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Abstract Eleven populations of witchweed, Striga her-
monthica, were collected in four regions of Mali and
investigated with 12 microsatellite markers. Extensive
genetic diversity was observed, with most plants heterozy-
gous for most markers. Allelic diversity was broadly
distributed across populations with little genetic differenti-
ation and large amounts of gene flow. Nearby fields of pearl
millet and sorghum were found to have indistinguishable
witchweed populations. Some population structure was
apparent, but did not correlate with the local environment
or host genotype, suggesting that seed transportation or

other human-driven variables act to differentiate central
Malian S. hermonthica populations from southern Malian
populations.
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Introduction

Striga hermonthica is a weedy plant that parasitizes grain
crops, such as sorghum (Sorghum bicolor) and pearl millet
(Pennisetum glaucum) throughout Sub-Saharan Africa.
There are four other Striga species that can have dramatic
effects on staple crop production. Taken together, these
witchweeds are the most important biological limitation to
food production in Africa (Ejeta 2007b).

The initial stages of the Striga::host interaction can be
broken down into four key steps: seed germination, host
attachment, haustorium formation, and penetration of the
root vascular system (Yoshida and Shirasu 2009). Striga
seeds have evolved to recognize chemical signals, strigo-
lactones, that are involved in attracting a beneficial
interaction between an arbusculuar mycorrhizal fungus
and the plant host (Akiyama and Matsuzaki 2005;
Matusova et al. 2005). Several different strigolactones can
induce germination and chemotropic growth of Striga
seedlings towards the roots of a possible host. Striga is an
obligate parasite and must attach to a host plant before
nutrient stores in the tiny seed are exhausted. Firm
attachment of the host root is accomplished via a structure
known as a haustorium (Keyes et al. 2001). Once
attachment is complete, Striga forms a connection with
the host vascular system and begins parasitizing the host
(Bar-Nun et al. 2008).
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Efforts to identify crops with resistance to Striga have
yielded very mixed results, with essentially no success to
date with the hosts maize and pearl millet, ephemeral
success with cowpea for resistance to the legume parasite S.
gesnerioides (Timko et al. 2007) and only partial success
with sorghum (Ejeta 2007a), the host species that is most
likely to have co-evolved with S. hermonthica (Musselman
1987). In order to better understand the diversity of Striga
species, and whether it impinges on host resistance, several
studies have been conducted to examine population-level
genetic diversity and to identify the existence of races or
structure among Striga populations (reviewed in (Mohamed
et al. 2007)). For the autogamous (self-fertilizing) species S.
asiatica and S. gesnerioides, genetic diversity analyses
have shown distinct races of both species across their
ranges (Shawe and Ingrouille 1993; Botanga et al. 2002;
Botanga and Timko 2006).

S. hermonthica is an obligate out-crossing species (Safa
et al. 1984), so it is expected to show less differentiation
between populations and greater diversity within popula-
tions than seen in related autogamous species (Hamrick
1982). In agreement with this prediction, multiple genetic
diversity studies using allozymes, Randomly Amplified
Polymorphic DNA (RAPD), or Amplified Fragment Length
Polymorphism (AFLP) markers have observed extensive
genetic diversity but no convincing evidence for races in S.
hermonthica (Bharathalakshmi et al. 1990; Kuiper et al.
1996; Olivier et al. 1998; Koyama 2000; Gethi et al. 2005).
In those studies where S. hermonthica was collected from
different countries (on different sides of the continent), a
geographic distance effect was noted. None of these studies
demonstrated a genetic component to host specificity.
However, the number of populations investigated, the

number of loci analyzed, and/or the type of marker
employed limited all of these studies.

The most powerful approach to characterizing genetic
diversity in S. hermonthica would employ a robust set of
reproducible, neutrally evolving, and co-dominant markers.
Simple Sequence Repeat (SSR) markers with these proper-
ties have recently been developed for Striga (Estep et al.
2010). In addition to robust markers, an optimal study of
genetic diversity in S. hermonthica would employ popula-
tions collected in multiple years, parasitizing multiple staple
crops (e.g., sorghum, pearl millet, maize, rice), in multiple
agro-ecosystems (e.g., Sahel grasslands, Sudan savanna),
and from across the species range at both macro and micro
scales. In this manuscript, results from a first collection year
are presented to describe the diversity of S. hermonthica
across a broad swath of environments and agricultural
zones in Mali, a nation that is dramatically impacted by
Striga parasitism.

Results

Striga samples were collected in October and November
of 2008 across four broad regions in Mali (Fig. 1,
Table 1). The regions, labeled 3000, 4000, 5000 and 6000,
were each represented by samplings from 2 to 3
subsistence farmer fields, with at least 20 individual plants
sampled per field. The agricultural environments were
very different for these four collection regions. The more
southern 4000 and 5000 fields are in the Sudan savanna
environment, while the central Malian 3000 and 6000
regions represent a drier Sahelian environment and a
wetter forested region, respectively.

6000

3000
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4000

5400

5500 5600

9.1 km

~ 600 km

~ 175 km

~ 150 km

~ 250 km

Fig. 1 Map of collection sites,
with regional locations and
approximate geographic
distances indicated

92 Tropical Plant Biol. (2011) 4:91–98



An average of 250 individuals were scored for each of
the 12 microsatellite markers and a total of 181 alleles were
identified within the sample data (Table 2). Values for the
mean allelic diversity (richness) ranged from 7.0 in
population 6800 to 10 in population 3900 (Table 2). Mean
effective allelic diversity (evenness) values ranged from 4.0
in population 3700 to 5.9 in population 3900. There was
no significant difference in the values for richness or
evenness between populations. Values for the mean
expected heterozygosity (gene diversity) ranged from 0.687
in population 4300 to 0.748 in population 3900 with no
significant differences observed between populations
(Table 3). Similarly, values for the mean observed heterozy-
gosity ranged from 0.689 in population 3800 to 0.783 in
population 3700 with no significant differences between
populations. The mean fixation index was calculated to show
in which direction populations were trending out of Hardy-
Weinberg proportions, with seven populations appearing to
have excess heterozygosity (negative values) and the
remaining four populations indicating inbreeding or exces-
sive homozygosity (positive values) in comparison to gene
diversity (Table 3). The number of region-specific alleles
was also counted: region 3000 exhibited 22, region 5000
yielded 20, region 4000 had 6, and region 6000 yielded 2.

An AMOVA was conducted to estimate the Rst
(analogue of Fst) using a stepwise mutation model specific
for microsatellite data (Slatkin 1995). The resulting Rst
value was 0.048 (P=0.01) and Ris and Rit were both 0.991
(P=0.01). A majority of the variance (95%) can be
explained by within population variation. The remaining
variance can be explained by among region variance (2%)
and among population variance (3%). The number of
migrants was also calculated from the Rst value using the
equation Nm=(1-Rst)/4*Rst, resulting in Nm=4.921.

A principal coordinates analysis was conducted using
pairwise comparisons of Nei’s standard genetic distance to
identify major patterns within the data set (Fig. 2).

Coordinate one (x-axis) explains 33.29% of the variance in
the data and splits the four collection regions into two distinct
groups. Group one (on the left) contains individuals from
region 4000 and region 5000. Group two (on the right)
contains individuals from region 3000 and region 6000. The
second coordinate (y-axis) explains 15.66% of the variance
and does not appear to further divide the two groups obtained
from coordinate one. While the two major groupings are
distinct, one to a few individuals from region 3000 and 6000
appear to be placed within or near group one (Fig. 2).

The program STRUCTURE was used to identify
population structure within the data set (Fig. 3). The
predefined K=2 simulations had the highest value for
Delta K among all predefined K values ranging from 1 to
11 (data not shown). This analysis grouped regions 4000
and 5000 as one cluster and grouped regions 3000 and
6000 as a second group. It is important to note that several
individuals within these two groups exhibit admixture
between the two groups.

A Mantel’s test was performed with two data matrices,
the first was a pairwise geographic distance matrix (Log
transformed) and the second was a pairwise Nei’s standard
genetic distance matrix (Fig. 4). The resulting R2 value was
0.2196 and was found to be significant (P=0.01) based on
999 random permutations of the two original data matrices.
A second Mantel’s test was performed with the same
geographic distance matrix and a pairwise matrix of the
number of migrants (Fst/1-Fst). The resulting R2 value was
0.2388 and was found to be significant (P=0.01), based on
999 random permutations of the two data matrices.

Discussion

In this study, populations selected from Mali were
characterized with 12 microsatellite markers to describe

Table 1 Collection sites with location and host crop

Region Population Location Host

3000 3700 13.2078 −4.6022 sorghum

3800 13.2099 −4.599 millet

3900 13.7818 −4.3949 millet

4000 4100 12.4605 −8.1255 sorghum

4200 12.3845 −8.2999 sorghum

4300 12.3838 −8.2996 sorghum

5000 5400 12.5925 −6.7081 sorghum

5500 12.6526 −6.7653 sorghum

5600 12.6535 −6.7654 sorghum

6000 6700 12.5449 −9.8288 sorghum

6800 12.5449 −9.8284 sorghum

Locus N A

SH1005 263 6

SH1008 249 9

SH1009 257 24

SH1012 263 6

SH1014 270 6

SH1016 250 28

SH1029 233 25

SH1030 246 22

SH1032 252 9

SH1038 232 26

SH1041 269 13

SH1042 218 7

Alleles total 181

Table 2 Total number of indi-
viduals (N) scored for each
microsatellite marker and the
total number of alleles (A)
identified
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the genetic diversity and structure of S. hermonthica in this
region. While this is not the first study of genetic diversity
within S. hermonthica (Bharathalakshmi et al. 1990; Kuiper
et al. 1996; Olivier et al. 1998; Koyama 2000; Gethi et al.
2005; Ali et al. 2009; Yoshida et al. 2010), it is the first
using reproducible, neutrally evolving, and co-dominant
markers.

The analyses show that S. hermonthica is rich in allelic
variation that is fairly evenly distributed among populations
over a large geographic range (>600 km) within multiple
ecosystems. It also demonstrates a high level of genetic
diversity among populations, with an average gene diver-
sity of 0.715 (range of 0.687–0.748) and a relatively low
level of genetic differentiation (Rst=0.048; P=0.01). The
observed values of heterozygosity and the fixation indices
demonstrate that 63% (seven) of the populations appear to
have an excess of heterozygous individuals. This can be
explained by the negative assortative mating that would be
expected for an allogamous (obligate out-crossing) species
such as S. hermonthica (Safa et al. 1984). All three

populations from region 5000 have an excess of homozy-
gous individuals, suggesting an undetected null allele
specific to this region. These results are in agreement with
previous studies of S. hermonthica genetic diversity that
indicated a great deal of intrapopulation variability and no
evidence of races (Bharathalakshmi et al. 1990; Kuiper et
al. 1996; Olivier et al. 1998; Koyama 2000; Gethi et al.
2005). However, we also investigated (and found no
differences between) S. hermonthica populations on two
different host species in nearby plots. Moreover, we also
report higher levels of genetic diversity than previous
studies, presumably because of the greater sensitivity of
the molecular markers employed in this study.

The numbers of specific alleles found in each region are
not evenly distributed, with populations in the eastern
portion of the study area (region 3000 and 5000) having
3–10 times the number of specific alleles than those in the
western portion (region 4000 and 6000). These values can
be interpreted as a proxy for the age of a population, due to
the high rate of mutation at many microsatellite loci. This
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Fig. 2 A principal coordinates
analysis of pairwise genetic
distance between populations

Mean diversity statistics by population

Pop Aa Ae Ho He F

3700 7.2(1.0) 4.0(0.7) 0.783(0.052) 0.707(0.042) −0.110(0.053)
3800 10(1.8) 4.9(1.0) 0.689(0.082) 0.707(0.082) 0.020(0.055)

3900 10(1.9) 5.9(1.3) 0.762(0.067) 0.748(0.064) −0.022(0.032)
4100 8.1(1.4) 4.3(0.9) 0.735(0.081) 0.697(0.065) −0.047(0.059)
4200 8.0(1.4) 4.6(0.8) 0.750(0.065) 0.715(0.070) −0.068(0.0450)
4300 7.6(1.2) 4.2(0.8) 0.735(0.054) 0.687(0.077) −0.081(0.039)
5400 8.7(1.3) 4.9(0.9) 0.700(0.054) 0.732(0.059) 0.033(0.051)

5500 9.4(1.8) 4.8(1.0) 0.677(0.077) 0.727(0.058) 0.079(0.051)

5600 8.6(1.2) 4.7(0.7) 0.707(0.059) 0.742(0.049) 0.050(0.044)

6700 8.6(1.9) 4.5(1.0) 0.718(0.051) 0.711(0.053) −0.018(0.044)
6800 7.0(1.0) 4.1(0.7) 0.769(0.054) 0.695(0.057) −0.155(0.029)

Table 3 Mean descriptive pop-
ulation genetic statistics for each
population followed by standard
deviation values. Allelic diver-
sity (Aa), Effective allelic
diversity (Ae), Observed
heterozygosity (Ho), Expected
heterozygosity (He), and
fixation index (F)
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would suggest that populations in the Eastern portion of the
country have occupied this area for a longer period of time,
while those in the Western portion are more recent arrivals.
This result is interesting because we did not observe the
lower level of genetic diversity that would be expected for a
recent founder effect.

While there is a great deal of evenly distributed genetic
diversity within the populations studied, the AMOVA
analysis indicates “little” genetic differentiation (Rst=
0.048, P=0.01) has occurred. Most (95%) of the diversity
can be explained by allelic variation within populations.
This result also suggests a large amount of gene flow
among populations, based on the large number of migrants
per generation (Nm=4.921). A small number of migrants
per generation is enough gene flow to obscure or overcome
the process of drift that causes populations to differentiate
over time. Anthropogenic activity, in the form of trading
contaminated crop seeds, has been shown to be frequent in
subsistence agricultural systems (Berner et al. 1994). Other
forms of dispersal like wind, water, and forage animals
have also been shown to play a dispersal role in S.
hermonthica, but the geographic distance examined in this
study likely reduces their role.

A PCA was conducted to identify possible differences
between populations based on genetic distance. An unex-
pected result was observed, where the two regions that were
most geographically separated were found to group
together (regions 3000 and 6000). This observation was
further analyzed using an admixture test with the program
STRUCTURE where individuals without population desig-

nation are grouped based on shared genotypes. Similar
results were obtained from the STRUCTURE analysis,
suggesting that two distinct “strains” or “races” of S.
hermonthica exist within the study area.

Two of the three populations from region 3000 were
collected in pearl millet fields, while the remaining
population was collected from a sorghum field. We saw
no differences between these three populations or between
the two populations from region 6000 (both from sorghum
fields) that group together as one race in the PCA and
STRUCTURE analyses. This observation suggests that
while distinct races may exist, we cannot infer an
association with a host species. It is important to point out
that region 6000 is distinctly different from any of the other
collection localities. It is difficult to imagine a locally
adapted variety of a subsistence crop (sorghum or pearl
millet) that would thrive in both the 3000 region with less
than 600 mm of rain per year and the 6000 region with
more than 1000 mm of rain per year. It has been reported
that pearl millet-adapted strains of S. hermonthica exist and
has been experimentally shown that those strains designat-
ed as specific to pearl millet have no problems parasitizing
sorghum cultivars while the reverse (sorghum adapted
strains parasitizing pearl millet) was not observed (Parker
and Reid 1979).

The results reported herein suggest that S. hermonthica
“race” distribution is not closely related to local ecosys-
tems. If local physical environment were the major
determinant of witchweed genotype, then the dry 3000
and wet 6000 region samples would be the most different.

Fig. 3 Results of population
structure analysis with K=2
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Alternatively, we propose that human-driven variables like
road distribution or seed trading might drive gene flow in
this parasitic weed. In each scenario, S. hermonthica seed
may hitchhike along with human-vector transport. If trade
and other communication are more active between people
in the 3000 and 6000 regions than between these regions
and either of the southern collection regions, then this
might help explain why, in the northern portions of the
study area (even at great geographic distance and on
different hosts), one “race” of S. hermonthica is found,
while a second “race” is found in the southern regions, on
the same host species. Sorghum and pearl millet are grown
across all four sample regions, but the majority of pearl
millet is grown in the 3000 region and further north, while
the majority of sorghum is grown in the southern regions.
Further population collections and more detailed descrip-
tions of the local cultural, agronomic and infrastructural
systems are planned to address these questions.

To better understand what processes are differentiating
the “races” identified, the hypothesis of isolation by
distance was examined with a Mantel’s test. A significant
relationship (p=0.01) between genetic distance and geo-
graphic distance were observed, arguing that geographic
distance is acting to differentiate the two identified “races”.
The possible relationship between the amount of gene flow
(Nm) and geographic distance was also investigated. A
significant negative relationship was found in this analysis,
suggesting that gene flow is occurring at short geographic
distances but is greatly reduced at larger geographic
distances. This result seems obvious, but affects the
interpretation of long distance dispersal from the older
3000 region populations to the younger 6000 region
populations and leads us to further argue that the identified
“races” are not primarily determined by the host plant
species or the local environment. The results herein on host
specificity and the absence of evidence for races are in
agreement with several previous studies (Bharathalakshmi
et al. 1990; Kuiper et al. 1996; Olivier et al. 1998; Koyama
2000; Gethi et al. 2005), but disagree with an AFLP study
conducted in Sudan that identified host-specific races (Ali
et al. 2009). It is not clear whether the unique results of Ali
and coworkers are caused by their investigating a different
source of germplasm or by some other biological or
technical factor(s).

Plant breeders are working to produce genotypes of
sorghum and pearl millet that are resistant to Striga
parasitism (Ejeta 2007a). In many plant::pathogen inter-
actions, resistance tends to be specific to a particular
pathogen race, thus having a major impact on the durability
of the resistance as individual races wax and wane in the
agricultural environment. Hence, it would be very useful to
identify any possible S. hermonthica genotypes (races) that
exhibit different parasitic qualities. These genotypes, once

discovered and characterized, can then be used to identify
individual resistance genes in crop (host) germplasm and
can be used to pyramid multiple resistant genes into a
targeted crop plant. In order to fully characterize the
existence of “races” and the factors driving their formation,
further collections of S. hermonthica populations and their
hosts are needed. Our working hypothesis argues for a
Northern “race” in areas where pearl millet is the dominant
crop and a Southern “race” in areas where sorghum is the
dominant crop. These “races” may not be host species-
specific, but instead may be under selective pressures from
other environmental factors, yet to be identified, and/or
could be host genotype-specific. The amount of precipita-
tion, mean temperature, soil quality, available pollinators,
or lengths of growing season are major environmental
differences in the ecosystems that were sampled. Many of
the same environmental factors are certainly driving the
farmers’ choice of host genotype in any given region.

This analysis of 11 population of S. hermonthica across
four regions of Mali demonstrates extensive genetic
diversity and gene flow working to homogenize popula-
tions, likely caused by the small seed size, impressive
parasite fecundity and probable exchange of Striga-
contaminated host seeds among neighbors. This analysis
also demonstrated that populations of S. hermonthica
growing on sorghum and pearl millet were indistinguishable,
suggesting that host crops are not (at least at the location
investigated) driving differentiation within S. hermonthica.
These results also suggest that field screening for resistant
varieties in Mali would be most appropriate if conducted in
both Northern/central and Southern Malian environments.

Methods

Sampling of S. Hermonthica Populations

Individual plants were collected from four regions (desig-
nated 3000, 4000, 5000, & 6000) of southern Mali (Fig. 1).
A total of 11 populations (agricultural fields) were chosen
late in the growing season when S. hermonthica was
beginning to shed seed, so that both seed and leaf material
could be collected from the same plants. Each field chosen
was under cultivation by farmers growing sorghum
(S. bicolor) or pearl millet (P. glaucum) as a subsistence crop
(Table 1). Each population consisted of a minimum of 20
individuals collected along two linear transects, at 90° angles
to each other, in a single agricultural field (~100 m×~100 m).
Leaves from individual plants were air-dried or stored in
silica gel and most were shipped to the University of
Hohenheim, Germany for DNA extraction. Some DNA
extractions were carried out at the University of Bamako in
Mali. Each region consisted of two populations within close
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proximity and one population ~5–20 km away, except region
6000 where only two populations were collected.

Region 3000 (Segou) supplied 3 populations (3700,
3800, 3900) to this study and is the farthest north and
east within the study area. This region is near the
southern boarder of the Sahel grassland ecosystem and
receives ~600 mm of rain per year. Population 3700 was
collected in a sorghum field near the village of Souara in
the Tominian district (13.2078 N, −4.60215 W). Population
3800 was collected in a pearl millet field ~100 m from
population 3700 (13.2099 N, −4.59895 W). Population 3900
was collected in a pearl millet field near the village of
Madiama in the Djenne district (13.7818 N, −4.39491 W).

Region 4000 (Kati) provided 3 populations (4100, 4200,
4300) and is the farthest south within the study area. This
region is part of the Sudan savanna and receives 800–
1000 mm of rain per year. Population 4100 was collected in
a sorghum field near the village of Farabana in the Kangaba
district (12.4605 N, −8.12552 W). Population 4200 was
collected in a sorghum field near the village of Sindala in the
Kati district (12.3845 N, −8.29991 W). Population 4300 was
also collected in a sorghum field, ~100 m from population
4200 (12.3838 N, −8.29962 W).

Region 5000 (Dioila) contributed 3 populations (5400,
5500, 5600). This region is also part of the Sudan
savanna and receives 800–1,000 mm of rain per year.
Population 5400 was collected in a sorghum field near
the village of Wakoro in the Dioila district (12.5925 N,
−6.70812 W). Populations 5500 and 5600 were collected in
sorghum fields separated by ~100 m near the village of Tonga
in the Dioila district (12.6526 N, −6.76533 Wand 12.6535 N,
−6.76541 W, respectively).

Region 6000 (Kayes) supplied 2 populations (6700, 6800).
This region is the farthest west within the study area. This
region is not part of the Sahel or Sudan ecosystems and is in a
mountainous region that receives >1200 mm of rain per
year. Both populations were collected in sorghum fields
near the village of Sagabari in the Kita district, within
~200 m of each other (12.5449 N, −9.82882 W and
12.5449 N, −9.82844 W, respectively).

DNA Extraction and Marker Amplification

In Mali, DNA isolation was performed using Plant DNAzol
Reagent following the manufacturer’s protocol (Invitrogen,
Carlsbad, CA). Once samples were precipitated, washed,
and air-dried, they were shipped to the University of
Georgia, USA and re-hydrated in 100 ul of 1× TE buffer
(100 mM Tris-Cl, 10 mM EDTA @ Ph 8.0). Samples
shipped to the University of Hohenheim were homogenized
using a TissueLyzer (Qiagen, Valencia, CA.) and total
genomic DNA was extracted using a modified CTAB
protocol (Doyle and Doyle 1987).

A set of 12 neutral, non-coding, and co-dominant
microsatellite markers was used to access the genetic
diversity and genetic structure of the collected individuals
(Estep et al. 2010). PCR reactions were 10 ul, using a three-
primer system with an M13 universal fluorescent-labeled
primer (VIC, FAM, NED, PET) (Schuelke, 2000). Each
reaction consisted of 5–10 ng of template DNA, 0.6 U of
Taq, 10 mM Tris–HCl (pH 8.3), 50 mM KCl,
1.5 mM MgCl2, 0.2 mM dNTP’s (each), 1.25 mM forward
primer, 1.25 mM fluorescently labeled M13 primer, and
2.5 mM reverse primer. A touchdown PCR program was
used on a MJ Research PTC-200 Peltier Thermocycler,
consisting of an initial denaturation cycle of 94°C for
5 min; 10 cycles at 94°C for 45 s, 68°C (−2°C per cycle)
for 5 min, elongation at 72°C for 1 min; 5 cycles at 94°C
for 45 s, 58°C for 2 min, elongation at 72°C for 1 min; 25
cycles of 94°C for 45 s, 50°C for 2 min, elongation at 72°C
for 1 min; and a final 30 min elongation at 72°C. Reactions
with different fluorescent labels were then multiplexed with
a LIZ 500 standard and separated on an ABI 3730
sequencer (Applied Biosystems, Foster City, CA). Resul-
tant chromatograms were scored using ABI GeneMapper
software (version 4.0).

Data Analysis

Descriptive population genetic statistics were calculated using
GenAlEx and Genepop (Peakall and Smouse 2006; Rousset
2008). These included allelic diversity (richness), effective
allelic diversity (evenness), expected heterozygosity (gene
diversity), observed heterozygosity, and the fixation index.
An Analysis of Molecular Variance (AMOVA) was con-
ducted to estimate F-statistics and to estimate the number of
migrants (Nm). Nei’s standard genetic distance was calcu-
lated between pairs of populations for use in a principal
coordinates analysis (PCA). Geographic distance was esti-
mated from location coordinates (Table 1) and Log trans-
formed for use in conjunction with the Nei’s genetic distance
matrix to test for isolation by distance (Mantel’s test). A
second Mantel’s test was conducted using the same matrix
for geographic distance and a second matrix of pairwise
comparisons of the number of migrants (Nm).

An analysis of population structure and individual
population assignments was conducted with the raw data
in the program STRUCTURE (Pritchard et al. 2000).
Predefined numbers of populations (K) ranged from 1 to
11 and an initial burn-in period of 20000 replicates and
50000 Markov Chain Monte Carlo (MCMC) iterations
were used. Five independent simulations were run for each
K value. To identify the number of populations that best
reflect the structure of our sample, the average K value was
calculated from the five runs and Delta K was calculated as
in Evanno et al. (2005).
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