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Current state-of-art of sequencing
technologies for plant genomics
research
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Abstract

A number of next-generation sequencing (NGS) technologies such as Roche/454, lllumina and AB SOLID have
recently become available. These technologies are capable of generating hundreds of thousands or tens of millions
of short DNA sequence reads at a relatively low cost. These NGS technologies, now referred as second-generation
sequencing (SGS) technologies, are being utilized for de novo sequencing, genome re-sequencing, and whole
genome and transcriptome analysis. Now, new generation of sequencers, based on the ‘next-next’ or
third-generation sequencing (TGS) technologies like the Single-Molecule Real-Time (SMRT™) Sequencer,
Heliscope™ Single Molecule Sequencer, and the lon Personal Genome Machine'™ are becoming available that are
capable of generating longer sequence reads in a shorter time and at even lower costs per instrument run. Ever
declining sequencing costs and increased data output and sample throughput for NGS and TGS sequencing technol-
ogies enable the plant genomics and breeding community to undertake genotyping-by-sequencing (GBS). Data ana-
lysis, storage and management of large-scale second or TGS projects, however, are essential. This article provides
an overview of different sequencing technologies with an emphasis on forthcoming TGS technologies and bioinfor-
matics tools required for the latest evolution of DNA sequencing platforms.

Keywords: next-generation sequencing technology; sequencing by synthesis; single molecule sequencing; plant genomics;
genotyping-by-sequencing; genomic selection

INTRODUCTION

Affordable personal genomes have been a motivation
for the development of low cost, high-throughput
next-generation sequencing (NGS) technologies,
including Roche/454 (www.454.com/), Ilumina

appliedbiosystems.com/) which are able to generate
three to four orders of magnitude more DNA
sequence than Sanger-based sequencing [a first-
generation sequencing (FGS) technology] on the
ABI 3730x] platform. These NGS technologies

(www.illumina.com/) and AB SOLiD, (www. have enabled the genomics community to
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comprehensively characterize DNA sequence vari-
ation within a species by sequencing multiple acces-
sions/genotypes [1, 2|, de novo sequencing of a
number of species [3, 4], detection of methlylated
regions in genome [5] and gene expression profiling
[6-8].

In the past, Sanger sequencing has been used to
characterize the genomes of several organisms
including model plants as well as major crop species
like rice, soybean, sorghum, maize, grape and euca-
lyptus  (www.genomenewsnetwork.org/resources/
sequenced_genomes/genome_guide_p1.shtml). The
availability of NGS technologies, however, have
enabled the research community to embark upon
sequence the genomes of thousands of plant species
through the undertaking of the 1000 Plant Genomes
Project (www.onekp.com/), the 1001 Arabidopsis
Genome project (www.1001genomes.org/) and the
1000 Plant and Animal Genome Project (www.ldl
.genomics.cn/). Similarly, the Genome 10K Project
has been conceived to sequence and assemble 10 000
vertebrate genomes including at least one from each
genus (www.genome10k.org/).

Advances in nanobiology and robotics for DNA
sequencing applications have also been driven by a
competition to win the race of sequencing a human
genome at a target price of US $1000 and therefore
new sequencing technologies and platforms continue
to emerge. As a result, existing NGS technologies are
referred as second-generation sequencing (SGS)
technologies and future or very recently available
NGS technologies are referred to as third-generation
sequencing (TGS) or ‘next-next’ generation sequen-
cing (NNGS) technologies. This article provides an
overview of different sequencing technologies with
a major emphasis on the forthcoming TGS technol-
ogies. We also discuss different bioinformatics tools
required for data analysis of the massive amounts of
sequence data emerging from these technologies.

FGS PLATFORMS

The FGS methods include Sanger’s enzymatic
dideoxy DNA sequencing [9] and the Maxam and
Gilbert’s chemical degradation methods [10]. For
commercial DNA sequencing, Applied Biosystems
(www.appliedbiosystems.com/) was the first com-
pany to introduce ABI Prism 377 based on slab gel
electrophoresis. Owing to the inconvenience of cast-
ing gels, the ABI Prism 3700 was developed with
automated reloading of the 96 capillaries with a

polymer matrix. This platform was used in the
sequencing of the first human genome [11]. Sanger
sequencing was also used for sequencing genomes of
several plant species such as Arabidopsis (Arabidopsis
thaliana; [12]), rice (Oryza sativa; [13, 14]), sorghum
(Sorghum bicolor; [15]), grapes (Vitis vinifera; [16]),
poplar  (Populus  trichophora;  [17]) and soybean
(Glycine max; [18]). Sequencing time and personnel
costs associated with Sanger sequencing, however,
prohibited the sequencing of a large number of
plant species, especially those with large, complex
genomes (e.g. wheat, ~16 Gb).

SGS PLATFORMS

In 2005, 454 Life Sciences (www.454.com/)
launched the GS 20, the first NGS systems into the
market. After acquiring 454 Life Sciences, Roche
Applied  Science
.com/) extended this technology to the new version
of the 454 instrument, the GS FLX titanium.
Subsequently, Roche/454 launched several other
platforms including GS 20/FLX, GS FLX
Titanium+, GS FLX Titanium XLR70 and GS
Junior (www.454.com/products/). In parallel, sev-
eral other companies launched competing NGS
systems that included ‘Solexa 1G> (later named
‘Genome Analyzer’), GA, GA II, HiSeq 2000,
HiSeq 1000, Hi ScanSQ and MiSeq by Illiumina
Inc. (www.illumina.com/systems.ilmn); SOLiD™
3 and SOLID™ 4 system by Applied Biosystems
(www.appliedbiosystems.com/). Recently a new
system for NGS based on multiplex polony technol-
ogy [19] named as the Polonator G.007 has been
introduced by Dover and Harvard Medical School
(www.polonator.org/). Currently, these technolo-
gies are referred as SGS systems. Although all these
systems can be used for a multitude of applications
for plant genomics research [20], Ilumina and
Roche/454 have been the most widely adopted
SGS platforms as evident by publications.

[lumina and Roche/454 employ the principle of
sequencing by synthesis (SBS) 1.e. they rely on PCR
to amplify a given DNA template which is then
attached to a solid surface and are subsequently
imaged in a phased approach. On the other hand,
sequencing  platforms like SOLID™ 3 and
SOLID™ 4 employ sequencing by ligation (SBL).
However, the amplification process can introduce
errors in the template sequence as well as introduce
amplification bias. In addition, generation of NGS

(www.roche-applied-science
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data takes several days due to a large number of
instrument scanning and washing cycles. Because of
dephasing [21], as compared to Sanger sequencing,
average read length of sequence reads produced by
SGS platforms is shorter [22, 23]. Based on the
throughput achieved, except MiSeq, all other
sequencing platforms from [lumina (GA, GA 1I,
HiSeq 2000, HiSeq 1000 and Hi ScanSQ), Applied
Biosystems (SOLID™ 3 and SOLID™ 4) and
Roche/454 (GS 20/FLX, GS FLX Titanium+-, GS
FLX Titanium XLR70 and GS Junior) are con-
sidered as high-throughput SGS platforms.

The GS FLX from 454 Life Sciences produces
over a million reads of up to 1000 bases per 10h
run, for a total yield of 400—600 megabases. Thus,
454 Sequencer has longest short reads among all SGS
platforms. The Illumina Genome Analyzer yields
over one hundred million high-quality short reads
(up to 76 bases) per 3—5 day run, totaling several
gigabases of aligned sequence. To date, the majority
of published NGS articles have described methods
using the short sequence data produced with the
Genome Analyzer. At present, the new Illumina
HiSeq 2000 Genome Analyzer is capable of produ-
cing single reads of 2 x 100bp (pair-end reads),
and generates ~200Gb of short sequences per
run. The raw base accuracy is >99.5%. Finally, the
Applied Biosystems SOLiD system also produces
hundreds of millions of short reads (up to 50 bases)
per run.

The large amount of data generated by these
high-throughput SGS technologies poses a challenge
for data storage and transfer and informatics oper-
ations. This is especially true for the shorter reads
generated by the Illumina and SOLID systems that
make sequence alignment and assembly processes
challenging [23]. Nevertheless, SGS technologies
are being used for a variety of applications including
de novo sequencing of genomes, transcriptome ana-
lysis, gene expression, marker discovery and many
others in plant species such as cocoa [24], chickpea
[6, 25], pigeonpea [26—28], date palm [29] and
pea [30].

TGS TECHNOLOGIES

In the context of challenges associated with assem-
bling of short sequence reads, development of
technologies that generate longer sequence reads
will help to deliver the information required for
assembling complex genomes. In addition, as SGS

platforms generally require either an in vitio or
in vivo amplification step, technologies those that
directly sequence single molecules of DNA, elimi-
nating the need for costly and many times problem-
atic procedures like cloning and PCR amplification
are preferred [31]. To this end, a number of aca-
demic and commercial efforts are developing
ultra-low-cost ‘single-molecule’ sequencing (SMS)
technologies. SMS technologies can be grouped
into three categories: (i) fluorescence-based methods
for SMS like exonucleolytic degradation, true
single-molecule sequencing (tSMS™), fluorescence
resonance energy transfer (FRET)-based approach,
single-molecule real-time sequencing (SMRT™)
and microfluidic  devices; (ii) non-fluorescent
sequencing systems like Nanopore’s Nano-edges,
sequencing using transmission electron microscopy,
pyrosequencing, motion-based sequencing and scan-
ning tunneling spectroscopy-based sequencing; and
(iif) Raman-based methods such as sequencing using
surface-enhanced Raman spectroscopy (SERS) and
sequencing using tip-enhanced Raman spectroscopy
(TERS, [32]. These technologies are referred as
TGS. TGS technologies secem to be superior to
SGS technologies as they generate longer sequence
reads in higher throughput fashion and faster
turnaround time with higher consensus accuracy.
Some of these platforms that have potential for ex-
tensive use in plant genomics research are given
below.

SMRT™ SEQUENCER

Pacific Biosciences (www.pacificbiosciences.com/)
company has recently introduced the PacBioRS,
the TGS system that employs the SMRT™ DNA
sequencing technology, where in DNA sequencing
is performed on SMRT cells (nanofabricated con-
sumable substrates). In this technology, DNA frag-
ment is sequenced by a single DNA polymerase
molecule that is attached to the bottom of each
zero-mode waveguides (ZMW, [33]) and as a
result, each DNA polymerase resides at detection
zone of ZMW [33, 34]. As per the company,
PacBioRS requires less than a day from sample pre-
paration to obtaining the sequence information and
produces read lengths > 1000 bp. The SMRT ™ se-
quencer has been available to several sequencing
centers and critical assessment on its performance is
ongoing.
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HELISCOPE™ SINGLE MOLECULE
SEQUENCER

This sequencer has been introduced by Helicos
(www.helicosbio.com/) company that images bil-
lions of single molecules and produces 21-35 Gb
per run, almost 100X greater than Sanger methods,
and faster than many currently available NGS tech-
nologies [35, 36]. HeliScope employs true single-
molecule sequencing (tSMS) chemistry [37] and
direct RNA sequencing chemistries. Large numbers
of strands of single DNA molecule can be sequenced
simultaneously by using tSMS chemistry. tSMS has
been used to sequence an individual human genome
[38], re-sequence the M13 virus genome and to
quantify the yeast transcriptome [39, 40]. A drawback
is a relatively high raw sequence error rate that can be
overcome with repetitive sequencing, but increases
the cost per base for a given accuracy rate, offsetting
some of the gains from lower reagent costs.

ION PERSONAL GENOME
MACHINE™ SEQUENCER

Life Technologies company has recently launched
[Ion Personal Genome Machine (PGMTM)
Sequencer based on the ion torrent semiconductor
technology (www .iontorrent.com/technology/).
This technology is based on a biochemical process
by which a hydrogen 1on is released as a nucleotide
and is incorporated into a strand of DNA by a poly-
merase [41]. This technology is independent of
enzymatic reactions, fluorescence, chemi-luminis-
cence, and optics. It uses a high-density array of
micro-machined wells. Each of these wells hold a
different DNA template. Just beneath the wells,
there is an ion-sensitive layer and a proprietary lon
sensor. During the sequencing, when a new base is
added to the template, and incorporated into the
strand, hydrogen ion is released. The charge from
that ion changes the pH of the solution that can be
detected directly by the ion sensor without imaging.
The PGM™ system can perform a wide range of
sequencing applications including multiplexing
amplicons, transcriptome analysis, small RNA dis-
covery, and ChIP-Seq analysis.

COMPARISION OF DIFFERENT SGS

AND TGS TECHNOLOGIES
A suite of SGS and TGS technologies are currently
available.  Some  technologies  are  already

commercialized and are on the market, while com-
mercialization of some sequencing technologies has
not yet been realized. An effort has been made to
compare difterent sequencing technologies in Table
1. SGS technologies rely upon SBL or SBS, includ-
ing pyrosequencing and reversible chain termination.
Among SGS technologies, the Genome Sequencer
FLX from 454 Life Sciences/Roche, Illumina
Genome Analyzer and Applied Biosystems SOLiD
are widely deployed in hundreds of research labora-
tories across the world. These technologies vary in
terms of template size and construct, read-length,
and throughput thereby making comparisons diffi-
cult. In fact, some of these platforms are powertul
in particular niches of the sequencing market.

The GS FLX from 454 Life Sciences produces
over a million reads of up to 1000 bases per 10h
run, for a total yield of 400-600 Mb. Thus, the
454 sequencer has longest reads of the SGS plat-
forms. The Illumina HiSeq 2000 Genome Analyzer
is capable of producing single reads of 2 x 100 bp
(pair-end reads) ~200Gb of sequences per run.
The raw base accuracy is >99.5%. Finally, the AB
SOLID system also produces hundreds of millions of
short reads (up to 50 bases) per run.

Whole-genome shotgun (WGS) sequencing is
challenging for larger genomes [42]. The primary
reason is the abundance of repetitive sequence in
larger genomes, especially true for plant genomes.
However, the combination of read length and
paired reads spanning quite large distances achieved
through Sanger-based sequencing platforms can be
used effectively by assembly algorithms to resolve
many repeats and reconstruct a draft genome se-
quence [43]. However, current NGS platforms are
unable to deliver both these features and thus cannot
effectively span repeats.

Although some of the TGS technologies promise
to improve read lengths, they difter significantly in
their approach to sequencing and in their throughput
and time taken from sample preparation to result. Of
the TGS technologies, the tSMS and lon Torrent
technologies have already been commercialized and
several others are in the process of commercializa-
tion. A newer approach is that taken by Complete
Genomics (www.completegenomics.com/) where
the sequencing platform is not commercially avail-
able but available in-house and being used extensive-
ly for human sequencing.

A majority of TGS technologies do not require
cloning and amplification thereby eliminating part of
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the cost relative to SGS technologies. In addition,
read lengths from TGS technologies are expected
to be around 1kb and longer read lengths will ease
many of the informatics challenges relating to de novo
assembly that are currently encountered.

BIOINFORMATICS TOOLS

The increase in sequence throughput from different
sequencing platforms is exponential (Table 2). In this
context, storage and management of humongous
datasets is very challenging. In addition to data stor-
age and management, primary, secondary and ter-
tiary analysis solutions like quality control, base
calling, de novo assembly, alignment to a reference
genome, variant calling, Chip-Seq, transcriptome
analysis are necessary to make sense of the larger
volumes of sequence data. As existing sequence
analysis tools were not appropriate for analysis of
sequence data coming out from new sequencing
technologies, a number of tools/software packages
have been developed in last few years. Some of
these tools are listed in Table 2. The bioinformatics
community needs to be ready continually develop
new tools as well as data storage and management
systems in anticipation of even larger amount of
sequence data coming out from TGS technologies.
Moreover, the types of data and quality associated
with each will complicate analyses and the use of
existing tools. Cloud computing is a potential solu-
tion to the question of massive data storage as well as
analysis [44]. Cloud computing provides computa-
tion, software, data access and storage services that do
not require end-user knowledge of the physical
location and configuration of the system that delivers
the services.

SUMMARY AND OUTLOOK

The last 5 years have witnessed the rise of massively
parallel sequencing technologies and a revolution in
both plant and animal genomics research. These
technologies are continuously evolving resulting in a
continuous decline in sequencing cost and an increase
in sequence read lengths. The result of this evolution
is that genotyping-by-sequencing (GBS) will be rou-
tine in a few years [2]. As a result, plant genetics and
breeding will benefit from modermn genetics and
breeding approaches like association mapping
[45], allele mining, domestication and genomic selec-
tion [46]. The potential as well as proof-of-concept of’

these new sequencing technologies for a variety of
applications has been discussed in several other articles
in this Special Issue of this journal.

Key Points

e SGS technologies dramatically reduced the cost of sequencing.

e TGS technologies are poised to generate longer sequence reads
at a very low cost in less time.

e A new generation of DNA sequencing platforms is ready for
commercialization that will change the landscape of sequencing
in plant genomics research.

e Although a large number of tools/software packages are
available for analysis, visualization and storage of sequence data,
there is a need to develop more powerful and efficient tools/
platforms.
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