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Research

It is predicted that cereal production will need to rise to over 
400 million t by 2050 to meet the demands, which represents an 

increase in yield of 37% from current values (Tester and Langridge, 
2010). However, this is a challenge, especially for smallholders and 
resource-poor farmers, most of whom grow maize (Zea mays L.) on 
marginal lands with low inputs and constant exposure to a variety 
of abiotic (drought, low N, acid soils, waterlogging, and heat) and 
biotic (pests, diseases, and weeds) stresses (Mugo et al., 2008). Cur-
rently, drought stress accounts for a significant percentage of annual 
yield losses (Bruce et al., 2002) and this is compounded by pests 
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Abstract
A diverse collection of 359 advanced maize (Zea 
mays L.) inbred lines from the International Maize 
and Wheat Improvement Center (CIMMYT) and 
International Institute for Tropical Agriculture 
(IITA) breeding programs for drought, low N, soil 
acidity (SA), and pest and disease resistance 
was genotyped using 1260 single nucleotide 
polymorphism (SNP) markers. Model-based 
population partition, neighbor-joining (NJ) clus-
tering, and principal component analysis (PCA) 
based on the genotypic data were employed to 
classify the lines into subgroups. A subgroup 
largely consisting of lines developed from La 
Posta Sequía (LPS) consistently separated from 
other lines when using different methods based 
on both SNP and SNP haplotype data. Lines 
related by pedigree tended to cluster together. 
Nine main subsets of lines were determined 
based on pedigree information, environmen-
tal adaptation, and breeding scheme. Analysis 
of molecular variance (AMOVA) revealed that 
variation within these subsets was much higher 
than that among subsets. Genetic diversity and 
linkage disequilibrium (LD) level were tested in 
the whole panel and within each subset. The 
potential of the panel for association mapping 
was tested using 999 SNP markers with minor 
allelic frequency (MAF) ≥ 0.05 and phenotypic 
data (grain yield [GY], ears per plant [EPP], and 
anthesis to silking interval [ASI]). Results show 
the panel is ideal for association mapping where 
type I error can be controlled using a mixed lin-
ear model (Q + K). Use of pedigree, heterotic 
group, and ecological adaptation information 
together with molecular characterization of this 
panel presents a valuable genetic resource for 
stress tolerance breeding in maize.
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and diseases. Given the increasing demand for maize pro-
duction and limited land, maize germplasm improvement 
using effective breeding technologies is critical.

Broadening the genetic base by creating stress toler-
ant germplasm is expected to result in improved varieties 
that are resilient to harsh environmental conditions found 
in most developing countries. To develop stress tolerant 
germplasm, CIMMYT germplasm is tested under varying 
environmental conditions through on-farm regional trials 
(both researcher managed and farmer managed). Recur-
rent selection, where progeny selection is based on interna-
tional testing, has resulted in improved mean performance 
and stability of CIMMYT’s tropical maize populations 
(Pandey and Gardner, 1992). The destabilizing impacts 
of climate change, especially the increasing frequen-
cies of drought, has resulted in CIMMYT emphasizing 
research to develop drought tolerant and water use effi-
cient maize. Various numbers of cycles of selection under 
drought have been completed in different populations and 
good source drought tolerant populations have been devel-
oped (Edmeades et al., 1997, 1999). Intensive inbreeding 
efforts have also been underway to develop drought toler-
ant inbred lines and a few have been released as CIMMYT 
Maize Lines (CMLs). Importantly, selected drought toler-
ant materials also performed well under low N conditions 
(Bänziger et al., 1999, 2002; Monneveux et al., 2006). 
Secondary traits associated with stress tolerance have been 
emphasized for accelerating breeding gains. Bänziger et 
al. (2000) proposed barrenness, anthesis to silking interval 
(ASI), leaf senescence, and leaf rolling as secondary traits 
useful for improving maize yields in drought-prone envi-
ronments. Selection for tolerance to low N and drought at 
CIMMYT has emphasized selection indices to combine 
data on grain yield under stressed and stress-free conditions 
with information of secondary traits.

In addition to drought and low N, soil acidity is an 
important factor accounting for genotype × environment 
interactions (Setimela et al., 2005). Six acid soil tolerant 
maize populations (SA3, SA4, SA5, SA6, SA7, and SA8, 
where SA represents soil acidity) have been developed by 
CIMMYT maize researchers at Cali, Columbia (Pandey 
et al., 1994, 1997; Narro et al., 1997). Products of these 
researches include released acid soil tolerant hybrids and 
open-pollinated varieties and the identification of acid soil 
tolerant CMLs (Mugo et al., 2008).

The ability to quickly develop maize germplasm com-
bining tolerance to multiple stresses will be essential in the 
face of climate change. While conventional breeding has 
increased yields under both abiotic and biotic stresses, progress 
is slow. The availability of maize genome sequence (Schnable 
et al., 2009), extensive structural variation, and high levels of 
genomic diversity within maize (Gore et al., 2009; Springer 
et al., 2009) provide great potential to exploit natural maize 
genetic diversity for practical application within breeding 

programs. The use of single nucleotide polymorphisms 
(SNPs) as molecular markers is now widely used in many 
crops (Rostoks et al., 2006; Hyten et al., 2008; Muchero et 
al., 2009), including maize (Buckler et al., 2009; Yan et al., 
2009, 2010a). To date, more than one million maize SNPs 
are publicly available (Gore et al., 2009). Abundant genetic 
diversity, rapidly developing high-throughput genotyp-
ing technology, and advanced statistical methods facilitate 
the application of association mapping in maize, which is a 
powerful tool to dissect complex agronomic traits and iden-
tify alleles that can contribute to the enhancement of a tar-
get trait (Yu et al., 2006; Harjes et al., 2008; Buckler et al., 
2009; Yan et al., 2011). Advances in technology will allow 
marker-assisted selection (MAS) to be deployed with greater 
efficiency to pyramid favorable alleles.

In this study, a set of 359 advanced maize inbred lines 
was assembled mainly from drought, low N, soil acid-
ity, and pest and disease resistance breeding programs at 
CIMMYT and IITA. We characterized this maize panel 
using 1260 SNP markers to investigate its genetic diver-
sity; dissect the genetic structure, assess linkage disequilib-
rium (LD) level and familial relatedness, evaluate various 
models for association analysis based on this panel, and 
discuss the marker-based strategy for utilizing this panel 
in improvement of maize stress tolerance.

Materials and Methods
Plant Material and Phenotyping Condition
A collection of maize germplasm was assembled representing 
the genetic diversity of CIMMYT and IITA’s stress breeding 
programs (drought, disease, acid soils, low N, and entomol-
ogy). An initial set of 850 advanced breeding lines was selected 
and evaluated in the dry season of 2006 under two different 
water regimes (well watered and anthesis stage drought stress) 
at CIMMYT’s experimental station in Tlaltizapán, Mexico 
(18°41’ N, 99°07’ W, and 940 m above sea level).

Entries were planted in December 2006 in one-row plots 
(2.5 m rows with 0.25 m spacing between plants and 0.75 m 
between rows), with a final plant density of 6.67 plants m-2. 
An a-lattice design replicated two times was used. The control 
plots (well watered) were irrigated through the crop cycle while 
in the drought stress treatment water was withheld 2 to 3 wk 
before anthesis. Drought stress plots received only one further 
irrigation 1 wk after anthesis. At physiological maturity, all the 
ears (here, an ear was defined as having one or more grains on 
it) of each plot were hand harvested, counted, air dried, and 
shelled and the grains were weighed. Grain yield (GY) and ears 
per plant (EPP) were then calculated.

In total, 246 lines from the initial 850 lines were selected 
based on grain yield performance under well watered and 
drought stress conditions. Also, 32 lines scored for tolerance to 
low N, 68 disease resistant lines, and a set of 13 potential tes-
ters were added to the panel. Disease resistance lines exhibited 
resistance to Northern corn leaf blight (Exserohilum turcicum), 
Southern corn leaf blight (Bipolaris maydis), Fusarium ear rots 
caused by Fusarium verticillioides, Aspergillus ear rot (Aspergillus 
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the Panzea database (Panzea, 2009; E. Buckler, personal com-
munication, 2009) on the basis of having a designability score 
higher than 0.5. Designability scores of SNPs were provided by 
Illumina (Illumina, Inc., San Diego, CA), with a score greater 
than 0.5 indicating a higher probability of success in the Gold-
enGate assay. We used the Illumina BeadStation 500 G (Illu-
mina, Inc., San Diego, CA) for SNP genotyping according 
to the protocol described by Fan et al. (2006). Each SNP was 
rechecked manually and rescored if any error was observed in 
the clustering of homozygous and heterozygous groups (Yan et 
al., 2010a). One thousand three hundred forty-two out of 1536 
SNPs (87.4%) were successfully called with less than 20% miss-
ing data. Within the 1342 SNPs, 16 SNPs with a heterozygous 
rate of more than 20% were excluded from further study. Of the 
remaining 1326 SNPs, 62 were monomorphic in all the lines 
and these were excluded from further analysis.

The remaining 1264 SNP reference sequences were used to 
perform a BlastN search against the maize accessioned golden 
path version 1 for B73 (Arizona Genomics Institute, 2009). 
We considered the top blast hits with an e-value threshold of 
10-18. A total of 1260 successfully called SNPs were used to 
construct a unigene set by subtracting four SNPs with no hits. 
According to the method from Yan et al. (2009), SNPs from 
the same locus (a locus here was defined as a region contain-
ing SNPs located within 10 kbp of each other) were grouped 
into haplotypes, which were recorded as alleles; in this way, 
each locus could have multiple alleles, raising the information 
content of the markers. If the genotype of any SNP at a locus 
was missing in an individual, the haplotype was regarded as 
missing in that individual.

Genetic Structure Analysis
Population structure based on 1260 successfully called SNPs, 
and the unigene SNPs together with SNP haplotypes was 
inferred using the model-based program STRUCTURE 
(Pritchard et al., 2000; Falush et al., 2003). The number of 
subpopulations (k) was assumed to be from 1 to 12, without 

flavus), common rust (Puccinia sorghi), corn stunt complex, Poly-
sora rust (Puccinia polysora), or Maize streak Virus. Therefore, 
a final panel containing 359 lines was assembled to conduct 
molecular analysis. The lines were derived from 12 different 
breeding programs: national or regional programs in Zimba-
bwe (n = 44), Nigeria (n = 5), and Ethiopia (n = 2), and inter-
national (CIMMYT and IITA) breeding programs for acid soil 
tolerance (n = 27), highland adaptation (n = 5), insect resistance 
(n = 39), disease resistance (n = 68), subtropical adaptation (n = 
31), tropical adaptation (n = 41), and physiology (n = 84) plus 
the set of 13 CIMMYT testers (Table 1). Detailed information 
of the 359 lines is listed in Supplemental Table S1. Informa-
tion of the major original sources of these lines is described in 
Supplemental Table S2.

In December 2007, a subset of 253 lines (which were marked 
in Supplemental Table S1) from the 359 lines were planted in one-
row plots (5 m rows with 0.25 m spacing between plants and 0.75 
m between rows) under two different water regimes (well watered 
and anthesis stage drought stress) at CIMMYT’s experimental sta-
tion in Tlaltizapán. Two seeds per hill were sown and then thinned 
to one 14 d after sowing. An a-lattice design replicated two times 
was used and the field management was as outlined above. Days to 
anthesis (DA) and silking (DS) were recorded for each plot when 
at least 50% of the plants have reached anthesis or silking, respec-
tively. Then ASI was calculated as DS minus DA. Grain yield and 
EPP were measured as mentioned above. For each genotype, ASI, 
GY, and EPP were averaged from the two replications and then 
used for association analysis.

Single Nucleotide Polymorphism Genotyping 
and in silico Mapping
Genotyping of the selected panel was conducted using an Illu-
mina oligo pool assay with 1536 SNPs developed by Yan et 
al. (2009) and improved by Wen et al. (2011). Briefly, a total 
of 943 SNPs with minor allelic frequency (MAF) greater than 
0.05 and good quality based on the results in 632 diverse lines 
(Yan et al., 2009) were combined with 593 SNPs selected from 

Table 1. Summary of the origin, source, and grain characteristics of maize lines within the panel.

Group 
identification Breeding program Number of lines Main sources†

Grain color

White Yellow

A Zimbabwe 44 CML, CIMCALI, and DTPW 44 0

B Nigeria 5 KU and P43 3 2

C Ethiopia 2 Pool9 2 0

D Colombia 27 SA3, SA4, SA5, SA6, SA7, and SA8 4 23

E Mexico highland 5 A.T.Z.T.R.L.BA90 1 4

F Mexico entomology 39 CML, MBR, ZM607, KILIMA, and P84 28 11

G Mexico subtropical 31
CML, MBR, SPMAT, Pop 33, Pop 45,  

Pop 501, and Pop 502
18 13

H Mexico tropical 41 CML, CLQ, and CL 22 19

I Selection under drought 52 DTPW, DTPY, and LPS 41 11

J Selection under low N 32 DTPW, DTPY, and LPS 24 8

K Tester lines 13 CML 9 4

L Pathology 68 CML, CLQ, CL, DTPW, DTPY, and LPS 50 18

Total 359 246 113
†A.T.Z.T.R.L., Amarillo Tardio Zona de Transition, Recombinacion de Lines; CIMCALI, CIMMYT lines from Cali, Columbia; CL, CIMMYT lines; CLQ, CIMMYT lines for grain 
quality; CML, CIMMYT Maize Line; DTPW, drought tolerant population white grain; DTPY, drought tolerant population yellow grain; KU, Kasetsart University in Thailand; 
KILIMA, a late-maturing, white grain open pollinated variety in Tanzania; LPS, La Posta Sequía; MBR, multiple borer resistant; Pool, CIMMYT gene pool; Pop, CIMMYT 
Population; SA, soil acidity; SPMAT, semiprolific mid altitude; ZM, population improved in Zimbabwe maize breeding program of CIMMYT.



	 www.crops.org	 crop science, vol. 51, november–december 2011

admixture and with correlated allele frequencies, and the burn-
in time and iterations for each run were both set to 50,000. 
Ten replications were used for each k. Due to the difficulties 
associated with finding the highest posterior probability (i.e., 
natural logarithm probability of data [LnP(D)]) before a large k 
value is examined, both LnP(D) value and Evanno’s Δk (Evanno 
et al., 2005) were used to determine the most appropriate k 
value. Evanno’s Δk considers the rate of change of LnP(D) as k 
increases and also the variance of LnP(D) among repeated runs 
and tends to be maximum at the true value of k. It is calculated 
as Δk = M[|L(k - 1) - 2L(k) + L(k + 1)|]/S[L(k)], in which L(k) 
represents the kth LnP(D), M is the mean of 10 runs, and S is 
their standard deviation. Membership probability in each clus-
ter (Q value) for each line was estimated in each k. Among the 
10 runs per k, the one with the highest maximum likelihood 
was used to assign individual genotypes to clusters. Lines with 
membership probabilities ≥0.60 were assigned to corresponding 
clusters, and lines with membership probabilities <0.60 were 
assigned to a mixed group.

Principal component analysis (PCA) was performed using 
the software NTSYSpc (Darroch and Mosimann, 1985) to 
visualize genetic relationships between maize lines, which was 
based on the Nei’s genetic distances (Nei, 1972) among all the 
lines. A phylogenic tree was constructed using the neighbor-
joining (NJ) method in the software MEGA V4.0 (Tamura et 
al., 2007). Relative kinship between individuals was inferred 
from molecular markers, approximately reflecting the identity 
between two given individuals over the average probability of 
identity between two random individuals (Yu et al., 2006). We 
used SPAGeDi (Hardy and Vekemans, 2002) to estimate the 
kinship coefficients (Loiselle et al., 1995) based on 1260 suc-
cessfully called SNPs.

Pedigree information, environmental adaptation, and 
breeding program origin of the lines were used to compare 
with classification based on marker data.

Analysis of molecular variance (AMOVA) (Excoffier et al., 
1992) and pairwise F-statistics were performed using Arlequin 
V3.11 (Excoffier et al., 2005) to investigate population differenti-
ations among the subpopulations classified by different methods.

Diversity, Linkage Disequilibrium,  
and Association Analysis
Polymorphic information content (PIC), the relative value 
of each marker with respect to the amount of polymorphism 
exhibited, and gene diversity were estimated in each subset 
using the software PowerMarker V3.25 (Liu and Muse, 2005).

Linkage disequilibrium was estimated for all pairs of poly-
morphic SNPs from the same chromosome with less than 20% 
missing data. The parameter r2 was calculated using the pro-
gram TASSEL 2.1 (Bradbury et al., 2007). Linkage disequi-
librium was computed separately for different subsets of lines 
and markers. Linkage disequilibrium was calculated for all 
1260 SNP markers and subset of SNPs with MAF greater than 
0.05 or 0.1 separately. Mean r2 values were calculated between 
SNPs, which have physical distances in different ranges. Six 
subsets of different sample size (n = 7, 24, 31, 41, 47, and 69) 
were randomly selected from the 359 lines with 10 repetitions 
to detect the effect of sample size and population background 
on the extent of LD using 1260 SNPs.

Association analysis was conducted for three traits (GY, EPP, 
and ASI) and 999 SNPs with MAF greater than 0.05. The traits 
per se of 253 lines were used to test appropriate model for genome 
wide association analysis considering the population structure 
(Q), relative kinship (K) and Q + K respectively (Yu et al., 2006).

Results
Panel Composition  
and Phenotypic Performance
The initial panel was composed of 850 inbred lines. The 
origin of these lines is summarized in Supplemental Fig. 
S1a. From this set 246 lines were selected, plus an addi-
tional 113 lines from other sources, giving a total of 359 
lines (Supplemental Fig. S1b) that were used for molecular 
analysis. The composition of this panel is summarized in 
Table 1. The majority of lines were developed from the 
drought-tolerant population (DTP), La Posta Sequía (LPS), 
SA, and elite CMLs. Two hundred forty-six lines had white 
grain while 113 lines had yellow grain (further information 
is described in Supplemental Tables S1 and S2).

Under drought stress, flowering synchrony was reduced 
(i.e., increased ASI) compared to the well-watered control 
(Supplemental Table S3). Grain yield under well-watered 
conditions was on average more than four times higher than 
under drought stress. Ears per plant ranged from 0.8 to 1.4 
(mean = 1.1) under well watered conditions and 0.4 to 1.3 
(mean = 0.9) under drought stress (Supplemental Table S3).

Performance and Quality of Single 
Nucleotide Polymorphism Genotyping
A total of 1260 polymorphic SNPs was used for final data 
analysis (Supplemental Tables S4 and S5). The 1260 SNPs 
were evenly distributed across the whole genome, with 
coverage ranging from 74 SNPs on chromosome 9 to 218 
SNPs on chromosome 1. The SNP data sets were biallelic, 
and the loci that have rare alleles (with allelic frequency 
<0.05) were more common than those with intermediate 
frequency alleles (with allelic frequency between 0.4 and 
0.5) (Fig. 1a; Table 2). The average heterozygosity of each 
line was 3.1%, well within expected ranges for residual het-
erozygosity found in inbred maize lines. In 26 lines het-
erozygosity was greater than 10% (Supplemental Table S6) 
indicating selfing is still required to reduce residual het-
erozygosity. Heterozygosity rate of each SNP across all the 
inbred lines ranged from 0 to 17.5% with an average of 3.1%.

A total of 273 SNP haplotypes that contained two or 
more SNPs and 492 single SNPs from the unigene analy-
sis for all 1260 SNPs were identified, corresponding to 
765 loci with an average 1.6 SNPs per locus. Among SNP 
haplotypes, a total of 1317 alleles was identified, ranging 
from 2 to 36 alleles per locus with an average of 4.8 alleles 
per locus. The majority of haplotype alleles were detected 
at low frequency within the panel; more than half had an 
allelic frequency of less than 0.2 (Fig. 1b).
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Genetic Structure and Relative Kinship 
among Inbred Lines

Model-based substructure partition and PCA based 
on biallelic SNPs or multiallelic SNP haplotypes identi-
fied population structure within these 359 lines. In the 
model-based results, the value of LnP(D) increased gradu-
ally from k = 1 to k = 12 for both SNP and SNP hap-
lotype data (Fig. 2a). At k = 2 and k = 3, Δk was much 
higher than other k values for SNP data. When k = 3, the 
partition of the panel based on SNP data was consistent 
with PCA results (Fig. 3a). Evanno’s Δk peaked at k = 2 
for the haplotype data (Fig. 2b) with good agreement to 
the assignment of lines to each subgroup based on PCA 
(Fig. 3b). A subgroup (Group 1) that largely contained 
lines derived from LPS was clearly and consistently sepa-
rated from other groups when using both model-based 
and PCA methods based on both SNP or haplotype data 
(Fig. 3a and b). Lines classified in Group 2 based on haplo-
type data (Fig. 3b) were separated into two groups (Group 
2 and Group 3) by biallelic SNP data (Fig. 3a).

Lines closely related by pedigree or sharing environ-
mental adaptations or program origins were classified into 
corresponding subsets. A total of nine main subsets were 
identified based on pedigree and origin information, rang-
ing from 7 to 69 lines per subset. The nine subsets cor-
responded to the germplasm of CIMCALI8843 × S9243, 
CML311 × MBR C3 Bc, DTPWC9, DTPYC9, LPS C7, 
acid soil tolerant maize population from CIMMYT (SA), 
Mexico subtropical, Mexico tropical, and CML (Table 
3). When lines from Group 1 were excluded (Fig. 3a and 
b), no clear substructure was observed in the remaining 
lines; however, there was a tendency for lines related by 
pedigree to cluster together (Fig. 3c and d; Supplemental 
Fig. S2).

Relative kinship between lines was estimated using 
the 1260 informative SNP markers and it ranged from 
0 to 1 with a mean of 0.0196 across all the pairwise val-
ues. Approximately 60% of the pairwise kinship estimates 
were around 0, indicating no relationship between these 
lines (Fig. 4). The mean of relative kinship within the 
nine subsets ranged from 0.026 of subset 7 (Mexico sub-
tropical) to 0.838 of subset 1 (CIMCALI8843 × S9243), 
which was in good accordance with the known pedigree 
and also clearly reflected the familial relationship among 
the lines within each subset (Table 3). Different subpopu-
lations were classified by different methods or criterion. 
The AMOVA revealed that for the model-based classifi-
cation based on SNP and SNP haplotype, 6.2 and 10.6% 
of the molecular variation were found among the popu-
lations and 93.8 and 89.4% were found within popula-
tions, respectively. For the nine subsets based on pedigree 
and source, we found 11.8% of the total genetic variation 
was partitioned among the populations and 88.3% within 
populations (Table 4).

Genetic Diversity of Subsets  
and Polymorphism between Lines

The number of polymorphic loci, the corresponding PIC 
values, and gene diversity within each subset are sum-
marized in Table 3. Subset 1, originating from CIM-
CALI8843 × S9243, contained seven lines with only 118 
polymorphic loci detected between lines that had the low-
est PIC value (0.028) and gene diversity (0.033) among all 
subsets. Subset 8 (CIMMYT and Mexican tropical) had 
the highest PIC value (0.304) and gene diversity (0.259). 
Subset 9, comprising lines developed from CMLs, had the 

Figure 1. (a) Allelic frequency for total single nucleotide poly-
morphisms (SNPs). (b) Allelic frequency for SNP haplotypes.

Table 2. Summary of single nucleotide polymorphisms (SNPs) 
and SNP haplotypes identified within each chromosome.

Chromosome
Number  
of SNPs

Number of loci†
Minor allelic 
frequency

Two or 
more 

SNPs‡
One 
SNP§ ≥0.05 ≥0.1

1 218 49 76 168 141

2 159 31 65 137 110

3 141 24 71 113 99

4 130 28 52 95 77

5 147 36 61 121 104

6 76 16 34 55 45

7 112 28 34 91 77

8 116 25 40 94 84

9 74 21 22 58 52

10 87 15 37 71 58

Total 1260 273 492 1003 847
†Single nucleotide polymorphisms within 10 kbp region were combined and identi-
fied as a locus.

‡Locus contains two or more SNPs.
§Locus contains only one SNP.
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Figure 2. (a) The mean and range of the natural logarithm probability of data [LnP(D)] of 10 repeats based on STRUCTURE calculation 
using single nucleotide polymorphism (SNP) and haplotype data, respectively. (b) The Δk of 10 repeats based on STRUCTURE calculation.

Figure 3. Principal component analysis (PCA) of 359 lines. (a) Principal component analysis based on single nucleotide polymorphism 
(SNP) data, groups 1, 2, and 3, and the mixed group were classified by the model-based method based on SNP data. (b) Principal 
component analysis based on haplotype data, groups 1 and 2, and the mixed group were classified by the model-based method based 
on haplotype data. (c) Principal component analysis based on SNP data; lines from different groups were colored differently. (d) Principal 
component analysis based on haplotype data; lines from different groups were colored differently. PC, principal component; CIMCALI, 
CIMMYT lines from Cali, Columbia; CML, CIMMYT Maize Line; DTPW, drought tolerant population white grain; DTPY, drought tolerant 
population yellow grain; MBR, multiple borer resistance; SA, soil acidity.
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greatest number of polymorphic loci. Genetic diversity of 
the nine subsets tended to increase as the mean of relative 
kinship within subsets decreased.

For any two given lines within this study, the poly-
morphic ratio ranged from 0.005 to 0.603 with an average 
of 0.157. Among the nine subsets, subset 9 had the largest 
average polymorphism ratio while subset 1 had the lowest, 
consistent with the number of polymorphic loci (Table 
3). Larger genetic divergence was observed from pairwise 
F-statistics values between subset 1, 2, 5, and other subsets 
(Table 5). The F-statistics value between subset 1 and 2 
was the largest while it was the smallest between subset 7 
and 9 (Table 5).

Linkage Disequilibrium
Linkage disequilibrium, measured as r2, at the whole 
genome level was evaluated using different sets of SNP 
markers (Fig. 5; Supplemental Table S7); r2 decayed 
rapidly with increasing physical distance but it did not 
decrease with the increase of physical distance between 
0.2 and 2 kbp (Fig. 5; Supplemental Table S7).The mean 
r2 decreased with the reduction of MAF of SNP markers, 
especially within short distances (i.e., 0–100 kbp). It was 

less than 0.1 up to a maximum physical distance of 10 kbp 
estimated based on all 1260 SNPs and when estimated by 
SNPs with MAF greater than 0.05 and 0.1 it decreased to 
less than 0.1 between 10 and 100 kbp.

Table 3. Genetic diversity and mean of relative kinship within each subset identified based on pedigree and line origin information.

Subset Pedigree or resource† Number Heterotic type
Number of 

Polymorphic loci
Gene 

diversity PIC‡

Average 
polymorphism 

ratio

Mean of 
relative 
kinship

1 CIMCALI8843 × S9243 7 B 118 0.033 0.0279 0.036 0.838

2 CML311 × MBR C3 Bc 7 A, B, A and/or B 581 0.1791 0.1456 0.208 0.3235

3 DTPWC9 24 A 1083 0.2956 0.2525 0.309 0.081

4 DTPYC9 23 A and/or B 1021 0.2682 0.2259 0.282 0.1229

5 La Posta Seq C7 47 A 888 0.2307 0.1935 0.233 0.1531

6 SA 25 A, B 1064 0.2684 0.229 0.285 0.1299

7 Mexico subtropical 31 A, B, A and/or B 1141 0.2985 0.25 0.305 0.0255

8 Mexico tropical 41 A, B, A and/or B 1145 0.3044 0.2592 0.309 0.0344

9 CML 69 A, B, A and/or B 1197 0.3008 0.254 0.312 0.036
†CIMCALI, CIMMYT lines from Cali, Columbia; CML, CIMMYT Maize Line; DTPW, drought tolerant population white grain; DTPY, drought tolerant population yellow grain; 
MBR, multiple borer resistant; SA, soil acidity.

‡PIC, polymorphic information content.

Figure 4. Distribution of pairwise relative kinship values.

Table 4. Analysis of molecular variation of three populations 
classified by different methods.

Source of variation df
Sum of 
squares

Variance 
components

Percent 
variation

Populations classified using model-based method based on  
biallelic single nucleotide polymorphism data

Among populations 3 2030.2 4.9 6.2

Within populations 714 52109.8 73.4 93.8

Total 717 54140 78.3 100

Populations classified using model-based method based  
on multiallelic haplotype data

Among populations 2 2130.9 8.6 10.6

Within populations 715 52009.1 73 89.4

Total 717 54140 81.6 100

Populations (the nine subsets) identified based on pedigree  
and line origin information

Among populations 8 6707.5 11.5 11.75

Within populations 539 45683.9 86.2 88.25

Total 547 52391.4 97.9
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Linkage disequilibrium decayed rapidly with increas-
ing physical distance and the LD pattern varied across the 
chromosomes (Supplemental Fig. S3).

Linkage disequilibrium estimates generally decreased 
as the sample size increased in both subsets selected by 
pedigree (SP) and subsets selected randomly (SR) (Fig. 
6). However, in SP, LD estimates for subset 5 (n = 47) 
were found to be larger than that of subsets with smaller 
sample size (i.e., subset 3, 4, 6, 7, and 8), particularly across 
marker intervals of 0 to 0.2, 0.2 to 0.5, 0.5 to 1, 1 to 2, and 
10 to 100 kbp. Subset 5 has higher mean relative kinship 
and lower PIC and gene diversity than other subsets with 
smaller sample size (i.e., subset 3, 4, 6, 7, and 8) (Table 
3). Generally, using the same sample size, LD was greater 
within SP than that within SR. However, for subset 2 
and 5, LD was significantly higher in SP than in SR (SP 
estimates were 1.04 to 2.49 times higher than the mean 
value of 10 SR) across the marker interval of 0 to 10 Mbp.

Model Comparison and Association  
Panel Evaluation
Association analysis was performed using 999 SNPs with 
MAF ≥ 0.05 and GY, ASI, and EPP under drought stress, with 
Qh (i.e., Q value calculated based on haplotype data), Qs (i.e., 
Q value calculated based on SNP data), K, Qh + K, and Qs + 
K models for each trait. Quantile–quantile plots of estimated 
log10 p value indicated that the K and Q + K model controlled 
the false positive with minimal deviation from expected val-
ues (Fig. 7). Model testing using phenotypic and genetic data 
classified this maize panel as a type II association sample and 
suitable for association analysis (Zhu and Yu, 2009).

Discussion
Diverse Maize Collection Encompassing 
Gains in Stress Tolerance Improvement
Molecular analyses of CIMMYT maize germplasm have 
been performed previously (Reif et al., 2003a, b; Xia et al., 

Table 5. Pairwise F-statistics value between each pair of the nine subsets identified based on pedigree and origin information.

Subset Subset 1 Subset 2 Subset 3 Subset 4 Subset 5 Subset 6 Subset 7 Subset 8 Subset 9

1 0

2 0.698 0

3 0.434 0.242 0

4 0.478 0.268 0.093 0

5 0.496 0.336 0.178 0.212 0

6 0.463 0.266 0.132 0.168 0.209 0

7 0.360 0.177 0.066 0.095 0.119 0.083 0

8 0.395 0.168 0.076 0.110 0.154 0.092 0.013 0

9 0.395 0.195 0.068 0.101 0.137 0.095 0.011 0.031 0

Figure 5. Mean linkage disequilibrium (LD) estimates for different physical distances measured with different marker types in 359 lines. 
Mean LD estimates are pooled over all chromosomes. MAF, minor allelic frequency.
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2004, 2005; Warburton et al., 2002, 2005). The results of 
these studies highlighted the difficulties of assigning lines into 
genetically diverse heterotic groups due to the mixed genetic 
constitution of the original germplasm and may, in part, also 
be related to insufficient documentation of germplasm devel-
opment. These reflect CIMMYT breeding history and care 
should be taken to properly document information in future 
pedigree breeding programs. The greater variation within 
populations relative to among populations (as revealed by 
AMOVA) in present results could be explained by the ori-
gin and genetic background of these CIMMYT populations. 
Development of heterotic groups at CIMMYT was a rather 
recent event that started in the mid 1980s (Vasal et al., 1999; 
Rief et al., 2003a, b). At CIMMYT, heterotic groups are 
assigned after field evaluations using testers from different 
heterotic groups. Two heterotic groups, A and B, have been 
tentatively formed, which consisted of dent and flint germ-
plasm complexes, respectively (Vasal et al., 1999; Ortiz et 
al., 2010). In this study, we were unable to separate heterotic 
groups A and B based on partition results using either SNP or 
SNP haplotype data. Subgroups based on clustering analysis 
and PCA using marker data generally agree with pedigree 
information of the lines (Fig. 3; Supplemental Fig S1). This 
suggests variation exists within current heterotic groups. 
Combining current information of heterotic group and sub-
groups classification inferred from molecular data may be the 

best strategy to define heterotic groups (patterns) for future 
hybrid breeding practice.

Linkage Disequilibrium Pattern  
in Current Collection
Linkage disequilibrium is an important factor affecting the 
precision of association analysis and genomewide selection. 
The large genetic and phenotypic diversity of maize results in 
a rather fast decay of LD, often within several kilobase pairs 
(Remington et al., 2001; Tenaillon et al., 2001; Ching et al., 
2002; Jung et al., 2004; Tian et al., 2009; Gore et al., 2009). 
Recently, using a large and diverse maize collection of 632 
lines and genotyping it with 1229 SNPs, Yan et al. (2009) 
demonstrated that LD declines (average value of r2 declines 
to 0.1) within 2 to 5 kbp; however, this distance is variable 
across chromosomes and not continual within a chromosome. 
In the present study, extent of LD varied across the genome but 
LD decay (r2 < 0.1) was more than 10 kbp on average when 
using SNPs with MAF ≥ 0.05 (Fig. 5; Supplemental Table 
S7), which was greater than the estimation reported by Yan 
et al. (2009). This may be due to the level of diversity because 
higher average polymorphic ratio among lines was observed 
in the study of Yan et al. (2009) than in the present study. In 
this study, average r2 between all 1260 SNP pairs fell below 
0.1 in the range of 5 to 10 kbp (Fig. 5; Supplemental Table 
S7). In addition, our results found MAF of SNP markers and 

Figure 6. Mean linkage disequilibrium (LD) estimates for different physical distances pooled over all chromosomes of eight subsets 
selected by pedigree (SP) and subsets selected randomly (SR) with the same sample size as them. Columns with same color have the 
same sample size. Within the columns with the same colors, LD of the ones on the right is calculated based on SR.
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sample size of the population affected the estimation of LD in 
agreement with a previous study (Yan et al., 2009). Within 
all nine subsets classified mainly based on pedigree informa-
tion, LD decay was slower (Fig. 6). Significant differences in 
mean r2 were observed between the SP and SR, which have 
the same sample size with each other, particularly when sample 
size and diversity of SP were small (Fig. 6). The results sug-
gested that diversity and kinship relation of lines within the 
population may also be factors affecting the LD estimation. 
Five genomic regions containing three contiguous SNPs with 
large r2 between each other were observed in chromosomes 
2, 4, 8, and 9 (Supplemental Table S8). The largest physical 
distance between SNP markers in the same region ranged 
from 19.74 to 129.12 kbp with the corresponding r2 at these 
distances between 0.517 and 0.958. More than 100 LD blocks 
have been reported in the maize genome (Gore et al., 2009) 
and it is possible that LD blocks exist within these regions with 
large LD detected in the present study.

Strategy for Stress Tolerance Improvement 
based on this Maize Panel
In the present study, association mapping was performed using 
this maize panel, which is a powerful approach for dissection 
of complex agronomic traits and widely used in plants now 
(Atwell et al., 2010; Yan et al., 2011). After identifying genes 
significantly associated with target traits, the most favorable 
alleles can be found by resequencing in a diverse panel of 
germplasm, which is used for trait improvement through 
MAS (Harjes et al., 2008; Yan et al., 2010b). Construction 
and characterization of a desirable panel of maize underlies 
the successful application of association mapping. Complex 
patterns of genetic relatedness among individuals can cause 
spurious associations, especially for mapping traits that have 
been subjected to local adaptation (Zhu et al., 2008; Myles 

et al., 2009). In our study, spurious associations were well 
controlled after correcting for genetic relatedness. The K and 
Q + K models performed better than the model only involv-
ing Q matrix, which is consistent with previous studies (Yu 
et al., 2006; Zhao et al., 2007; Zhu and Yu, 2009). The data 
generated in this study can be combined with multilocation 
phenotypic data to identify the genomic regions associated 
with stress tolerance.

No specific genes underlying major quantitative trait loci 
controlling the important agronomic and economic traits 
have been identified in maize (Buckler et al., 2009). Toler-
ance to key abiotic stresses, notably drought and salinity, are 
complex and highly variable (Tester and Langridge, 2010). 
Genome-wide selection (GWS) provides an alternative strat-
egy for maize stress-resistance improvement, simultaneously 
estimating loci, haplotype, and marker effects across the entire 
genome to calculate genomic estimated breeding values 
(Meuwissen et al., 2001). Genome-wide selection estimates 
the effect of each marker without testing it for its significance 
of association with the target trait. Simulation studies using 
GWS confirm potential breeding gains based on this strat-
egy, and it may dramatically change the role of phenotyping 
especially with the rapid development of high throughput 
genotyping platform (Mayor and Bernardo, 2009; Bernardo, 
2009; Jannink et al., 2010). In case of present study, GWS can 
be used in our breeding program for developing enhanced 
maize lines in terms of stress tolerance. Nine subsets were 
classified according to pedigree information, environmental 
adaption, and breeding scheme. Information of heterotic pat-
tern within these nine subsets was available, which is useful 
for inbred line development. For example, lines from subset 
5 (LPS C7) were all classified into heterotic group A (Table 
3), and improved new inbred lines can be produced from 
the crosses among these lines. Genome-wide selection can be 

Figure 7. Quantile–quantile plots of log10 p value with 999 single nucleotide polymorphisms (SNPs) for three quantitative traits of anthesis 
to silking interval (ASI), grain yield (GY) and ear per plant (EPP) showing the adequate control of a type I error with the K and Q + K model. 
Qh, Q value calculated based on haplotype data; Qs, Q value calculated based on single nucleotide polymorphism data.



crop science, vol. 51, november–december 2011 	  www.crops.org	

utilized to select superior lines during the process combining 
with the phenotypic selection.
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