripts (Wise et al. 1999). 

III) Post transcriptional RNA editing. For example, editing might change the length of 

ORFs related to CMS by creating new start and stop codons, because most common 

editing in plant mitochondria is C to U. 

 

2.3.3 Number of genes controlling fertility restoration 

The diversity in restoration systems extends to the number of genes involved in restoration process. 

In majority of male-sterility systems one or two major restorer loci confers complete male fertility. In 

some male sterility systems, full male fertility restoration requires involvement of a number of 

genes, many of which provide only small effects. CMS system male fertility restoration is by 

dominant nuclear genes in commercially exploitable systems of cotton and cereals, in many case few 

in number. Precise identification of genetic control of sterility maintenance and fertility restoration 

in CMS systems is confounded due to complicated nuclear-cytoplasmic interactions with the effect 

of minor genes and environmental factors.  

 



2.3.4 Inheritance of fertility restorer genes in pigeonpea 

In pigeonpea GMS system with one exception, all the sources of GMS are controlled by a single 

recessive gene pair (Reddy et al. 1978; Saxena et al. 1983).  They also reported that during 

microsporogenesis the ms2 is expressed at an earlier stage than that of ms1 gene. The male-sterility 

reported within ICPL 85010 population was also controlled by a single recessive gene (ms3) and it 

was also non-allelic to ms1 and ms2 genes (Saxena and Kumar 2001).  They further reported that all 

the three male-sterility genes were independent and when present within a plant system, expressed 

independently at different stages of microsporogenesis.   The first to express is ms2, followed by ms3, 

and finally ms1 gene. The translucent type of GMS was also controlled by a single recessive gene but 

its allelic relationship with ms1 which also has translucent anthers was not studied (Verulkar and 

Singh 1997).   

 

Among various CMS sources reported, the genetics has been reported for only A4 type of CMS. 

Genetics of fertility restoration was studied in five crosses.  Of these, in three crosses a single 

dominant gene, while in one cross two dominant genes with duplicate gene action restored the 

fertility.  In the fifth cross also two dominant genes with complimentary action governed the fertility. 

Further investigation into the origin of fertility restoring lines showed that these Fr genes were 

randomly distributed in the germplasm (Dalvi et al. 2008a).   

 

2.4 Molecular mapping of fertility restorer genes 

There are no reports available on the molecular mapping of fertility restoration genes in pigeonpea 

and therefore examples have been taken from other crops. The marker systems employed were 

mostly RAPD, RFLP, AFLP, STS markers and in some cases the identified RFLP or RAPD markers were 

converted to PCR-based markers for further use. Most of the studies involved bulk segregant 



analysis (BSA) approach based on making male-sterile or male-fertile bulks for identifying linked 

markers and then performing the genotyping on a sub-set of the whole population with the 

identified linked markers with the aim to create a localized linkage map of the Fr loci. A few studies 

reported a QTL mapping approach for identifying QTL linked to fertility restoration. Fr-linked 

molecular markers have been used in marker-assisted selection in crops like Brassica (Hansen et al. 

1997) and to identify restorer lines having the Rf1 gene in rice. A few crops have seen much 

advanced work in order to understand the mechanisms underlying fertility restoration as evidenced 

by cloning of four restorer genes, Rf2 of maize (Cui et al. 1996), Rf of petunia (Bentolila et al. 2002), 

Rfk1 (Rfo) of raddish (Brown et al. 2003) and Rf1 of rice (Komori et al. 2004). Fertility restoration 

patterns of F1 hybrids developed by crossing male-sterile lines and  inbred fertility restorers have 

been conventionally used for the classification of CMS sources in pearl millet (Burton and Athwal 

1967), maize (Laughnan and Gabay-Laughnan 1983), sorghum (Schertz et al. 1989), sunflower (Miller 

1996) and barley (Ahokas 1982).  

 

Male-sterile cytoplasms have also been characterized through mtDNA restriction 

endonuclease profiles in maize (Levings and Pring 1976) and sorghum (Pring et al. 1982) and 

many other crops. Rajeshwari et al. (1994) characterized diverse pearl millet cytoplasms by 

Southern blot hybridization using maize mtDNA probes. Liu et al. (2002) developed a 

polymerase chain reaction (PCR) assay for discrimination of male-sterile cytoplasms in maize 

by designing PCR primers specific to the mtDNA sequences of three major classes of maize 

CMS cytoplasms: T, C and S.  



III. MATERIALS AND METHODS 

 

3.1 Plant material  

With an objective of developing mapping populations segregating for fertility restoration genes a 

SSR based diversity study was conducted. A total of 159 pigeonpea lines including 37 A- (male 

sterile), 38 B- (maintainer) and 84 R- (restorer) lines that are in use in hybrid breeding programme at 

ICRISAT were used for molecular characterization (Table 1). A- lines used in present study 

represented different backcross generations (BC2 to BC9)  while all the B- and R- lines used 

represented recombinant inbred lines.   

 

3.2 Development of mapping populations 

The present investigation comprised of two cytoplasmic-genic male-sterile (CMS) lines of 

pigeonpea, ICPA 2039 and ICPA 2043 with A4
 
cytoplasm, derived from Cajanus cajanifolius 

(Saxena et al. 2005) and four fertility restorer lines ICPR 2432, ICPR 2447, ICPR 2671 and 

ICPR 3467. These lines were selected on the basis of genetic variation, diverse 

morphological traits and ability to restore fertility. 

 

To study inheritance of fertility restoring genes in pigeonpea, male-sterile lines ICPA 2039 and ICPA 

2043 were crossed to four known fertility restorers of different maturity groups by following the 

crossing scheme as illustrated in Figure 3. The early maturing A- line (ICPA 2039) was crossed to ICPR 

2438 and ICPR 2447; while another male-sterile line (ICPA 2043) was crossed with two late maturing 

restorer lines ICPR 2671 and ICPR 3467. 



  

3.2.1 Testing of parents, F
1
, F

2
 and test crosses  

The inheritance of fertility restoration was studied in F1, F2 and BC1F1 generations (Fig. 3).  In 

addition, in the late maturing cross 53 fertile F3 progenies were also assessed for segregation.  In the 

early maturing materials backcross seed could not be produced due to severe pod damage caused 

by borers (Maruca testulalis Geyer.).   

 

Two rows (4m) with inter-row spacing 75cm were used for planting of parents and hybrids (F
1
). 

Population of ~230 plants was maintained for each F
2 

and ~160 for each test cross.  

 

3.3 Phenotyping for pollen fertility 

For assessing pollen fertility, 10 fully grown but un-opened floral buds were harvested from different 

parts of the plants between 9 and 11 A.M. to prepare slides for examination. Anthers from the 

sampled flowers were removed and squashed in 1% aceto-carmine solution. In each slide three 

different microscopic fields were studied under light microscope.  The pollen grains were considered 

fertile if they were stained with dye and counts for fertile/sterile pollen grains were made. Within 

each population discrimination among the plants for male-fertility restorers and non-restorers was 

done on the basis of their pollen fertility data.  Plants with ≥80% stained pollen grains were classified 

as male-fertile; while those with ≤10% pollen fertility were identified as male-steriles.  The data, thus 

obtained, were subjected to chi-square analyses for testing their goodness of fit to different 

expected phenotypic ratios.  

 



3.3.1 Goodness of fit 

The goodness of fit in F
2 

and test cross ratios were tested using a chi-square test (Panse and 

Sukhatme 1985). The confirmation of ratios obtained in F
2 

segregating population was done by the 

ratios obtained in test crosses. When the calculated value of χ
2 

is less than the table value the fit is 

said to be good or the assumed ratio is correct. Conversely when the calculated value is more than 

the table value, the fit is not good and the assumed ratio is not correct.  

 

3.4 Diversity analysis of A-, B- and R- lines and genotyping of mapping populations 

 

3.4.1 DNA extraction 

Genomic DNA was isolated from two to three young leaves of pigeonpea genotypes and F2 progenies 

of mapping populations by a Cetyl trimethyl ammonium bromide procedure mentioned  in Cuc et al. 

(2008).  

 

3.4.1.1 Sample preparation 

• Leaves were harvested from 15 days old seedlings. 

• Leaf tissue of 70-100mg was placed in 12 x 8-well strip tube with strip cap (Marsh 

Biomarket, USA) in a 96 deep-well plate together with two 4mm stainless steel 

grinding balls (Spex CertiPrep, USA). 

 



3.4.1.2 CTAB extraction 

• Each sample was mixed with 450µl of preheated (65ºC) extraction buffer (100 mM 

Tris-HCl (pH-8, 1.4 M NaCl, 20mM EDTA, CTAB (2-3%w/v), β- mercaptoethanol) 

was added to each sample and secured with eight strip caps. 

• Samples were processed in a Geno Grinder 2000 (Spex CertiPrep, USA), following 

the manufacturers instructions, at 500 strokes/min for 5 times at 2 min interval. 

• Plate was fitted into locking device and incubated at 65ºC for 10 min with shaking at 

periodical intervals. 

 

3.4.1.3 Solvent extraction 

• Each of the sample were mixed with 450µl of chloroform-isoamylalcohol (24:1) by 

inverting twice. 

• Plate was centrifuged at 5500 rpm for 10 min. The aqueous layer (300µl) is 

transferred to fresh strip tubes (Marsh Biomarket, USA). 

 

3.4.1.4 Initial DNA precipitation 

• 0.7 vol (210μl) of isopropanol (stored at –20ºC) was added to each sample and    

• Inverted once to mix. 

• Plate was centrifuged at 5000 rpm for 15 min. 

• Supernatant was decanted from each sample and pellet was air dried for 20 min. 

 



 3.4.1.5 RNase treatment 

200µl low salt TE [10 mM Tris EDTA (pH-8)] and 3µl RNase was added to each sample and incubated 

at 37ºC for 30 min. 

 

3.4.1.6 Solvent extraction 

• 200µl of phenol-chloroform-isoamylalcohol (25:24:1) was added to each sample and 

inverted twice to mix. 

• Plate was centrifuged at 5000 rpm for 5 min. 

• Aqueous layer was transferred to a fresh 96 deep-well plate (Marsh Biomarket, USA). 

• 200µl chloroform-isoamylalcohol (24:1) was added to each sample and inverted twice to 

mix. 

• Plate was centrifuged at 5000 rpm for 5 min. 

• Aqueous layer was transferred to a fresh 96 deep-well plate. 

• 315µl ethanol-acetate solution [30ml ethanol, 1.5ml 3M NaOAc (pH-5.2)] was then added to 

each sample and placed in –20ºC for 5 min. 

• Plate was again centrifuged at 5000 rpm for 5 min. 

• Supernatant was decanted from each sample and pellet was washed with 70% ethanol. 

• Plate was centrifuged at 6000 rpm for 10 min. 

• Supernatant was again decanted from each sample and samples were air dried for 

approximately 1 hour. 

• Pellet was resuspended in 100µl low-salt TE and stored at 4ºC. 

 



3.4.2 Quantification of DNA 

DNA quality was checked and quantified on 0.8% agarose gel with known concentration of uncut 

lambda DNA standard. 

 

3.4.3 Polymerase Chain Reactions (PCRs) 

PCRs for amplification of SSR loci were performed in a 5 µl reaction volume [0.5 µl of 10X PCR buffer, 

1.0 µl of 15 mM MgCl2, 0.25 µl of 2mM dNTPs, 0.50 µl of 2 pM/µl primer anchored with M13-tail 

(MWG-Biotech AG, Bangalore, India), 0.1 U of Taq polymerase (Bioline, London, UK) and 1.0 µl (5 

ng/µl) of template DNA] in 96-well micro titre plate (ABgene, Rockford, IL, USA) using thermal cycler 

GeneAmp PCR System 9700 (Applied Biosystems, Foster City, CA, USA). A touch down PCR 

programme was used to amplify the DNA fragments: initial denaturation was for 5 min at 95°C 

followed by 5 cycles of denaturation for 20 sec at 94°C, annealing for 20 sec at 60°C (the annealing 

temperature for each cycle being reduced by 1°C per cycle) and extension for 30 sec at 72°C. 

Subsequently, 35 cycles of denaturation at 94°C for 20 sec followed by annealing for 20 sec at 56°C 

and extension for 30 sec at 72°C and 20 min of final extension at 72°C. PCR products were checked 

for amplification on 1.2% agarose gel.  

3.4.4 Diversity analysis 

For diversity analysis, marker profiles obtained on silver stained polyacrylamide gels were scored 

manually. For understanding relationships among parental lines of hybrids, allelic data so obtained 

were used to prepare dissimilarity matrix and to construct a two dimensional (2D) plot by using 

factorial analysis method with DARwin V5.0.128 software (Perrier et al. 2003). The polymorphism 

information content (PIC) refers to the value of a marker for detecting polymorphism within a given 

germplasm, depending on the number of detectable alleles and the distribution of their frequency. 



In the present study, PIC value of markers was calculated using following formula (Anderson et al. 

1993)  

 ∑
=
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where k is the total number of alleles detected for a given marker locus and Pi is the frequency of the 

ith  allele in the lines analyzed.  

 

3.4.5 Data recording  

The amplification products obtained by using M13 tailed primer pairs together with Liz Gene Scan-

500 labeled internal size standards, were analyzed on 36 cm capillaries with POP7 polymer on ABI 

3730 Genetic Analyzer. Fragment analysis data were collected by the data collection software and 

pre-processed by the GeneMapper software version 4.0 (Applied Biosystems, Foster City, CA, USA). 

SSR allele data for the population was recorded as “A” [allele of male- sterile parent (A- line)], “B” 

[allele of fertility restorer parent (R- line)] and “H” (alleles from both the parents “Hybrid”) format. 

 

3.4.6 Linkage mapping 

Segregation data obtained for polymorphic SSR markers on the F2 populations were used   for 

linkage mapping using MAPMAKER/EXP 3.0 (Lander et al. 1987). Once the dataset was sorted at 

logarithm of odds (LOD) of 3 with a minimum recombination threshold of 37.5, each group was used 

to check marker orders and obtain marker statistics. The exact order of the markers within each 

group was determined by using the “try” command, which compares the maximum-likelihood of 

each marker order after keeping the markers, one by one, into every interval of the established 

order. Small sorting errors were removed using the “ripple” command on all groups. Kosambi 

mapping function was used to convert recombination frequency into map distances (Kosambi 1944). 



The graphical maps of the linkage groups were constructed by using QTL Cartographer version 2.5 

(Wang et al. 2007). 

 

 3.4.7 QTL identification 

Genotyping and phenotyping data were analyzed for mapping QTLs by composite interval mapping 

(CIM) proposed by Zeng (1994) using Windows QTL Cartographer, version 2.5 (Wang et al. 2007). 

CIM was performed using the Model 6, scanning the genetic map and estimating the likelihood of a 

QTL and its corresponding effects at every 1 cM, while using significant marker cofactors to adjust 

the phenotypic effects associated with other positions in the genetic map. The number of marker 

cofactors for the background control was set by forward–backward stepwise regression. A window 

size of 10 cM was used and therefore cofactors within 10 cM on either side of the QTL test site were 

not included in the QTL model. Thresholds were determined by permutation tests (Churchill and 

Doerge, 1994; Doerge and Churchill, 1996) using 1,000 permutations and a significance level of 0.05. 

QTLs were determined significant if the corresponding likelihood ratio (LR) score was greater than 

11.5 (equal to a LOD score of 2.5).The percent phenotypic variance explained (PVE) by a QTL was 

estimated at the highest probability peaks. 



IV. RESULTS 

 

The present study was carried out with the objective of developing mapping populations segregating 

for fertility restoration gene(s), resolving inheritance and identifying molecular markers for fertility 

restoration of A4 CMS system. In this chapter results have been presented for each objective under 

following headings. 

 

4.1 Development of mapping populations 

With an objective of developing a set of diverse mapping populations of pigeonpea, 

segregating for fertility restoration, an elite collection of pigeonpea genotypes was analysed 

with SSR markers (Table 1). 

 

4.1.1 Diversity analysis of A-, B- and R- lines with SSR markers 

In order to maximize polymorphism in the mapping populations for mapping loci for fertility 

restoration in pigeonpea, a set of 159 pigeonpea lines (Table 1) were screened for 

polymorphism with 148 microsatellite or simple sequence repeat (SSR) markers (Table 2).  

 

4.1.1.1 SSR polymorphism in A-, B- and R- lines 

A total of 148 SSR markers (Table 2) were used for characterization of the 159 parental lines (Table 

1) of hybrids. These lines included 37 cytoplasmic male sterile (A-) lines, 38 maintainer (B-) lines and 

84 fertility restorer (R-) lines that are being used in the hybrid breeding programme at ICRISAT. As a 

result, 41 markers (Table 3) showed polymorphism among 159 lines analyzed. These polymorphic 



markers amplified a total of 130 alleles with an average of 3.1 alleles per marker in the lines 

surveyed (Table 3). Majority of the markers (17) amplified 2 alleles, while a maximum of 6 alleles 

were amplified by two markers (CCtta011 and CCtc002). The PIC values calculated for these 41 

polymorphic markers were in the range of 0.01 (CCac007 and CCac031) to 0.81 (CCtta011) with an 

average of 0.41 per marker (Table 3).  

 

Among 37 CMS (A-) lines studied, the 40 polymorphic markers amplified a total of 106 

alleles with a range of 2 (21 markers) to 6 (CCtta011) with an average of 2.6 alleles per 

marker. The PIC values, across A- lines, ranged from 0.05 (ICPM131) to 0.75 (CCtta011) 

with an average of 0.34. In case of 38 maintainer (B-) lines, the 34 polymorphic markers 

amplified a total of 94 alleles with a range of 2 (17 markers) to 6 (CCtta011) with an average 

of 2.7 alleles per marker. The PIC values, across B- lines, varied from 0.06 (CCgtt004) to 

0.78 (CCtta011) with an average of 0.39 per marker. In case of 84 fertility restorer (R-) lines, 

115  alleles were obtained by 39 polymorphic markers with a range of 2 (19 markers) to 6 

(CCtta011 and CCtc002) with an average of 2.9 alleles per marker and the PIC values varied 

from 0.03 (CCtta008) to 0.78 (CCtta011) with an average of 0.37 per marker. Detailed results 

on this aspect have already been published in RK Saxena et al. (2010c). 

 

4.1.1.2 Genetic relationships among A-, B- and R- lines 

Genetic dissimilarity among the parental lines varied from 0.03 (ICPB 2044 and ICPB 2162) 

to a maximum of 0.52 (ICPL 92045 and ICPA 2148) with a mean dissimilarity of 0.28. The 

genetic dissimilarity estimates for 159 lines were employed to generate a two dimensional 

distribution plot by using factorial analysis with DARwin V5.0.128 software (Perrier et al. 

2003) (Fig. 4). Parental lines were classified into two main clusters ‘I’ (64) and ‘II’ (95) (Fig. 



4) and could distinguish all 159 (A-, B- and R-) lines.  Most of the male sterile lines (34) 

were grouped into cluster ‘I’ with 14 maintainers and 16 restorers.  For instance a male sterile 

line ICPA 2039 and its corresponding maintainer line ICPB 2039 were clustered together in 

cluster ‘I’. Three male sterile lines ICPA 2043, ICPA 2047 and ICPA 2092 were found to be 

grouped into clusters ‘II’. 

 

4.1.2 Selection of crossing parents  

As the final objective of diversity study of parental lines was to select the most diverse 

parental combination(s) for developing the mapping populations segregating for fertility 

restoration gene(s), the marker polymorphism data were analyzed together with the genetic 

dissimilarity data. While selecting the potential parental combinations for developing the 

most informative mapping populations, following criteria were used: (a) high number of 

polymorphic markers, (b) higher genetic dissimilarity coefficient, (c) high fertility restoration 

and (d) stability of male sterility. However, it was very difficult if not impossible to identify 

the parental combinations that have higher values for all the above parameters. In such cases, 

more emphasis was given to fertility restoration and stability of male sterility data.  

 

For fertility restoration, a total of 56 combinations of A- and R- lines included in the present 

study, being utilized for the production of hybrids in Pigeonpea Breeding Division at 

ICRISAT, were checked for all four parameters mentioned above (Table 4). While two 

parental combinations were identified in the early maturing group and two parental 

combinations were selected for late maturing group. In total, four parental combinations were 

selected for developing the mapping populations (Table 5). 

  



4.1.3 Development of BC1F1/F2 and F2:3 mapping population  

Growing of parents for crossing and rising of mapping population was carried out under nylon net 

coverings to avoid cross pollination through insect pollinators. All the selected combinations (ICPA 

2039 × ICPR 2438, ICPA 2039 × ICPR 2447, ICPA 2043 × ICPR 2671 and ICPA 2043 × ICPR 3467) were 

crossed and the resultant F1 was raised. F2 seeds collected from a single F1 plant were used to obtain 

F2 plants and back crossed with female parent to develop BC1F1 population (Table 6).  All the F2 

plants were selfed to obtain the F2:3 mapping population (Fig. 3). The BC1F1, F2 and F2:3 populations 

were used for phenotyping for fertility restoration as described in Chapter 3 (Material and Methods).  

 

4.2 Inheritance of fertility restorer gene(s) 

Two male-sterile lines ICPA 2039 and ICPA 2043 were crossed to four known fertility restorers of 

different maturity groups. The early maturing A- line (ICPA 2039) was crossed to ICPR 2438 and ICPR 

2447; while another male-sterile line (ICPA 2043) was crossed with two late maturing restorer lines 

ICPR 2671 and ICPR 3467.  The inheritance of fertility restoration was studied in BC1F1, F1 and F2 

generations. To validate segregation pattern obtained in F2 generation, in addition to back cross 

population, 53 fertile F3 progenies were also assessed in the late maturing cross (ICPA 2043 × ICPR 

3467).   

 

4.2.1 Early maturing crosses  

Two early maturing crosses were made on ICPA 2039 using ICPR 2438 and ICPR 2447 as male 

parents.  Both of these crosses behaved in a similar manner as far as their segregation of male 

fertility/sterility was concerned.  In the F1 generation, a perfect dominance of male-fertility was 

recorded; while in F2 generation, the populations segregated and fit well to the expected di-genic 

duplicate dominant ratio of 15 fertile : 1 sterile (Table 7). In the early maturing BC1F1 generations 



seed could not be produced due to severe pod damage caused by borers (Maruca testulalis Geyer.), 

hence there was no opportunity to test the segregation of these crosses. 

 

4.2.2 Late maturing crosses  

Two late maturing fertility restorers namely ICPR 3467 and ICPR 2671 were crossed with ICPA 2043.  

A complete dominance of fertility restoring genes was observed in F1 generation, where all the 

hybrid plants were fully fertile with good pollen load.  In F2 generation, both the hybrids exhibited a 

di-genic ratio with a duplicate dominant (15:1 ratio) gene action.  This hypothesis of gene action was 

confirmed in BC1F1 generation of both the crosses (Table 8), where the ratio of 3 fertile: 1 sterile was 

observed.  

 

In F3 generation of cross ICPA 2043 × ICPR 3467, out of 96 random fertile progenies grown, 53 

segregated for fertility/sterility (Table 9), while 43 did not segregate. This segregation pattern fit well 

to the expected ratio of 8 segregating: 7 non-segregating (p = 0.72).  The variation observed within 

53 segregating progenies indicated the presence of two sub- groups (Table 9). The sub- group I, with 

33 progenies, segregated in a di-genic ratio of 15 fertile to 1 sterile genotypes (p = 0.94), while in the 

sub- group II (20 progenies) the progenies segregated only for one gene, resulting in 3 fertile: 1 

sterile ratio (p = 0.28) (Table 9). Overall the two sub-groups segregated in the expected ratio of 1:1 

(p = 0.07).  

 

4.3 Molecular mapping of fertility restorer gene(s) 

The identification of molecular markers tightly linked to fertility restoration loci in pigeonpea 

would allow breeders to classify breeding lines as either maintainers (B- lines) or restorers 



(R- lines) without the requirement of field evaluation of test crosses. Further, these identified 

linked markers would also be helpful in transferring these genes form one genetic 

background to other through marker assisted selection (MAS). For mapping the fertility 

restorer gene(s) of A4 CMS system, two F2 mapping populations one each from early (ICPA 

2039 × ICPR 2447) and late maturing (ICPA 2043 × ICPR 2671) groups were selected. 

Detailed results on mapping are presented below.  

 

4.3.1 Parental screening for marker polymorphism 

The parental lines of two mapping populations (ICPA 2039 × ICPR 2447 and ICPA 2043 × 

ICPR 2671) were screened for detecting polymorphism using 3,220 SSR primer pairs (Burns 

et al. 2001; Odeny et al. 2007; 2009; RK Saxena et al. 2010a; 2010c; Bohra et al. 2010). A 

total of 98 and 145 SSR markers detected polymorphism between ICPA 2039 vs ICPR 2447 

(Table 10) and ICPA 2043 vs ICPR 2671 respectively (Table 11). These polymorphic 

markers were used for generating the segregation data for the respective polymorphic loci on 

F2 mapping population consisting of 188 individuals for each of two crosses mentioned 

above. 

 

4.3.2 Goodness of fit of markers and segregation distortion 

The goodness of fit of segregation data generated in the study was calculated by Chi square analysis. 

The observed segregation pattern of the marker loci was compared with the expected 1:2:1 (A: H: B) 

ratio and probability was calculated. In case of ICPA 2039 × ICPR 2447 mapping population (F2), while 

normal segregation (p ≥ 0.01) was observed for segregation data for 75 out of 98 marker loci, 

segregation distortion was observed for the remaining 23 marker loci (Fig. 5). Similarly in the case of 

ICPA 2043 × ICPR 2671 mapping population, normal segregation was observed for 131 out of 145 



SSR loci (p ≥ 0.01); the segregation data for the remaining 14 SSR loci showed distorted segregation 

(Fig. 6).  

 

4.3.3 Construction of the SSR-based genetic maps  

The segregation data for the SSR loci showing the normal segregation in each of the above mapping 

population were used for constructing genetic maps for the respective mapping population by using 

MAPMAKER/EXP version 3.0b software (Lander et al. 1987). In summary, two different genetic 

linkage maps were constructed for the ICPA 2039 × ICPR 2447 and ICPA 2043 × ICPR 2671 groups. 

Details about these maps are provided as below. 

 

4.3.3.1 Genetic map based on ICPA 2039 × ICPR 2447 population 

The genetic map for the ICPA 2039 × ICPR 2447 population was constructed at LOD value of 3.0 and 

the confidence map interval distance at less than 40 cM. A total of 82 markers were mapped on 11 

linkage group (LGs) spanning 802.8 cM, however, the remaining 16 markers could not be integrated 

into the map (Fig. 7, Table 12). The number of markers mapped per linkage group ranged from 3 (LG 

5) to 12 (LG 6). The lengths of linkage groups ranged from 6.3 cM (LG 5) to 166 cM (LG 7) with an 

average inter-marker locus distance of 9.7 cM across 11 linkage groups (Table 12). 

 

4.3.3.2 Genetic map based on ICPA 2043 × ICPR 2671 population 

The segregation data obtained on the ICPA 2043 × ICPR 2671 population for the polymorphic SSR loci 

were used to construct the map at linkage map distances less than 40 cM and LOD value 4.0. As a 

result, a total of 117 SSR loci were mapped on 11 linkage groups (LGs) spanning 871 cM (Fig. 8, Table 

13) and the remaining 28 SSR loci remained ungrouped. The number of marker loci mapped per 



linkage group ranged from 2 (LG 2) to 20 (LG 6). The lengths of linkage groups ranged from 22.4 cM 

(LG 2) to 165.2 cM (LG 4) with an average inter-marker locus distance of 7.4 cM across 11 linkage 

groups (Table 13). 

 

4.3.4 QTL mapping for fertility restoration 

The linkage maps constructed based on ICPA 2039 × ICPR 2447 and ICPA 2043 × ICPR 2671 F2 

mapping populations were used for identification and mapping of QTL for fertility restoration. In this 

context, mapping data for all SSR marker loci assigned to the genetic maps were analysed together 

with phenotypic data for pollen fertility/ sterility obtained on each of two populations by using 

Windows QTL Cartographer, version 2.5 (Wang et al. 2007). CIM (composite interval mapping) 

analysis was performed using the Model 6, scanning the genetic map and estimating the likelihood 

of a QTL and its corresponding effects at every 1 cM, while using significant marker cofactors to 

adjust the phenotypic effects associated with other positions in the genetic map. The number of 

marker cofactors for the background control was set by forward–backward stepwise regression. A 

window size of 10 cM was used, and therefore cofactors within 10 cM on either side of the QTL test 

site were not included in the QTL model. QTLs were determined significant if the corresponding 

likelihood ratio (LR) score was greater than 11.5 (equal to a LOD score of 2.5).  

 

4.3.4.1 QTLs for fertility restoration based on ICPA 2039 × ICPR 2447 population 

QTL analysis, as mentioned above, in this mapping population showed a total of six putative QTLs on 

five different linkage groups (Table 14). While four QTLs detected at LOD value > 2.5 were 

considered as major QTLs, the remaining two QTLs on LG2 and LG9, detected at LOD value between 

1 and 2, had small effects each with 4.0% phenotypic variance explained (PVE).  

 



Of the four major QTLs, the QTL flanked by CcM2149 and CcM0468 and detected at LOD value of 44 

on LG7 explained highest phenotypic variation (50%). While the other two QTLs detected at LG11 

bracketed between CcM0381 and CcM2735; and CcM2735 and CcM1713 explained 22% and 25% 

phenotypic variation, respectively (Fig. 9 and Table 14). The remaining major QTL detected at LOD 

value of 4.2 and flanked by CcM1109 and CcM1522 marker loci on the top of LG3 explained 20% 

phenotypic variation (Fig. 9).  

 

4.3.4.2 QTLs for fertility restoration based on ICPA 2043 × ICPR 2671 population 

CIM based QTL analysis identified a total of four QTLs on four linkage groups (Table 15). However, all 

these QTLs except one were minor as they explained ≤10% of phenotypic variation. The solitary 

major QTL flanked by CcM2542 and CcM1277 marker loci and detected at LOD 5.4 on LG3 

contributed 24% phenotypic variation (Fig. 10). 



V. DISCUSSION 

 

Shull (1908) was the first to describe the phenomenon of hybrid advantage in crop plants and 

considering its potential in enhancing yields. Subsequently, the breeders of cross - pollinated crops 

developed suitable breeding procedures and successfully enhanced yields by 2 – 3 folds. Various 

theories explained the complex phenomenon of heterosis and concluded that some complementary 

inter - genomic and non - allelic interactions, operating at different structural and functional levels, 

are responsible for the expression of hybrid vigour (Sinha and Khanna 1975; Srivastava 1981). 

Although pigeonpea breeding research began in the early part of 20th century, the first report of 

hybrid vigour was published in late 1950s (Solomon et al. 1957). Subsequently, a number of reports 

were published on hybrid vigour for yield and important yield components (Saxena and Sharma 

1990).  Earlier in the absence of CMS in pigeonpea, an attempt was made to exploit hybrid vigour 

using genetic male-sterility based hybrids such as ICPH 8, PPH 4, CoH 1, CoH 2 etc (Saxena et al. 

1992). These hybrids exhibited 20 to 40% superiority over the respective control cultivar in farmers’ 

fields. CMS-based hybrids exhibited standard heterosis up to 156% for yield (Kandalkar 2007) where 

as 50 to 100% yield advantage over the controls has also been reported (Saxena 2007).  

 

It was in 1974 when pigeonpea breeders at ICRISAT started exploring the possibility of breeding 

commercial hybrids by exploiting its natural out - crossing. The major component for commercial 

hybrid breeding that was missing at that time was the availability of an efficient male - sterility 

system. Therefore, an elaborate search for male - sterility was made germplasm and two different 

genetic male - sterility systems were discovered (Reddy et al. 1978; Saxena et al. 1983). Initially, 

these two sources were used in hybrid breeding without much success at commercial level due to 



limitations encountered in large - scale seed production of hybrids and their parents.  Hence, the 

development of a CMS system became imperative.   

 

It is a well known fact that the expression of CMS, in part, is controlled by genetic factors carried 

through the female parent, which are never lost or diluted in succeeding generations (Kaul 1988). 

This cytoplasmic factor is referred to as ‘N’ for male - fertile cytoplasm and ‘S’ for the male – sterile 

cytoplasm. The male - sterile (A- line) line with ‘S’ cytoplasm and homozygous recessive (msms) 

nuclear genes is maintained by its male – fertile maintainer (B-) line that has a normal (N) cytoplasm 

and homozygous recessive nuclear genes.  For producing male - fertile hybrids, the A- line with ‘S’ 

cytoplasm is crossed with a male - fertile (R-) line carrying dominant fertility restoring nuclear genes 

(FrFr).  To sum up, the three - line hybrid system is geared for multiplying A- line seed with the help 

of B- line and for producing hybrid seed the A- line is pollinated with R- line. 

 

In pigeonpea since CMS was not available earlier, plans were made to breed for this trait by placing 

pigeonpea genome in to the cytoplasm of its wild relative. It was expected that the interaction of 

such cytoplasm and nuclear genomes would produce male - sterility that would inherit maternally. 

This endeavour resulted in development of an excellent CMS system that was developed by crossing 

a pigeonpea line with a wild species, Cajanus cajanifolius (A4 cytoplam) (Saxena et al. 2005). It is the 

most closely related wild species of pigeonpea and is considered as the progenitor of cultivated type 

that differs only by a single gene (De 1974).  The CMS system derived using this species  is 

considered the best because it has a number of good maintainers and fertility restorers (Saxena et 

al. 2005).  The F1 hybrid plants produce excellent pollen load and pod set.  The A- lines with C. 

cajanifolius cytoplasm are being used extensively in hybrid breeding programmes. Since pigeonpea is 

cultivated under diverse environments and cropping systems with specific maturity and plant type 



requirements (Saxena 2008), the CMS trait was transferred to early (ICPA 2039) and late- maturing 

(ICPA 2043) lines to facilitate development of hybrids in diverse maturity groups for different agro-

climatic zones. 

 

Information on genetics of fertility restoration and molecular markers linked to this trait helps in 

designing strategies for breeding elite hybrid parents. This study reports genetics of fertility 

restoration in four crosses of two maturity groups and an attempt to establish relationships between 

molecular markers to fertility restoration. The findings of present study are discussed with suitable 

subheadings. 

 

1. Development of mapping populations 

2. Inheritance studies for fertility restoration 

3. Construction of genetic linkage maps for intra-specific mapping populations 

4. Identification and mapping of QTLs for fertility restoration 

 

5.1 Development of mapping populations 

The most important step in a breeding programme is the choice of parents with good performance 

and wide genetic base. Therefore, diversity analysis on parental genotypes, ahead of making any 

cross, may help breeders to concentrate their efforts only on most promising combinations. 

Heterosis, manifested in the crosses, is directly related to genetic divergence among the parents 

(Falconer 1981). Therefore, in the choice of parents to be used in hybridization, emphasis should be 

placed both on the cultivars performance and on its genetic distances. In this context, molecular 

markers based studies were conducted in several crop species. For instance, in case of soybean, 

genetic divergence was observed among 34 lines to identify suitable parents for breeding 



programmes (Pipolo et al. 1995). Likewise, several other studies recommended the use of parents 

with the greatest possible divergence to maximize the heterosis in the hybrids and to enhance the 

probability of superior segregants in advanced generations and widen the genetic base (Amaral 

Junior et al. 1996; Souza 1996; RK Saxena et al. 2010b).  

 

As pigeonpea germplasm has a narrow genetic diversity, it is important to undertake molecular 

characterization of the potential parental lines. Molecular diversity studies may lead to the selection 

of genotypes for making the crosses using genetic distance data (RK Saxena et al. 2010b). 

Furthermore, the identification of genotypes based on genetic divergence alone, without 

considering their phenotypic performance, may not be a good strategy for a breeding program. 

Crosses among divergent genotypes that have a superior performance for the main characteristics of 

agronomic importance seem to be more recommended for breeding programs. Therefore in this 

study, selection of parents was done not only based on molecular diversity analysis but also based 

on genetic distance and their performance for the desirable traits. This increased the selection 

pressure to select some of the contrasting genotypes for developing mapping populations for 

fertility restoration. The mapping populations developed in such a way should have good genetic 

diversity that should allow genotyping of the mapping population with a larger number of molecular 

markers to develop the good genetic maps, an important prerequisite of molecular mapping. 

 

In case of pigeonpea, though, hybrid breeding programme has been developing and using a number 

of hybrid parental lines, no genetic diversity information was available at the time of undertaking 

this study. This may be attributed partly to unavailability of adequate molecular marker resources in 

past. Therefore, estimation of genetic diversity on parental lines should be useful for selecting 

crossing parental genotypes that may enhance the hybrid vigour.  



 

The present study was undertaken on surveying the molecular diversity among 159 hybrid 

pigeonpea parental genotypes representing male sterile (A-), maintainer (B-) and restorer (R-) lines 

with 148 SSR markers. However, only 27.7% markers showed polymorphism in the set of 159 

parental lines. Lower level of polymorphism observed in this study is in agreement with earlier SSR 

based diversity studies in pigeonpea (Burns et al. 2001; Odeny et al. 2007; RK Saxena et al. 2010a; 

2010c). Lower level of diversity was also reported based on other marker systems such as amplified 

fragment length polymorphism (AFLP, Panguluri et al. 2006) and Diversity Array Technology (DArT, 

Yang et al. 2006). In contrast to lower level of diversity among A- lines as observed in the present 

study, Souframanien et al. (2003) reported a higher level of genetic diversity. It is, however, 

important to note that in the present study, all A- lines were derived from the C. cajanifolius (A4) 

while in study of Souframanien et al. (2003), A- lines analyzed were derived from two different wild 

relatives C. sericeus and C. scarabaeoides.  

 

In terms of molecular diversity, the present study grouped majority of A- lines (34) and 14 B- lines 

together in the major cluster ‘I’. While majority of the B- lines (24) and a few A- lines (3) were 

grouped in the other major cluster ‘II’. In an ideal condition for hybrid breeding, A- and B- lines 

should be homogeneous except for the male sterility but in present study majority of the A- lines 

used are still in early back crossing generations (BC2 to BC4). Therefore, these A- lines can not be 

considered as iso- nuclear lines with the corresponding B- lines. On the other hand, ICPA 2039 and 

ICPB 2039 used in the study represent BC9 generation and these lines were found to share the 

maximum numbers of common alleles and were grouped together in cluster ‘I’ with 94% of genetic 

similarity. In fact, at present these lines are in BC11 stage and if these lines are examined for 

molecular diversity, higher genetic similarity in these lines is expected. Therefore, the genetic 

background of this particular combination of A- and B- line is satisfactory for producing 



homogeneous A- line seeds. Differences that remain exist between these iso- nuclear lines are 

mainly due to differences in the organellar genomes while the nuclear material is expected to be 

almost similar after several backcrosses. Also the grouping of several A- lines together in the same 

cluster can be attributed to the shared pedigree of the maintainer lines from which these A- lines 

have been generated.  On the other hand differences in the pedigree of maintainer lines for some 

other A- lines made them classified in the other cluster.  

 

For developing the mapping populations for mapping fertility restoration, parental genotypes were 

selected based on marker genotyping data i.e. high number of polymorphic markers and higher 

genetic dissimilarity coefficient and phenotypic data (high diversity). By using these criteria, two 

parental combinations (ICPA 2039 × ICPR 2438 and ICPA 2039 × ICPR 2447) were identified for early 

maturing group and two parental combinations (ICPA 2043 × ICPR 2671 and ICPA 2043 × ICPR 3467) 

for late maturing group were selected. Four parental combinations, selected in such a way, were 

used for crossing and development of mapping populations. Development of such mapping 

populations has been suggested in some earlier studies (Pipolo et al. 1995; RK Saxena et al. 2010b). 

 

5.2 Inheritance of fertility restoration  

In the present study two A- lines having A4 cytoplasm were crossed with four fertility restoring lines 

and two male-fertility restoring genes segregating independently, were identified.  In the four male 

parents (ICPR 2438, ICPR 2447, ICPR 2671 and ICPR 3467) two dominant genes were involved in the 

expression of fertility restoration with duplicate dominant gene action. Similarly, in pearl millet  

(Pennisetum glaucum) 1-3 dominant genes (Yadav 2005); in faba bean (Vicia faba) 1-2 dominant 

genes (Kaul 1988); and in soybean (Glycine max) two dominant genes (Bai and Gai 2005) were found 

to be responsible for the restoration of male fertility of the respective CMS systems.   



 

To the best of our knowledge, no study was conducted to establish relationship among various 

fertility restoring alleles in pigeonoea.  From the present experiments, however, it appeared that the 

differences in the pollen load observed among the hybrid plants were linked to the number of 

fertility restoring genes present in the individual. In the hybrid plants with two fertility restoring 

genes, the pollen load in the floral buds was similar to that of pure line cultivars and the hybrids 

expressed greater stability across environments. In this context, it is worth mentioning that a hybrid 

ICPH 2671, with two dominant fertility restoring genes, has performed extremely well in farmers’ 

fields in six states of India and three provinces of Myanmar in terms of fertility restoration and high 

yields under diverse environments (KB Saxena et al. 2010b). On the contrary, when a single fertility 

restoring gene was present, the hybrids produced relatively less amount of pollen grains. This single 

gene perhaps was unable to produce hybrids with stable fertility restoration (KB Saxena et al. 

2010b). 

 

It has also been observed in certain wheat (Triticum aestivum) lines that the restorer parents with a 

single gene might be responsible for their poor pollinating capacity (Hughes and Bodden 1977). 

Partial fertile plants in a sorghum (Sorghum vulgare Pers.) population segregating for fertility 

restoring alleles and the full pollen fertility in a genotype essentially resulted from the presence of all 

the major and minor genes together (Tang et al. 2007). Further, the partial male-fertility in the 

plants resulted due to the absence of some fertility restoring alleles at minor affect loci, which 

separated from the major effect restoring genes during segregation and assortment processes (Tang 

et al. 2007). In pigeonpea cytology studies of a partial male-fertile line showed breakdown of 

tapetum was irregular and there was no consistency in the extent and the site of degeneration of 

the tapetal tissues in different flowers and plants (Saxena et al. 1981). In the present case the micro-

sporogenesis of partial male-fertile plants of pigeonpea was not studied but it appears that both the 



pollen growth and their release processes were defective. In both the late maturing pigeonpea 

crosses, a variation for pollen production was also observed among F2 segregants. Since, at that time 

the information on pollen production trait was not considered important in the expression of fertility 

restoration, no such data were recorded in this study. In view of present results it appears that for 

the production of good hybrids, selection of fertility restorers with both the dominant genes will be 

essential. This is likely to facilitate the development of high yielding and widely adapted hybrids.   

 

5.3 Construction of genetic linkage map 

After screening of a total of 3,220 markers including 148 SSR markers, available in public domain 

(Burns et al. 2001; Odeny et al. 2007; 2009; RK Saxena et al. 2010a; 2010c) as well as 3072 

unpublished SSR markers (Bohra et al. 2010) on the parental genotypes of the two mapping 

population provide 98 markers polymorphic in ICPA 2039 × ICPR 2447 and 145 in ICPA 2043 × ICPR 

2671 population. The very low level of polymorphism (3.03% in ICPA 2039 × ICPR 2447 and 4.49% in 

ICPA 2043 × ICPR 2671) observed in the present study is not unexpected, as lower level of 

polymorphism in the cultivated gene pool of pigeonpea observed in several other studies (Burns et 

al. 2001; Odeny et al. 2007; 2009; RK Saxena et al. 2010a; 2010c). Low level of genetic polymorphism 

in cultivated pigeonpea has been attributed to the breeding methodologies used in past. However, 

additional contributing factors to the low levels of molecular polymorphism observed to date could 

be due to marker techniques used. Indeed, development of SSR markers, from longer SSR-enriched 

libraries, BAC-end sequences and SNP (single nucleotide polymorphism) markers using next 

generation sequencing technologies is underway in several laboratories (Varshney et al. 2010).  

 

All identified polymorphic markers were used for genotyping 188 progenies of F2 mapping 

populations for each of two crosses. On checking the genotyping data obtained for all polymorphic 



loci for segregation ratio, 76.53% and 90.34% marker loci were found in normal segregation 

(1A:2H:1B) in ICPA 2039 × ICPR 2447 and ICPA 2043 × ICPR 2671 respectively. These SSR loci, 

showing the normal segregation were used for constructing the genetic map. However, the 

remaining SSR loci did not conform to the expected segregation ratio and most of these distorted 

markers could not be mapped on the linkage maps. A number of reasons are responsible for 

segregation distortion such as rearrangement in genome, allele inducing gametic or zygotic selection 

(Lu et al. 2002), parental reproductive differences and the presence of lethal genes (Blanco et al. 

1998).  

 

Development of a framework linkage map is an important pre-requisite for identification of QTL(s) 

for marker-assisted selection in any crop improvement programme. One of the reasons for slow 

progress in the molecular breeding of the important legume crop like pigeonpea has been attributed 

to the limited availability of molecular markers and non-availability of the linkage map so far. 

Although, tremendous progress has been made in terms of availability of genomic resources in this 

orphan legume crop in recent times (Varshney et al. 2010), availability of a framework linkage map 

was still lacking at the time of undertaking the study. To the best of our knowledge, this is the first 

genetic map of pigeonpea based on mapping population developed from cultivated genotypes and 

segregating for fertility restoration. The linkage map obtained for the ICPA 2039 × ICPR 2447 

population is comprised of 82 SSR marker loci and spans 802.8 cM map distance with an average of 

9.7 cM. Whereas, in case of ICPA 2043 × ICPR 2671 mapping population, the genetic map could be 

developed for a total 117 SSR marker loci spanning 871 cM map distance with an average of 7.4 cM. 

Interestingly, a total of 32 common markers could be mapped in both the linkage maps. The locus 

order of these common markers was highly conserved in both the linkage maps and was sufficiently 

reliable for use as a reference to define various linkage groups.  

  



5.4 Identification of QTLs for fertility restoration 

Breeders must select both maintainer and restorer lines for extreme phenotypes to assure a 

completely sterile female parent, but a fully fertile hybrid. Moreover, breeding is complicated by 

interactions between modifier genes and environmental effects. In order to assist selection through 

molecular approaches, a more detailed genetic analysis of the suspected major and minor restorer 

genes must be performed using QTL approach. In various studies, fertility restoration was checked as 

a quantitative or a qualitative trait and was reported to be governed by dominant alleles at one or 

two nuclear (Fr) genes or by a major dominant allele with modifier gene. For instance, by using 

bulked segregant analysis in pepper of the extreme plants from an F2 progeny, two RAPD markers 

were identified tightly linked to a major restorer gene (Zhang et al. 2000). However, the F2 

segregation was quantitative and the intermediate phenotypes (i.e. partially sterile) were not taken 

into consideration. Intermediate phenotypes can either result from interactions with the 

environment or from genetic control.  

 

To the best of our knowledge, this study is the first report on identification of QTLs for fertility 

restoration of CMS in pigeonpea. Genetic analysis of two pigeonpea mapping populations provided a 

total of five major QTLs and five minor QTLs. While two QTL regions on the LG11 were found 

overlapping and together contributing 47% of the phenotypic variation. In the similar population, 

two additional major QTLs were identified on LG3 and LG7 that contributing 20% and 50% of 

phenotypic variations respectively. On the other hand, in the other population (ICPA 2043 × ICPR 

2671), only one major QTL was detected on the LG3. This QTL explained 24% of the phenotypic 

variation in the population. Although LG3 in both mapping populations contained at least one major 

QTL, unavailability of common markers on the genetic maps of the two mapping populations could 

not conclude whether the same QTL is responsible for fertility restoration in both mapping 

populations. 



 

Although in case of the pigeonpea, this is the first study on mapping of QTLs,   quantitative 

restoration of CMS was subjected to QTL analysis in some other crops like maize (Tie et al. 2006), 

pepper (Wang et al. 2004), coffee (Coulibaly et al. 2003), suger beet (Hjerdin-Panagopoulos et al. 

2002), wheat (Ahmed et al. 2001), winter rye (Miedaner et al. 2000). In case of winter rye, the major 

QTL determined more than 50% of the phenotypic variation (Miedaner et al. 2000). Similarly, in case 

of the pepper, one major QTL on chromosome P6 was identified which shows phenotypic variation 

up to 69% (Wang et al. 2004).  

 

As reported in the present study, the minor QTLs were also present in the case of sugar beet. In this 

case, one minor fertility restorer allele was also detected in the maintainer parent and displays an 

epistatic effect with the major QTL (Hjerdin-Panagopoulos et al. 2002). In pepper, complete sterility 

and high fertility also found to be dependent on the minor QTLs which may differ in distinct restorer 

lines, and whose expression is environment dependent (Wang et al. 2004). While major QTLs for 

fertility restoration will be very useful for the breeders, minor QTLs certainly pose a challenge for 

harnessing then in hybrid breeding. 

 

 



VI. SUMMARY 

 

Pigeonpea, because of its special traits such as drought tolerance and ability to recover from 

various biotic and abiotic stresses makes it a favourite crop to farmers of the semi-arid tropic 

regions. In view of reducing land holdings, increasing population pressure and potential 

forces of climate changes; the diversification of cropping systems has become inevitable. 

Under these circumstances, breeding high yielding early maturing hybrids are likely to play 

an important role in the diversification of cropping systems. In this context, the present study 

entitled “Study of inheritance and identification of molecular markers for fertility restorers in 

pigeonpea [Cajanus cajan (L.) Millspaugh]” was conducted with the following objectives – 

(1) Development of mapping populations segregating for fertility restoration, (2) 

Investigation of the inheritance of fertility restoration in A4 CMS system in pigeonpea, and 

(3) Identification of molecular markers linked to fertility restorer (Fr) gene(s) of the A4 CMS 

system. The results and conclusions for each of these objectives are briefly summarized 

below.  

 

I. Development of mapping populations segregating for fertility restoration 

1. Molecular diversity among 159 hybrid pigeonpea parental genotypes 

representing 37 male sterile (A-), 38 maintainer (B-) and 84 restorer (R-) lines 

was estimated with 148 simple sequence repeat (SSR) markers.  

2. In total, 41 (27.7%) SSR markers showed polymorphism with 2 to 6 (average 

2.6) alleles and 0.01 to 0.81 (average 0.34) polymorphism information content 

(PIC) value across the 159 lines surveyed.  



3. On the basis of SSR diversity data together with phenotypic data (efficiency of 

fertility restoration of R- lines and stability of male sterility in case of A- lines), 

two parental combinations (ICPA 2039 × ICPR 2438 and ICPA 2039 × ICPR 

2447) were identified in the early maturing group and two parental 

combinations (ICPA 2043 × ICPR 2671 and ICPA 2043 × ICPR 3467) were 

selected for late maturing group.  

 

II. Investigation of the inheritance of fertility restoration  

1. The F1 hybrids produced from A × R for all the four crosses had all plants fully 

fertile, indicating that male fertility is dominant over male sterility. 

2. The segregation patterns of male fertile and male sterile plants were studied in 

BC1F1 [A × (A × R)], F2 and F2:3 populations produced from A × R crosses. 

3. A good  χ
2 

fit to the expected di-genic ratios of 15  fertile: 1 sterile in the F2 and 

3 fertile: 1 sterile in the BC1F1 mapping populations was observed that may be a 

result of gene action of two duplicate dominant genes. 

4. In order to validate di-genic ratios obtained, F2:3 population derived from one 

late maturing cross (ICPA 2043 × ICPR 3467) was used. From random fertile 

progenies grown, fertile and sterile progenies fitted well in to the expected ratio 

of 8 segregating: 7 non-segregating.   

5. The variation observed within fertile segregating progenies indicated the 

presence of two sub-groups. The sub- group I, segregated in a di-hybrid ratio of 

15 fertile to 1 sterile genotypes, while in the sub- group II, the progenies 

segregated only for one gene, resulting in 3 fertile: 1 sterile ratio. Overall the 

two sub-groups also fitted into expected ratio of 1 fertile: 1 sterile.  

 



III.  Identification of molecular markers linked to fertility restorer (Fr) gene(s) 

A. Linkage map construction 

1. In order to construct linkage maps in pigeonpea, two F2 mapping populations 

one each from early (ICPA 2039 × ICPR 2447) and late maturing (ICPA 2043 × 

ICPR 2671) groups were selected. 

2. A total of 98 and 145 SSR markers detected polymorphism between ICPA 2039 

vs ICPR 2447 and ICPA 2043 vs ICPR 2671 respectively.  

3. These polymorphic markers were used for generating the segregation data for 

the respective polymorphic loci on F2 mapping population consisting of 188 

individuals for each of two crosses mentioned above. 

4. On checking the genotyping data obtained for all polymorphic loci for 

segregation ratio, 76.53% and 90.34% marker loci were found in normal 

segregation (1A:2H:1B) in F2 populations for crosses ICPA 2039 × ICPR 2447 

and ICPA 2043 × ICPR 2671, respectively. 

5. In case of ICPA 2039 × ICPR 2447 mapping population, a total of 82 markers 

were mapped on 11 linkage groups (LGs) spanning 802.8 cM with an average 

inter-marker locus distance of 9.7 cM.  

6. In case of ICPA 2043 × ICPR 2671 mapping population, a total of 117 SSR loci 

were mapped on 11 linkage groups (LGs) spanning 871 cM with an average 

inter-marker locus distance of 7.4 cM. 

 

B. QTL identification 

1. The molecular marker analysis together with phenotyping data of the F2 

mapping population based on the cross ICPA 2039 × ICPR 2447 detected six 

putative QTLs (four major and two minor) involved in the fertility restoration. 



2. Four putative QTLs (one major and three minor) were detected to be involved in 

the fertility restoration of the F2 mapping population based on the cross ICPA 

2043 × ICPR 2671. 

 

In summary, this study has generated; (i) molecular diversity information on parental lines of 

hybrids, (ii) four mapping populations segregating for fertility restoration, (iii) two duplicate 

dominant genes were identified responsible for fertility restoration, (iv) two genetic maps based on 

ICPA 2039 × ICPR 2447 and ICPA 2043 × ICPR 2671 mapping populations with 82 and 117 SSR loci, 

respectively, and (v) 10 QTLs including five major QTLs and linked SSR markers for fertility 

restoration. These results should have important implications for accelerating pigeonpea genetics 

and breeding especially in the area of hybrid technology. For instance, molecular diversity 

information generated on hybrid parental lines will help in identification of diverse parental 

combinations for harnessing the full potential of CMS-based hybrid technology. Similarly, molecular 

markers linked with major QTLs for fertility restoration will facilitate selection of suitable parental 

lines containing fertility restorer genes. Furthermore, mapping of fertility restoration trait can be 

extended to cloning of major QTLs for fertility restoration through map based cloning, which in turn 

can help in understanding the molecular basis of fertility restoration in pigeonpea.  
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Table 1: List of hybrid parental genotypes used for SSR based diversity analysis 

Genotype Growth 

habit 

Days to flowering 

( 50% ) 

Days to maturation  

( 80% ) 

Plant height 

(cm) 

A- lines 

ICPA 2039 DT* 80 122 110 

ICPA 2040 DT 52 90 65 

ICPA 2041 DT 86 125 145 

ICPA 2042 NDT
#
 92 142 250 

ICPA 2043 NDT 105 176 235 

ICPA 2044 NDT 116 189 250 

ICPA 2045 NDT 115 160 175 

ICPA 2047 NDT 116 181 250 

ICPA 2048 NDT 108 178 270 

ICPA 2050 NDT 116 178 250 

ICPA 2051 NDT 107 178 248 

ICPA 2076 DT 50 95 75 

ICPA 2078 DT 100 150 107 

ICPA 2079 DT 58 95 90 

ICPA 2080 DT 53 95 63 

ICPA 2085 DT 74 125 108 

ICPA 2087 DT 72 122 120 

ICPA 2089 NDT 60 113 145 

ICPA 2090 NDT 90 147 192 

ICPA 2091 NDT 140 205 275 

ICPA 2092 NDT 121 162 250 

ICPA 2098 NDT 119 165 263 

ICPA 2101 DT 113 150 165 

ICPA 2102 NDT 118 155 160 

ICPA 2148 DT 62 105 100 

ICPA 2149 DT 72 110 120 

ICPA 2155 NDT 72 110 170 

ICPA2156 NDT 69 110 165 

ICPA 2157 NDT 73 120 120 

ICPA 2158 DT 72 112 110 

ICPA 2160 DT 85 135 110 

ICPA 2161 DT 107 157 150 

ICPA 2162 DT 68 115 115 

ICPA 2163 DT 68 100 105 

ICPA 2164 DT 64 105 72 

ICPA 2165 DT 65 110 95 

ICPA 11376 NDT 125 210 280 

B- lines 

ICPB 2039 DT 75 122 115 



ICPB 2040 DT 59 90 67 

ICPB 2041 DT 78 115 125 

ICPB 2042 NDT 90 142 252 

ICPB 2043 NDT 120 176 235 

ICPB 2044 NDT 123 170 258 

ICPB 2045 NDT 125 162 248 

ICPB 2046 NDT 135 178 257 

ICPB 2047 NDT 128 181 252 

ICPB 2048 NDT 130 178 272 

ICPB 2049 NDT 115 165 240 

ICPB 2050 NDT 120 178 252 

ICPB 2051 NDT 115 165 248 

ICPB 2076 DT 52 105 90 

ICPB 2078 DT 95 150 107 

ICPB 2079 DT 58 95 76 

ICPB 2080 DT 50 95 69 

ICPB 2085 DT 74 125 137 

ICPB 2086 DT 70 130 137 

ICPB 2087 DT 72 120 148 

ICPB 2089-24 NDT 60 113 145 

ICPB 2090 NDT 90 147 192 

ICPB 2091 NDT 140 200 275 

ICPB 2092 NDT 121 178 250 

ICPB 2098 NDT 119 165 263 

ICPB 2101 DT 113 145 165 

ICPB 2102 NDT 118 163 260 

ICPB 2148 DT 62 114 69 

ICPB 2149 DT 72 110 115 

ICPB 2155 NDT 76 119 157 

ICPB 2156 NDT 67 105 145 

ICPB 2158 DT 72 112 110 

ICPB 2159 NDT 68 100 104 

ICPB 2160 DT 85 135 142 

ICPB 2161 DT 107 147 150 

ICPB 2162 DT 69 115 95 

ICPB 2163 DT 68 110 86 

ICPB 2164 DT 64 105 71 

R- lines     

BDN 1 NDT 112 168 230 

BSMR 853 NDT 138 180 230 

C 11 NDT 116 170 235 

HPL 21-3 NDT 105 185 170 

HPL 24-47 NDT 123 185 230 

HPL 24-63 NDT 124 180 225 



ICP 10897 NDT 65 115 39 

ICP 10907 NDT 77 145 150 

ICP 10934 NDT 120 172 110 

ICP 11378 NDT 91 136 155 

ICP 12320-1-3 NDT 138 190 220 

ICP 13186 NDT 84 105 160 

ICP 14282 NDT 120 201 250 

ICP 14479 NDT 64 105 110 

ICP 8094 NDT 140 200 280 

ICP 8744 NDT 72 130 155 

ICP 9939 NDT 112 182 243 

ICPL 10650 NDT 120 190 165 

ICPL 13991-2-10 NDT 144 206 257 

ICPL 13991-2-5 NDT 144 215 285 

ICPL 149 NDT 95 137 170 

ICPL 150 NDT 80 120 180 

ICPL 161 NDT 92 135 180 

ICPL 20058 NDT 100 172 243 

ICPL 20093 NDT 130 183 190 

ICPL 20094 NDT 132 185 170 

ICPL 20095 NDT 120 181 190 

ICPL 20096 NDT 127 185 190 

ICPL 20098 NDT 132 184 170 

ICPL 20099 NDT 128 184 180 

ICPL 20102 NDT 130 181 195 

ICPL 20104 NDT 130 182 205 

ICPL 20106 NDT 126 182 205 

ICPL 20107 NDT 130 185 160 

ICPL 20108 NDT 128 181 180 

ICPL 20110 NDT 135 186 200 

ICPL 20111 NDT 130 183 180 

ICPL 20112 NDT 126 182 185 

ICPL 20113 NDT 133 185 190 

ICPL 20115 NDT 126 181 170 

ICPL 20116 NDT 122 181 170 

ICPL 20117 NDT 130 189 195 

ICPL 20118 NDT 126 182 170 

ICPL 20121 NDT 125 181 175 

ICPL 20122 NDT 123 180 160 

ICPL 20123 NDT 126 179 175 

ICPL 20125 NDT 128 190 180 

ICPL 20126_1 NDT 130 183 170 

ICPL 20126 NDT 130 183 170 

ICPL 20127 NDT 122 183 150 



ICPL 20128 NDT 128 182 170 

ICPL 20129 NDT 130 185 185 

ICPL 20132 NDT 122 184 180 

ICPL 20135 NDT 132 179 175 

ICPL 20136 NDT 130 184 170 

ICPL 366 NDT 145 220 180 

ICPL 81-3 NDT 70 120 155 

ICPL 86022 NDT 78 120 125 

ICPL 87 DT 69 125 105 

ICPL 87119 NDT 130 180 210 

ICPL 88034 NDT 69 130 165 

ICPL 88039 NDT 66 110 105 

ICPL 89 NDT 67 120 140 

ICPL 90030 NDT 62 108 125 

ICPL 90036 NDT 64 118 146 

ICPL 90048 NDT 67 110 150 

ICPL 92042 NDT 59 101 105 

ICPL 92043 NDT 69 105 130 

ICPL 92045 NDT 75 115 145 

ICPL 92047 NDT 79 120 155 

ICPL 93101 NDT 67 105 140 

ICPL 93103 NDT 100 110 185 

ICPL 93105 NDT 82 140 180 

ICPL 93107 NDT 67 105 140 

ICPL 94068 NDT 136 189 233 

ICPL 96053 NDT 120 174 175 

ICPL 96058 NDT 118 171 185 

ICPL 96061 NDT 115 174 170 

ICPL 97249 NDT 119 173 135 

MA 3  NDT 125 190 260 

MA 6 NDT 135 205 250 

MAL 9 NDT 140 192 240 

MARUTI NDT 106 155 230 

UPAS 120 NDT 88 110 140 

“*”- Determinate; “
#
”- Non determinate 





Table 2: Details on 148 microsatellite markers used for diversity analysis 

 
*Marker 

name 

Primer sequence  Repeats in cloned allele Ta °C Reference 

CCB1 F-  AAGGGTTGTATCTCCGCGTG  (CA)10 57 Burns et al. 2001 

 R- GCAAAGCAGCAATCATTTCG    

CCB2 F-  CCATAATCCAATCCAAATCC  (CA)21 57 Burns et al. 2001 

 R- AGAAGGCTTTCATGTAACGC    

CCB3  F- TCACAAAAACAAGTTGCCAC (CA)10 52 Burns et al. 2001 

 R- ATGACCATGATTACGCCAAG    

CCB4 F- GGAGCTATGTTGGAGGATGA  (CA)31 57 Burns et al. 2001 

 R- CCTTTTTGCATGGGTTGTAT    

CCB5 F- GACAATTTTGCATGCATTGC  (CT)22 57 Burns et al. 2001 

 R-  TTGCAAAAACACTTGGTTGG    

CCB6 F-  ACAATGCTAGGGAACACCGC (CA)6 57 Burns et al. 2001 

 R- TACCTTAACCCACAATGGCC    

CCB7 F- CAACATTTGGACTAAAAACTG (CT)16 55 Burns et al. 2001 

 R- AGGTATCCAATATCCAACTTG    

CCB8 F- TGCGTTTGTAAGCATTCTTCA  (CT)30  52 Burns et al. 2001 

 R- ACTTGAGGCTGAATGGATTTG    

CCB9 F- CACTTGGTTGGCTCAAGAAC  (CT)22 55 Burns et al. 2001 

 R- GCCAATGAACTCACATCCTTC    

CCB10 F- CCTTCTTAAGGTGAAATGCAAGC  (CA)15  50 Burns et al. 2001 

 R- CATAACAATAAAAGACCTTGAATGC    

CCac001 F- CTGGGCCTCTAGCATAGCAA (TG)6 58 Odeny et al. 2007 

 R- AAACTTCTGGACGCAAAATGA    



CCac002 F- GCGGGATTCTCTTGCTTAC (CA)8 48 Odeny et al. 2009 

 R- TCACAAAACAATTTGGCACA    

CCac003 F- TGCTTCAAGTTGCCTACCAG (CA)8 48 Odeny et al. 2009 

 R- TCAAGGGAGGTGGACTACAAA    

CCac004 F- TCTTAGCATGTCCTCTATTTTCGT (TA)5(TG)7ta(TG)4 48 Odeny et al. 2009 

 R- AGTACATTTCAAATCCACACATCC    

CCac007 F- AGGCTTTCTCCCTTCAATCC (CA)7 54 Odeny et al. 2009 

 R- GCCTTTTCAAACTTTTCTCACA    

CCac008 F- ACATGTGTGGCGTAGTGTGA (CA)10cg(CA)6 48 Odeny et al. 2009 

 R- GCAAAACCGTTCCATAAAAA     

CCac009 F- GGGAAACTCACCTATATTACCAA (TG)(TC)2(TG)7 48 Odeny et al. 2009 

 R- CACTACCGTCTACAGCCATCTC    

CCac010 F- GATAGCACACACACACACAACA (CA)7aca(TA)3 54 Odeny et al. 2009 

 R- TACCTTAGGGTCACCAACGA    

CCac011 F- AAGTTGCCTACTGGGGGTTC  (CA)8 54 Odeny et al. 2009 

 R- AAATAGAGCTGTCAGGGGAGGT    

CCac012 F- ACCTTGCTTGTTTCGCTTTT (CA)7 58 Odeny et al. 2009 

 R- AAGGGAGGTGGACTACAAGGA    

CCac013 F- GTGAGTGAGAGTGAGTGTATTTGTG  (GT)7 58 Odeny et al. 2009 

 R- GCTCTGATGCCAAATGTTGA    

CCac014 F- CATCATAATCATACATGTCAATGCTA (TG)6n(GT)11n(TG)6 58 Odeny et al. 2009 

 R- GGTTTTATCTTTGTCTCCAATTCTG    

CCac015 F- TGGGAAACAAAATATCCCCTAA (AC)10c(CA)74 48 Odeny et al. 2009 

 R- AGAGGGGTGTGATGAAGCAG     

CCac018 F- CAGGTCTGCTACTGCCATCA (TG)6(AGTG)3 48 Odeny et al. 2009 

 R- AGCCCACTTCTGCATCACTC    



CCac019 F- CCACATCCCTCAACCCATAC (AC)7(CA)3 48 Odeny et al. 2009 

 R- GAAAAGCCCTTGATGACACC    

CCac020 F- GGGAAACAAAATATCCCCTAATC (AC)4aa(AC)38c(CA)7 48 Odeny et al. 2009 

 R- TAATCACACACATCACACCTAGCA    

CCac021 F- CACGATTCCATTGGTGGAG (AC)6aag(CTAA)3 48 Odeny et al. 2009 

 R- ACGGTTTCTGGGAGGGTCTA    

CCac022 F- GACTAGAAAATTCACCTCCGTCTG  (A)5(CA)6c(A)4 48 Odeny et al. 2009 

 R- TTACAAAGGCTACATTGATGAGAAC    

CCac024 F- TCTTTCAGACGCAATGACCTT (AC)6a 48 Odeny et al. 2009 

 R- CACTTATTTGTGGGGACCATC     

CCac025 F- CAAGGAATCACTTAAAAACCAAGC (TG)6 48 Odeny et al. 2009 

 R- AGATGGCCAAGATTCCACAAC    

CCac027 F- GCCTTTTCAAACTTTTCTCA (GT)6 55 Odeny et al. 2009 

 R- CATATGCTTTAAGTGCTTTCCT    

CCac028 F- TGTATGTTCGTTTAGAGGCTTCC (AC)6 55 Odeny et al. 2009 

 R- GCCCCTTTTCACTTTTCTCA    

CCac029 F- TGCCTACTAGGGGTTTCGTG (CA)6c 48 Odeny et al. 2009 

 R- TGAACTATCCAGGGAGGTGAG     

CCac030 F- TGATTTGTGCTTGTGCCTTG (TGT)(TTG)2(TG)7 48 Odeny et al. 2009 

 R- GTCTTGCTTACGCGTGGACT    

CCac031 F- AACGATGAAATTCCCAAACG (CA)8 48 Odeny et al. 2009 

 R- TGTTAGATGCTCAACCCAAGG    

CCac032 F- AGCCACTTAATAACCAAGCCTTTT (TG)7 48 Odeny et al. 2009 

 R- GTGTATGCTTTACTTGCTTTCCTTT     

CCac033 F- AAATTCACCACCATGATCCAA (GT)7 56 Odeny et al. 2009 

 R- TCTTCACTTCCGAGACACAACT    



CCac034 F- CAAGAAAGCACCCCTCGTAG (ATG)4 54 Odeny et al. 2009 

 R- ATAGGAGCATCCGTCGACAA    

CCac035 F- TGAGAGGCAATGATGTTGGA (AC)7 48 Odeny et al. 2009 

 R- TCTACAGGCACCCTTTGAAAAT    

CCac036 F- ATCGGCTTTTGTCTTGATGA (CATA)3ta(TG)6 48 Odeny et al. 2009 

 R- AAGCTACAAGGGATACACATGC    

CCac038 F- GACGTGGTCATTGAAAGTAGCA (TG)7 48 Odeny et al. 2009 

 R- AGACAAAAACTACACGCACTCAAG     

CCac039 F- TTAGGGTCACCAGTGATGATATGT (TG)8 48 Odeny et al. 2009 

 R- TTTCAGGTGCAGAAATAAAGGTTAG    

CCac040 F- CGTGGACTAATCATCCCGTAA (CAA)(CA)6caa 48 Odeny et al. 2009 

 R- ATAATGCCAAAGGGGGAGAA     

CCat001    F- CTTCCCCCAACTAAGATCCA (TA)8 48 Odeny et al. 2007 

 R- GTTCGTTCTCTTTAATTGACTTGC    

CCat002 F- TTTCCTGAGCCATCAGTCG  (TA)10(TG)9 54 Odeny et al. 2007 

 R- AAGCATCAACGTACCAGCAA    

CCat003 F- TGAATTGCTGAGAGGACGTTT (TA)11 54 Odeny et al. 2007 

 R- CTGTTCCAATTCCACGGTTT    

CCat004 F- CTACAATCCCAGGGAAAAGG  (TA)4(GATAG)(AT)4 48 Odeny et al. 2007 

 R- AACAAACGTAATCTGTGTTGATCTC    

CCat005 F- TGAATTGCTGAGAGGACGTTT (TA)11 48 Odeny et al. 2009 

 R- CTGTTCCAATTCCACGGTTT    

CCat008 F- CTTCCCCCAACTAAGATCCA (TA)4(GATAG)(AT)4 48 Odeny et al. 2009 

 R- GTTCGTTCTCTTTAATTGACTTGC    

CCat009 F- TTTCCTGAGCCATCAGTCG (TA)10(TG)9 48 Odeny et al. 2009 



 R- AAGCATCAACGTACCAGCAA    

CCat010 F- TCGTGGGAATGCTCTACAAC  (AT)6 48 Odeny et al. 2009 

 R- AACCACAAGTACACCCACACC     

CCat011 F- TGCTCTAATGGCTAGTTCATCC  (TA)7(CA)6 48 Odeny et al. 2009 

 R- AAACACTCATGGGTTAGATTCTCC    

CCat012 F- CCACAAGTACACCCACACCA (AT)6 48 Odeny et al. 2009 

 R- TTCGTGGGAATGCTCTACAA    

CCcat001 F- TGATAGGGACCACAACGACA (CAT)4 58 Odeny et al. 2007 

 R- AGCGTTGACTCCTCCCTCTT    

CCcat002 F- ACGGTGCCTTGTTGATTGTA (CAT)6 48 Odeny et al. 2009 

 R- CGGAACAGGAGGAAAAGGTC     

CCcct004 F- ATCCTCCAAAAGTTCCACCA (CTC)4 48 Odeny et al. 2009 

 R- CAAAGGAGGATTTCCACCAA    

CCcta001 F- TGGGCATGGTAGAGGAAGTT (GAT)5(TCT)(GAT)4 48 Odeny et al. 2009 

 R- CGTCATGAAGCAACAGGAGA    

CCcta002 F- ATCCCAGACTTCATAGGGAGATAG  (ACT)4 48 Odeny et al. 2009 

 R- GTCTAGTCCCAGGTACAAAGAGGT     

CCcta003 F- GAGGAGGAGGAAGAAGAAGAAGA  (TGA)11 48 Odeny et al. 2009 

 R- TCGTCGCCGTATCACTACAA    

CCcta004 F- TAGTATGGGCGTGGTAGAGGA  (GAT)4 48 Odeny et al. 2009 

 R- CGTGACAGAGTCAATCAGAAGC    

CCcttc001 F- TAAGGAAATGGCTGGGGTTG (CTTC)4 48 Odeny et al. 2007 

 R- CACATAAATTTGGGGGTTCG    

CCgaaa002 F- GGACTTGTTACTGGGGCACT (CTTT)4 48 Odeny et al. 2009 

 R- AATTCCCATGGTCATTCG     

CCgaaaaa001 F- CTTTGTTCAGAGCGGAGCAT  (GAAAAA)5 48 Odeny et al. 2009 



 R- TTTTTAGGACATTGGGAAGCA    

CCggc001 F- CCATTGTGCGTCTTTGTGTT (GGC)4  54 Odeny et al. 2007 

 R- GCTTTTCCTCTTCCTTTCTCG    

CCgggaga001 F- GAGAAATATGAGAGGCAGAGAGAGA (GGGAGA)4 54 Odeny et al. 2009 

 R- AAGATAATTCATTAGGGGGTGGA    

CCggt001 F- ACGCTTCTGATGCTGTGTTG (GGT)4 54 Odeny et al. 2007 

 R- CATCAGCATCATCGTTACCC     

CCgtt001 F- ATAGGCCCATCTCCAGGTTC (AAC)4 54 Odeny et al. 2007 

 R- TTAATGCCCAGCCAATTCTT    

Ccgtt002 F- ATAGGCCCATCTCCAGGTTC (AAC)4 54 Odeny et al. 2009 

 R- TTAATGCCCAGCCAATTCTT    

CCgtt003 F- TGGGCTGTGATCGATGAAT  (TGT)4 54 Odeny et al. 2009 

 R- CGACAACAACAACACCGACT    

CCgtt004 F- GTTCTTCTTGTTGTTGTTGTTG (TTG)5(TTC)7 48 Odeny et al. 2009 

 R- AATTCGTGGAGTTCATTGG     

CCtacccg001 F- GTCGGGGCGTGTAAGTCATA (TACCCG)4 48 Odeny et al. 2007 

 R- CCGAAATAAGGATGGCAAAT    

CCtacccg002 F- GTCTTTGAGGGACGGAACC (CGGGTA)4 48 Odeny et al. 2007 

 R- GGGGCGGGGAAAGTACATA    

CCtc001 F- GACTCTTCACCTCACACTCATCAC (CT)6tt(CT)2 48 Odeny et al. 2007 

 R- ACCTCATACAACAACCCTAAGCAC    

CCtc002 F- GACTCTTCACCTCACACTCATCAC (GA)12 48 Odeny et al. 2007 

 R- ACCTCATACAACAACCCTAAGCAC     

CCtc004 F- GGAAAACCCCGAGACAAAAG (GA)12 48 Odeny et al. 2009 

 R- GGGCAACCCATAAACCCTAA     

CCtc006 F- GCGCTAAGGGAAAACAAAAA  (TC)8 48 Odeny et al. 2009 



 R- AACTCCCTTGTTGTCATATGGTG     

CCtc007 F- CATTTATTTCTCTCTGGCATTCAC  (TC)8 48 Odeny et al. 2009 

 R- CGAGCTGCAAGCATAAACG     

CCtc008 F- TGCACAGATTCGAAGGTTCC (AG)20 48 Odeny et al. 2009 

 R- CCTCAAGATTCCTCTTTCTCTCA    

CCtc012 F- GAGGATTGCACCAAGCAACT  (TC)7 48 Odeny et al. 2009 

 R- GCACTGCTGGCCTTACCATA     

CCtc013 F- CTTCTCCCTGCCTCTTTTCC  (TC)6 48 Odeny et al. 2009 

 R- CAAGTGGAGGGGAGTGAAGA    

CCtc014 F- GCGAAGAGGGTAAAGGGAAA (AG)5aac(GA)4 48 Odeny et al. 2009 

 R- CCGGTCACGAGAAATGTGTA    

CCtc016 F- ATCATCAGATTCTTCAGCCGTA (GA)4ca(GA)4n(GA)8 48 Odeny et al. 2009 

 R- GGTTAGACCAATCCAATCAAGC    

CCtc018 F- ACAAATCCGGTGACCCATAA (TC)6 48 Odeny et al. 2009 

 R- CCGAGAACAAAAACATTGAACA    

CCtc020 F- CTAGGCCCTCGAGCTACATT (TC)13 48 Odeny et al. 2009 

 R- TCTTTTAGAGGTGCGCTGTG    

CCtta001 F- TTCTGGATCCCTTTCATTTTTC (TC)6 48 Odeny et al. 2007 

 R- TGACACCCTTCTACCCCATAA    

CCtta002 F- CCCATTTAGTGAGGGTTAAT (TAT)9 48 Odeny et al. 2007 

 R- GACTACTCCAGGTCAAACACG    

CCtta003 F- CCCATTTAGTGAGGGTTAAT (TTA)4 54 Odeny et al. 2007 

 R- GACTACTCCAGGTCAAACACG    

CCtta004 F- CCAAGAAAAGGTGCTCCAAGT (TTA)4 58 Odeny et al. 2007 

 R- TTGCTTCTTTTCTCGCTTGC    

CCtta005 F- TCTTCCATTGCATGGTGTT (AAT)4 54 Odeny et al. 2007 



 R- GCATGATATGAGATGATGACGA    

CCtta007 F- ACCCATTATTGATTTGGGTA (ATT)4 48 Odeny et al. 2009 

 R- CCAAATTTCACCCAAGAAA    

CCtta008 F- TCTTCCATTGCATGGTGTT  (AAT)4 48 Odeny et al. 2009 

 R- GCATGATATGAGATGATGACGA     

CCtta011 F- TCAGGGGTAAATGCGGTATC (ATT)21 48 Odeny et al. 2009 

 R- GAATTGCTTTTTGCTTCCTCA    

CCtta013 F- CAGGATTTTAATGGATTCTGCAA  (ATT)4 48 Odeny et al. 2009 

 R- GGGTGAATACTATTTAAAAGGATAGG    

CCtta015 F- AACACGCACCTCAATTCCA  (AAT)4 48 Odeny et al. 2009 

 R- GAATGAGGAATGAAGGGACAAA    

CCttat001 F- TACAGCAGCCACATCAAAGC (TTAT)4 54 Odeny et al. 2007 

 R- TGAACCGTGAAAGTGGGATT    

CCttc001 F- CGGGCTTCCTTTTCTTCTCT (TTC)5 54 Odeny et al. 2009 

 R- AAAACCCCGAAAACACCATT    

CCttc002 F- GGGAATTTTGTTGGGGTTTT (GAA)5g(GAA)5 48 Odeny et al. 2009 

 R- TGCTTACGCGTGGACTAATG    

CCttc003 F- ACACCACCATGCTAAAGAACAAG (GAA)5g(GAA)5 48 Odeny et al. 2009 

 R- CCAAGCAAGACACGAGTAATCATA    

CCttc005 F- ATCGCTTTGCATCCTTATC  (GAA)11n(GAA)5n(GAA)17 48 Odeny et al. 2009 

 R- CTTCACGTACATTTTCGTTT    

CCttc006 F- GTAGAGGAGGTTCCAAATGACATA (GAA)11gag(GAA)5n(GAA)17 48 Odeny et al. 2009 

 R- ATCTGTCTGGTGTTTTAGTGTGCT    

CCttc007 F- CTCTTGCTTACGCGTGGACT (GAA)16 48 Odeny et al. 2009 

 R- CTTTTGCTTTTGCGTGCTT    



CCttc008 F- TCACAGAGGACCACACGAAG (AGA)5 48 Odeny et al. 2009 

 R- TGGACTAGACATTGCGTGAAG    

CCttc010 F- AGAGGGAAAGGGAAGAGAAGA (AGA)4 54 Odeny et al. 2009 

 R- TCAAGCAACTCCAAGAAATTCA     

CCttc011 F- AAGGCTTTTCAACAAATAGGG (CTT)4 54 Odeny et al. 2009 

 R- AGAAGAGAAAAAGCATAAAACTTCA     

CCttc012 F- TAATCCCATTCCGTTGTCGT (CTT)4 54 Odeny et al. 2009 

 R- CCCAGGAAGAGATGAGACCA     

CCttc015 F- TGTTCCGTTTCAAGTGGTCA (AGA)4 54 Odeny et al. 2009 

 R- CGACATTTACCCACTCGTTCA    

CCttc016 F- TAGAGCGTTGTCCCTTTTCTG (TTC)7 54 Odeny et al. 2009 

 R- TCGAAGGACAACTCAAGCATT     

CCttc018 F- ATGGGCATGGTAGAGGAGGT (AGA)10 58 Odeny et al. 2009 

 R- CGCTCATCATCGTCATCAAA     

CCttc019 F- AGTCGATGTGGAACATGAGGA (TTC)4tgc(TTC)3 48 Odeny et al. 2009 

 R- TGTTGTAAGCCGTGGGTAGG    

CCttc020 F- AGGTGCAAAGGAAGCACTAAT (GAA)2n(GAA)4n(GAA)2 48 Odeny et al. 2009 

 R- CAGCTCCACTGTCTTCAACG     

CCttc022 F- TGGACTACCAAACGCAGACA (GAA)6 48 Odeny et al. 2009 

 R- TCGTAGCTGCAGAGCATTTT    

CCttc023 F- CGGCCCCTTCTATACTGTCA (TCT)4 48 Odeny et al. 2009 

 R- GAAAAGAGAAAAGAAGGAAAGAGGA    

CCttc025 F- TGGGCATGGTAGAGGAAGTT (AGA)11(GGAG)(GAA)4ga(GGA)3a(GAA)16 48 Odeny et al. 2009 

 R- TCAGAAGTCGATGGCAAGTG    

CCttc030 F- ACAATTACTCAAATGCTCTCAACG (AGA)5 48 Odeny et al. 2009 

 R- TAAATGTCGCTTCCTATGATAGACC     



CCttc031 F- TGAAATGAACAAACCTCAATGG (AAG)13 48 Odeny et al. 2009 

 R- TGTATTGCACATTGACTTGGCTA     

CCttc033 F- ATTCCCTCTCTATCTCAGACTTTT (CTT)8 48 Odeny et al. 2009 

 R- TCGTGATGGAACTCAAGATACACT    

ICPM101 F- GGCCAAGTCACTGTCGAATC (AC)8(AT)7acat 48 Saxena et al. 2010 

 R- TGTAGTCCACGCGTAAGCAA    

ICPM102 F- GCGGTGAAGATGGATGGAT (AG)8 48 Saxena et al. 2010 

 R- CTCTTGCTTACGCGTGGACT    

ICPM103 F- ATCCCGTAATGCACCTTTTG (AAC)4 48 Saxena et al. 2010 

 R- TTGGTCTGAATTGTGGCCTAT    

ICPM104 F- CGTCTATGGAGGGTTTTCAG (CA)9 48 Saxena et al. 2010 

 R- AGACATTTATCAATCCAAGGTG    

ICPM105 F- GCCATTACTTGAGTGTGAGTTTTG (AC)53 48 Saxena et al. 2010 

 R- GTGTGTGTGTGTGTGTGTGTGTGT    

ICPM106 F- CCTATCGGAAGGAGAAAAACATT (GAC)4 48 Saxena et al. 2010 

 R- TCGCTAAAGTCTTGGTAGATAATGG    

ICPM107 F- CCGGTTTAGGGTTTAGGGTTT (AAACCC)43 48 Saxena et al. 2010 

 R- GGTTGGAGGGTTTAGGGTTG    

ICPM108 F- TCTTCATCCTCACTCTTCCCCTAA (TTTC)4 48 Saxena et al. 2010 

 R- GAGGTGCCCAAGGAAGATAG    

ICPM109 F- CCTTTTCTTTGTCGGAATCACTAA (TC)13 48 Saxena et al. 2010 

 R- CGGAGGCTGTTGGATCTAGTATTT    

ICPM110 F- GGGGTGAATGGTAGTGGAAA (AGG)4 48 Saxena et al. 2010 

 R- TCCCTCTCTCCTCCCCTTAT    

ICPM111 F- CCAGCCGGATCGTTACACTA (TCT)29 48 Saxena et al. 2010 

 R- TGGTAGATTTTCTCGTGACTGC    



ICPM112 F- GCAGTCACGAGAAAATCTACCAC (ATA)4 48 Saxena et al. 2010 

 R- GGTTGATTATCGAATGAAATGGAG    

ICPM113 F- TGGGCATGGTAGAGGAAGTT (GAA)47 48 Saxena et al. 2010 

 R- CATCATAATCGTCTTCATCACTTG    

ICPM114 F- AAAAATTTCGTCCAAAGCTCCT (TC)7 48 Saxena et al. 2010 

 R- GGAAGATTGAATTACATACCTCTCG    

ICPM115 F- TGGGCATGGTAGAGGAAGTT (AGA)9gaaagaa 48 Saxena et al. 2010 

 R- CCCACCATTACCAAGCAAGT    

ICPM116 F- TCCTCTCTCCTCTTGTCTTGTC (CTT)4 48 Saxena et al. 2010 

 R- ATGGAGAAGTGAAAGGGATATGT    

ICPM117 F- TGCATGATATGAGATGATGGAGA (ATT)5 48 Saxena et al. 2010 

 R- CCCTTTTCACCCAAAAATACAA    

ICPM118 F- CATCCATTGGGTTGTTCTCA (TTC)5 48 Saxena et al. 2010 

 R- GGATTAAAGCGCACCATCAT    

ICPM119 F- CATGCGTATTGAATGAATTG (AC)53 48 Saxena et al. 2010 

 R- TCTCGTCTGAGTGGGAGTGT    

ICPM120 F- GCCCCTCTTACACCTTTTCTT (GT)8 48 Saxena et al. 2010 

 R- CTCTTGCTTACGCGTGGACT    

ICPM121 F- TTACCTGACGTGAAGTGAATGG (TTCCC)(TTC)3tcc(TTC)4taca(TCT)7 48 Saxena et al. 2010 

 R- CGTGCGACAGGACTACAATG    

ICPM122 F- TTGTCCGTAGCTCTCGTTTCT (TTC)4 48 Saxena et al. 2010 

 R- GCTATGCAGCGGTAAGTGTG    

ICPM123 F- TTGGGAAATGAAGGTTGAGC (AG)6g(C)9 48 Saxena et al. 2010 

 R- GCGTCGAGTAATCCATGAAAA    

ICPM124 F- CATCAGGCGTTAGGAACTCTC (CA)6(TA)6(CA)3 48 Saxena et al. 2010 

 R- TTGTGGATTGTGTTATGTGTGC    



ICPM125 F- TCTTCGCTTTGAGGGGACTA (AGA)6 48 Saxena et al. 2010 

 R- GGGAATTTTGTTGGGGTTT    

ICPM126 F- TCAACACCTGATTAAGATTTGTTCC (CAA)g(CA)5cg(CA)(TA)2 48 Saxena et al. 2010 

 R- AGGGTTTCTCAAGTGGTAAGGTTT    

ICPM127 F- CGAGCTCGAATTGACCCTAT (AT)16 48 Saxena et al. 2010 

 R- TTTGTTTTTGGGCTCATTCC    

ICPM128 F- CCAATCCTGGGCAGTTTCT _ 48 Saxena et al. 2010 

 R- GCGGGCTTCATGACAACTT    

ICPM129 F- TTGTTTTGGACCTTATTTTGTACTT (TAT)4 48 Saxena et al. 2010 

 R- CCCATTTTCCTTCTCTTCTAACC    

ICPM130 F- CAACATGACATCCTCCTCCA (GTT)4 48 Saxena et al. 2010 

 R- CTACGCCCCAAGAAACACAA    

ICPM131 F- CTACCTTGGCCAACCATTCT (AAT)4 48 Saxena et al. 2010 

 R- GGCACAGTTCTTCCACCATT    

ICPM132 F- TGAAAAGGTTCTCATGATCTCT (TC)6 48 Saxena et al. 2010 

  R- GGCTCACTATAGGGCGAATTA      

 

# 
Markers in bold faces were found polymorphic across 159 (A-, B- and R-) lines. 





 

 

Table 3: SSR polymorphism among male sterile (A-), maintainer (B-) and restorer (R-) lines 

 SSR 

markers 

A- lines  B- lines R- lines Across all lines 

PIC 

value 

No.  of 

alleles 

PIC 

value 

No. of 

alleles 

PIC 

value 

No. of 

alleles 

PIC 

value 

No. of 

alleles 

CCac003 0.40 2 0.33 2 0.37 2 0.37 2 

CCac007 0.06 2 0.00 1 0.00 1 0.01 2 

CCac012 0.69 3 0.66 3 0.36 3 0.56 4 

CCac013 0.29 4 0.62 4 0.66 4 0.63 4 

CCac020 0.49 2 0.40 2 0.31 2 0.43 2 

CCac021 0.10 2 0.45 2 0.48 2 0.42 2 

CCac022 0.16 2 0.47 2 0.44 4 0.51 4 

CCac027 0.00 1 0.00 1 0.05 2 0.03 2 

CCac031 0.06 2 0.00 1 0.00 1 0.01 2 

CCac035 0.49 2 0.50 2 0.35 2 0.46 2 

CCac036 0.40 2 0.41 3 0.37 2 0.39 3 

CCac039 0.11 2 0.00 1 0.15 2 0.11 2 

CCat005 0.36 2 0.07 2 0.05 2 0.10 3 

CCat009 0.47 2 0.36 2 0.21 2 0.32 2 

CCat011 0.49 2 0.46 2 0.46 2 0.47 2 

CCB1 0.48 3 0.46 3 0.54 3 0.52 3 

CCB10 0.44 4 0.72 5 0.63 5 0.71 5 

CCB4 0.55 4 0.61 3 0.66 3 0.66 4 

CCgaaaaa001 0.29 3 0.46 2 0.13 2 0.42 3 

CCggt001 0.23 2 0.00 1 0.26 2 0.44 2 

CCgtt002 0.12 2 0.15 2 0.37 3 0.29 3 



CCgtt004 0.17 2 0.06 2 0.03 2 0.08 2 

CCtc002 0.54 3 0.24 2 0.10 6 0.26 6 

CCtc006 0.23 2 0.49 2 0.45 2 0.50 2 

CCtc013 0.65 4 0.62 4 0.54 4 0.60 4 

CCtc018 0.53 3 0.57 4 0.62 5 0.59 5 

CCtta008 0.23 3 0.00 1 0.03 2 0.08 4 

CCtta011 0.75 6 0.78 6 0.78 6 0.81 6 

CCtta015 0.11 2 0.23 2 0.21 2 0.19 2 

CCttc001 0.31 3 0.66 3 0.56 3 0.63 3 

CCttc003 0.29 3 0.48 3 0.64 3 0.60 3 

CCttc006 0.67 3 0.60 3 0.68 3 0.68 5 

CCttc007 0.29 3 0.61 3 0.48 4 0.57 5 

CCttc008 0.57 3 0.63 3 0.60 3 0.60 3 

CCttc016 0.08 2 0.00 1 0.29 2 0.20 2 

CCttc030 0.16 2 0.48 2 0.30 2 0.48 2 

CCttc033 0.52 3 0.52 3 0.37 3 0.45 4 

ICPM103 0.31 2 0.35 2 0.12 2 0.24 2 

ICPM127 0.40 3 0.38 2 0.40 3 0.40 3 

ICPM128 0.46 3 0.61 3 0.63 4 0.64 4 

ICPM131 0.05 2 0.52 4 0.56 5 0.49 5 

Maximum 0.75 6 0.78 6 0.78 6 0.80 6 

Minimum 0.00 1 0.00 1 0.00 1 0.01 2 

Mean 0.34 2.6 0.39 2.7 0.37 2.9 0.41 3.1 

 



 

Table 4: Polymorphism features among the parental combinations of 56 hybrids 

A- line 

 

Hybrid no. 

 

No. of poly. markers 

between A- and R- lines 

Dissimilarity 

 

ICPA 2039 ICPR 2364 19 0.34 

ICPA 2039 ICPR 2447 22 0.40 

ICPA 2039 ICPR 2429 21 0.35 

ICPA 2039 ICPR 2460 20 0.41 

ICPA 2039 ICPR 2463 24 0.40 

ICPA 2039 ICPR 2469 21 0.33 

ICPA 2039 ICPR 2384 19 0.28 

ICPA 2039 ICPR 2438 22 0.37 

ICPA 2039 ICPR 2441 18 0.28 

ICPA 2039 ICPR 3310 13 0.21 

ICPA 2039 ICPR 2533 11 0.20 

ICPA 2039 ICPR 3301 12 0.19 

ICPA 2039 ICPR 2459 19 0.33 

ICPA 2042 ICPR 3507 18 0.35 

ICPA 2042 ICPR 3525 20 0.40 

ICPA 2042 ICPR 3522 20 0.41 

ICPA 2042 ICPR 3513 19 0.35 

ICPA 2042 ICPR 3514 17 0.30 

ICPA 2042 ICPR 3516 16 0.28 

ICPA 2042 ICPR 3519 18 0.34 

ICPA 2042 ICPR 3521 19 0.27 



ICPA 2042 ICPR 3524 18 0.38 

ICPA 2042 ICPR 3510 22 0.20 

ICPA 2043 ICPR 2671 18 0.26 

ICPA 2043 ICPR 3468 17 0.25 

ICPA 2043 ICPR 3472 16 0.27 

ICPA 2043 ICPR 3475 21 0.37 

ICPA 2043 ICPR 2691 22 0.37 

ICPA 2043 ICPR 3466 15 0.26 

ICPA 2043 ICPR 3462 16 0.26 

ICPA 2043 ICPR 3338 15 0.24 

ICPA 2043 ICPR 3337 16 0.22 

ICPA 2043 ICPR 3467 21 0.31 

ICPA 2043 ICPR 3470 14 0.21 

ICPA 2043 ICPR 3471 17 0.25 

ICPA 2043 ICPR 3473 17 0.25 

ICPA 2043 ICPR 3756 13 0.20 

ICPA 2043 ICPR 3469 14 0.26 

ICPA 2043 ICPR 3340 14 0.20 

ICPA 2043 ICPR 3341 11 0.14 

ICPA 2043 ICPR 2681 17 0.27 

ICPA 2043 ICPR 3812 17 0.24 

ICPA 2043 ICPR 2698 15 0.22 

ICPA 2043 ICPR 2669 20 0.30 

ICPA 2043 ICPR 2674 18 0.39 

ICPA 2045 ICPR 3374 16 0.28 



 

 

ICPA 2047 ICPR 3352 25 0.40 

ICPA 2047 ICPR 3477 8 0.14 

ICPA 2047 ICPR 3344 13 0.26 

ICPA 2047 ICPR 3351 12 0.19 

ICPA 2048 ICPR 3494 18 0.37 

ICPA 2048 ICPR 3369 14 0.27 

ICPA 2048 ICPR 3366 19 0.32 

ICPA 2051 ICPR 3386 21 0.39 

ICPA 2051 ICPR 3407 21 0.37 

ICPA 2051 ICPR 3394 18 0.31 



 

 

Table5: Features of parental genotypes selected for developing mapping populations 

segregating for fertility restoration 

Parental 

genotype 

Growth 

habit 

Flower colour Pod 

colour 

No of  

polymorphic 

markers 

Dissimilarity 

Parental combinations for early maturing group    

ICPA 2039 
a
DT Yellow 

c
GPS 

22 0.37 
ICPR 2438 

b
NDT Yellow   GPS 

    
ICPA 2039 DT Yellow   GPS 

22 0.40 
ICPR 2447 NDT Yellow   GPS 

 

Parental combinations for late maturing group 

 

ICPA 2043 NDT Light Yellow  Green 
18 0.26 

ICPR 2671 NDT Red with streaks  Purple 

      
ICPA 2043 NDT Light Yellow  Green 

21 0.31 
ICPR 3467 NDT Yellow with streaks 

 d
GS 

a
Determinate, 

b
Non determinate,

  c
Green with purple streaks, 

d
Green with streaks 



 

 

Table 6: Segregating populations produced/evaluated for inheritance study 

Crosses Generation No. of progenies 

Early maturing group   

ICPA 2039 × ICPR 2438 F2 225 

ICPA 2039 × ICPR 2447 F2 222 

Late maturing group   

ICPA 2043 × ICPR 2671 F2 238 

 BC1F1 138 

ICPA 2043 × ICPR 3467 F2 230 

  BC1F1 189 

 



 

Table 7: Segregation for male-fertility and sterility in F1 and F2 generations of early maturing 

crosses and their chi-square tests  

Crosses Generation Number of plants Expected 

ratio 

χχχχ
2222 

calculated 

p 

value 
Total     Fertile  Sterile 

ICPA 2039 × ICPR 

2438 

F1 175 175 0 01:00 - - 

 F2 225 212 13 15:01 0.09 0.77 

ICPA 2039 × ICPR 

2447 

F1 170 170 0 01:00 - - 

  F2 222 210 12 15:01 0.27 0.60 

 



 

 

Table 8: Segregation for male-fertility and sterility in F1, F2 and BC1F1 generations of late  

maturing crosses and their chi-square tests 

Crosses Generation Number of plants Expected 

ratio 

χχχχ
2222 

calculated 

p 

value 
Total     Fertile  Sterile 

ICPA 2043 × 

ICPR 2671 

F1 138 138 0 1:0 - - 

 F2 238 223 15 15:1 0 0.97 

 BC1F1 138 98 40 3:1 1.17 0.28 

ICPA 2043 × 

ICPR 3467 

F1 90 90 0 1:0 - - 

 F2 230 216 14 15:1 0.01 0.92 

  BC1F1 189 140 49 3:1 0.09 0.77 

 



 

Table 9: Segregation for male fertility and sterility in F3 fertile progenies derived from cross 

ICPA 2043 × ICPR 3467 

Progeny number Number of plants χ2  

Calculated 

p value 

Total Fertile Sterile 

Group1 (15:1 ratio)      

3 35 34 1 0.69 0.41 

5 22 21 1 0.11 0.74 

8 31 29 2 0.00 0.96 

9 31 29 2 0.00 0.96 

16 33 32 1 0.58 0.44 

20 36 35 1 0.74 0.39 

22 29 28 1 0.39 0.53 

23 35 34 1 0.69 0.41 

24 20 18 2 0.48 0.49 

25 31 30 1 0.48 0.49 

27 37 35 2 0.05 0.83 

29 19 17 2 0.59 0.44 

30 19 17 2 0.59 0.44 

31 31 29 2 0.00 0.96 

34 33 31 2 0.00 0.96 

35 34 31 3 0.38 0.54 

42 28 27 1 0.34 0.56 

47 34 32 2 0.01 0.93 

50 33 32 1 0.58 0.44 

53 30 27 3 0.72 0.40 

54 28 27 1 0.34 0.56 



55 18 17 1 0.01 0.90 

56 16 15 1 0.00 1.00 

58 29 26 3 0.83 0.36 

59 23 22 1 0.14 0.71 

63 18 16 2 0.73 0.39 

67 30 27 3 0.72 0.40 

72 24 22 2 0.18 0.67 

73 18 17 1 0.01 0.90 

79 14 13 1 0.02 0.89 

89 18 16 2 0.73 0.39 

90 22 21 1 0.11 0.74 

95 29 26 3 0.83 0.36 

Pooled (n =33 ) 888 833 55 0.00 0.94 

Group II (3:1 ratio)      

11 24 18 6 0.00 1.00 

12 37 31 6 1.52 0.22 

13 33 24 9 0.09 0.76 

14 26 15 11 4.15 0.04 

18 32 24 8 0.00 1.00 

32 33 28 5 1.71 0.19 

33 33 27 6 0.82 0.37 

36 32 20 12 2.67 0.10 

37 30 23 7 0.04 0.83 

38 33 25 8 0.01 0.92 

41 44 33 11 0.00 1.00 

45 34 27 7 0.35 0.55 



49 33 25 8 0.01 0.92 

65 28 24 4 1.71 0.19 

68 21 18 3 1.29 0.26 

70 27 21 6 0.11 0.74 

76 21 18 3 1.29 0.26 

81 16 13 3 0.33 0.56 

92 18 14 4 0.07 0.79 

94 18 13 5 0.07 0.79 

Pooled (n =20 ) 573 441 132 1.18 0.28 

 

χ
2
 calculated between two segregating groups (15:1 vs 3:1) for 1:1 ratio is 3.19 (p = 0.07). 

 

 



 

Table 10: Polymorphic SSR markers and their goodness of fit in F2 mapping population 

derived from cross ICPA 2039 × ICPR 2447 

Polymorphic 

marker 

Allele size in (bp) Number of  χ
2
 p value 

ICPA 2039 ICPR 2447 A B H 

CcM0008 193 195 48 47 89 0.21 0.90 

CcM0047 176 183 55 39 90 2.87 0.24 

CcM0057 283 287 42 61 73 9.22 0.01 

CcM0095 224 228 50 43 86 0.82 0.66 

CcM0121 285 278 51 43 89 0.84 0.66 

CcM0126 240 237 13 48 122 33.72 0.00 

CcM0133 204 197 37 48 86 1.42 0.49 

CcM0179 205 209 29 66 86 15.57 0.00 

CcM0181 292 290 41 53 93 1.55 0.46 

CcM0183 252 254 48 29 73 4.92 0.09 

CcM0195 237 234 49 44 93 0.27 0.87 

CcM0246 250 248 4 42 141 63.71 0.00 

CcM0252 246 256 48 45 92 0.10 0.95 

CcM0257 254 258 47 46 94 0.02 0.99 

CcM0268 217 223 48 54 81 2.80 0.25 

CcM0293 250 247 43 53 75 3.75 0.15 

CcM0322 292 306 58 40 72 7.79 0.02 

CcM0381 267 266 46 51 77 2.59 0.27 

CcM0407 213 215 51 44 91 0.61 0.74 

CcM0431 139 137 46 49 85 0.66 0.72 

CcM0443 260 274 31 24 43 2.47 0.29 

CcM0445 249 247 49 41 93 0.75 0.69 



CcM0468 208 206 24 26 40 1.20 0.55 

CcM0522 199 203 23 32 40 4.07 0.13 

CcM0596 249 247 17 29 48 3.11 0.21 

CcM0602 223 229 19 24 50 1.06 0.59 

CcM0603 244 238 24 23 48 0.03 0.98 

CcM0611 280 274 55 27 104 11.03 0.00 

CcM0673 291 289 50 39 97 1.65 0.44 

CcM0710 291 294 26 33 37 6.06 0.05 

CcM0810 213 211 26 30 31 7.55 0.02 

CcM0843 291 277 18 15 15 7.13 0.03 

CcM0974 178 182 128 0 6 355.61 0.00 

CcM0978 300 302 106 34 2 207.13 0.00 

CcM0988 247 251 58 48 60 13.95 0.00 

CcM1001 278 268 39 87 52 56.65 0.00 

CcM1045 279 281 21 48 99 14.04 0.00 

CcM1108 268 275 145 13 19 306.04 0.00 

CcM1109 229 226 40 42 91 0.51 0.77 

CcM1143 226 228 33 19 54 3.74 0.15 

CcM1235 242 248 57 40 90 3.35 0.19 

CcM1246 207 213 46 57 85 3.01 0.22 

CcM1251 230 241 47 49 74 2.89 0.24 

CcM1263 245 247 34 35 102 6.38 0.04 

CcM1282 274 268 34 66 62 21.56 0.00 

CcM1366 307 297 19 38 39 10.90 0.00 

CcM1398 247 253 41 44 96 0.77 0.68 

CcM1438 235 232 27 56 105 11.52 0.00 



CcM1493 177 179 46 50 92 0.26 0.88 

CcM1503 198 191 39 70 64 22.82 0.00 

CcM1522 226 232 49 34 82 2.73 0.25 

CcM1565 296 304 42 51 87 1.10 0.58 

CcM1611 260 256 58 49 81 4.46 0.11 

CcM1616 231 235 45 51 85 1.07 0.59 

CcM1651 247 249 40 44 77 0.50 0.78 

CcM1680 294 292 11 15 10 8.00 0.02 

CcM1713 189 194 43 51 86 1.07 0.59 

CcM1725 235 245 79 19 1 167.77 0.00 

CcM1735 158 164 47 37 99 2.32 0.31 

CcM1809 286 288 44 47 95 0.18 0.91 

CcM1818 174 175 44 30 13 47.28 0.00 

CcM1821 227 224 44 40 94 0.74 0.69 

CcM1837 271 273 51 41 95 1.12 0.57 

CcM1886 265 262 41 62 80 7.71 0.02 

CcM1895 286 284 41 41 105 2.83 0.24 

CcM1935 208 204 50 43 88 0.68 0.71 

CcM1976 204 200 35 14 43 9.98 0.01 

CcM1984 304 295 38 45 84 0.59 0.74 

CcM2046 271 273 50 40 97 1.33 0.51 

CcM2066 122 120 50 45 90 0.41 0.82 

CcM2097 217 213 44 92 50 64.54 0.00 

CcM2126 253 256 39 48 99 1.65 0.44 

CcM2128 230 227 49 50 83 1.42 0.49 

CcM2149 262 256 9 80 95 54.99 0.00 



CcM2164 200 202 42 62 80 7.48 0.02 

CcM2221 215 221 41 43 103 1.97 0.37 

CcM2228 291 293 43 47 92 0.20 0.91 

CcM2241 147 145 49 46 89 0.29 0.86 

CcM2283 182 177 42 67 65 18.31 0.00 

CcM2296 210 214 37 49 61 6.21 0.04 

CcM2332 254 251 54 44 89 1.50 0.47 

CcM2380 275 257 93 17 66 76.64 0.00 

CcM2413 279 277 41 64 81 8.78 0.01 

CcM2460 296 298 45 47 83 0.51 0.78 

CcM2463 230 224 50 45 92 0.32 0.85 

CcM2530 261 257 46 49 87 0.45 0.80 

CcM2565 285 288 43 44 96 0.45 0.80 

CcM2639 156 148 35 68 83 13.86 0.00 

CcM2704 147 145 46 38 103 2.61 0.27 

CcM2707 250 252 32 30 122 19.61 0.00 

CcM2735 225 223 54 50 84 2.30 0.32 

CcM2751 225 223 23 44 100 11.80 0.00 

CcM2753 290 293 41 45 91 0.32 0.85 

CcM2802 290 287 50 49 87 0.78 0.68 

CcM2855 298 289 38 51 76 3.07 0.22 

CcM2871 210 208 49 51 83 1.62 0.44 

CcM2891 229 231 41 44 100 1.31 0.52 

CcM2909 180 184 49 45 84 0.74 0.69 

 



 

Table 11:  Polymorphic SSR markers and their goodness of fit in F2 mapping population 

derived from cross ICPA 2043 × ICPR 2671 

Polymorphic 

marker 

Allele size in (bp) Number of  χ
2
 p value 

ICPA 2043 ICPR 2671 A B H 

CCac009 248 250 66 95 8 148.47 0.00 

CCB4 221 229 48 31 84 3.70 0.16 

CcM0008 197 199 41 52 68 5.39 0.07 

CcM0021 296 299 39 35 93 2.35 0.31 

CcM0030 231 233 45 45 73 1.77 0.41 

CcM0051 290 284 22 31 33 6.53 0.04 

CcM0080 196 190 19 23 34 1.26 0.53 

CcM0093 277 284 45 43 88 0.05 0.98 

CcM0121 284 288 32 40 78 1.09 0.58 

CcM0126 249 237 46 41 91 0.37 0.83 

CcM0133 197 205 42 40 77 0.21 0.90 

CcM0176 254 252 44 40 99 1.40 0.50 

CcM0185 252 248 22 43 85 8.55 0.01 

CcM0195 238 236 42 54 67 6.93 0.03 

CcM0207 249 251 31 42 69 1.82 0.40 

CcM0246 250 242 49 45 89 0.31 0.86 

CcM0248 297 292 33 26 31 9.80 0.01 

CcM0252 254 250 15 31 42 6.00 0.05 

CcM0257 256 250 30 30 82 3.41 0.18 

CcM0268 223 229 41 38 75 0.22 0.90 

CcM0374 182 181 45 43 76 0.93 0.63 

CcM0381 277 275 45 49 71 3.40 0.18 



CcM0392 164 162 50 43 82 1.25 0.53 

CcM0399 271 263 38 36 85 0.81 0.67 

CcM0413 270 273 31 45 79 2.59 0.27 

CcM0444 206 203 39 67 67 17.86 0.00 

CcM0445 247 249 12 24 54 6.80 0.03 

CcM0468 205 199 29 49 92 5.86 0.05 

CcM0471 280 273 11 24 49 6.36 0.04 

CcM0476 253 255 41 45 82 0.29 0.87 

CcM0484 255 251 35 42 63 2.10 0.35 

CcM0494 127 134 51 31 90 5.02 0.08 

CcM0502 261 255 50 48 58 10.31 0.01 

CcM0516 204 208 43 40 85 0.13 0.94 

CcM0522 205 209 47 34 76 2.31 0.31 

CcM0588 296 293 51 37 77 3.11 0.21 

CcM0602 227 232 47 44 72 2.33 0.31 

CcM0611 274 276 38 57 86 4.44 0.11 

CcM0624 284 281 44 44 83 0.15 0.93 

CcM0627 296 294 32 50 98 5.02 0.08 

CcM0637 184 176 37 53 81 3.47 0.18 

CcM0721 190 186 46 42 79 0.68 0.71 

CcM0737 189 193 46 37 84 0.98 0.61 

CcM0743 268 266 28 50 92 6.85 0.03 

CcM0752 244 242 31 43 63 2.99 0.22 

CcM0810 217 219 39 43 69 1.33 0.51 

CcM0820 185 198 56 42 62 10.55 0.01 

CcM0824 190 188 40 64 57 20.88 0.00 



CcM0834 282 280 49 38 90 1.42 0.49 

CcM0849 281 283 34 39 99 4.22 0.12 

CcM0859 257 260 39 32 61 1.50 0.47 

CcM0859 257 260 19 19 27 1.86 0.39 

CcM0882 294 282 14 29 38 5.86 0.05 

CcM0887 187 185 29 50 85 5.60 0.06 

CcM0922 218 231 30 20 25 11.00 0.00 

CcM0956 231 239 39 51 82 2.05 0.36 

CcM0978 297 304 32 40 89 2.59 0.27 

CcM0988 247 251 47 44 87 0.19 0.91 

CcM1079 287 289 41 48 83 0.78 0.68 

CcM1105 253 249 65 21 73 25.42 0.00 

CcM1110 253 256 21 16 48 2.01 0.37 

CcM1139 220 217 41 37 90 1.05 0.59 

CcM1146 191 189 15 19 35 0.48 0.79 

CcM1207 246 244 39 52 68 5.45 0.07 

CcM1232 284 286 33 37 96 4.27 0.12 

CcM1238 244 246 128 0 48 222.55 0.00 

CcM1246 207 209 46 38 72 1.74 0.42 

CcM1258 280 278 18 26 36 2.40 0.30 

CcM1263 245 241 36 47 75 1.94 0.38 

CcM1266 197 202 47 36 94 2.05 0.36 

CcM1277 276 263 39 52 77 3.18 0.20 

CcM1278 268 280 14 25 37 3.24 0.20 

CcM1282 267 273 9 20 44 6.40 0.04 

CcM1313 272 274 40 45 79 0.52 0.77 



CcM1357 286 294 38 38 102 3.80 0.15 

CcM1366 312 295 39 47 80 0.99 0.61 

CcM1392 215 208 29 47 91 5.23 0.07 

CcM1398 250 247 43 39 80 0.22 0.89 

CcM1447 282 285 162 1 6 452.61 0.00 

CcM1459 197 190 32 30 99 8.55 0.01 

CcM1503 210 196 49 52 77 3.34 0.19 

CcM1506 289 295 41 47 81 0.72 0.70 

CcM1522 232 224 43 54 78 3.45 0.18 

CcM1559 275 273 37 45 96 1.82 0.40 

CcM1565 282 304 57 28 71 12.04 0.00 

CcM1584 282 270 40 48 72 2.40 0.30 

CcM1597 241 257 32 42 105 6.49 0.04 

CcM1602 263 265 42 41 80 0.07 0.97 

CcM1609 232 225 42 46 83 0.33 0.85 

CcM1615 261 253 26 37 33 11.90 0.00 

CcM1616 249 237 11 145 25 293.22 0.00 

CcM1635 272 289 47 46 82 0.70 0.70 

CcM1647 271 269 39 39 72 0.24 0.89 

CcM1688 263 255 42 5 41 31.52 0.00 

CcM1707 294 296 48 38 93 1.39 0.50 

CcM1744 240 242 41 46 77 0.91 0.63 

CcM1770 183 180 20 24 40 0.57 0.75 

CcM1837 271 275 41 46 81 0.51 0.77 

CcM1886 286 289 48 47 86 0.46 0.80 

CcM1895 284 288 41 53 78 3.16 0.21 



CcM1962 234 230 40 37 80 0.17 0.92 

CcM1976 204 200 63 0 12 140.52 0.00 

CcM1982 263 265 45 29 80 3.56 0.17 

CcM1984 304 298 34 39 91 2.28 0.32 

CcM1991 215 219 42 42 84 0.00 1.00 

CcM1997 227 236 37 41 63 1.82 0.40 

CcM1999 183 177 45 40 91 0.49 0.78 

CcM2012 262 239 28 48 86 5.56 0.06 

CcM2060 284 288 44 53 82 2.16 0.34 

CcM2095 229 247 57 34 81 6.73 0.03 

CcM2097 217 211 51 47 84 1.25 0.53 

CcM2149 250 252 41 44 93 0.46 0.79 

CcM2176 272 275 48 54 79 3.32 0.19 

CcM2228 295 293 42 43 76 0.52 0.77 

CcM2237 242 246 18 24 42 0.86 0.65 

CcM2280 210 206 40 37 69 0.56 0.76 

CcM2281 242 244 47 38 89 1.02 0.60 

CcM2283 184 182 45 43 77 0.78 0.68 

CcM2296 210 216 42 47 88 0.29 0.87 

CcM2314 318 310 32 38 85 1.92 0.38 

CcM2341 286 289 38 45 96 1.49 0.47 

CcM2370 286 294 28 136 17 248.27 0.00 

CcM2371 292 297 42 55 82 3.15 0.21 

CcM2379 166 168 41 43 73 0.82 0.66 

CcM2380 260 266 18 18 53 3.25 0.20 

CcM2394 277 279 36 49 95 2.43 0.30 



CcM2505 219 216 41 38 89 0.70 0.70 

CcM2517 239 236 42 34 84 1.20 0.55 

CcM2542 300 290 35 58 80 7.09 0.03 

CcM2639 146 155 41 34 76 0.66 0.72 

CcM2704 145 143 43 41 93 0.50 0.78 

CcM2707 246 252 60 47 73 8.30 0.02 

CcM2751 225 221 31 31 81 2.52 0.28 

CcM2781 236 239 49 33 90 3.35 0.19 

CcM2802 284 287 44 41 87 0.13 0.94 

CcM2852 241 245 32 43 87 2.38 0.30 

CcM2855 292 289 31 51 80 4.96 0.08 

CcM2871 208 210 52 34 89 3.75 0.15 

CcM2891 233 231 169 0 8 469.17 0.00 

CcM2895 260 262 45 43 86 0.07 0.97 

CcM2898 260 262 38 43 81 0.31 0.86 

CcM2906 219 240 37 36 80 0.33 0.85 

CcM2948 231 234 52 47 78 2.77 0.25 

CcM2955 226 234 12 22 41 3.32 0.19 

CCttc006 295 301 39 48 64 4.58 0.10 

 

 

 



 

 

Table 12:  Characteristics of ICPA 2039 × ICPR 2447 linkage map of pigeonpea  

Linkage 

group 

No. of 

markers 

Length 

(cM) 

Density 

(marker/cM) 

LG1 8 98.1 12.26 

LG2 8 63.8 7.98 

LG3 9 95.8 10.64 

LG4 8 76.7 9.59 

LG5 3 6.3 2.1 

LG6 12 54.6 4.55 

LG7 10 166.2 16.62 

LG8 4 33.9 8.48 

LG9 5 30.1 6.02 

LG10 9 103.2 11.47 

LG11 6 74.1 12.35 

Total 82 802.8 9.79 

 



 

 

Table 13:  Characteristics of ICPA 2043 × ICPR 2671 linkage map of pigeonpea  

Linkage 

group 

No. of 

markers 

Length 

(cM) 

Density 

(marker/cM) 

LG1 10 64.7 6.47 

LG2 2 22.4 11.2 

LG3 16 64.7 4.04 

LG4 17 165.2 9.72 

LG5 7 32.1 4.59 

LG6 20 120.8 6.04 

LG7 12 121.1 10.09 

LG8 10 86.5 8.65 

LG9 10 72.1 7.21 

LG10 9 40.8 4.53 

LG11 4 80.6 20.15 

Total 117 871 7.44 

 

 

 



 

Table 14: Details on QTLs identified for fertility restoration in ICPA 2039 × ICPR 2447 F2 

mapping population 

Linkage group LOD value Phenotypic 

variation (%) 

Flanking markers 

LG3 4.2 20 CcM1109 - CcM1522 

LG2 1.0 4 CcM2463 – CcM1809 

LG7 44.0 50 CcM2149 - CcM0468 

LG9 1.4 4 CcM0431 - CcM1611 

LG11 5.7 25 CcM0381 - CcM2735 

LG11 5.0 22 CcM2735 - CcM1713 

 



 

 

Table 15: Details on QTLs identified for fertility restoration in ICPA 2043 × ICPR 2671 F2 

mapping population 

Linkage 

group 

LOD 

value 

Phenotypic 

variation (%) 

Flanking markers 

LG1 1.8 3 CcM1079 - CcM1635 

LG3 5.4 24 CcM2542 - CcM1277 

LG4 1.8 5 CcM2898 - CcM0627 

LG6 2.6 10 CcM0824 - CcM0392 

 

 



 

 

 

Figure 1: A general methodology for the production of commercial hybrids by using cytoplasmic 

male sterility system   

 

 



 

 

 

 

Figure 2: Evidences of CMS in pigeonpea. (A) Anther of male fertile flower containing full 

load of pollen grains. (B) Transverse section of a normal fertile anther, it shows intact 

tapetum. (C) Acetocarmine staining visualized stained normal fertile pollen grains. (D) 

Anther of male sterile flower containing no pollen grains. (E) Transverse section of a male 

sterile anther, it shows broken tapetum. (F) Fully male sterile having no stained pollen grains 
 



 

 

 

 

 

Figure 3: Crossing scheme for inheritance studies 



 

 

Figure 4: Diversity analysis among 159 (37 A-, 38 B-, and 84 R-) lines of pigeonpea. 

The figure shows A-, B- and R- lines in blue, red and black colours, respectively 



 

 

Figure 5: Distribution of segregation of 98 polymorphic SSR markers on 188 F2s derived from cross 

ICPA 2039 × ICPR 2447 



 

 

Figure 6: Distribution of segregation of 145 polymorphic SSR markers on 188 F2s derived from cross 

ICPA 2043 × ICPR 2671 
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Figure 7: Pigeonpea linkage map using 82 polymorphic SSR markers on 188 F2s derived from cross ICPA 2039 × ICPR 2447; name of markers are on the right 

side, while the cumulative genetic distances (cM) are on the left side of the map 
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Figure 8: Pigeonpea linkage map using 117 polymorphic SSR markers on 188 F2s derived from cross ICPA 2043 × ICPR 2671; name of markers are on the 

right side, while the cumulative genetic distances (cM) are on the left side of the map 



 



 

 

Figure 9: QTLs identified in 188 F2s derived from cross ICPA 2039 × ICPR 2447 



 

 

Figure 10: QTLs identified in 188 F2s derived from cross ICPA 2043 × ICPR 2671 

 

 


