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This study was formulated to improve the yield potential of hybrids of
PT 732A/B. which 1s one of the clite and important male-sterile lines used in hybnd
breeding programs in Tamil Nadu. ldentification of downy mildew resistance genomic
regions was also set as an additional objective. One hundred and thirty-six F; derived Fy
self-bulks of a pearl millet mapping population (skeleton-mapped F; individuals) derived
from PT 732B x P 1449-2 were used as the basic source population for this study.
PT 4450, an elite pollinator inbred was used for producing testcross hybrids for each of
the 136 F, self-bulks. To identify the QTLs for yield and its component traits, the
testcross hybrids were raised at two locations in Tamil Nadu namely. at Tamil Nadu

Agricultural University, Coimbatore and at Regional Research Station, Bhavanisagar

during October 2001. Disease resistance screening was also conducted at these two



locations using selfed seeds of Fu self-bulks during October 2001, Eighteen QTLs were
enutied from the two locations for mine agronomic traits using plant height, tme to
30% stigma emergence and plant height together with time o 50% stigma emergence as
predictors of the remaining vield-related traits. Among these mine traits, time 1o 50%
stigma cmcrgcnc‘c. panicle circumference. plant height, panicle length and grain yield per
season registered one QTL, thousand-grain mass registered two QTLs, grain yield |")cr
day registered three QTLs and single-panicle grain mass registered tour QTLs. The
across-locations data set produced six QTLs for five traits. Genomic regions on LG 4 and
1.G 7 controlled these traits. For downy mildew resistance, five different QTLs were
detected on four linkage groups using disease incidence percentage and arc-sin radians
values. Of these two QTLs were identified from the Coimbatore data set on LG 2, two
from the Bhavanisagar data set on LG | and LG 4 and one from the across-locations data
set on LG 7. Grain yield performance of hybrids for Tamil Nadu conditions can be
improved by marker-assisted back crossing of these QTLs regions into seed parent pair
PT 732A/B. Marker-assisted transfer of resistance QTLs and pyramiding of resistance

genes may improve resistance to downy mildew disease.
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1. INTRODUCTION

Pearl millet (Penniserum glaucum (L.) R. Br.) is a principal food cereal grown on about
27 million ha of drought-prone soils in the semi-arid regions of the Indian subcontinent
and Africa (FAO and ICRISAT, 1996) with a grain yield averaging 5002600 kg/ha. It is
.also used as forage in Australia, South Africa and the USA and ranks as the fifth cereal in
order of global cconomic importance. Pearl millet has the capacity to tolerate drought and
low soil fertility, but responds well to water and favourable soil conditions (Kumar and
Andrews, 1989). So this crop provides scope for increased production in regions too arid
tor sorghum (Burton, 1983).

Yield is the ultimate target of any heterosis-breeding program. A major problem
of économic concein with the use of inbred CMS lines in hybrid breeding is their low
vield in seed production plots. Good yielding ability and seed set, particularly in A-line,
1s needed to practically and economically maintain and use such inbreds. Increased and
stabilized pearl millet grain production is essential for the well being of millions of
people who live in these arid and semi-arid tropical regions.

Inheritance of the majority of economically important plant traits such as grain
vield and its components can be classified as polygenic or quantitative. Even traits
considered to be simply inherited, such as disease resistance, may be oligogenic or *‘semi-
quantitative™ for which trait expression is governed by several genes (e.g., a major genc
plus several modifiers). The challenge to strategically use new tools (such as DNA-based
markers) to increase the contribution of ‘‘science” to the “‘art plus science™ equation for
plant improvement therefore applies to most, if not all, traits of importance in plant

breeding programs.



Sclerospora gramuicola (Sacc.) ). Schrot. 1s an obligate biotrophic pseudo
fungus that causes downy mildew disease on pearl millet, often resulting in devastating
vield losses. The study of host plant resistance to this pathogen has been hindered by the
fact that resistance in the host shows continuous variation (Shinde er /., 1984) and
resistance is regionally vanable (ICRISAT, 1989). So breeding material has to be lesle'd
‘in expensive, time consuming and ofien unreliable multilocational traits. This regional
vanability has been found to be principally due to genetic variability of pathogen
populations rather than environmental difference between locations (Ball and Pike,
1984). Molecular markers linked to host plant resistance genes would allow resistance to
different pathogen population to be selected for at a single location in the absence of the
pathogen variants. Linkage drag and the confounding effects of environmental variation
associated with conventional breeding methods would also be reduced or eliminated.

The establishment of saturated molecular maps using restriction fragment length
polymorphism (RFLP) and other DNA marker techniques make it possible to dissect
Mendelian factors underlying complex traits such as grain yield. Systematic studies on
mapping quantitative trait loci (QTL) have been conducted in a number of crop species
(Paterson et al., 1991, Tanksley and Hewitt, 1988; Stuber et al., 1992) for various traits.

In this study, characterization was done for QTL for yield and its component traits
and resistance to downy mildew disease. The objectives of this study were:

< Estimate the mean performance of mapping population testcross hybrids for yield
and its component traits

< Determine correlations between grain yield and its component traits



Estimate the number and location of QTL significantly affecting the variation of
grain yield and its component traits across two locations in Tamil Nadu
Determine the magnitude of the genetic effects of QTL for an clite and

economically important tester and

Identify QTLs for downy mildew disease resistance under field condition.




2. REVIEW OF LITERATURE

2.1, Pearl millet

Pearl millet [Pennisetum glaucum (L.) R. Br.] is a cereal belonging to the genus
Pennisetum, which contains about 140 grassy tropical species. Pearl millet is growh
almost exclusively as human food, and indeed is the staple cercal of 90 million people
who live in agroclimatic zones where there are severe abiotic stress limitations to crop
production mainly due {o heat, low and erratic rainfall, and soil type (low inherent
fertility and moisture holding capacity, and in some cases low pH or high levels of
aluminium saturation). Since fertilizers are seldom used and cultivation is largely by hand
or animal traction actual grain yields are low in these regions (500 to 600 kg/ha), yet in
the agroecologies where this crop is grown, its yield is higher and more reliably obtained
than those from other possible tropical dry land cereal crops such as sorghum or maize.
Grain is always the principal object of cultivation, but the stover is often secondarily

important as animal fodder, and stems can also be used as fuel, for fencing, and roofing.

2.2. Molecular marker importance

There is such an enormous amount of diversity in the DNA of higher plants that no two
organisms are likely to be identical in DNA base sequence. Thus, there is a tremendous
amount of DNA variation present in natural populations of plants. These variations have
been detected in restricted (i.e., enzymatically digested) genomic DNA of plants and have
paved way for the development of molecular markers (Winter and Kahl, 1995). Genetic
engineering and biotechnology hold great potential for application in plant breeding as

they promise to reduce the time taken to produce crop varieties with desirable characters.



With the use of molecular techniques. it would now be possible to hasten the transfer of
desirable genes among varieties and to introduce novel genes from related species
(Mohan er al.. 1997). Molecular markers detect unambiguous, single-site genetic
differences that can easily be scored and mapped in most segregating populations. It is
not difficult in populations of most crop species 1o identify and map 16-50 scgrcgalin;;
molecular markers per chromosome pair (Kearsey. 1998). DNA markers can increase
ctticiency in breeding programs in a number of ways.

1. ‘The ability 10 screen in the seedling stage for traits that are expressed late in
the life of the plant.

ii. The ability to screen for traits that are extremely difficult. expensive, or time
consuming to score phenotypically.

iii. The ability to distinguish between the homozygous and heterozygous
conditions of many loci in a single generation without progeny testing.

iv. The ability to perform simultaneous, marker-aided selection to screen for a
character or complex of characters that could not previously be included in the
program because of cost or difficulty of conventional methods based on
phenotypic screens.

Molecular markers can accelerate the generation of new varieties and allow
connection of phenotypic characters with the genomic loci responsible for them. However.
the real advantage of using molecular markers is to permit efficient backcross transfer of
desirable alleles in a directed manner that would not be practical with conventional

phenotypic selection procedures.



Polygenic characters that were previously very ditficult 10 analyze using traditional

plant breeding methods can now be readily studied and it is now relatively casy to establish

genetic relationships between even sexually incompatible crop species (Mohan et al.. 1997).

I'he ability to map genes contributing towards variation in complex traits with enough

accuracy to be useful for plant breeding applications has been made possible through the

development of comprehensive molecular marker maps (Jones ef al.. 1997).

The following is a list of DNA marker techniques that have been developed over

the years (Mohan er

al.. 1997, Gupta and Varshney, 2000):

f

‘ Acronym Technique Reference
AFLP Amplified Fragment Length Vos et al.. 1995
o Polymorphism
',ALL ______ ___| Amplicon Length Polymorphism Ghareyazie et al., 1995
AP-PCR Arbitrarily Primed PCR ?‘;;'gh and McClelland.
AS-PCR Allele Specific PCR Sarkar er al., 1990 ]
CAPS Cleaved Amplified Polymorphic Lyamichev ef al., 1993
Sequence
. DAF DNA Amplification Fingerprinting Caetano-Anolles et al., 1991
i Inter-MITE (Miniature Inverted-repeat 5
 IMP Transposable Elements) Polymorphism Chang ef al.. 2001
| ISA=ISSR Inter-SSR Amplification = Inter Simple Zietkiewiez et al., 1994
Sequence Repeat
MP-PCR Microsatellite-Primed PCR Meyer et al., 1993
| MFLP Mlcrosatclllle-anchorcd fragment Yang et al.. 2002
_{ length polymorphism
RAMS Randomly Amplified Microsatellite Ender et al., 1996
. RAPD Random-Amplified Polymorphic DNA | Williams et al., 1990
' REMAP Relrol.ransposon-M|crpsatelllle Kalendar ef al.. 1999
! Amplified Polymorphism
. RELP Reslncuon‘Fragmenl Length Botstein et al., 1980
i Polymorphism
SAP Specific Amplicon Polymorphism Williams et al., 1991
SCAR Squence Characterized Amplified Williams ef al., 1991
Region
SNP Single Nucleotide Polymorphism Nikiforov et al. 4
SSCP Single Strand Conformation Orita et al., 1989




P | Polymorphism o e
SSLP ’ Mnc.rosancll'ue Simple Sequence Length Rongwen ¢t al.. 1995
. { Polymorphism B T
Minis e Si 3 o leo
SSLP . Mmlsatellntf: Simple Sequence Length Jarman and Wells. 1989
__{ Polvmorphism
SSR Simple Sequence Repeat Hearne ¢f al., 1992
STMS Sequence Tagged Micro-satellite Sites | Beckmann and Soller, 1990
STS Sequence Tagged Site Fukuoka et al., 1994

2.3. Importance of RFLP marker and its application
Among the various DNA-based molecular markers. RFLPs were the first to be used in
human genome mapping (Botstein e al., 1980) and later they were adopted for plant
genome mapping (Helentjaris et al.. 1986a; Helentjaris, 1987; Paterson et al., 1988:
Weber and Helentjaris, 1989). RFLP is the most reliable DNA polymorphism that can be
used for accurate scoring of genotypes. It has provided a relatively rapid means of
producing genetic maps of densely spaced marker loci in numerous crop species (Ellis,
1986, Helentjaris es al.. 1986a; Landry et al., 1987; Burr et al.. 1988; Mohan et al.,
1997). The four primary advantages of RFLP markers over morphological markers are
co-dominance. frequent polymorphism. absence or limited influence of the environment,
and absence of pleiotropic effects (Botstein ef al.. 1980; Beckmann and Soller, 1983).
Since RFLP markers have no known effect on the phenotype of the plant, they are ideal
tor studying quantitative traits (Stuber. 1992).

RFLP analysis employs cloned DNA sequences to probe specific regions of the
genome for variations that are seen as changes in the length of DNA fragments produced
by digestion with restriction endonucleases (Landry ef al., 1987). In plants, RFLPs were

first been used in tomato, maize and rice to saturate their already extensive genetic maps




based on morphological markers and isozyme markers (Bernatzky and Tanksley. 1986;
Helenyaris ef ul.. 1986a: McCouch er ul.. 1988).
Prior to the availability of SSR markers. two types of DNA markers have been

most commonly used for most crop plant molecular marker-based linkage map

development and subsequent quantitative trait locus (QTL) mapping: RFLP marker:
"(Botstein er al.. 1980) and RAPD markers (Williams er al.. 1990). Both detect DNA
polymorphism and monitor the segregation of a DNA sequence among progeny of a
genetic ¢cross permiuing construction of a genetic linkage map. However co-dominant
RFLP markers are more robust and repeatable than RAPD markers, which are inherited
in a dominant manner.

RFLP and RAPD marker allelic differences between plants are inherited in the
same fashion as conventional Mendelian genes, thus genetic linkage maps of these
molecular markers can be constructed using conventional methods. Such RFLP linkage
maps indicate the locations of specific restriction site and/or insertion/deletion
polymorphisms in chromosomal DNA relative to one another. Ellis (1986) reported that
simple consideration of RFLP mapping as a method of analyzing the inheritance of
quantitative characters suggests that there are several limitations to the utility of this
approach.

RFLP and morphological markers have been used in practical plant breeding
programs to map quantitative trait loci (QTLs) (Tanksley er al.. 1982; Edwards et al.,
1987, Stuber et ul.. 1987 Weller er al., 1988; Mohan er al.. 1997) and to monitor
response to recurrent selection (Stuber et al., 1980, 1982). RFLP markers facilitate the

selection of progenies with desirable genotypes in a relatively short span of time.
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parentage of mapping populations then available. and the traits tor which they might be

used for QTL mapping.

2.5. Mapping QTL using testers

Most of the early QTL studies published on grain vield and vield components involved
cither individual plants or replicated progenies of segregating population derived from
biparental crosses by selfing or backcrossing (Lubberstedt er al.. 1997). However in
hybrid pearl millet breeding, the main selection criterion is testcross performance and line
performance per se is only of secondary importance because these measures are poorly
correlated. especially for yield characters. Use of testcross progenies in QT1. mapping
studies provides information about the influence of the tester and hence. is important for
both basic research and application of marker-aided selection (MAS).

Lubberstedt ¢t al. (1997) crossed 380 F3 lines obtained by selfing F2 individuals
from a maize mapping population. and the two parental lines. with two diverse dent
inbred testers to map QTLs affecting testeross performance for important forage maize
traits and to investigate their consistency across-environments and testers. They detected
seven (starch yield) to 16 (plant height) QTLs in each testcross series, explaining between
53210 71% of ng in a simulation test.

For forage maize. Lubberstedt er al. (1997) found good agreement across testers
for dry matter concentration and plant height. but not for other traits including dry matter
vield and in vitro digestibility of the whole plant. Hence at least for most of the relevant
forage maize traits, it appears the separate QTL mapping is necessary for each tester.

Lubberstedt e al. (1998) evaluated four independently-derived mapping

populations crossed with same tester. in maize. They observed that consistency for QTL



position across all four populations. which were greater for dry matter concentration,
starch concentration. and plant height than for dry matter yield. i viro digestible organic
matter and protein concentration. Results from their study indicated Q11's were poorly
consistent among crosses within the flint heterotic pool. suggesting prior to MAS, QTL
mapping must be performed separately tor each population.

The consistency of Q'L mapping results across testers will be largely reflected by
the genotypic correlation among testers and the predominant type of gene action for cach
trait. Thus. for a given sémple selection response from MAS for testcross performance of
traits with mainly additive gene action should be comparable for testcross progenies with
other related testers. Melchinger ¢r al. (1998) found little evidence for digenic epistasis
among the detected QTLs. particularly when re-examined in an independent sample. On
the contrary. differences in the testcross performance of Fj lines with each tester were
due to the presence or absence of common QTLs. T'his suggests that non-epistatic gene
ctfects are major determinants of general and specific combining ability in hybrid
performance. as was also concluded that numerous classical quantitative genetic
cxperiments.

Austin ¢t al. (2000) reported that QTLs detected with only one tester were not
necessarily detected for the other testers especially for grain yield. Austin et al. (2001)
used three different testers in maize. Results indicated that regions containing QTL
effects for a single tester appear to be less stable across test environmeats and less likely
to be detected for mean testcross performance across testers than those associated with

QTL effects for two to three testers. Mean testcross effects (MTC). however. appear to be



less sensitive 1o environmental factors with the majority ot QTLs with the largest MTC
cttects being consistently detected across test environments.

Yadav ef al. (2002a) used pearl millet testeross Fi hybrids tor phenotyping QTLs
associated with traits determining grain and stover yield under terminal drought stress
conditions. rather than using inbred progenies for several reasons:

1. 10 restore heterotic vigour 1o the inbred mapping population that might otherwise be
o weak for effective screening under stress conditions (pearl millet is  highly
cross-pollinated in nature and sutfers considerably from inbrecding depression):

2. to use the dominantly inherited early tlowering of the tester to reduce variation in
Nowering time among the test units in order to focus the mapping on specific drought
tolerance traits rather than traits or responses associated with drought escape; and finally,
3. to have test units that approximate the genetic structure of the Fi hybrids grown by

tarmers rather than F3 or Fa inbred lines.

2.6. Linkage mapping
Linkage mapping is putting marker loci (and QTLs) in order. indicating the relative
distances among them. and assigning them to linkage groups on the basis of their
recombination values from all pair-wise and three-point combinations. The first map of
the human genorne based on molecular markers (Botstein et al.. 1980) fuelled the
development of molecular marker-based genome maps in other organisms, and has led to
the recent genomic sequencing of humans. mice. Arabidopsis and rice.

The theory of linkage mapping is same for DNA markers as in classical genetic
mapping based on morphological markers, however. several new considerations must be

kept in mind. This is primarily a result of the fact that potentially unlimited numbers of
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DNA markers can be analyzed in a single mapping population. DNA-based maps can be
related 1o existing cytogenetic maps through the use of aneuploid or substitution lines
(Helentjaris er al.. 1986b: Sharp ¢f af.. 1989 Young of /.. 1987) or i situ hybridization
(ISH) (Zhang et al.. 2000).

Since DNA marker technology was first applied to plants, there has been an
explosion in the development and application of genetic finkage maps (Mohan er al..
1997). Using these new DNA-hased markers. scientists have constructed maps in species
where only poorly populated classical maps existed before (Bonierbale ¢t al., 1988;
Giebhardt ef al.. 1991: Liu er al.. 1994), located genes governing quantitative characters
often in great detail and taken the first steps towards gene cloning based on genetic map
position. Detailed genetic linkage maps are also fundamental tools for studies on
selection, identification and organization of plant genomes (Tanksley, 1993. Beckmann

and Soller. 1986: Landry and Michelmore. 1987).

2.6.1. Achievements in different crops
Using RFLPs as genetic markers. Helenyjaris et ql. (1986a) constructed linkage maps for
maize and tomato. The first true RFLP-based genetic linkage map in a crop plant
(tomato) was constructed in 1986 with only 44 F2 plants and 57 marker loci (Bernatzky
and Tanksley, 1986j. Since then. DNA marker-based genetic linkage maps for many
plant species have been constructed (Helentjaris. 1987; McCouch e al.. 1988. Heun e
al.. 1991, Tanksley. 1993. Mohan er al.. 1997)

A detailed map of lettuce was constructed by Landry er afl. (1987) using 53
genetic markers. These included 41 RFLP loci. 5 downy mildew resistance genes, 4

1s0zyme loci and 3 morphological markers covering 404 cM.



McCouch ¢r wl. (1988) reported the construction of an REFLP-based genetic
linkage map ot rice. The map comprised of 133 loci corresponding 1o clones selected
trom a Pstl genomic hibrany covering 1.389 ¢M of the rice genome. Causse ¢f al. (1994)
developed a rice genetic map using ca. 800 RFLPs that expanded the length of the nice
linkage map to 1491 cM. Chao er w/. (1989) attempted RFLP mapping in hexaploid wheat
(Iruticum aestivum) using 18 cDNA clones: 14 anonymous and 4 of known function. The
loci identified by these probes were mapped on one or more of wheat homeologus group
7 c¢hromosomes. (}ranér vt al. (1991) analyzed two populations to construct an
RFLP-based genetic linkage map of barley using 250 genomic and cDNA markers. Maps
ot chromosomes 3A. 3B and 3D of wheat and 3R of rye were developed by Devos et al.

(1992) using 22 DNA probes and 2 ¢nzyme marker systems.

2.6.2. Computer software packages for constructing genetic linkage maps
Advances in computer technology have been essential to progress in DNA marker-based
genetic linkage maps. The theory behind linkage mapping with DNA markers is identical
to mapping with classical genetic markers. but the complexity of the problem has
dramatically increased because of the larger numbers of markers that must be used. This
increase in numbers of segregating loci (and the number of progenies in which they are
segregating) relative 1o studies of classical genetic markers has necessitated the
development of complex computer algorithms and software packages specifically for this
purpose.

Construction of a genetic linkage map from a DNA marker data set requires
computer software packages capable of running xz contingency table analysis. The

program, LINKAGE-1 (Suiter et al.. 1983) carries out this type of analysis automatically
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and also compares the observed allelic distributions 1o expected distributions. In a
different strategy for optimizing the use of DNA marker information. the computer
program “HyperGene™ converts genotypic data into a “graphical genotype™ (Young and
l'anksley. 1989a.b). in which a complete genome of an individual from the mapping
population is displayed.

MAPMAKER/EXP is a linkage analysis software package for constructing
primary linkage maps of markers segregating in experimental crosses. It performs full
multipoint linkage analysis for dominant. recessive and co-dominant (c.g. RFLP-like)
markers in BCi backcrosses, F2 and F3 (self) intercrosses and recombinant inbred lines
(Lander er al.. 1987: Lincoln et al.. 1992a. b).

The software package Joinmap (Stam 1993; Stam and Van Ooijen, 1995) analyses
all types of mapping populations, and can combine maps of different mapping
populations provided there are common markers. Another software for linkage mapping
1s Gmendel from Oregon State University. USA (Holloway and Knapp, 1994). The
package Mapmanager. with different versions such as QTX. QTXP and QTX-Classic for
Macintosh- and IBM compatible computers (Manly. 1993: Manly and Olsen. 1999), can
be used to analyse the results of genetic mapping experiments using backcrosses or
recombinant inbred lines.

In addition with these packages QTL Cartographer and PLABQTL are seldom

used 1o carry out the genetic linkage analysis using molecular markers.

2.7. Pearl millet genetic map
The first detailed molecular marker-based genetic linkage map of pearl millet was

published in 1994. and was comprised primarily of RFLP markers (Liu et al., 1994).
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2.8.2. Mapping QTLs for grain yield and its related traits

Grain yield is generally controlled by a number of quantitative trait loci and is atfected by
environmental factors. making it difficult to manipulate and improve in a breeding
program. Grain yield cén be dissected into a number of component traits such as
individual grain mass. spikelet number. grain number per panicle. cffccti;'e tiller number
per plant. and plant population density that depend upon the crop concerned. These
component traits are also under QTL control and the effects of individual QTLs on
phenotypic variation are rélatively small. Some of them. however. uare less
environmentally sensitive and have higher heritabilities than grain yield itself (Bezant
¢t al.. 1997, Yano and Sasaki. 1997). Therefore. while looking for QTLs controlling grain
yield. QTLs for yield and yield components should also be determined to provide useful
information.

The advent of molecular markers. and in particular RFLP has greatly facilitated
the detection of QTLs controlling yield components and the relationship between grain
vield and its components. Using molecular linkage genetic maps. it is possible to estimate
the number of loci controlling statistically significant portions of genetic variation in a
segregating population and to characterize these loci with regard to map position, gene
action. phenotypic effects. pleiotropic effects and epistatic interaction with other QTLs
(Xiao et al., 1996). It has been demonstrated that correlated components of yield or other
traits often have QTLs mapping at similar locations. This has been observed in maize
(Abler et al., 1991; Veldboom er al.. 1994; Austin and Lee. 1996), tomato (Paterson. et
al.. 1991), barley (Tinker ef al.. 1996: Bezant et al., 1997), rice (Xiao ef ul.. 1996), and

pearl millet (Yadav et al., 2002a).
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In potato. tuber starch content and tuber yield are quantitative traits that are easy
to determine under field conditions Schater-Pregl er al (1998) mapped QTLs for tuber
starch content and tuber yield in two Fi populations denved trom crossing non-inbred
dihaploid potato breeding lines A total of 18 putative Q I'Ls tor tuber starch content were
identified on all 12 potato hnkage groups and 8 putative QTLs for tuber yield were
idenuified on eight hinkage groups Also. twenty-six putative Q1Ls were reproducibly
detected 1n two environments and/or mapping populations

Orf et al. (1999) measured and compared QTLs for agronomic traits of soybean in
a large Ri population derived from crosses between three different sets of population.
QTLs were identfied for all the primary and denved traits with a sigmficance level
= LOD 3. on 17 of the 20 soybean linkage groups and these QTLs tended to be clustered
on only three of the linkage groups. QTLs with major effect ( R’ > 10%) were 1dentified
tor all the observed characters and for many of these characters explained more than half
ot the observed hentable varation.

Campell ef al. (1999) conducted a study to determine associations between kernel
traits and molecular markers and to 1dentify QTLs affecting kemel traits 1n a soft x hard
wheat cross. They identified QTLs for kernel traits located on chromosomes 1A, 2B, 2D,
3B. 7A and 7B. Particularly the pinB marker on chromosome arm 5Ds explained over
60% of the phenotypic variation for kernel texture

Shah er «l. (1999) were able to locate QTLs for a number of agronomically
important traits such as grain yield, kernel number per spike, 1000-grain weight. spike
number, grain volume weight. plant height and anthesis date to the long arm of 3A

chromosome using a substitution line.




21

two-row barley cross Harrington/TR 306 on the basis of evaluation ot 145 DH line in 30
tield experiments (Spaner er af. '999). They compared among groups of lines with
contrasting markers genoty pes on chromosome 7 (3H) and contirmed that a QTL on the

“plus™ arm of that chromosome atfects grain vield and plant height.

2.9. QTL * environment interactions

One of the major goals for plant breeders is to develop genotypes with a high yield
potential and the ability 0 maintain yield across-environments. The cffect of
QTL x environment interaction has been addressed in several studies in which QTL have
been mapped in the same population in different environments (Paterson et al. 1991:
Stuber et al. 1992; Hayes er al. 1993: Yan et al.. 1999, Yadav ¢r al., 2002b).

Paterson et al. (1991) investigated the prediction value of QTLs across-environments
in tomato by comparing QTL maps of an F2 population and its denved F3 families. They
showed that only 4 out of 29 QTLs were detected in all testing environments. Stuber ef al.
(1992) studied genotype x environment interaction for QTLs of maize by ficld evaluation of
backcross families in six diverse environments, but limited evidence was found.

Zhuang et al. (1997) repeated studies of an F2 and two equivalent F3 populations
of an indica-indica cross of tice grown in three different environments. In all three trials
QTLs for yield components were frequently detected in the same intervals. They
identified 23 of the 29 QTLs for yield and its component traits and 9 of the 15 QTLs for
plant stature in more than one trial. They indicated that detection of chromosomal
segments harboring QTL was hardly affected by environmental factors, perhaps because

the environmental difference themselves were small.
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A doubled haploid rice mapping population of 123 lines from IR 64/Azucena was
used to analyse the genotypic « environmental interaction for eight ditferent plant-type
traits in rice (Yan ef al.. 1999). Four to nine QTLs affecting different plant-type traits
were detected. They suggested that QTLs with substantial main effects could be used in
MAS across-environments. QTL. « environment interaction effects wcr; detected more
than QTL main effects for plant height. which might indicate that gene expression for this
trait could be greatly affected by environments.

In order to identify - QTLs controlling agronomic trait variation and their
consistency under Mediterranean conditions in barley, a progeny of 167 RILS and their
parents Tadmore and Er/APM were grown under six environments ( Teulat ef al.. 2001).
A total of 24 QTL consistent across all the testing environments were detected using
multiple environment analysis. Out of these QTLs. 11 presented main effects. seven
presented QTL x environment interaction. and six presented both effects.

Liao er al. (2001) used a rice doubled haploid population and a rice recombinant
inbred line population derived from crosses between a tropical juponica variety,
Aczucena. and two indica varieties. IR 64 and IR 1552, in both field and pot experiments,
for detecting QTLs and epistasis for rice panicle number in different genetic backgrounds
and different lowland irrigated rice production environments. Their results indicated that
the effect of genetic background on QTLs was greater than that of environments, and
cpistasis between QTLs is more sensitive to genetic backgrounds and environments than
main effect QTLs. Main effect QTLs and epistatic QTLs could be interchangeable
depending on the genetic backgrounds and probably on the environments where they are

identified.
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Cao et al. (2001) studied QTLs with epistatic effects and environment interaction

etfects for plant height of rice using mixed model-based Q1L mupping with a doubled
haploid mapping populquon from IR 64/Azucena tested in four different environments.
I'he results demonstrated all QTLs detected were involved in epistatic interactions while
only 64% of were found wuth significant additive effects. QT « cn.wmnmcnl were
detected more often than QTL main effects for plant height. which indicates that gene

expression for this trait could be greatly affected by test environment.

2.10. Pearl millet downy mildew and its importance
The millet downy mildew pathogen was first described as Protomyces graminicola on
Setaria verticillata. Schréter in 1879 renamed it as Sclerospora graminicola (Ullstrup,
1973). Downy mildew was first reported on Setaria viridis (L..) P. Beauv. by Farlaw
(1884). and later reported on pearl millet (Butler. 1907) and other hosts (Bhat, 1973).
s disease is of great economic importance in India but also causes yield losses in
many countries in Africa. including Burkina Faso. Chad. FEritrea, Ghana, Mali.
Mozambique. Niger. Nigeria. Senegal. Sudan, Togo. Tanzania and Zambia. This
pathogen has been reported to cause disease on pearl millet in more than 20 countries
around the world (Singh er al.. 1993).

Pearl millet downy mildew caused by [Sclerospora graminicola (Sacc.) J.
Schrét.] is a highly destructive and widespread discase in Africa and Asia. Over the past
40 vears. pearl millet production area in India has come down for many reasons. One of

the major causes of this reduction has been the disease downy mildew. caused by the

oomycetic pseudo-fi (S. graminicola). Downy mildew is the most devastating

S

disease of pearl millet in India. A major epidemic there occurred in the early 1970s,
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2.10.2. QTL for downy mildew resistance in pearl millet

I'he first fairly detailed molecular marker map for pearl millet was constructed by Liu
o al (1994) so lhal‘ QTL. analysis 1s now possible in this crop. QlLs for host-plant
resistance to downy mildew caused by S graminicola pathogen populations from India.
Nigeria. Niger. and Senegal were mapped using the cross I.GD-I-B-]O (susceptible)
< ICMP 85410 (resistant) (Jones er al.. 1995). Host-plant resistance QTLs were detected
that were etfective against each of the four pathogen populations. To locate genes in
mapping populations other ;han those for which RFLP maps exist. a skeleton map needs
to be transferred to the new mapping population. In pearl millet less than 40 single-copy
probe-enzyme combinations will produce such a map, with an average map distance of
less than 15 ¢cM between marker loci (Liu ef al., 1994).

Jones er ul. (2002) demonstrated that field screening and greenhouse pot
screening of seedlings detect the same QTLs for host-plant resistant to pearl millet downy
mildew using F2 derived Fa self bulks of a mapping population derived from a cross of
resistant line P 7-3 and susceptible 7042 (S).

Howarth er al. (unpublished) identified QTLs for downy mildew resistance and
seedling heat tolerance from pearl millet mapping populations produced from crosses
ICMP 451 x H 77/833-2 and H 77/833-2 x PRLT 2/89-33. Hash er al. (unpublished)
worked with mapping populations from crosses PT 732B x P 1449-2. 81B x ICMP 451
and 841B x 863B to locate QTLs for resistance to pearl millet downy mildew. QTLs for
host-plant resistance effective against downy mildew African and Indian pathogen

populations were identified in new mapping population based on cross W 504 x P 310

(Kolesnikova. 2001), and Tift 238D1 x IP 18293 (Azhaguvel, 2001). To date over 65



n

QTLs for pathogen-population-specific host plant resistance to pearl millet downy

mildew have been detected (C.T. Hash, pers. comm.)

2.10.3. QTL mappiné for disease resistance in other crops

With DNA markers and QTL mapping, complex forms of disease resiStance and their
underlying genes are now far more accessible to applied plant breeders and pathologists.
Quantitative genetics is unsuited for dissecting polygenic resistance characters into
discrete genetic loci or defining the roles of individual genes in disease resistance. With
QTL mapping. the role of specific resistance loci can be described. race-specificity of
partial resistance genes can be assessed. and interactions between resistance genes,
arowth stage of plant development and the environment can be analyzed (Melchinger,
1990; Young, 1996).

The quantitative host-plant resistance system for rice blast caused by Pyricularia
oryzae has been especially well characterized (Wang er al.. 1994). Two dominant
qualitative resistance loci were identified on chromosomes 4 and 11 of rice (Yu er al..
1991). Another disease system that has been studied. with QTL mapping is late blight of
potato caused by Phytophthora infestans, an oomycetic pseudo-fungus distantly related to
Sclerospora graminicola. Leonards-Schippers et al. (1994) identified eleven genomic
segments on nine chromosomes that were associated with host plant resistance to potato
late blight.

Inheritance of disease reaction to leaf spot caused by Cercuspora zeue-maydis in
three maize F: populations was examined to study quantitative resistance using RFLP
markers (Bubeck e al.. 1993). One QTL on maize chromosome 2 was found to be

significantly associated with resistance in all three populations.
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A study of resistance to bacterial wilt caused Psendomonas solanucearum in
tomato was reported by Danesh er al. (1994) using DNA marker genotypes and disease
resistance reactions for 71 F: individuals. Two genomic regions were significantly
associated with resistance. one on chromosome 6 and another on chromosome 10. Loci
contributing towards guantitative variation in discase resistance have !:ccn mapped in
mmzilo for resistance against insects (Nienhuis ¢f al.. 1987). in potato for resistance
against cyst-nematode (Kreike e¢r al.. 1993). in peas for resistance against ascochyta
blight (Dirlewanger et al.. 1;994). and in maize for northern corn leat blight (Freymark
et al.. 1993) and stalk and ear rot (Pé ¢r ai.. 1993).

Manzanares-Dauleux er af. (2000) identified QTl.s against clubroot disease of
Brassica napus caused by Plasmodiophora brassicae. Inheritance of Cercospora leat
spot resistance in sugar beat was studied by Nilsson er al. (1999) and they identified
QTLs for this trait. In sugar beet. four QTLs associated with Cercospora resistance on
chromosomes -111. 1V, VII and [X were revealed using composite interval mapping
(Setiawan et al.. 2000). Four QTLs were localized for the leaf rust (Puccinia hordei)
resistance in barley. which explained 96.1% of the segregating genetic variation
(Kicherer er al.. 2000). Brown stem rot (Phialophora gregata) resistance QTLs were
identified by Lewers er al. (1999) in a RIL. mapping population of soybean using 146

RFLPs. 760 AFLPs and 4 probes for resistance gene analogs (RGAs).

2.11. QTL analysis: Statistical methods
Jayakar {1970) suggested mathematical-statistical methods for the detection and
estimation of linkage between a qualitative marker gene and a locus influencing a

quantitative character. Since then, experimental designs for determination of linkage
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software package MAPMAKER QTL. In this. interval mapping is applied in a “straight
torward™ fashion to several population types. Fach interval between adjacent pairs of
markers along a chromosome is scanned and the likelihood profile of a QTL. being at any
particular point in each interval is determined.

Michelmore et ul. (1991) used a modification of conventional (51'[, mapping to
detec; QTLs for downy mildew resistance in lettuce in a procedure they called “bulk
segregant analysis™. which is remarkably similar to that previously described by Burton
and Wells (1981) tor assessiné the value of a trait in near-isogenic F1 popuations.

Particularly in the case of cross-pollinating crop populations. interval mapping
has been enhanced to “all marker mapping™. To calculate the likelihood of a segregating
QTL. the segregation information of all linked markers is employed. Each segregating
marker may follow a different segregation type, with two to four alleles (Maliepaard and
Van Ooijen, 1994).

An alternate approach was developed by Knapp ef al. (1990) and Haley and Knott
(1992) for QTL analysis using regression. It produces results very similar to interval
mapping both in terms of accuracy and precision, but has the advantage of speed and
simplicity of programming. This method uses the coefficient of regression of the
phenotype on the genotype of the different markers (Martinez and Curnow. 1992 Wu
and Li, 1994). A significant regression coefficient is indicative of an association between
the marker locus and gene(s) contributing to phenotypic differences. The significance of
the association is affected by the degree of linkage between the marker and the QTL and

the type and magnitude of genetic effects of the QTL.
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QTL Canographer was developed by the group of Zeng at North Carolina State
University (Zeng. 1993, 1994: Basten ¢f al.. 1994, 1997). It allows markers to be
chosen as cofaclors to reduce the background genetic noise and increase the
resolution of QTL detection. This provides an effective strategy for improving the
ability to detect QTLs of small effect provided that the number ol'.progcnies in the
mapping population is reasonably large.

. MapQTL (hup.cwww cprodlonlcbws). A composite interval mapping
method similar to tﬁa( :mplemented in QTL Cartographer has been developed by
Jansen and co-workers at Wageningen University (Jansen. 1993; Jansen and
Stam. 1994) called multiple QTL modeling (MQM).

‘e Multimapper (Sillanpaa and Arjas, 1998), based on Bayesian modeling
and inference, treats the number of quantitative trait loci as an unobserved random
variable using ideas similar to composite interval mapping. This method is
introduced for inbred lines and it can be applied also in situations involving
frequent missing genotypes.

. Qgene is a QTL mapping and marker-aided breeding package written for
Macintosh computer operating systems. It has a user-friendly graphical interface
and produces graphical outputs. QTL mapping is conducted by either single-
marker regression or interval regression.

. QTLSTAT is based on interval mapping using nonlinear regression for F2,
backcross. RIL and DH populations and outputs results in graphical form (Knapp

et al.. 1992; Liu and Knapp. 1992).
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. PGRI calculates based on the functions of t-test. conditional t-test. linear
regression. multiple QTL. modeling and permutation tests (Lu and Liu. 1995). It is
for Fa. back‘cross. RIL. heterozygous Fi and open-pollinated populations.

. SAS (SAS. 1999) is a general statistical analysis software package. It can
detect QTL by identifying associations between marker genotype ana quanutauve
trait phenotype by single-marker analysis approaches such as ANOVA, t-test, and

regression (e.g. PROC ANOVA. PROC GLM or PROC REG).

2.12. Reliability of QTL mapping

Kearsey and Farquhar (1998) reported that the available analytical methods locate QTL
Wilh‘ poor precision unless the heritability of phenotypic data used for mapping a
particular trait is high. Also the estimates of the QTL effects, particularly dominance
effects. tend to be inflated because only large estimates are detected as being statistically
significant. This is especially problematic where mapping population size is less than optimal
(as it usually is).

Darvasi er al. (1993) showed that the power of detecting a QTL was virtually the
same for a marker spacing of 10 ¢cM as for an infinite number of markers and was only
slightly decreased for marker spacings of 20 ¢M or 50 ¢cM. However. a very important
consideration is the confidence interval for the QTL position on the linkage group.
Effective utilization of molecular marker technology to manipulate loci controlling
quantitative traits is considered to be dependent on tight linkage between the marker (s)
and the QTL (Dudley, 1993), but in fact, even loose linkages can be exploited in an

applied breeding program (Sharma, 2001).



MATERIALS AND M ETHODS




3. MATERIALS AND METHODS

F: derived F. seif-bulks of a pearl millet mapping population (skeleton-mapped Fy
individuals) obtained from a cross of two pearl millet inbreds, PT 732B and P 1449-2,
were used as the basic material. PT 732B (Appadurai er «l.. 1982), an elite d; dwarf
hybrid seed parent maintainer line developed at Tamil Nadu Agricultural University
(TNAU) and P 1449:2 (ICRISAT, 1997, Singh, 1990) is a tall, downy mildew resistant
parent, which is a selection developed at ICRISAT from a germplasm accession
originating from Mali. PT 4450, an elite pollinator inbred was used as a male parent to
produce testcross hybrids on each of the F4 self-bulk mapping population progenies.
APT 4450 is an elite restorer line being used to produce the commercial hybrid CcHCU-8

(PT 732A x PT 4450) in Tamil Nadu.

3.1. Test units

One hundred and thirty-six F» plants were derived from a single F, plant from the cross
PT 732 x P 1449-2 were previously selfed at ICRISAT and skeleton mapped at John Innes
Centre, UK. The F; plants were advanced to the F, seed generation at ICRISAT without
selection. For this study the F, self-bulks of this mapping population were crossed with
pollen from elite restorer line PT 4450, and the resulting 136 testcross hybrids, along with

control hybrid CoHCU-8, and testcross of the two mapping population parental lines,

were evaluated in replicated field trials.




3.1.1. Seed multiplication of testcross hybrids

One hundred and thinty-six F; self-bulks along with the two parental inbred lines
(PT 732B and P 1449-2) and the pollinator (PT 4450) were sown in April 2001 (summer
season at TNAU. Coimbatore).

Seeds were sown in a well-prepared nursery. Emerged .secdlings v\;crc
transplanted to the main field. The mapping population was raised in plots
accommodating three rows each having 4m length. The adopted spacing was 30 cm
between plants and 60 cm between rows. The pollinator was raised along with the
mapping population. Two sowings were taken for the Fy seif-bulks so as to make
effective crossing of all the lines. To get the synchronisation of flowering multiple
sowing were taken of the pollinator line: one week before the Fy lines, two weeks
accompanying the F, lines, and one week after the second sowing of the F; lines. This
plan provided sufficient time to make crosses as well as allow synchronisation of
flowering. During flowering, pollen from the PT 4450 was collected and used to pollinate
protected stigmas of multiple panicles of all the 136 F, self-bulks. Standard package of

agronomic practices were carried out during the entire crop growth period.

3.1.2. Selfing
In addition to crossing, selfing was also carried out in all the F self-bulks so as to get Fs

self-bulk seeds for field screening against pearl millet downy mildew.

3.1.3. Evaluation of test cross hybrids

Testcross hybrids were evaluated for phenotyping grain yield performance and its

component traits during October 2001 (Rainy season at Tamil Nadu, 2001). Field trials
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were conducted in two environments, one at TNAU, Coimbatore itself and another at the
TNAU Regional Research Station (RRS), Bhavanisagar. Testcross seeds from all 136
lines, their parents and the commercial hybrid control COHCU-8 were evaluated in an
alpha design with 18 x 18 plots. The testcross hybrids were sown in plots of 2 rows x 4 m
with three replications. Inter-row spacing was maintained at 0.6 m and plots initially over
sawn, were thinned within two weeks of seedling emergence to a uniform plant stand of
approximately 12 plants per row (30 cm spacing between plants within the row) in both
environments, for an average final plant population density of 50,000 per ha.

Recommended cultural practices were followed during the entire crop growth period.

3.1.4. Screening for downy mildew resistance

Selfed seeds from the F, self-bulks mapping population progenies were used for
screening against downy mildew in both locations (i.e. TNAU, Coimbatore and RRS,
Bhavanisagar) during October 2001. §creening was done in sick plot conditions i.e.
fields, having sufficient oospore inoculum. The infector-row technique was followed
(Williams er al., 1981, as modified by Singh et al., 1993) to screen against downy
mildew. |

The disease screening was done in the following way:

The line 7042 (S) was sown as an infector in every 5" row, 3 weeks prior to
sowing of the test materials to develop a viable sporangial load for the test materials. At
two-leaf stage the infector rows were spray inoculated with a viable sporangial
suspension (10° sporangia mL"'") during the late eveﬁing hours, after irrigation. Frequent
furrow irrigation was given during the first 15 days after inoculation to promote high

humidity favoring a higher frequency of infected plahts at an early growth stage.
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The F selfed seed bulks produced by selfing of F, self-bulks mapping population
progenies were sown three weeks after the infector rows sown in the intercrossing rows
after the infection rows have developed 50-60% disease incidence. A well-known
susceptible control (HB 3) genotype was also sown along with the test material after
cvery 20 entries to monitor variation in the level of disease incidence across the field.

Test materials and controls were sprayed with viable sporangial inoculum (10°
sporangia mL'') when they reached two-leaf stage to inccease the likelihood of disease
development in genetically susceptible individuals.

All the test lines and controls were sown in rows of 4m length with two

replications. Standard package of practices were followed.

3.2. Observations recorded in mapping population testcross hybrid yield trials

The following observations were noted in the F; testcross hybrids from both locations.

Time to 50% stigma emergence in days (FT)

Flowering time was recorded as the number of days from sowing until 50% of the plants
in each plot produced stigmas on their main stem panicles.

Plant height (PH)

Plant height was measured from the base of the stem to the tip of the panicle at maturity.
Data was recorded on five random plants from the middle of each row, and was recorded

incm.
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Productive tiller number (PT)

Number of productive tillers per m* was taken by counting the panicles from individual

plants occupied per m’ area from the middle portion of the rows.

Panicle length (PL)

Length of panicle on the main stem was measured for the same plants considered for

plant height in each plot and recorded in cm.

Panicle circumference (PCR)
Girth of the panicle was measured in cm using vernier caliper on all those plants for
which panicle length was measured, and this was converted to circumference by

multiplying girth by n.

Grain yield per season (GY)
Panicles were threshed and their grains cleaned. Weight of the grains in grams was

recorded from each plot.

Thousand-grain mass (TGM)

One thousand grains were counted and their weight (in grams) was recorded for all the
entries.

Grain yield per day (GYD)

This is calculated by dividing plot grain yield per season with total number of days taken
to attain physiological maturity (approximated as time to 50% stigma emergence + 25)

and expressed in grams per plot per day.
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Single-panicle grain mass (SPGM)

This is the ratio between plot grain vield and the number of productive tillers per plot and

was expressed in grams.

Single-panicle grain number (SPGN)

This is derived from the ratio of single panicle grain mass and thousand grain mass and

expressed in numbers.

Grain number per unit aréa (GNPS)

Grain number per panicle surface unit area is obtained by the following formula:

Panicle grain number

GNPS =

Panicle circumference x panicle length

3.3. Scoring of disease incidence for downy mildew screening trials
Diseased plants were identified by the scoring method developed at ICRISAT (Singh

et al., 1997).

3.4. Statistical analysis

The statistical analyses were done using the program, GENSTAT 5" edition (1993).
Analysis of variance, F-ratio and heritability (mean and plot basis) were calculated for
each observed or calculated trait for single-site data sets from Coimbatore and
Bhavanisagar, and across-locations, for both yield trials and downy mildew screening

trials.
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3.4.1. Linkage map construction
A previously constructed RFLP marker-based genetic linkage map for the cross
PT 732B x P 1449-2, developed at John Innes Centre by Dr. Katries Devos and
co-workers, using the 136 progenies in the current study was used to locate the QTLs.
This map consists of seven linkage groups with different lengths, which vary from 27.6 to *
177.6 cM (Haldane), and accommodates a total of 60 RFLP markers (Figures 1.1-1.3).

The linkage map was constructed using the program MAPMAKER/EXP 3.0 (Lander

et al., 1987).

3.4.2. QTL analysis

3.4.2.1. Data processing for yield trials

Plot values for grain yield and yield components data from Coimbatore, Bhavanisagar
and across-locations were subjected into square root and log-transformations before
regression analysis. Time to 50% stigma emergence, plant height and time to 50% stigma
emergence together with plant height were used as predictors of plot yield performance.
All the traits were regressed with these predictors individually and the residuals from this
analysis were then used to map QTLs for grain 'yield and its component traits. This
procedure was adopted after initial QTL analyses suggested very strong effects of
flowering: time and plant height QTLs (perhaps linked) on nearly all other agronomic

traits studied.

3.4.2.2. Data processing for downy mildew screening trials

Data recorded from Coimbatore, Bhavanisagar and across-locations were converted into

percentage disease incidence values and these were subjected to QTL analysis. These
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Linkage group 5 Linkage group 6 Linkage group 7
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Figure 1.3: RFLP-based genetic linkage map of F, mapping population developed from the cross PT 732B x P 1449-2 showing
LGS, LG6,and LG 7
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data were also transformed into arc-sin values (radians) and used for detecting downy

mildew resistance QTLs.

3.4.2.3. Mapping QTL:s for.yield trials

Residual data from Coimbatore, Bhavanisagar and across-locations from 136 mapping
population testcross hybrids were sorted into progeny order corresponding to the marker
genotype data set. QTL mapping was then carried out using MAPMAKER/QTL version
1.1b (Lander and Botstein, 1989; ITincoln et al., 1992a). An additive genetic model from
the program was used because testcross progenies derived from a heterozygous F; plant
are a sample of the two parental alleles in combination with the tester allele, and the
average of the heterozygote is the average of the two homozygotes (Cowen, 1988; Beavis
et al., 1994; Yadav et al., 2002), so only additive effects are detected in such testcrosses

and dominance effects can not be detected.

3.4.2.4. Mapping QTLs for downy mildew screening trials

Percentage of mean disease incidence and radians from arc-sin transformation were used
for detecting downy mildew resistance QTLs from screens using the Coimbatore,
Bhavanisagar and across-locations data sets. MAPMAKER/QTL version 1.1b was used
to identify these QTLs. A free genetics model was considered as suitable because

phenotyping was done in the F,-derived F; self-bulk population.
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4. RESULTS

Eleven important agronomic traits, including grain yield and its components, were
phenotyped and their mean performance were recorded. Analysis of variance was
calculated for all the traits at Coimbatore, Bhavanisagar and across-locattons. Individual
location data and pooled data showed significant difference for all the characters under
study and interactions between genotypes and the locations were not significant for any
of the characters, permitting interpretation of these traits using only the across-location
means (Tables 1-3). Heritability calculation showed significant higher values for most of

the traits (>50%), which is a prerequisite for effective QTL mapping.

4.1. Mean performance for different traits

Time to 50% stigma emergence

Testcross hybrids at both locations took a minimum of 40 days for completing 50%
stigma emergence. Similarly 47 days was the maximum for completing 50% stigma
emergence at both trial sites. Heritability for this trait was only 51% at Coimbatore and
reached its maximum value (79%) when the statistical Zanalysis was performed using

pooled data from across the two test sites.

Plant height
The trial at Coimbatore had shorter statured plants than that conducted at Bhavanisagar,
but maximum height was almost the same for both locations (177 cm). Heritability for

this trait reached maximum at Coimbatore, while Bhavanisagar had lower heritability

values.
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Panicle length
Highest mean values for panicle length was obtained in Bhavanisagar. This location had also
highest maximum values for panicle length (32.4 cm). Bhavanisagar and across-locations

data showed maximum heritability values.

Panicle circumferences

The two locations had similar- minimum mean values for panicle circumference, but
Coimbatore had highest maximum panicle circumference (10.7 cm), where as Bhavanisagar
registered the highest mean values for this trait (8.6 cm). Heritability for this trait was more

than 90% at both locations and across-locations.

Productive tiller number

Data from both locations revealed that mean performance for minimum number
productive tiller number were same. The maximum number of productive tillers was also
same for both locations. Across-locations data had the highest broad sense heritability

(73%) for this trait.

Thousand-grain mass
It was observed that thousand-grain mass reached minimum value (6.1g) at Coimbatore and

had a maximum value of 12.6 g at Bhavanisagar. Individual locations and across-locations

had high broad-sense heritability values for the trait (97 to 98%).
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Single-panicle grain mass
Bhavanisagar had highest mean value (8.9 g) but Coimbatore registered the maximum
observed value (14.4 g) for this trait. Broad-sense heritability calculated across-locations was

the higher (83%) than that from individual locations data.

Single-panicle grain number

Values in Bhavanisagar ranged ﬁom 685 to 1302 g and the mean values attained the
maximum of 953 g. Heritability (plot basis) was very low in both Locations (31 and 21%, for
Coimbatore and Bhavanisagar respectively) but broad-sense heritability was more than 50%

for the across-locations analysis.

Grain yield per day
Bhavanisagar had maximum values for grain yield per day and it also had the highest mean
values. Where as Coimbatore had the minimum value for this trait. Henitability (broad-sense)

for grain yield per day was 87% when pooled data were taken.for consideration.

Grain number per unit panicle surface area
Both locations registered similar minimum and maximum values for grain number per unit
panicle surface area. Also both locations had low plot-basis heritability but broad sense

heritability at across-locations had higher values (55%).
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4.2. Correlation studies

Grain yield

Gramn yield per season is the ultimate trait that was taken first as an explanatory vanable
and correlated with other traits to find the relative contribution of cach constant trait to
the observed yield variation. The results are shown in the Table 4.

Plant height. panicle circumference, thousand-grain mass. single-panicle grain
mass, single-panicle grain number, grain yield per day and grain number per unit panicle
surface area had positive cor-relations with grain yield per season. Traits like time to 50%
stigma emergence, panicle length and productive tiller number were correlated negatively
with grain yield at both locations. Coimbatore showed the highest positive correlations
for plant height (0.620), panicle circumference (0.642), grain yield per day (0.983) and
single-panicle grain number (0.283). For grain number per unit panicle surface area,
Bhavanisagar registered the higher correlation. In both locations the trait grain yield per
day was closely correlated with grain yield per season.

Coimbatore had higher values for traits negatively correlated with grain yield per
season t.e. time to 50% stigma emergence (-0.520) and productive tiller number (-0.421)
than did Bhavanisagar where panicle length was highly negatively correlated (-0.527)

with grain yield per season.

Time to 50% stigma emergence

Productive tiller number and panicle length were the two traits showing positive
relationships with time to 50% stigma emergence at both locations. Other characters
including grain yield per season showed a negative correlation with time to 50% stigma

emergence.
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disease incidence was also severe, reaching nearly 50%. Hertability for the disease
inc.dence values (for both percentage diseased plants and the arcsin-transformed data)
were high enough for use to map QTLs. Disease incidence (%) at Bhavanisagar had the
highest heritability (plot basis). This location also showed highest hcrilal;ilily for arc-sin

transformed disease incidence.

4.4. Information on linkage map

A Previously constructed RFLP linkage map was used for this study. This linkage map
was developed from the cross PT 732 B x P 1449- 2 using 58 RFLP probes detecting 60 loci.
Seven linkage groups (LGs; singular = LG) were constructed using MAPMAKER/EXP
multipoint analysis with the LOD threshold value of 2.0 and a recombination fraction of 0.5.
The minimum and maximum length of linkage groups varied from 27.6 ctM (LG 3) to
177.6 ¢cM (LG 1). These linkage groups were used for mapping QTL for both in test cross
hybrids for yield and its components traits and in Fs population for mapping downy

mildew resistance QTLs.

Linkage group 1
LG 1 has a length of 177.6 cM (Haldane units) and this is the lengthiest LG in pearl
millet. It accommodates 15 markers with different marker intervals. LOD score of this

group was very high (-365.0), much higher than the other linkage groups.
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Table 5: ANOVA for percentage and arcsin-transformed v alues for downy nuldew incidence
from tnals conducted at Coimbatore. Bhavamsagar and across-locations, 2001/2002

"Parameters Coimbatore

Bhavamsagar

Across Locations

percentage  radians  percentage  radians  perceniage

SE(7) 12.70 0720
Mean 19.2 057
CV (%) 36.52 49 45

F rano 383w 303%
h” (plot basis) 59 50
h’(mean basis 74 07

o, SEoe’ 3 4xx 3%

‘ Signuficant at the 0 1 level of probability

157 047
52.6 0.61
3110 38.01

4 73% 4 82+
65 066
79 79

3 ()*‘ 3,3##

XY

509
238
104%e
60
75
3 gee

-5

radians

0.55
27.94

3 86**
59
74

4.1%*




Linkage group 2

This group has six markers with the total distance of 87 9 ¢cM The order of the markers
on this linkage group s Xpsm708a. Xpsm706. Xpsm25. Xpsm392, Xpsm32] and

\psm708b The LOD score of this linkage group was -179 39

Linkage group 3
The total length of this hnkage group is 27 6 ¢cM This 1s the shortest pearl millet linkage

group although 1t accommodates 10 markers. The LOD score of this group 1s -162.28.

Linkage group 4
This group has the length of 100 0 ¢M and has 11 markers with optimum inter-marker

intervals to detect QTLs.

Linkage group §
Six markers occupied LG 5 The maximum likehhood position of the marker intervals 1s
Xpsm815, Xpsm328, Xpsm73A, Xrml1_I, Xpsm749 and Xpsm735a The total length of

this linkage group 1s 30 2 ¢cM and 1ts LOD score 1s -137 84.

Linkage group 6
LG 6 accommodates seven markers 1n a length of 83 1 ¢cM This group has the LOD score

of -205 52




59
Linkage group 7
This 1s the smallest linkage group in terms of number of markers. It has only five markers

and their correct order 1s Xpsm269, Xrm9 2b, Xpsm618, Xpsm717 und Xpsm834. The

length of this group is 37.6 ¢M with LOD score of -143 03

4.5. Mapping QTLs

The constructed linkage map from the cross PT 732 B x P 1449-2 using 136 individuals
was used for mapping QTLS for yield and its related traits. Software package
MAPMAKER/EXP version 3.0b was used for constructing linkage groups and

MAPMAKER/QTL version 1.1 b was used for detecting QTLs.

4.5.1. MAPMAKER/QTL

The interval mapping method as implemented in MAPMAKER/QTL was used with a
LOD of 2.0 as threshold value for detecting significant QTLs. The additive genetic model
from this software package was used as the phenotyping was done in testcross hybrids.
For this, the command “sequence [all: additive]” was used to restrict the genetic model
only to additive effects.

For mapping downy mildew resistance QTLs, phenotyping was done in the Fy self
bulks. So, all possible genetic models (additive, dominant and recessive) were
considered. This is carried out by using the command “sequence [all]”. Combined effects
of multiple QTLs were calculated by multiple QTL models for two QTLs, three QTLs
etc. The qualifying criteria for accepting a multiple QTL model was a LOD score of two

units more than the highest LOD score of the best model having one less QTL.
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LOD,  =Mimmum qualifying LOD score for acceptance of a multiple
QTL model with (n) QTLs.
=2+LOD(n-1)

LOD 5.1y = Maximum LOD score for observed model wilﬁ (n-1)QTLs.

4.6. QTLs for agronomic traits

A total of 18 QTLs were identified across seven linkage groups for nine tras, but
genomic regions flanked by only seven markers loci controlled all these QTLs. The
details of the QTLs detected on different linkage groups are shown in Tables 6-22.
Graphical representation of LOD values obtained from different types of transformation
for different traits are shown in Figures 2.1-7.3.

Mean values at Coimbatore, Bhavanisagar and across-locations from the mapping
population testcross [(PT 732B x P 1449-2) x PT 4450] consisting of 136 hybrids were
used for mapping QTLs for the different traits. Square root and log-transformed values
from Coimbatore, Bhavanisagar and across-locations were used to map these QTLs in an
attempt to reduce distribution abnormalities in the trait data set. Plant height, time to 50%
stigma emergence, and plant height together with time to 50% stigma emergence were
used as predictors of other traits using liner regression, and the residuals from these
regressions were used to locate QTL positions. Most of the detected QTLs are situated on

LG 4. LG 2. LG 6 and LG 7 are the other groups having QTLs. No QTLs were detected

onLG1,LG3and LGS.
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Time to 50% stigma emergence

A single QTL was identitied for time to0 50°0 stigma emergence at Coimbatore, using
log-transformed data. This QTL for time to 50% stigma emergence 1s situated on LG 4 and
cxplained 7.8% of observed phenotypic variation with a LOD value of 2.1. The additive

effect of the P 1449-2 parent allele at this QTL decreased flowering by 0.5 day

Plant height

A single QTL was mapped on LG 4 for plant height. This QTL had its minimum LOD
score of 2.83 at Bhavanisagar when log transformed values were used. But the maximum
LOD value of 6.95 was obtained at Coimbatore when square root transformed values
were used. At this maximum LOD a maximum explanation of observed phenotypic
variance was (23.9%) also obtained. Additive genetic model gave the maximum value of
0.7984 for this maximum LOD score, which corresponds to an increase of plant height by

one cm when the P 1449-2 parent allele is present.

Panicle circumference

For panicle circumference one QTL was identified on the bottom of LG 4. The panicle
circumference QTL was observed between the marker loci Xpsm5/2 and Xpsm344 when
regressed against plant height and time to 50% stigma emergence at both locations. The
significant LOD score for this QTL ranged from 2.46 to 7.46. The phenotypic variance
ranged from 10.1 to 26.6%, depending upon the data manipulations used prior to QTL
mapping. At the maximum LOD value (7.46) the additive effect of the allele from P

1449-2 increased the panicle circumference by 6.5 cm.
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Panicle length

his trait had a single QTL, which 1s located between the marker loci Xpsm368 and
Ypsm312 on LG 4 Nearly all types of transformation of data from both locations and all
the residuals from different types of functions detected this QTL This QTL at the LOD

score of 6 52 explained 22 7% of the observed phenotypic vanance at Coimbatore

I'housand-grain mass

Two QTLs were identified for thousand-gran mass These QTLs are both located on
LG 4 but at different intervals (Xpsm306- Xpsmd42lc and Xpsm568- Xpsm$i2). A
maximum LOD score of 74 was obtaned for this trait by using square root
transformation of data from Bhavamisagar when plant height used as a predictor But the
maximum portion of observed phenotypic variance (11 6%) was explaincd when ime to

50% stigma emergence was used as a predictor of this trait

Grain yield per season

One QTL for grain yield per season was mapped at the bottom of LG 4 This QTL was
detected when grain yield per season was regressed on time to 50% stigma emergence
from both types of transformation. Square root transformations and log transformations
gave more or less similar LOD scores (2 6) and R? values (10 0) They also exhibited
similar additive effects (0 51), which correspond to an increase of grain yield per season

by 0 3 g/m® when a P 1449-2 allele replaced that of PT 732B
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Grain yield per day
Three QTLs were identified for grain yield per day at various wtersals on LG 4. These
ntervals are .Xpsm84 10 Xpsm612, Xpsm568 10 Xpsm512 and Xpsm306 1o \psm42Ic. The
middle QTL between marker loci Xpsm3568 and Xpsm3/2, recorded the maximum LOD
(2.71) and explained the largest portion of the observed phenotypic vanance (10.7). This
was obtained by regressing gram yield per day against time to S0°% stigma emergence

using log-transformed data from Bhavanisagar.

Productive tiller number

A maximum of four QTLs were obtaned for this trait on four different linkage groups
(LG 2, LG 4, LG 6 and LG7). The maximum LOD peak of 2.92 was found at Coimbatore
using log transformation together with time to 50% stigma emergence as a function. A
maximum of 15.4% for R? was explained by a single QTL, which was located on LG 2
(between Xpsm321 and Xpsm708b) with the additive effect of 0.6909 corresponding to a
decrease of tiller number by 0.3 m” when the PT 1449-2 allele was replaced for that of

PT 732B at this locus.

Single-panicle grain mass

Xpsm84- Xpsm612, Xpsm579- Xpsm613b and Xrm9_2b- Xpsm618 are the three marker
loci intervals accommodating QTLs for this trait on LG 4, LG 6 and LG 7 respectively.
The QTL on LG 6 explained more of the observed phenotypic variance (15.4%) than
other QTLs, and had a LOD value of 2.19. However the QTL on LG 4 had the highest

LOD score (3.58) and explained 12.4 % of observed phenotypic variance.
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LOD scores across seven pearl millet linkage groups

Legend: PCR-panicle circumference: PL-panicle.length; SPGM-single-panicle grain mass; PT-productive uller number.
_PH- plant height as predictor: _SEPH- time to 50% stigma emergence and plant height as predictors

Figure 2.1: QTL LOD peaks for various traits using plant height and time to 50% stigma emergence
together with plant height as predictors of log-transformed values from Coimbatore yield trial.

, f\p

|

95 ——pcR 6E |

o PH SE

&4 I e ——pL8E [

Q ; |

0 [E— T3

-3 ﬁ !-—-—BPGMASE
2

owﬂﬂ A

1 2 3 5 6 7
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Legend: PCR-panicle circumference; PH-plant height; PL- panicle length; PT- productive tiller number; SPGM-
single-panicle grain mass: _SE- time to 50% stigma emergence as predictor

Figure 2.2: QTL LOD peaks for various traits using time to 50% stigma emergence as a
predictor of square root-transformed values from Coimbatore yield trial.
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LOD scores across seven pearl millet linkage groups

I egend: FT- time to 50% stigma emergence: PCR- panicle circumference; PL-panicle length, SPGM- single-panicle grain
mass: PT- productive tiller number: _PH- plant height as predictor: _SEPH- time to S0% stigma emergence and plant heigl
i predictors

ligure 3.1: QTL LOD peaks for various traits using plant height and time to 50% stigma emergence
ugether with plant height as predictors of log-transformed values from Coimbatore yield trial.
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LOD scores across seven pearl millet linkage groups

Legend: GYD- grain yield per day; PCR- panicle circumference; PH- plant height; PL.- panicle length; PT-
productive tiller ber; SPGM- single-panicle grain mass; _SE- time to 50% stigma emergence as predictor

Figure 3.2: QTL LOD peaks for various traits using time to 50% stigma emergence as a
predictor of log-transformed values from Coimbatore yield trial.
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Legend: PCR- panicle circumference; PL- panicle length TGM- thousand-grain mass; _SEPH- time to 50% stigma
emergence and plant height as predictors

Figure 4.1: QTL LOD peaks for various traits using plant height and time to 50% stigma
emergence as a predictor of square root-transformed values from Bhavanisagar yield trial.

7
6
5 u 5
i ——av_sE
£, av_se
] A ——PCR_SE
=) 4 = PH_SE
9 3 N ——PL_SE
R
2 s
1 .. .
o A
1 2 3 4 5 6

LOD scores across seven pearl millet linkage groups

Legend: GYD- grain yield per day: GY- grain yield; PCR- panicle circumference; PH- plant height; PL- panicle
length; TGM- thousand grain mass; _SE- time to 50% stigma emergence as predictor

Figure 4.2: QTL LOD peaks for various traits using days to 50% stigma emergence as a
predictor of square root-transformed values from Bhavanisagar yield trial.
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Table 16: QTL associated with grain yield-determining traits of pearl millet mapping progeny testcross hybrids using time to 50% stigma
emergence as a predictor of log-transformed values of other traits at Bhavanisagar.

Linkage  p iion LOD

Additive  Back-transformed

Trait Marker interval group R? effects additive effects
Grain yield per day Xpsm568-Xpsm512 4 4.0 2.71 10.7 - 0.5208 33g
Grain yield Xpsm568-Xpsm512 4 4.0 2.68 10.6 0.5177 33g
Panicle circumference ~ Xpsm512-Xpsm344 4 2.0 5.89 214 0.7378 5.5cm
Plant height XpsmS12-Xpsm344 4 4.0 2.83 9.9 0.5148 ~ 33cm
Panicle length Xpsm512-Xpsm344 4 0.0 591 20.1 -0.6947 0.2cm

Table 17: QTL associated with grain yield-determining traits of pearl millet mapping progeny testcross hybrids using plant height together
with time to 50% stigma emergence as a predictor of log-transformed values of other traits at Bhavanisagar.

Additive  Back-transformed

. . Linkage .- 2
Trait Marker interval group Position LOD R effects additive effects
Panicle circumference  Xpsm512-Xpsm344 4 2.0 2.90 11.3 0.5391 3.5cm
Panicle length XpsmS12-Xpsm344 4 0.0 3.36

12.0 -0.5381 0.3cm

L
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!.OD scores across seven pearl millet linkage groups

Legend: GYD- grain yield per day; PCR- panicle circumference; PL- panicle length: TGM- thousand-grain mass:
_PH- plant height as predictor; _SEPH- time to 50% stigma emergence and plant height as predictors

Figure 5.1: QTL LOD peaks for various traits using plant height and time to 50% stigma
emergence as a predictor of log-transformed values from Bhavanisagar yield trial.
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LOD scores across seven pearl millet linkage groups

ltegend: GYD- grain yield per day; GY- grain yield; PCR- panicle circumference; PH- plant height; PL.- panicle
length; _SE- time to 50% stigma emergence as predictor

Figure 5.2: QTL LOD peaks for various traits using time to 50% stigma emergence as a
predictor of log-transformed values from Bhavanisagar yield trial. -
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LOD scores across seven pearl millet finkage groups
Legend: GYD- grain yield per day; PCR- panicle circumference: PL- panicle length; TGM- thousand grain mass: GY- grain yield; PH- plant height;
_PH- plant height as predictor: _SE- time to 50% stigma emergence as predictor: _SEPH- time to 50% stigma emergence and plant height as predictors

Figure 5.3: Comparison of QTL LOD peaks for various traits using different types of predictors of log-transformed
values from Bhavanisagar yield trial
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Table 19: QTL associated with,grain yield-determining traits of pearl millet mapping progeny tesicross hybrids using time to 50% stigma
emergence as a predictor of square root-transformed values of other traits at across-locations.

Trait Marker interval Linkage Position LOD R? Additive  Back-transformed
group effects addiuve effects

Panicle circumference Xpsm512-Xpsm344 4 0.0 5.97 21.0 0.7059 0.5um

Plant height Xpsm512-Xpsm344 4 40 6.48 225 0.7752 0.6 cm

Panicle length Xpsm568-XpsmS512 4 6.0 6.22 22.1 -0.7406 0.5cm

Single-panicle grain mass ~ Xpsm84-Xpsm612 4 4.0 2.78 9.9 0.4812 02

I8
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Legend: PCR- panicle circumference; PL- panicle length: PT- productive tiller number; SPGM- single-panicle
grain mass: _PH- plant height as predictor

Figure 6.1: QTL LOD peaks for various traits using plant height as a predictor of square
root-transformed values from across-locations
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LOD scores across seven pearl millet linkage groups

Legen;t PCR-panicle circumference; PH- plant height; PANICLE LENGTH- panicle length; SPGM- single-
panicle grain mass; _SE- time to 50% stigma emergence as predictor

Figure 6.2: QTL LOD peaks for various traits using time to 50% stigma emergence as a
predictor of square root-transformed values from across-locations
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1 2 3 4 5 6
LOD scores across seven pearl millet linkage groups

Legend: PCR- panicle circumference; PL- panicle length: PT- productive tiller ber: SPGM- single-panicle
grain mass; _PH- plant height as predictor; _SEPH- time to 50% stigma emergence and plant height as predictors

Figure 7.1: QTL LOD peaks for various traits using plant height and time to 50% stigma
emergence as a predictor of log-transformed values from across-locations
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Legend: PCR- panicle circumference: PH-plant height; PL- panicle length; SPGM- single-panicle grain mass; _SE-
time to 50% stigma emergence as predictor

Figure 7.2: QTL LOD peaks for various traits using time to 50% stigma emergence as a
predictor of log-transformed values from across-locations
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Figure 7.3: Comparison of QTL LOD peaks for various traits using different types of predictors of log-transformed
values from across-locations
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4.7. QTL:s for downy mildew resistance

Data on total and diseased plant counts per plot were converted to disease incidence (%)
and arc-sin of this number in fadians. These values were used for mapping QTLs for
downy mildew resistance. A total of five QTLs were obtained from Coimbatore,

Bhavanisagar and across-locations. LOD peaks are shown in Figures 8.1-8.3.

Coimbatore

Two QTLs were mapped using downy mildew screening results from Coimbatore. Both
mapped to LG 2 at different intervals. The QTL located between the marker loci
Xpsm708a and Xpsm706 had the maximum LOD score (4.77) and explained as much as
48.9% of the obsgwed phenotypic variance. This was obtained from arc-sin transformed
values. The P 1449-2 allele at this locus mean was associated with lowering of disease
incidence by 2%. This QTL for disease resistance behaved largely as if it was dominantly

inherited (Table 23).

Bhavanisagar

This location also had two QTLs but situated on different Iini(age groups, i.e. on LG 1
and on LG 4. The QTL at LG 4 had a higher LOD score (3.69) and explained a greater
portion of the observed phenotypic variance (41.5). This QTL is mapped between marker
loci Xpsm464 and Xpsm?716, and was inherited recessively. The P 1449-2 parental allele

at this QTL had an additive effect of 2% mean disease incidence (Table 24).

Across-locations
Totally two downy mildew resistance QTLs were identified for across-locations data.

One was similar to that of the QTL found both at Coimbatore.and Bhavanisagar, which
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was located in LG 2. Another QTL, a new one was mapped from across-locations data,
which was not found in individual locations. This QTL was identified using multiple
QTL model by fixing the previously mapped QTL. which located between the marker
loci Xpsm708a to Xpsm706. The command “sequence [Xpsm708a- Xpsm706:additive]
[all}” was used to get this new QTL. The program fixed first QTL at this location and
identified the‘second QTL with the LOD value of 4.67, which was more than 2 to that of

the fixed QTL (Table 25).
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Figure 8.1: QTL LOD peaks for downy mildew resistance from Coimbatore trial
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Figure 8.2: QTL LOD peaks for downy mildew resistance from Bhavanisagar trial
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Figure 8.3: Comparison QTL LOD peaks for downy mildew resistance from Coimbatore, Bhavanisagar and across-locations
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5. DISCUSSION

Mean performance of the mapping population testcross hybrids

Mapping population testcross hybrids were raised at two locations in Tamil Nadu,
namely Coimbatore and Bhavanisagar. The mean performance for all eleven observed
traits was rirore or less similar at both locations. Analysis of variance study indicated high
significant variation for the mean performances of individual entries for all the traits
under study at both test locations, but that the interaction between these two locations and
the individual entries (genotypes) was not significant for any of the traits. This may be
due to the physical closeness of the places where trials were conducted and the similarity
in sowing dates and agronomic practices used for the two trials. The first trial location
Coimbatore, located at 11° latitude and 77° longitude and the second trial location
Bhavanisagar, located at 11° 08’ latitude and 77° 29’ longitude. The soil types and
packages of agronomic practices employed were similar, so that the environment may not
have had much opportunity to differentially influence the mean performance of the
mapping population testcrosses.

Trials were conducted at different locations to identify or elucidate the effect of
the environment and assess the relative importance of genotype x environment
interaction effects and genotype effects, because differential expression of a phenotypic
trait by genotypes across environments, or genotypic x environment interaction is an old
problem of primary importance for quantitative genetics and plant breeding trials
(Eberhard and Russel, 1966; Falconer, 1981; Via and Lande, 1987; Tiret et al., 1993).

Though the mean performances were similar for the tyvo test locations, data from

Bhavanisagar showed a slight increase in mean performance for the following traits: plant
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height, panicle circumference, productive tiller number, grain yield per season, grain
yield per day, single-panicle grain mass and single-panicle grain number. Other traits like
time to 50% stigma emergence, panicle length and grain number per unit area registered
very similar mean values at the two test locations.

Though the data from two location trials were not signiﬁcantl-y different, the
existing vaﬁation between two location trials may give different results on QTL mapping.
With this precaution, QTL analysis was done for individual locations entry means as well
as pooled means across-locations.

It is important to realize that heritability is a property not only of a character but
also of the population in which this character was measured and of the environmental
circumstances to which individuals are subjected prior to this measurement (Falconer,
1960). Also estimating heritability for a particular trait is the prime-most concern for
even a simple selection scheme. This is applicable for QTL mapping also. The reliability
of the QTL mapping depends very highly on the heritability of the individual traits
(Kearsy and Farquhar, 1998).

Heritability (plot basis) studies from the individual location data sets revealed that
all the traits registered heritability (plot basis) values greater than 50% excluding for
single-panicle grain number and grain number per unit panicle surface area. At
Coimbatore thousand-grain mass registered the highest heritability (plot basis) value of
93% followed by panicle circumference (75%). Other traits namely time to 50% stigma
emergence, plant height, panicle length, productive tiller number, grain yield per season,
grain yield per day and single-panicle grain mass showed moderate heritability values

ranging from 40 to 70%. Single-panicle grain number and grain number per unit panicle
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surface area were the two traits having poor heritability values. At Bhavanisagar plant
height recorded the highest heritability (plot basis) value of 95% followed by
thousand-grain mass, which had a heritability value of 93%. When compared to
Coimbatore location, the heritability values for all the traits were higher in Bhavanisagar.
Broad sense heritability values for pooled locations were higher for all the traits than plot
basis herilal;ility values obtained from individual locations data sets. Single-panicle grain
number and grain number per unit panicle surface area too had higher broad-sense

hentability values (>50%) from the pooled data sets.

Correlation studies
Correlation studies provide indications of the extent of linkage and pleiotropism of genes
controlling the different traits. Grain yield per season was taken as the dependant variable
and the other traits were correlated with this. Plant height, panicle circumference,
thousand-grain mass, grain yield per day, single-panicle grain mass, single-panicle grain
number and grain number per unit panicle surface area were the traits positively
correlated with grain yield per season. Among these traits, grain yield per day registered
the highest significantly positive correlation with grain yield per season at individual
locations as well as with entry means from pooled analysis of data. This was followed by
single-panicle grain mass, thousand-grain mass, panicle circumference and plant height
which had similar values towards the contribution to grain yield per season. Improvement
of grain yield per season may be achieved by increasing values of these positively
correlated traits.

Time to 50% stigma emergence, productive tiller number and panicle length were

the three traits associated negatively with grain yield per season. Among these traits time
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to 50% stigma emergence had the strongest negative correlation with grain yield per
season. Selection of early flowering lines may enrich the hybrid yield potential of pearl
millet genotypes in this mapping population.

When time to 50% stigma emergence was taken as a dependent variable,
productive tiller numbers and panicle length were associated positively with this trait. All
other traits(exhibited negative relationships with time to 50% stigma emergence. Plant
height was also considered as a dependent variable and its relationship with other traits
was assessed. Grain yield per day and panicle circumference had higher positive
associations with plant height. Time to 50% stigma emergence, productive tiller numbers
and panicle length were the three traits associated negatively with plant height.

From these correlation studies it can be concluded that time to 50% stigma
emergence, productive tiller numbers and panicle length had strong associations with one
another. This may be due to the linkage or pleiotropism among these traits. As they have
negative associations with grain yield per season, it can be concluded that selection of
carly flowering types with shorter panicles and less number of panicles per plant will
improve the total grain yield of hybrids produced by crossing PT 4450 with progeny from the
cross of PT 732B and P 1449-2. Correspondingly, selection of tall genotypes having good
panicle circumference, single-panicle grain mass and thousand-grain mass would likely

directly improve the grain yield potential of hybrids on this mapping population.

Mean performance of downy mildew screening trials
Mean disease incidence values were converted into disease incidence percentages and

radians of arc-sin transformed percentage values. The disease incidence percentage was
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more severe at Bhavanisagar than at Coimbatore. Both locations registered significant
differences for disease incidence percentages between mapping population progenies, as
well as for radian values. Heritability (plot basis) values for these two measures of
disease reaction were also high, giving confidence of success in mapping QTLs

conferring resistance against downy mildew disease.

Mapping QTLs
Knowledge gained from QTL mapping experiments is of greatest interest to plant
breeders if the results are directly applicable to practical breeding programs. Therefore,
when such experiments are initiated, one of the most important questions is the choice of
population for phenotyping cxperimental materials. For field trials, we used testcross
progenies related to a commercially important hybrid, looking for opportunity to improve
upon this combination, in a manner that comes closest to the applied plant breeder’s
situation. In applied breeding programs, the tester is often an elite inbred line chosen
because of its use as a commercial hybrid parent. Therefore mapping of QTL for such
testcrosses promises (i) an insight into the relative importance of additive effects with
regard to testcross performance and their underlying genetic factors and (ii) the design of
a more efficient breeding strategy (Schén er al., 1994). So, this study formulated to
identify opportunities for favourable contributions in terms of additive effects of the
inbred P 1449-2 towards improvement the hybrid performance of seed parent PT 732 in
combination with PT 4450.

Grain yield in cereals is generally controlled by a number of quantitative trait loci
(QTLs) and is affected by environmental factors, making it difficult to manipulate and

improve in plant breeding programs. Grain yield can be dissected into a number of
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component traits such as thousand grain number, productive tiller number, panicle length,
etc depending upon the crop concemed. These component traits are also under the control
of QTL and the effects of individual QTLs on phenotypic variation are relatively small.
Some QTLs however are less environmentally sensitive and have high heritabilities than
grain yield itself (Bezant et al., 1997). Further, the standard relationship between various
yield component traits are not found for all QTLs, so it should be possible to identify
specific QTLs that can be manipulated without adversely affecting otherwise correlated
traits (Hash, 2000; Yadav et al., 2062b). Therefore, while looking for QTLs controlling
grain yield, QTLs for yield components should also be determined to provide more useful

information.

QTL for time to 50% stigma emergence

From the MAPMAKER program, a single QTL was identified on linkage group (LG) 4
for time to 50% stigma emergence (Figure 9.1). This QTL had an additive effect of 0.5
days with the earlier flowering allele inherited from parent P 1449-2. So this parent
contributed early flowering to the testcross hybrids with elite pollinator PT 4450. Using
this genomic region it may be possible to transfer the early flowering allele from
P1449-2 to PT 732A/B. Yadav et al., (2002a) mapped two QTLS for time to 50% stigma
emergence in pearl millet with one situated near the bottom of LG 4 and the other

mapped to the bottom of LG 6.

QTL for plant height
A single QTL was mapped for mapping population testcross hybrids plant height. This

QTL mapped to the bottom of LG 4 (Figure 9.1). A signiﬁca.mt LOD score of 6.95 was
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recorded from the Coimbatore data set. The allele from P 1449-2 had s positive additive
effect of 6 cm for this trait, and increased the plant height of hybrids. This particular QTL
explained 24% of the observed piienotypic variance for testcross hybrids plant height at
Coimbatore.

This QTL is likely to be considered as d, dwarfing gene (Azhaguvel, 2001), for
which mapping population parents PT 732B and P 1449-2 have the dwarf and tall alleles,
respectively. Dwarf phenotypes can be considered as a consequence of mutations that
occur in genes involved in plant he;ght expression (Lin et al., 1995). Dwarf mutants of
pearl millet have been studied (Kadam et al., 1940; Burton and Forston, 1966, Appa Rao
et al., 1986) and at least four single recessive genes have been reported i.e., d; and d;
(Burton and Forston, 1966) and d; and d, (Appa Rao ef al., 1986), with possible presence
of additional modifying factors. The d, dwarfing allele may have a pleiotropic effect
since d, near-isogenic lines have longer and narrower panicles, wider leaves and smaller
seeds then their tall counterparts (Rai and Hanna, 1990).

The d, dwarfing gene mapped to the bottom of the LG 4 in the mapping
population [P 18293 x Tift 238D1 (Azhaguvel, 2001). The d; dwarfing was inherited
from the parent IP 18293. The parent Tift 238D1 had one more dwarfing gene, d;, which
mapped to LG 1. From the current study, it was clear that the d; dwarfing gene from PT
732B had a significant contribution to height reduction in the testcross hybrids with elite

pollinator PT 4450, suggesting that PT 4450 and its hybrid with PT 732B, i.e., COHCU-8

are infact also genetically dwarf at this locus.




QTL for panicle circumference

For panicle circumference, one QTL was identified in the middle of LG 4. This QTL was
detected using different transformations and using Coimbutore, Bhavanisagar and
across-locations data sets, after regressing out the effects of time to 50% stigma
emergence, plant height and time to 50% stigma emergence together with plant height as
predictors of panicle circumferences. The highest LOD peak was obtained from the
Coimbatore data set using time to 50% stigma emergence as a predictor. At this LOD
score, the QTL had an additive effeet of 0.9, with increased panicle circumference
inherited from parent P 1449-2. This QTL has a favourable effect on hybrid performance

so it will be useful to introgress this genomic segment from P 1449-2 into PT 732B.

QTL for panicle length

Panicle length was also observed to be largely under the control of a single QTL and this
QTL also mapped to LG 4. Nearly all the predictors allowed detection of this QTL in the
interval between markers Xpsm568 and Xpsm512. The P 1449-2 allele for this QTL
decreased the panicle length of hybrids, in agreement with the observations of Rai and
Hanna (1990) on the effect of the tall allele at the nearby d; dwarf gene locus on this

character,

QTLs for productive tiller number
For productive tiller number, up to four QTLs were obtained, which were mapped to four
different linkage groups (Figures 9.1 and 9.2). All four QTLs explained similar portions

of phenotypic variation, but the QTL located on LG 2 explained a comparatively higher
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portion (15 4%) For this QTL the allele from P 1449-2 reduced the number of productive

ullers

QTL:s for thousand-grain mass

Two linked QTLs on LG 4 were mapped for thousand-grain mass These.two QTLs were
detected using Bhavanisagar data and both types of transformation The QTL situated in
the marker interval between Ypsm3568 and Xpsm512 explained the higher proportion
(11 6°) of observed phenotypic vanation The additive effect of this QTL 1s 0 3 g, which
1s inhented from the tall parent P 1449-2 Usually dwarf plants, reduced the grain mass in
the hybnds lead to reduction 1n yield Despite lower grain mass and grain yield in the
dwarf plants, 1t 1s possible to produce dwarf hybnds with yields equal to the tall hybnds
by selection of surtable pollinator Breeding programs on dwarf pearl mullet should be
successful 1f they are designed to take advantage of positive interactions between the

dwarf habit and specific genetic background (Bidinger and Raju, 1990)

QTL for grain yield per season

For gran yield per season a single QTL was mapped near the bottom of LG 4 It
explained 10% of observed phenotypic vanance The favourable allele for this QTL was
inhented from parent P 1449-2, which had the additive effect of 0 51 that 1s equal to a
gramn yield increment of 33 gm At the plant population density used mn this study
(50,000 plants/ha) this corresponds to a yield advantage of 3,300 g/ha = 33 kg/ha
Transfer of this genomic segment may be useful to improve the gramn yeld of the hybnd

of PT 732A x PT 4450 = CoHCU-8, but would clearly be associated with an increase in
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plant height due to the strong linkage of this QTL to the tall allele at the > dwarfing gene

locus.

QTLs for grain yield per day.

Grain yield per day can be considered to be an important trait, where it explains the
source and ‘sink relationship after flowering. Up to three QTLs were found to be
associated with grain yield per day in this study. These QTLs were distributed on LG 4 at
different positions. Of these QTLs one was detected from the Coimbatore data set and the
other two were detected from the Bhavanisagar data set. QTLs from Bhavanisagar using
log transformation and time to 50% stigma emergence as a predictor, explained a higher
portion of the observed phenotypic variances (10.7%). The corresponding additive effect
for this locus was 0.52, i.e., 0.3 g per day of grain yield with the favorable allele inherited

from the parent P 1449-2.

QTL:s for single-panicle grain mass

Four QTLs for single-panicle grain mass were obtained on LG 4 (2 QTLs), LG 6 (1 QTL)
and LG 7 (1 QTL) (Figures 9.1 and 9.2). Data from Coimbatore detected all the three
QTLs, where as across-locations data produced only two QTLs, .e., those mapping to
LG 4 and LG 7. In all the cases, the QTLs for single-panicle grain mass co-mapped with
QTLs for productive tiller number, with the parental alleles associated with increased
single-panicle grain mass appearing to have negative pleiotropic effects on productive

tiller number. This negative relationship between the two traits is commonly observed in

pearl millet.
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Figure 9.2: Genetic linkage map of PT 732 x P 1449-2 showing e — productive tiller number
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QTLs for downy mildew resistance

Pearl millet downy mildew has historically been considered to be a quantitative trai,
significantly affected by the :nvironment (which 1s often confounded with pathogenic
vanabihity differences) Host plant resistance against downy mildew was continuously
distnbuted 1n the F; Fs progenies used n this study as has been found fh most previous
studies on the genetics of pearl millet downy mildew resistance (Singh er al, 1980,
Basavaraju et al , 1981, Dass et al , 1984, Shinde et al , 1984, Jones et al , 1995)

At least five different QTLs were mapped for downy mildew resistance on four
linkage groups using disease incidence percentage and radian values (Figures 10 1 and
10 2) Of these, two QTLs were identified from Coimbatore data mapped to LG 2, two
QTLs from Bhavamsagar data mapped to LG 1, and LG 4 and one QTL from across-
locations data mapped to LG 7

QTLs from the Coimbatore data and across-locations means were nherited 1n an
additive fashion Alleles from P 1449-2 contributed this resistance However, the two
QTLs detected from Bhavanisagar were inherited recessively and parent PT 732 was the
contnibutor of this resistance The majonty of previous research on the genetics of downy
mildew resistance 1n pearl mullet has found dominance to be an important component of
resistance (Appadurai et al, 1975, Gill et al, 1978, Petham et al, 1980, Basavaraju
et al, 1981, Shinde et al , 1984, Mehta and Dang, 1987) and over dominance has also
been detected (Singh et al, 1978, Basavaraju et al , 1981, Dass et al,, 1984) However,
the inhentance of downy muldew resistance in pearl millet 1s at least occasionally found
to be recesstve (Singh ez al , 1978) and recessive resistance genes, although uncommon,

have been found m other plant-pathogen systems (Day, 1974, De Wit, 1992)
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Unfortunately. while useful in hybnd seed production plots, such recessively inhented

resistance 1s unlikely to contribute positively to hybrid performance in tarmers field

General discussion

A total of 18 QTLs were obtained from this study, using square root transformation and
log transformation of agronomic data sets from Coimbatore, Bhavanisagar and
across-locations Between these two transformations, the square root transformation gave
24 QTLs and log transformation gave 23 QTLs (Table 26) Out of three predictors (i e,
time to 50% stigma emergence, plant height and time to 50% stigma emergence together
with plant height), ime to 50% stigma emergence produced 34 QTLs followed by plant
height which revealed 21 QTLs and ume to 50% stigma emergence together with plant
height mapped 6 QTLs Out of these 18 QTLs, only seven genomic intervals were
responsible for all the QTLs controlling agronomic traits (2 e, some of the genomic
regions were responsible for controlling more than one trait) Out of these seven genomic
regions, LG 4 had four and LG 2, LG 6 and LG 7 each had one genomic region
contributing to the detected QTLs

In LG 4, the interval flanked by marker loct Xpsm568 and Xpsm312 had the
control over five traits, including grain yield per season The other traits controlled by
this genomic region were panicle circumference, panicle length, thousand-grain mass and
grain yield per day Marker nterval Xpsm84 to Xpsm612, which 1s also on LG 4
controlled three traits, 1e, productive tiller number, grain yield per day and
single-panicle grain mass It seems highly likely that genes or gene blocks mn these two

regions may have pleiotropic effects on these traits So transfernng these particular
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regions, which are controlling major trauts, to the parent PT 732 may be advantageous
and reasonable since m most cases P 1449-2 was found to contnibute the favorable allele

But from the correlation studies 1t was found in the matenal studied that panicle
length and productive tiller numbers were associated with each other and both are having
negative relationship with yield So refinement of these genomic regions may provide
more information about individual traits, which may be controlled by different QTLs Of
course, refinement of the map positions of QTLs controlling these traits will require
genotyping and phenotyping a substantially larger mapping population So further
analysis of the existing data sets may be required to justify the substantial costs that this
refinement would require

Although different QTLs were obtaned from the two different test locations, 1t 1s
better to restrict discussion of application to the QTLs from the across-locations due to
statistical constraints Across-locations data set produced only six QTLs, which mapped on
LG 4 and LG 7 and only four genomic regions [three on LG 4 (Xpsm568-Xpsm512,
Ypsm84-Xpsm612 and Xpsm312-Xpsm344) and one on LG 7 (Xrm9-2b-Xpsm618)] were
responsible  With respect to traits, plant height, pamcle circumference, panicle length,
productive tiller number and single-panicle gran mass were the traits for which QTLs
could be mapped from analysis of the across-locations entry means

Traits such as plant height, panicle circumference and single-panicle grain mass
were positively correlated with gramn yield and grain yield per season and these regions
were controlled by three different regions (two controlling single-panicle grain mass and

the other controlling plant height, panicle length, and panicle circumference) So
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transferring these genomic regions may offer the chance to improve grain yield

performance of hybrids of PT 732B.

Opportunities for Marker-Assisted Selection (MAS) to improve CoHCU-8

The advent of molecular-marker based techniques has had a large impact on quantitative
genetics. Marker-based methods applied to segregating populations have provided us
with a means to locate quantitative trait loci (QTLs) to chromosomal regions and to
estimate the effects of QTL allele substitution (Lander and Botstein, 1989). The ability to
estimate gene effects for a quantitative trait can be very useful for the design and
application of new, more efficient, breeding strategies. A new selection strategy,
marker-assisted selection (MAS), has been proposed by many authors as a way to

increase gains from selection for quantitative traits (Tanksley, 1993; Lee, 1995; Kearsey

and Pooni, 1996). In backcross breeding programs, it has been shown that MAS can be
effective in reducing linkage drag and optimizing population sizes, by permitting
it"[eftive selection against the donor genome except for allele(s) in the genomic region to
b<_3_ introduced from the donor. MAS can also improve selecti(_)n for quantitative traits by
selecting for the presence of specific marker alleles that are linked to favorable QTL
alleles that would be otherwise difficult to select for phenotypically (Berloo and Stam,
1998). Published reports of successful application of this strategy to improve hybrid yield
performance are just beginning to appear.

From this study, it is clear that different regions of pearl millet genome are
speciﬁcally associated with grain yield component traits such as plant height, panicle

circumference and single panicle-grain mass when across-locations data was considered.

These traits were positively correlated with grain yield and grain yield per season. These
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three genomic regions also explained significant portions of observed phenotypic
variance for their respective traits and these traits all had high heritability values. Soller
and Beckmann (1990) stated thaz MAS for quantitative traits with high h* would not
tﬂ&a{jly be as efficient as conventional breeding. However, for a quantitative trait with
higpflﬁ, MAS could still be effective after major QTL controlling the triit are fixed and
the_h2 o_f reﬁaining genetic variation is reduced (Paterson et al., 1991).

The parent PT 732A serves as the female parent for producing commercial hybrids
(hybrids X6 and CoHCU-8) that have been released from Tamil Nadu Agricultural
University. So improving the yield potential of PT 732B (maintainer of PT 732A) may
usher in new ways for increasing the grain yield of hybrids that can be produced for
Tamil Nadu using this seed parent. The QTLs identified from this study can be used in a
marker-assisted backcrossing program for hybrid parental line improvement because their
effects have already assessed in testcrosses to the best available hybrid produced from
crosses onto PT 732A. So marker-assisted backcrossing of P 1449-2 alleles for putative
QTLs on LG 4 and LG 7 into the PT 732B background may be effective to improve the
yield potential of hybrids produced on PT 732A. Yadav et al. tZOOZa) suggested a similar
strategy in pearl millet to transfer the drought tolerance QTLs into elite pollinator inbred
H 77/833-2 (male parent of early-flowering released hybrid HHB 67) using marker-
assisted backcrossing to introgress genomic segments from donor PRLT 2/89-33.

To obtain durable resistance for downy mildew there are two ways. One is
pyramiding genes from all known sources (Jones et al., 1995) and the second possibility
is the production of hybrids that are genetically heterogeneous for disease resistance, thus

mimicking the durable resistance of open-pollinated cultivars (Witcombe and Hash,
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2000) Thus could be accomplished by producing a set of backcross lines, each diffening
for a single resistance gene, and allowng these lines to recombine during multiplication
of the male sterle line breeder seed in the hybnd seed production chain Incorporating
more than one dominant gene effective against pathogen population into each component
line may be expected to increase resistance durability -

Hash er al (2000) discussed an alternative procedure of marker-assisted transfer
of QTLs 1n pearl millet The first successful application of marker-assisted selection for
pearl mullet has been enhancement of downy mildew resistance of inbred pollinator
H 77/833-2 (male parent of popular early-matuning pearl millet hybnd HHB 67) Several
improved versions of this pollinator have been developed at ICRISAT using this “fast
track™ marker-assisted backcross procedure (Sharma, 2001) This has been demonstrated
to be a time and cost efficient route for the application of marker-based downy mildew
resistance breeding in this crop Such approaches may be warranted to improve the
disease resistance of elite hybnid parental line PT 732B and 1its male-sterile counterpart
PT 732A

We have identified the precise location of QTLs by ordinary hinkage mapping,
which has become a standard starting point for map-based cloning (Tanksley et al,
1995) In plants, several economically important genes have been isolated by map-based
cloming, including a photoperiod-sensitive gene (flowering gene) n Arabidopsis
(Putternill et al . 1995) However, 1t would be reasonable now to confirm these QTL
locations using CIM (Composite-interval mapping) methods as implemented 1n the

QTL Cartographer and PLABQTL software packages
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Most geneticists and breeders consider QTLs to be chromosomal locations of
i_ngixjg:lual genes or groups of genes that influence complex traits (Stuber et al., 1999).
Although it is often tacitly assumed that a QTL represents a single genetic determinant
(or factor), there are examples of individual QTLs that have been resolved into multiple
genetic factors by recombination (Graham ef al., 1997; Yamamoto ef al”, 1998). For the
manipulation of the vast majority of QTLs in plant breeding programs, it may not be
important to determine whether the QTL represents a single genetic factor or a cluster of
tightly linked genes. However, if -cloning of specific QTLs is paramount to their
utilization, then the chromosomal location must be limited to a manageable piece of DNA
(Paterson, 1998).

Recent -advances in molecular genetics have promised to revolutionize
agricultural practices. As stated by Lande and Thompson (1990) “There are, however,
several reasons why molecular genetics can never replace traditional methods of
agricultural improvement. but instead should be.imegrated with conventional methods to
obtain the maximum improvement in the economic value of domesticated populations.”
Their analytical results, as well as the more recent computer simulations and the limited

empirical resuits, however, are encouraging and support the use of DNA-based markers

to achieve substantial increases in the efficiency of artificial selection.
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6. SUMMARY

Pearl millet [Pennisetum giuacum (L.) R. Br.] is an important staple food crop for
millions of rural people living in semi-arid regions of tropical and sub-tropical Asia and
Africa. In parts of USA, South America and Southern Africa it is cultiveted for feed and
forage purposes. Pearl millet is a crop that can be grown in adverse agro-climatic
conditions like drought, heat and infertile soil. It is the only crop that gives assured
harvest to the farmers whose subsistence is totally dependant on farming in hot, dry
marginal environments. Among the diseases affecting pearl millet, downy mildew is the
most devastating. This is caused by the pseudo fungal pathogen Sclerospora graminicola
(Sacc.) J. Schrét..

Improvement of yield and breeding for resistance to pests and diseases are the
prime concerns of the breeders. This study was designed to identify genomic regions
from donor P 1449-2 with the potential contribute to yield increments in the genetic
background of released hybrid CoHCU-8 and also for downy mildew disease resistanc'e.

One hundred and thirty-six F,-derived F4 mapping population progenies of a pearl
millet mapping population (skeleton-mapped F; individuals) obtained from a cross of
PT 732B and P 1449-2 were used as a source population for this study. PT 4450 is an
elite pollinator line that produces an agronomically superior released hybrid (CoHCU-8)
when crossed to PT 732A. It was used as a pollen source for crossing with these Fy
self-bulks. Testcross hybrids produced from these crosses were raised for the purpose of
phenotyping during the rainy season (October, 2001) at two locations in Tamil Nadu:

Tamil Nadu Agricultural University, Coimbatore and Regional Research Station,
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Bhavanisagar. For downy mildew screening, selfed seeds from the F, self-bulks were
raised at the two above-mentioned locations during the rainy season of 2001.

Results from the yield.trials showed that there was significant variation for all
observed traits within the set of mapping population testcrosses at each location, and
there was no significant genotype x environment interaction for any of the 11 agronomic
traits considered in this study. Heritability estimates for individual traits from the yield
trials at two different locations and pooled data across these two locations had reasonably
high values (>50%), which were sufficient to permit QTL mapping procedures to identify
genomic regions contributing to the observed variability. Grain yield per season was
positively correlated with most of the observed traits including plant height. But time to
50% stigma emergence, productive tiller number and panicle length were associated
negatively with grain yield per season.

From the downy mildew screening trials, the data set from the two locations each
exhibited significant genetic differences, but there was also significant genotype
x environment interaction indicating that the virulences constitutions of the pathogen
populations at these two locations were different. The hcritabilﬁy (plot basis) values were
also high enough to do the QTL analysis.

Yield trial data from the two locations were subjected to two types of
transformations namely, square root and log, so as to minimize the heterogeneity in the
data sets. Improvement of yield is a complex process. To minimize this complexity and
facilitate identification of QTLs that did not directly correspond to major genes affecting
plant height and flowering time (which are relatively simply inherited traits known to

grain yield and its components), plant height, time to 50% stigma emergence and plant
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height together with time to 50% stigma emergence were used as predictors 1 e, all the
agronomic traits were regressed with these predictors, and the residuals trom these
regressions for each agronomic trait were subjected to QTL mapping

A previously constructed linkage map using 60 RFLP markers for the [(PT 732B
< P 1449-2)- based] mapping population were used for locating QTLs QTL analysis with
the MAPMAKER/QTL program shawed different QTL postition for different traits In
total, 18 QTLs were obtained for nine different traits from the Coimbatore, Bhavamisagar
and across-locations data sets Among these nine traits, time to 50% stigma emergence,
panicle circumference, plant height, panicle length and grain yield per season each
registered one QTL, thousand-grain mass registered two QTLs, grain yeld per day
registered three QTLs and single-panicle grain mass registered four QTLs However,
these 18 QTLs were under the control of only seven genomic regions, suggesting roles of
tight linkage and/or pleiotropism in the inhentance of these often correlated traits Of
these seven genomic regions, LG 4 had four regions, LG 2, LG 6 and LG 7 each had one
genomic region contributing QTLs In LG 4 the region flanked by marker loc1 Xpsm568
and Xpsm512 contnbuted to control over five traits including grain yield per season

Across-locations data produced six QTLs for agronomic traits studied They were
on LG 4 and LG 7 Totally four genomic regions viz, three on LG 4 and one on LG 7
shared these six QTLs The traits controlled by these QTLs included plant height, panicie
circumference, panicle length, productive tiller number and single-panicle grain mass

For downy mildew, five different QTLs were mapped on four linkage groups by

using disease incidence percentages and their arc-sin transferred radians values Of these,
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two QTLs were detected from the Coimbatore data set on LG 2, two QTLs from the
Bhavanisagar data seton LG | and LG 4, and one QTL from across-locations on LG 7

Marker-assisted selection provides an opportunity to improve the effectiveness of
quantitative traits by selecting for the presence of specific marker alleles that are linked to
favorable QTL alleles From this study. 1f we considered only the acro$s-locations data
set, different regions of pearl millet genome were detected as specifically associated with
grain yield per season, plant height, panicle circumference and single-panicle grain mass
QTLs for these traits also explained sigmficant portions of observed phenotypic vanation
So marker-assisted backcrossing from P 1449-2 to move putative QTLs on LG 4 and
LG 7 nto the PT 732A/B background may be effective to improve the yield potential of
hybnds of elite seed parent PT 732, at least those hybrids produced with elite pollinator
PT 4450

For improving the resistance against downy mildew marker-assisted transfer

and\or pyramiding of the resistance genes (or QTLs) may give good results
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