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Thls study was formulated to ~mprove rhc yreld potential of hybnds of 

1'1 '32.4.0, u hlch I S  one ol' the ul~te  arid imponant male-stenle llnes used In hyhnd 

1)rcedlng programs In Tamll Nadu Ident~ficat~on ol' downy ~ n ~ l d e w  resistance ycnomlc 

reglons was also set as an add~ t~ona l  object~be One hundred m d  th~ny-srx  F> denbed F4 

self-bulks of a pearl m~l l e t  mapplng populat~on (skeleton-mapped F! ~nd iv~dua l s )  dcnved 

tiom PT 7328  x P 1449-2 were used as the has~c  source populat~on for t h ~ s  study. 

P7' 1450, an elite poll~nator ~nbred was used for producrng tcstcross hyhr~ds  for each o f  

the 136 Fr self-bulks To rdentrfy the QTLs for y ~ e l d  and 11s component traits, the 

testcross hybnds were raised at two locat~ons In Tamil Nadu namely. a1 Tam11 Nadu 

.Agricultural Un~ver s~ ty .  Coimbalore and at Regional Research Sta t~on.  Bhavanisagar 

dunng October 2001. Disease resrstance screenrng was also conducted at these two 



I o c ~ t ~ u ~ i s  using sc1ir.d seeds ~)i [;; ,elf hulks Jurlny tkt0hr.r 0 0 1  t ' ~ ~ h r e ' ~ i  01 1.5 \ \C ' IC 

~dcr i t~t ied  iron1  he I\ \(> loc.it~orls lor nine .~g rono~ i i~c  tralts uslng p l~ l i t  I I C I ~ ~ ~ I .  I I I I IC 10 

5(1",) stlgnld cnicrgunce plant height togerhcr \rlth Itnit to 5 0 " a  s[lgmd cniergmce as 

predictors o f  the renialnlng y~eld-related Iralts .\rnong these rilne traits. t1111c to 50"" 

stigma emergence. panlclc s~rcuml'erencc, plant hclght, panicle length ;und yr;lln ye ld  per 

wason reg~slered one Q7'1.. ~liousa~ld-gra111 riidss rcg~stcrcd 1 ~ 1 ~  O'l 1.s. graln yield per 

day reg~stered three QTl-s ~ n d  slngle-panicle grdlrl mass rey~stcrcd lour (Jl'l.s. Phe 

.rcross-locations data set produced S I X  QTLs for live traits ( ie~io~i i lc  rcylons on L.(i 4 and 

I.(; 7 controlled these tralts. For downy m~ldew resistance, tivc d~i ierent  Q1.1-s were 

~ i e ~ e c t e d  on four linkage groups using d t s e s e  lncldence percentage and arc-sln radians 

\ d u e s .  Of these two QTLs were ldentllied from the Coirnbatore data set on I-Ci 2. two 

irorn the Rhavanlsagur data set on LC; 1 and 1-G 4 and one from the across-locations d a ~ a  

set on L C  7 .  Cira~n yield performance of hybrlds for 'Tam11 Nadu conditions can bc 

inlprovcd by marker-ass~sted hack crosslny of these QT1.s rcglons tnto seed parent palr 

I'T ' j 2 k B  Marker-ass~sted transfer of resrstance QTLs arid py ra rn~d~ny  of' reslslancc 

Zenrs may Improve resistance to downy m ~ l d e w  dlsease. 
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Pearl rn~llet (P r~ r~~rse r r r r~ l  yllr~rc~rrrl ( L  I R Br ) I S  a princ~pal food cereal grown on dbout 

27 r n ~ l l ~ o n  ha ot drousht-prone s o ~ l s  In the scrnl-and reglons of the Indlan ~uhcontlnent 

~ n d  Atncd ( F A 0  dnd lCRlS4T  1996) w ~ t h  a grain yield a\eraglng 500-600 h g ~ h a  I t  Is 

.ilso used as lorage In 4ustral1a. South Afr~ca and rhc b S A  and ranks JS the liflh cereal In 

urder ol slobal cconomlc lnipondnce Pearl rn~llet has the Lapdclty to rolerate drought and 

low so11 fertlllty, but responds well to water and favourdble soil c o n d ~ t ~ o n s  (Kumar and 

Andrews. 1989) S o  thls crop provldes scope for Increased product~on in reylons too drld 

for  sorghum (Burton. 1983) 

Y ~ e l d  IS the ult~rnate target of any heterosts-breed~ng program 4 major problem 

ot economlc concel l  w ~ t h  the use o f  Inbred CMS llnes In hybnd breedlng 1s thelr low 

vleld In seed production plots Good y~eldlng ab~l i ty  and seed set, particularly In A- l~ne ,  

I S  needed to prdct~cally dnd econom~cally mdlntaln and use such ~nbreds  Increased and 

stab~llzed pearl m~l l e t  gram product~on I S  essent~al for the well b e l n ~  of m ~ l l ~ o n s  of 

people who llve In these a r ~ d  and sernl-and troplcdl reylons 

Inhentance of the rnajonty of econorn~cally Important plant rralts such as y a l n  

weld and ~ t s  components can be class~fied as polygen~c or quanutatlve Even tralts 

cons~dered to be  stmply lnhented, such as d~sease  resistance, may be o l ~ y o g e n ~ c  or "semc- 

qudntltat~ve" for whlch tralt expression IS governed by several genes ( e  g , a major gene 

plus several modlfrers) The challenge to strateg~cally use new tools (such as  DNA-based 

markers) to Increase the contrlbut~on of "science" to the "art plus sc~ence" equatlon for 

plant Improvement therefore app l~es  to most, ~f not all, tralts of Importance In plant 

breeding programs 



.Sclerosportr g~.trrnr~r~toltr (Sacc.) J .  Schrot. 1s an obl~_u;~tc hlolrophlc pseudo 

iunyus that causes donny  mlidew disease on pearl ni~llet,  ofien resulting In devastating 

~ l e l d  losses. The study o f  host plant resistance to thls pathogen has been hlndered by the 

fact that resistance In the host shows continuous varlatlon (Shlnde cr ( I / . ,  1084) and 

resistance IS  regionally vanable (ICRISAT. 1989). S o  breeding material has to he tested 

In espenslve, tlme consuming and oflen unreliable mu l~~ loca t~ona l  rralts. T h ~ s  reglonal 

banablllty has been found ro be principally due to generlc var~abllity of pathogen 

populations rather than envlronmental difference between locations (Ball and Pike. 

1984). Molecular markers llnked to host plant resistance genes would allow resistance to 

different pathogen population to be selected for at a s ~ n g l e  location In the absence o f  the 

pathogen vanants. Llnkage drag and the confounding effects of env~ronmenlal variation 

associated wlth conventional breeding methods would also be reduced or elim~nated. 

The establishment of saturated molecular maps using restriction fragment length 

polymorphism (RFLP) and other DNA marker techniques make it poss~ble  to dissect 

Mendelian factors underlying coniplex tralts such as grain yield. Systematic studies on 

mapping quantitative trait loci (QTL) have been conducted in a number of crop specles 

(Paterson et al., 1991 ; Tanksley and Hewitt, 1988; Stuber el al., 1992) for various traits. 

In this study, characterization was done for QTL for yield and its component traits 

and resistance to downy mildew disease. The objectives of this study were: 

f* Estimate the mean performance of mapping population testcross hybrids for yield 

and its component traits 

*:* Determine correlations between g a i n  yield and its component traits 



-3 Est~mate rhe number and locclt~on ot'QT1. s~g~uticantly atTccr~ng llie \marlon ol' 

gram yield and irs cornponenr traits Across r\vo loca~lons In Tdrnll Nadu 

Determ~ne the ~nagn~tudc o i  the genetlc ~I'fects of QTL iur a11 c l~ le  and 

sconornically important rester and 

f* ldent~fy QTLs for downy m~ldew d~sease resistance under field condition. 



2. REVIEW OF LITERATURE 

1.1. Pearl millel 

f'earl mlllet [Petrnoer~rn~ ,qluucunt ( L . )  K. Br.] IS a cereal belonging to the genus 

Pent~rserum, which contains about 140 grassy troplcal species. Pearl mlllet is prowh 

~lmosr e.tclusibelv ds hunldn lood, dnd ~ndeed IS the stdple ceredl of 00 n~illlon people 

\tho I I L ~  in dgrocl~ma~lc /ones uhere there dre severe dblotlc stress I~ni~ ta t~ons  to crop 

production malnly due ro heat, low and erratlc rainfall, md so11 rvpe (low ~nherent 

lertlllty and moisture holdlng capacity, and In some cases low pH or high levels of 

dlum~nlum saturation) Since fertlllzers are seldom used and cult~vdtion 1s ldrgely by hand 

or anlmal tractlon actual grain ylelds are low In these reg~ons (500 to 600 kglha), yet In 

the agroecologles where t h ~ s  crop 1s grown, ~ t s  leld is hlgher and more reliably obta~ned 

than those from other posslble tropical dry land cereal crops such .is sorghum or maze 

Gram IS dlways the pnnclpal object of cultlvatlon, but the stover 1s often secondarily 

linportant as animal fodder, and stems can also be used as fuel, for fenclny, dnd roofing 

2.2. Molecular marker importance 

There is such an enormous amount of diversity in the DNA of higher plants that no two 

organisms are likely to be identical in DNA base sequence. Thus, there is a tremendous 

amount of DNA vanatlon present in natural populations of plants. These variations have 

been detected in restricted (1.e.. enzymatically digested) genomic DNA of plants and have 

paved way for the development of molecular markers (Winter and Kahl. 1995). Genetic 

cnp~neering and biotechnology hold great potential for application in plant breeding as 

they promise to reduce the time taken to produc,e crop varieties with desirable characters. 



W~th  the use of molecular techn~qurs. t t  would now be possible to hasten the transfer ol' 

desirable genes among iarletles ~ n d  to introduce novel genes horn related species 

(Mohan c.1 ul.. 1997). tvlolecular niarkers detect ununbiguous. single-site genetic 

differences that can easily be scored and mapped in most segregating populations. It is 

not Jit'ficult in populations of most crop species lo ~dentify and map 10-50 segregating 

niolecular niarkers per chromosome palr (Kearsey. 1998). DNA markers can illcrease 

ct'liclency In breeding programs in a number of ways. 

t 'The abllity to screen In the seedling stage for traits that are expressed late in 

the life of the plant. 

~ i .  The ability to screen for traits that are extremely difficult. expensive, or time 

consuming to score phenotypically. 

... 
111. The ability to distinguish between the hnmozygous and heterozygous 

conditions of many loci in a single generation without progeny testing. 

I \  The ability to perform simultaneous, marker-aided selection to screen for a 

character or complex of characters that could not prev~ously bc. included in the 

program because of cost or difficulty of conventional methods based on 

phenotypic screens. 

Molecular markers can accelerate the generation of new varieties and allow 

connection of phenotypic characters hith the genomic loci responsible for them. However. 

the real advantage of using molecular markers is to permit efficient backcross transfer of 

desirable alleles in a directed manner that would not be practical with conventional 

phenorypic selection procedures. 



plant breedmy methods can now be wadll) studled and 11 IS nc:u wlsti\ely c a y  to cstnblish 

genetic relationships k t u c e n  e\en sewall\. ~ncompa~lhle crop apecies (Mohui el ul.. 1997). 

I'he abll~l). IO map genes conmbut~tlg touards \anatlon In complex traits with enough 

Accuracy to be usc.hl for plant brecdlng npplicatlons has bccn made posslhle through the 

de\.clopment ot comprehensl\e mol~rular marher maps (Jones r l  111. 1997) 

I he t o l lou~ng  1s a llsr ot DNA marher techn~ques that habe been developed over 

the years (Mohan et ul . 1997, C~upta and Varshney, 2000) 

I 
Acronvm I Technique 1 Reference 1 

I AS-PCR Allele Soectfic PCR ! Sarkar el ul.. 1990 --.A 

\ I  I P Zmpl~fied Fragment Length 1 V O ~  e y l .  I995 - -4 1 Pol) momhlsm 

/ Cleaved Amplified Polymorphic I I 
CAPS 1.yamichev el 01.. 1993 i Seauence -- - - - -. -- _. . I 
I) A F , - 1 DNA Am~llfication Fintemrintinn Xaetano-Anol les  el 01.. 19911 

ALP - --. 

I AP-PCR 

Amollcon L.ennth Polvmoruh~sm Ghare a z ~ e  el a / ,  1995 

Arb~trarlly Pr~med PCR 
Welsh and McClelland. 

-- , 1990- - 

IMP 

I ISA=ISSR 

1 MP-PCR 

, MFLP 

1 RAMS 
RAPD 

REMAP 

/ SNP 1 ~ i & l e  Nucleotide Polvmoruhism I Nikiforov e/  ul.. 1994 
i SSCP 1 Sinnle Strand Conformation I Orita el a/. .  1989 

Inter-MITE (Miniature ~ n v ; n e d - r ~ ~ e a r  
Transwsable Elements) Polymomhism 
Inter-SSR Amplification = Inter Simple 
Seauence Reoeat 
Microsatellite-Primed PCR 
Microsatellite-anchored fragment 
length wlvmoruhism 
Kandomlv Amplified Microsatellite 
Random-Amolified Polvmomhic DNA 
Retrotransposon-M~crosatell~te I 

, RFLP 

i SAP 

SCAR 

 hang el 01.. 2001 1 
-- --i 

Zietkiewiez ul,, 1994 

Mever et 01.. 1993 

Yany el 01.. 2002 
1 

Ender el ul.. 1996 
Williams el 01.. 1990 .., 

Am~hf ied  Polvmoruhtsm 1 
Restriction Fragment Length 
Polvmorphism 
Specific Am~l i con  Polvmorphism 
Sequence Characterized Amplified 
Region 

Botstein el ul., 1980 

Williams et ul., 1991 

Williams ul,, 99, 



)SLP fl~crosdtellite Simple Sequence I ength / I<nng\\el~ t 1 '11 1995 
- ---_ ,P~!L~E&sE-- - _ _ _. 4 - - - 

\SLP \tinisatellire Simple Sequence !.r.ngth I Jarrnan and Wellr. 1989 - . - -- - I Po~vrnorohism +_ -- _- - 
SSR . S I ~ I D I ~  ~euuence Re~ea t  Ci!carnr.t.! G I . ,  I 992 . . . . 

! STlVS , / Sequence Tagged Micro-satellite Sites _.ific,'I(m.cn-and Soller. 1994 
S f S  / Sequence I ' a n n e d a  ' Fuhuoka r/.ul.. 1994 .' . 

2.3. Importance of RFLP marker and its application 

\mong the various DNA-based molecular markers. RFI-Ps were the lirst to he used in 

human genome mapping (Botstein er ul.. 1980) and later they were adopted for plant 

genome mapping (Helentjaris er a/., 1986a; Helentjaris. 1987: Paterson u /  a/ . .  1988: 

U'eber and Helentjaris. 1989). RFLP is the most reliable DNA polyn~orphism that can be 

used for accurate scoring of genotypes. It has provided a relatively rapid means of 

producing genetic maps of densely spaced marker loci in numerous crop species (Ellis. 

1986; Helentjaris el 01.. 1986a; Landry er ul.,  1987; Burr 01.. 1988; Mohan el 01.. 

1997) The four primary advantages of RFLP markers over morphological markers are 

co-dominance. frequent polymorphism. absence or limited influence of Ihe environment. 

and absence of pleiotropic effects (Botstein el a/.. 1980; Beckrnann and Soller. 1983). 

Since RFLP markers have no known effect on the phenotype of the plant. they are ideal 

for studying quan!itative traits (Stuber. 1992) 

RFLP analysis employs cloned DNA sequences to probe specific regions of the 

genome for variations that are seen as changes in the length of DNA fragments produced 

by digestion with restriction endonucleases (Landrj er a/.. 1987). In plants, U L P s  were 

first been used in tomato, maize and rice to saturate their already extensive genetic maps 



based on morphological markers ; l i d  Isor! me markers ( HernarrA? and rmksley. 1986; 

t le len~aris  L*I '11 . 1086a. hlc('~)uch rr ~il . .  1988). 

Prior to the ara~lability of SSR markers. two types of DNA markers have been 

must commonlg used for most crop plant molecular marker-based linkage map 

Je\elopment and subsequent quantrtati\e trait locus (Qf I . )  mapping. KF1.P markers 

I Rotstein er ul.. 1980) and RAPD markers (Williams t.1 iil.. 1090). l3o1h detect IINA 

polymorphism and monitor the segregation of a, DN.A sequence anlong progeny of a 

senetic cross permitting construction of a genetic linkage map. I-lonever co-dominant 

RFLP markers are more robust a id  repeatable than RAPD markers. whlch are inherited 

In a dominant manner. 

RFLP and RAPD marker allelic differences between plants are inher~ted in the 

hame fashion as conventional Mendelian genes. thus genetlc linkage maps of these 

molecular markers can be constructed using conventional methods. Such RFLP linkage 

maps indicate the locations of  specific restriction site andor insertion/deletion 

pol~morphisrns In chromosomal DNA relatlve to one another. Ellis ( 1086) reported that 

simple consideration of RFLP mapping as a method of analyzing the inheritance of 

quantitative characters suggests that there are several limitations to the utility of  this 

dpproac h. 

RFLP and morphological markers have been used in pract~cal plant breeding 

programs to map quantitative trait loci (QTLs) (Tanksley rr ul.. 1982; Edwards el 01.. 

1987: Stuber er ul.. 1987: Weller er ul., 1988: Mohan e l  ul.. 1997) and to monitor 

response to recurrent selection (Stuber er ul.. 1980, 1982). RFLP markers facilitate the 

selection of progenies with desirable genotypes in a relatively short span of time. 
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parentage of mapplng pupulat~ons  hen a\a~lable. and the tr;llrs I;>r \bIilch the) n11ght he 

u\cd tor Q 1'1. mapping. 

1.5. Mapping QTL using testers 

\1t1lt  ol' the earl! Q rl.  htud~es publ~>Iied on grain > ~ c l d  .ind > ~ e l d  con~$>ricnrs ~n \o l \ ed  

c~ther ~ n d ~ k ~ d u a l  plant5 or rcpllcated progcnles t)f seprcgntlng pop~llat~on deriied tiom 

h~parenral crosses by belting or hackcross~ng (1.ubbcrsredt cr t i / . .  1997) Ilowevcr In 

11) brld pearl ln~llet bree~ling, the main selectlon criterion is testcross perthrmance and line 

pcrtormance ptr  ve is onl) of secondary importance because these measures are poorly 

correlated. cspec~ally for yield characters. Use o f  testcross progenies in (J'I'I. mapping 

>tud~es prov~des ~nt'ormation about the intluence of the tester and hence. IS important for 

both bas~c research and appl~cat~on of marker-aided selection (MAS). 

Lubbcrstedt ul (1997) crossed 380 F, lines obtainrd bq selling I:: individuals 

I'rom a malzr mapplng population. and the two parental lines. with two diverse dent 

inbred resters to map (S'ILs afecting testcross perfbrmancc tbr Imponant lbraye maize 

traits and to lnvesttgate their consistency across-environments and testers. I-hey detected 

seven (starch yield) to 16 (plant height) QTLs in each testcross series. explain~ng between 

i 2  to 7 I % of 0,' in a simulation test. 

For forage maize. Lubberstedt er ul. ( 1997) found good agreement across testers 

for drq matter concentration and plant height. but nor for other trails including dry matter 

! ield and rn \,rrro digestibility of  the %hole plant. Hence at least for most of the relevant 

lbrage maize traits. 11 appears the separate QTL mapping is necessary for each tester. 

Lubberstedt rr ul. (1998) evaluated four independently-derived mapping 

populations crossed with same tester. in maize.'They observed that consistency for QTL 



poiuon across a11 h u r  populations. \\hich \\ere greater li)r d q  matter concentration. 

\r,lrch cuncentrarlon. .lnd plant he~ght than li>r d c  mailer ! 1e1~1. r r r  I , I I I . ~ J  ,liyc.s~~hle organic 

l11;ltler dnd proteln cc>ncenlrarion. Kc.\ults from rhe~r htud? ~nd~cated ( ) \ ' I  s \\ere poorl? 

consistent among crosses urthin the llint hetcrot~c pool. suggesting prlor to MAS, Qr I .  

[napping must he perlimned separately I'or each population. 

The consistency 01'QiL. mapping results across testers u ~ l l  he larpel! retlected hy 

the genot?pic correlaticln among testers and the prcdorn~nant type ol' gene action Ibr each 

trait. I'hus. for a given sample selection response from MAS Ibr testcross performance of 

traits with mainly additive gene action should he comparable for testcross progenies with 

orher related testers. \lelchinger rr r r l .  r 1998) lhund little evidence Ibr digenic epistasis 

dmong the detected QTLs. particularly when re-examined in an independent sample. On 

the contrary, differences in the testcross performance of FI lines with each tester were 

due to the presence or absence of common QT1.s. I'his wgyests that nun-epistatic gene 

clf'ects are malor determinants of general and specific combining ahility In hybrid 

perli)rrnance. as was also concluded that numerous clasalcal quan t~ ta t i~e  genetic 

cupenments 

Austin rr u l .  12000) reported that QTLs detected with only one tester were not 

necessarily detected for the other testers especially for grain yield. Aust~n rr ul. (2001 

used three different testers in maile. Results indicated that regions containing QTL 

effects for a single tester appear to be less stable across test environme~its and less likely 

to be detected for mean testcross performance across testers than those associated with 

OTL effects for two to three testers. Mean testcross effects (MTC). however. appear 10 be 



le>> ,enslli\ e I t )  en \  ~ r o n ~ i ~ c ~ i t a l  ldct<~rs \\ ~ t h  the Iiialorlt) 01' ( ) I  I s \4 1111 1lie largest bl 1 C 

etl'ects helng cuns~~ ten t l !  detccrcd across reat en\ ironnients 

\'add\ t l r  '11  (20U2a1 ubed pearl rn~llet testcross 1 . 1  Ii? hrlds tlrr plicnol)p~ny Q'f1.s 

.irsoclated ui th  traits de t e rn i~n~ng  yrrun and 5tovr.r y ~ e l d  under terni~nal drought stress 

coridit~ons. rather than uslng 1nhrr.d proyerlles Ibr \c\eral reast)~is. 

I to restore hetcrot~c \]your to the Inbred rnapplng pt)pulat~u~i that ~niglit uthewrse he 

roo \beak tor et'fecti\e \creenlng under \tress condirions (pearl 1111llct IS highly 

cross-poll~nated In nature and \ut'fers conslderahly tiom ~ n b r e c d ~ n g  Jep res s~o~ i ) :  

1 to use the domlnanrly inherited early tlowerrng of the rester lo reduce variat~on in 

Ilowerlng rime m o n g  the test unlts in order to locus the mapplng on specilic drought 

tolerance traits rather than traits or responses associated wrth drought escape: and linally; 

3 to have test units that approximate the genetic structure of' the I:I hybrids grown by 

t i m e r s  rather than F;) or l:1 inbred lines. 

2.6. 1,inkage mapp ing  

L~nkage mapping is putting marker loci (and O'1'I.s) in order. ~ n d ~ c n u n y  thc relative 

d~stances among them. and assrgning them to linkage groups on the bass  of their 

recombrnat~on values from all pair-wrse and three-pant combinat~ons. I'he lirst map of 

the human genarne based on molecular markers (Botstein rr ul.. 1980) f'uelled the 

derelopment o f  molecular marker-based genome maps in other organisms. and has led to 

the recent genomlc sequencing of humans. mice. tlruhidop.ri.~ and rice 

The theory of linkage mapping is same for DNA markers as  In classical genetic 

mapping based on morphological markers, however. several new considerations must be 

kept in m ~ n d .  This is primarily a result of the fact that potentially unlimited numbers of 



I)>:\ markers can be anal!red In a single mapping p>pulation. l)h;\-h;r.*d maps can IX 

~ e l ~ t e d  IU rtlstlng c!togenet~c maps through the use L I ~  aneuplold or \uhst~tut~un lines 

I iielentl;lris rr Lri.. 19Xhh: Sharp er 01 . 1989. Young r.r ,ri.. 1987) or 11, ~ r r r r  liyhr~d~/.atlon 

I IS1 I )  ((.hang rr '11.. 7000) 

Sincc 1)N:i ~iiarAer tech~lolog> \\as lirst appllcd to plants. there has been an 

c \ p l ~ i \ ~ o n  In [lie de\elopn~enr .~nd appIic.rt~on 01' yencuc Ilnhagc maps ~ h i u l ~ a n  vl 111. 

10071. I.~stng these new 1)N.A-hased markers. scient~sts have constructed maps in specles 

\\here only poorly populated classical maps existed before (Bonierhalc 1.1 ul. .  1988; 

(iehhardt ri ul..  I991 : Liu ec ~ 1 . .  1994). located genes governing quantitative characters 

ottcn In great detall ~ n d  taken the lirst steps towards yelie cloliing based on yeneuc map 

position. Detailed genetic linkage maps are also fundamental tools Ibr studies on 

>election. identification and organi7ation of plant genomes ('l'anksley. 1903: I3eckmann 

and Suller. 1986. [.andry and Michelmore. 1987). 

2.6.1. Achievements in different crops 

I 'sing RFLPs as genetrc markers. Helentjar~s rr ul. (1986a) constructed linkage maps I'or 

maize and tomato. The first true RFLP-based genetic linkage map in a crop plant 

(tomato) was constructed in 1986 with only 44 F2 plants and 57 marker loci (Bernatzky 

and Tanksley. 1986,. Since then. DNA marker-based genetic linkage maps tbr many 

plant species hare been constructed (tielentjaris. 1987: McCouch rr (11.. 1988: Heun er 

111. 1991 : Tanksley. 1993. Mohan rc (11 . 1997) 

:\ detailed map of' lettuce was constructed by Landry e/ irl (1987) using 53 

yenetlc markers. These included 41 RFLP loci. 5 downy mildew resistance genes, 4 

ijozyme loci and 3 morphological markers covering 404 cM. 



\lc('ouch (11 I l9XKI rcpmed the conbtructloti 0 1 '  411 K1.I 1'-hased genetlc 

linkage map oi rice I he map cornprlsed o i  135 loct correspo~id~ng to clone> selected 

~ r o m  a I'\/I ycnomlc Ilhran co\t.rlng I . ;XO cLl I I I '  the rice yenonlc ( ' ~ u . ( \ e  r.1 (11. ( 10941 

Je\eloped 3 rice yencuc map us~ng  ca. X O O  K1.l Ps ~lwt  expanded the length o f the  rice 

I~nhage map to 1491 cbl. ('hao (11,  c I V X V I  attempted KI-I P mapplny in heyaploid wheat 

( I I I L I L I ~ ~ I  ur \rr i~~tm) ualng I8 cl)t4,1 clones: I 4  anonymous and 4 oikno\*n iutict~on. I'he 

1oc1 Identi tied b) these probes were mapped on one or more of' \r hear homcologus group 

7 chromosomes. (iraner ' ,1 111. (1991) analyzed two populations to consuuct an 

KI-LP-based genetic linkage map of barley uslng 250 genomic and cI1NA markers. Maps 

oichromosomes 3 h .  3 B  and 31) of wheat and 3 K  of rye were de\cloped hy I>evos el (11 .  

( I ')92i us~ng  2 2  1)NA probes and 2 enzyme marker systems. 

2.6.2. Computer  software packages for constructing genetic linkage maps 

\d\anccs In computer technology hate been essential to progress In D N A  marker-based 

genetre l~nkage maps. I'he theory hehind linkayc mapplny with L ) l i i \  markers 1s Identical 

to mapping with classical genetlc markers. but the complex~ty of the problem has 

dramatically increased because of the larger numbers of markers that must bc used. This 

Increase in numbers of segregating l o c ~  (and the number of progcnles rn which they are 

segregating) relative to \tudies of class~cal genetic markers has necessitated the 

Je\elopment of complex computer algor~thms and software packages spcc~fically Sor t h ~ s  

purpose. 

Construction of a genetic linkage map from a DNA marker data set requires 

computer software packages capable of running X 2  contingency table analysis. 7be 

program, LINKAGE-] (Suiter et 01.. 1983) cam'es out this type of analysis automatically 



~ n d  .11w compares the obscried ~ l l c l i c  disir~buuons to cspcctcd dis~r~hut ions .  In :i 

d~t'fereni strategy tbr upitmiring the use of DNA marker ~ntbrnmatlon. rlme computer 

program "HyperGene" cumens  genotypic data inlo a "graphical genutype" (Young and 

I anksley. 1989a.h). in which a complete genome of an i n d i ~ i d ~ i a l  l'ronl the mapping 

populat~on I S  disp1a)c.d. 

\,lAPM.-IKER'ENP is a linkage analysis software packayc t i ~ r  construcring 

prlmap linkage maps of markers segregating in euperimcntal crosses. It performs full 

rnultipo~nt l~nkage analysis for dominant. recessive and co-dominant (e.g. KFLP-like) 

markers in B C I  backcrosses. F2 and FI (self) intercrosses and recombinant inbred lines 

(Lander et ul.. 1987. I-incoln e /  01.. 1992a. b). 

rhe  sotiware package Joinmap (Stam 1993; Stam and Van Ooijen. 1995) analyses 

all types of mapping populations, and can combine maps of different mapping 

populations prov~ded there are common markers. Another sofiware for linkage mapping 

I S  (;mendel from Oregon State IJniversity. lJSA (fiolloway and Knapp, 1994). The 

package Mapmanager. with different versions such as QTX. QTXP and (J1.X-Classic for 

Macintosh- and IRM compatible computers (Manly. 1993: Manly and Olsen. 1999). can 

be used to analyse the results of genetic mapping experiments using backcrosses or 

recombinant inbred lines. 

In addition with these packages QTL cartographer and PLABQTL are seldom 

used to carry out the genetic linkage analysis using molecular markers. 

2.7. Pearl millet genetic map 

fhe  first detalled molecular marker-based genetic linkage map of pearl millet was 

published in 1994. and was comprised primarily o f  RFLP markers (Liu el ul., 1994). 
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2.8.2. Mapping QTLs for grain jield and its related traits 

(;rain yleld is generally controlled b! a numher ot'quantltat~\e tralt loc~  and is ~lf'ected by 

env~ronmental factors. making i t  d~fficult to manipulate and Improve In a breeding 

program. Grain yield can be dissected into 3 numkr  of component traits such as 
- 

~ndividual grain mass. spikelet number. grain number per panicle. ett'ective filler number 

per p!ant. and plant population dens~ty that depend upon the crop concerned. 'These 

component traits are also under QI'L control and the effects of individual QTLs on 

phenotyp~c varlatiun are relatively small. Some uf them. however. Lue less 

envlronmentally sensitive and have higher heritabilities than grain yield itself (Bezant 

(11.. 1997; Yano and Sasaki, 1997). I'heretbre. whlle looking for QrLs  controlling grain 

yield. QTLs for yield and yield components should also be determined to provide useful 

~nformation. 

The advent of molecular markers, and in particular RF1.P has greatly facilitated 

the detection of QTLs controlling yield components and the relationship between grain 

! irld and its components. (!sing molecular linkage genetic maps. i t  is possible to estimate 

the number of loc~  controlling statistically significant portions of genetic variation in a 

segregating population and to characterize these loci with regard to map position, gene 

action. phenotypic effects. pleiotropic effects and epistatic interaction with other QTLs 

(Xiao rr ul.. 1996). It has been demonstrated that correlated components of yield or other 

traits often have QTLs mapping at similar locations. This has been observed in maize 

(Abler et ul.. 1991; Veldboom er ul.. 1994: Austin and Lee. 1996). tomato (Paterson. et 

al.. 1991). barley (Tinker el ul.. 1996: Bezant el ul.. 1997). rice (Xiao el ul.. 1996). and 

pearl millet (Yadav el ul.. 2002a). 



In potato. tuber 5tarch content ~ n d  tuber yeld are quantltdtl\e {rafts that are easy 

ro determlne under field cond~trons Schafer-Pregl trl (1998) ~vapped Q'1'l.s for tuber 

\trlrch content and tuber yield In two F I  populat~ons d e r ~ ~ c d  from crosslng non-~nbred 

J ~ h a p l o ~ d  potato breed~ng llnes :4 total ot' I8 putatlte (2 l'Ls tor luher starch content were 

idrnt~licd on J I I  12 potato linkage groups and 8 putatlw Q1l.s for tuhcr yield were 

idcntlfjed on t.lght linkage eroups *-\lso. twenty-slx putatlve Q1 I.> Lrcrc reproduc~bly 

detected In two envwonments and/or mapplng populat~ons 

Orf r t  al. ( i 999) measured and compared QTLs for agronomic tralts of soybean In 

.I large RI population derlved from crosses between three d~fferent sets of population. 

QTLs were ident~fied for all the primary and der~ved tralts w~th  a s~yn~ficance level 

LOD 3. on 17 of the 20 soybean linkage groups and these QTLs tended to be clustered 

on only three of the linkage groups. QTLs wlth major effect (R' > 10%) were ~dentified 

lor all the observed characters and for many of these characters expla~ned more than half 

u t  the observed hentable varlatlon. 

Campell ri 01. ( 1999) conducted a study to determlne assoclatlons between kernel 

tralts and molecular markers and to ~dent~fy QTLs affecting kernel traits In a soft x hard 

wheat cross. They identified QTLs for kernel traits located on chromosomes IA. 2B, ZD, 

3B. 7A and 7B. Particularly the prnB marker on chromosome arm 5Ds explained over 

60% of the phenotypic variat~on for kernel texture 

Shah er L I I .  (1999) were able to locate QTLs for a number of agr~nomicaily 

Imponant traits such as grain yield, kernel number per spike. 1000-grain we~ght. spike 

number. grain volume weight. plant height and anthesis date to the long arm of 3A 

chromosome using a subst~tution line. 



t\\o-ro\v barley cross Harrington~CrR 306 on the hasis ol'e\aluation ol' 1-45 1111 line in 30 

tield eiperiments (Spaner ~ r l .  1999) ['hey compared among groups $)I' lines with 

iontratlng markers gcnor!ptts un chromcrsome 7 ( 5 1 1 )  and confirmed that a QI'I. on thc 

"plus" arm of that chromosome affects graln y~eld and plant height 

2.9. QTL * environment interactions 

One 01' the major goals fbr plant breeders 1s to develop genotypes w ~ t h  a high yield 

potcnt~al and the ability to Inamtam yield across-environments. fhe clTect of 

(>TI. x environment interaction has been addressed in several studies in which QTL have 

been mapped in the same population In different cnvironmrnts (l'aterson ~ ' r  trl. 1991: 

Stuber rr ul 1991; Hayes rr ul. 1993: Yan rr (11.. 1999; Yadav rr ul.. 2OO2b). 

Paterson er 01. (1991) investigated the prediction value of Q'r1,s across-environments 

in tomato by comparing QTL maps of an Fz population and its denved FI families. They 

>bowed that only 1 out of 29 QT1.s were detected in all testing environments. Stuber er (11. 

I 1992) studied genotype x environment ~ntenction for QTLs of mam by field ctaluation of 

backcross families in six diverse environments. but limited evidence was found. 

Zhuang er a/.  (1997) repeated studies of an F2 and two equivalent FI populalions 

of an rndicu-rndico cross of rice grown in three different environments. In all three trials 

QTLs for yield components were frequently detected in the same intervals. They 

identified 23 of the 29 QTLs for yield and its component traits and 9 of the 15 QTLs for 

plant stature in more than one trial. They indicated that detection of chromosomal 

segments harboring QTL was hardly affected by environmental factors, perhaps because 

the environmental difference themselves were small. 



\ doubled I1;lploid rlce Inapplrlp populatio~l ,I!' I?: li~ies troll1 IK o.(~:I/~icena \ V ~ S  

ilsed to anal! se the genet) p ~ c  . enrironrnental intrracuc~n t i~ r  tight dil'ferent plant-type 

t ra~ts  ~n rice I )'an r,/ trl.. 19991 l:our to nlne O I L S  ctffccting dil'fcrcnt plant-t!pe traits 

ncrc  detected They wggesred rhat (21'1.5 \\ith suhstant~al :n:tin eflkcts could he used in 

\I.1S  cross-en\~runr~icnts. O'II. i environment 111rcraction etfccts \\ere detected more 

thdn ()'I1. mall1 effects tbr plant height. uhich might indicate thar gene eupresslon Ibr this 

rralt could he preatl? afkcted b\ e11\1r011met1ts 

In order to identtfy ()ll.s controlling Jgronomlc tratt Larlatlon and thelr 

consistency under Mediterranean conditions in barley. J progeny of 167 K1L.S and their 

parents I'admore and EriAPbl were grown under SIX environments I I'eulat c.1 ul.. 7001 ). 

\ total of ZJ 01'1. consistent across all the testtng envlronments were detected using 

muluple environment analysis. Out of these Ql'1.s. 1 I presented main efTects. seven 

presented QTI- x cnkironrnenr Interaction. and six presented both effects 

LLlao ? r  rrl ( 2 0 0 1 )  used ,I ricc doubled haplo~d populat~on and a ricc recomb~nant 

trihred l ~ n e  population der~ked from crosses between a tropical 11111un1cu ra le ty .  

\/ucena. and 1-0 indrcu rarietles. IR b4 and IR 1552. ~n both field and pot cuperlmenls. 

tbr detect~ng QTLs and eptstasis for rice panicle number in different genetic backgrounds 

and different lowland irrigated rice production environments. rheir results indicated that 

the effect of genetic background on 07'Ls was greater than that ot'environments, and 

cpistasls between QT1.s I S  more sensltl\e to genetlc backgrounds and en\lronments than 

rnaln effect 0 I I . s  M a ~ n  effect QTl s and epistatlc Q1l.s could be interchangeable 

depending on the genetic backgrounds and probably on the envlronments where they are 

~denri tied. 
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2.10.2. QTL for downy mildew resistance in pearl millet 

I'he first hirly detailed molecular marker map for pearl ln~llet \\as cu~rstructed by I-iu 

L I  (11 (1943) so thal Q'fI. anal\sis 1s no\\ poss~ble 111 t h ~ s  crop 1l.s l i ~ r  host-plan1 

reslstance to downy mildetr. caused hy S ,grtr~i~rtlic~olcr pathogen populat~ons from India. 

k ~ g e r ~ a .  N~ger. and Senegal \rere mapped using the cross [.(ill-I-R-10 (susceptible) 

ICklP 85410 (resistant Jones 6.1 111 . .  1005).  I lost-plan( resistance 0 I'1.s were detected 

that were effective against each of the four pathogen populations. To locale genes in 

[napping populations other than those for which RFLP maps exist, a skclecon map needs 

to be transferred to the new mapping population. In pearl millet less than 40 single-copy 

probe-enzyme combinations will produce such a map. ~ i l h  an avcrage map distance of 

less than 15 cM between marker loci (Liu el  01.. 1994). 

Jones el 111. (2002) demonstrated that field screening and greenhouse pot 

screening of secdl~ngs detect the same QTLs for host-plant resistant to pearl millet downy 

mildew using F2 derived F 4  self bulks of a mapping population derived from a cross of 

resistant line P 7-3 and susceptible 7042 (S).  

Howarth rr 01. (unpublished) ident~fied QTLs for downy mildew resistance and 

seedling heat tolerance from pearl millet mapping populations produced from crosses 

lCMP 451 x H 771833-2 and H 771833-2 x PRLT 2/89-33. Hash rr d l .  (unpublished) 

uorked with mapping populations from crosses PT 732B x P 1449-2. 81B x ICMP 451 

dnd 841 B x 8638 to locate Qr1.s for reslstance to pearl millet downy mildew. Q'fLs for 

host-plant resistance effective against downy mildew African and Indian pathogen 

populations were identified in new mapping population based on cross W 504 x P 310 

tKolesnikova 2001). and Tift 238D1 x IP 18293,(Azhaguvel. 2001). To date over 65 



( ) f l . s  for pathogen-populatm-spzc~tic host plan1 rcststance I C ~  pearl nilllel downy 

nl~lde\r, have been detectrd (c' K .  tiash. pers comm.) 

2.10.3. QTL mapping for disease resistance in other crops 

h'ith DNA markers and QTI. mapptng. coniplev tbrnls of dtsease resictance m d  their 

~~nderlping genes are now tir more access~ble to applicd plant hrerders and patholog~sts. 

Ouantltative genetics IS unsuited for dissecting polygen~c reststance characters into 

dixrete genetic loci or defining the roles of individual genes in disease recistance. With 

OF1.  mapping. the role of spec~fic re5istance loci can be described, race-specificity of 

partial resistance genes can he assessed. and interactions between resistance genes. 

growth stage of plant development m d  the environment can be analyzed (Melchinger, 

1990; Young, 1996). 

'The quantitative host-plant resistance system for rice blast caused by Pyriculuria 

o):~.zut has been espectally well characterized (Wany t.r (11.. 1994). 'Two dominant 

qualitat~ve resistance loci were ~denttfied on chromosomes 4 and I I o f  rice (Yu er ul. .  

1991 ). Another disease system that has been studied with QTL mapping I S  late blight ot' 

potato caused by Phyrophrhoru infesrans, an oomycetic pseudo-fungus distantly related to 

Sclero.sporu c~rcrminicolu. !.eonards-Schippers C I  ul. (1994) identified eleven genomic 

segments on nine chromosomes that were associated with host plant resistance to potato 

late blight. 

Inheritance of disease reaction to leaf spot caused by Cercu.~poru :rue-rnuydis in 

three maize F? populations was examined to study quantitative resistance using RFLP 

marken (Bubeck er ul.. 1993). One Q'TL on maize chromosome 2 was found to be 

significantly associated with resistance in all three populations. 



:I stud) o i  resistance to bacterla1 \4111 caused Pst~rr~fot~ro~~rrs iolo~tlrcenrum in 

tonlalo was reported by Danesh rr ul. ( 1904) using L)Nr\ marker genot!pes ,lnd d~sease 

reststance reactions tbr 71 k: indiv~duals. 1\+0 genornlc reglolls irere s~gn~licantl! 

~ssociated with resistance. one on chromosome h jnd anorher on chronioson~e 10. LOCI 

contributing towards quantitat~\e \artatton In litseast. reststonce have been mapped in 

ionlato tbr reststance ,~gainbt Insects (Nlenhu~s '11  01.. 1087). 111 p ~ ~ r o  for rcslstance 

Jyalnst cyst-nematode ( l i re~he  e1 01.. 1903). In peas I'or resistance ayatnst ~scochyta 

bl~ght (Dirlewanger rr ul.. 1994). and in maize for northern corn Ieat' blight (Freymark 

rr 01.. 1993) and stalk and ear rot (Pe cr 01. .  1993). 

Manzanares-1)auleux rr (11. (2000) identified Q'1'I.s iigainst clubroot disease of 

Brusslca napus caused by Plosmodiophora hrussicue. IrIh~rilaYIct. o f  ('tlrco.~poru leaf 

spot resistance in sugar beat was studied by Nilsson er 01. (1999) and they identified 

QI'Ls tbr this trait. In sugar beet. four Qr1.s associated with ('rrcos/>uru resistance on 

chromosomes 111. IV. VII and IX Ncrc rekealed using composite ~nlerval mapping 

~Setiawan rt ul.. 2000). Four ()'TLs were locallzed for the leaf rust tl'rcccrntu horde,) 

reststance in barley. which explained 96.196 o f .  the segregating yenetlc variation 

(Kicherer er 01.. 2000). Brown stem rot (Phiulophoru greguru) resistance QTLs were 

Identified by Lewers rr ul. (1999) in a RII, mapping population of soybean using I46 

KFLPs. 760 AFLPs and 4 probes for reslslance gene analogs (RGAs) 

2.1 1. QTL analysis: Statistical methods 

Ja>akar (1970) suggested mathematical-statistical methods for the detection and 

estimation of linkage between a qualitative marker gene and a locus influencing a 

quantitative character. Since then, experimental designs for determination of linkage 
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>ali\hare packagc Xl:\P?rl:\KI:KQTI.. In thls. ~titer\al nupplnp I S  .~ppl~cd in 4 ..straight 

ior\+ard" fashion to sc.\cral populntion t!pes I:ach ~nter\r+l het\\t.cn ;~dj,icent pairs of 

markers along a chronlosome 1s scanned and the likelihood protile o i ; ~  01.1. helng at any 

particular point in each intenal is detemlined. 

Michelmore r t  (11 ( IqOl ) used a nioditicatton of con\entional ( J I l .  mapping to 

Jetcct VI'Ls tbr do\\ny nilldeu resistance In lettuce in a procedure they called "hulk 

>cgregant analysis". tbhich is remarkably sltnilar to that previously descr~hed by l3unon 

and Wells (198 1 )  for assessing the value of a trait in near-isogenic F1 popu:ations. 

Particularly in the case of cross-pollinating crop populations. interval mapping 

has been enhanced to "all marker mapping". To calculate the likelihood of a segregating 

QTL. the segregation information of all linked markers is employed. Each segregating 

marker may follow a different segregation type, with two to four alleles (Maliepaard and 

Van Ooijen, 1994). 

An alternate approach was developed by Knapp el 01 ( 19901 rind Haley and Knott 

(1992) for QTL analysis uslng regresston. It produces results very similar to interval 

mapping both in terms of accuracy and precision, but has the advantage of speed and 

51mplicity of programming. This method uses the coefficient of regression of the 

phenotype on the genotype of the different markers (Martinez and Curnow. 1992; WU 

and Li. 1994). A significant regression coefficient is indicative of an association between 

the marker locus and gene(s) contributing to phenotypic differences. The significance of 

the association is affected by the degree of linkage between the marker and the QTL and 

the type and magnitude of genetic effects of the QTL. 
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1.1- Canographrr \bas developed by the group of Lrng at Nonh Carolina Slate 

University (Zeng. 1993. 1994: Basten ci ' 11 .  1994. 1097). I t  dllous rniirkers lo be 

chosen 3s cofactors to reduce the background genetic noise and lncreilse the 

resolution of OTL detection, This provides an effective strategy fix improving the - 
ability to detect QTLs of small effect provided that the numbcr of progenies in the 

mapplng population is reasonably large. 

MapQ'fL. (- , , .  . ). .4 conlposite interval mapping 

method similar to that :mplemented in QTL Cartographer has been developed by 

Jansen and co-workers at U'ageningen Ilniversity (Jansen. 1993: Jansen and 

Stam. 1994) called multiple QTL. modeling (MQM).  

Multimapper (Sillanpaa and Arjas, IY98), based on Bayesian modeling 

and inference. treats the number of quantitative trait loci as an unobserved random 

variable using ideas similar to composite interval mapping. This method i s  

introduced for inbred lines and it can he applied also in situations involving 

frequent missing genotypes. 

Qgene is a QTL mapping and marker-aided breeding package written for 

Macintosh computer operating systems. It has a user-friendly graphical interface 

and produces graphical outputs. QTL mapping is conducted hy either singlc- 

marker regression or interval regression. 

QTLSTAT is based on interval mapping using nonlinear regression for F2, 

backcross. RIL and DH populations and outputs results in graphical form (Knapp 

et ul.. 1992; Liu and Knapp. 1992). 



PCiRl calculates hased on the iunct~ons o i  I-test. cond~tlonal !-test. linear 

regression. multiple QTL. modeling and permutation tests (1.u and L iu 1995). It is 

for Fz. backcross. RIL. heterot\.gous F I  and open-poll~nated populations. 

SAS (SAS. Ic)99) is a general statistical analysis .;oit\rare package. It can 

detect QTL by identihing assoclatlons beltbeen marker g e n o t > p  and qunntitauve 

trait phenotype by single-marker analks~s approaches such as ANOVA. 1-test. and 

regression (e.g. PROC ANOVA. PROC (i1.M or I'ROC RE(;) 

2.12. Reliability of QTL mapping 

Kearsey and Farquhar (1998) reported that the available analytical methods locate QTL.  

w t h  poor precision unless the her~tability of phenotypic data used Ibr mapping a 

particular trait is high. Also the estimates of the QTL effects. part~cularly dominance 

effects. tend to be inflated because only large estimates are detec~ed as being stntistically 

significant. This IS espec~ally problematic where mapping population sire is less than optimal 

(as 11 usually is). 

Darvasi et (11. ( 1993) showed that the power of detecting a (JPL. was virtually the 

same for a marker spacing of 10 cM as for an infinite number of' markers and was only 

,lightly decreased for marker spacings of 20 cM or 50 cM. However. a very imponant 

consideration is the confidence intenal for the Q'TL position on the linkage group. 

Effective utilization of molecular marker technology to manipulate loci controlling 

quantitative traits is considered to be dependent on tight linkage between the marker (s) 

and the QTL (Dudley, 1993). but in fact. even loose linkages can be exploited in an 

applied breeding program (Sharrna, 2001 ). 





3. 3IATERIAl.S AND SIETHODS 

F: denved Fa self-bulks of a pearl m~llet nrapprng population (skclrton-mapped F! 

~ndrviduals) obtalned from a cross of t ~ o  pearl rnlllet inbreds. PT 7328  and P 1449-2, 

\\ere used as the bas~c rnater~al. PT 7328 (.Appatlura~ 1.1 I , / . .  I')H!). In e l~ te  ti: dwarf 

liybrld seed parent rnalntalner line drbelopcd at Tdmil Nadu Agrrcultural Ulllversity 

( T N A U )  and P 1440-2 (ICRISAT, 1997; Singh. 1900) is a tall, downy mrldew resistant 

parent, which is a selection developed at ICRISAT from a germplilsrn accession 

onginatlng from Mali. PT 4450. an elite poll~nator inbred was used as a male parent to 

produce testcross hybrids on each of the F4 self-bulk mapplng populal~on progenies. 

PT 4450 I S  an elite restorer line being used to produce the commercial hybrid CcHCU-8 

(PT 732A x PT 4450) in Tan111 Nadu. 

3.1. Test units 

One hundred and th~rty-SIX F2 plants were derived from a slngle FI plant from the cross 

PT 732 x P 1449-2 were previously selfed at ICRISAT and skeleton mapped at John Innes 

Centre, LX. The FI plants were advanced to the FA seed generation at ICRISAT without 

selection. For this study the F4 self-bulks of this mapping population were crossed with 

pollen from elite restorer line PT 4450, and the resulting 136 tcstcross hybrids, along with 

control hybrid CoHCU-8, and testcross of the two mapping population parental lines, 

were evaluated in replicated field trials. 



3.1.1. Seed multiplication of testcross h!brids 

One hundred and th~ny-SIX F, self-hulks along n ~ t h   lie t\ro parental Inbred lines 

IPT 732B and P 1449-2) and the pollinator (P.S 4450) \\ere sown In Apr~l 2001 (summer 

season at TNAU. Colmbatorc). 

Seeds were sown In a well-prepared nursery. Emerged seedlings were 

transplanted to the maln field. The rnapplng populat~on uas  ra~sed in plots 

~ccommodating three rows each hac~ng I m  length. She adopted spac~ny was 30 cm 

between plants and 60 cm between rows. The pollinator was raised along w ~ t h  the 

mapping population. Two sowings were taken for the F4 self-bulks so as to makc 

effective crosslng of all the lines. To get the synchron~sation of flowering multiple 

sowlng were taken of the pollinator line: one week before the F1 lines. two weeks 

accompanying the F4 lines, and one week after the second sowing of the F4 lines. This 

plan provided suffic~ent time to make crosses as well as allow synchronisat~on of 

flowering. During flowering, pollen fiom the PT 4450 was collected and used lo pollinate 

protected stlgrnas of multiple panlcles of  all the 136 F 4  sclf-bulks. Standard package of 

agronomic practices were carried out during the entlre crop growth penod. 

3.1.2. Selfing 

In addition to crossing, selfing was also carr~ed out in all the F, self-bulks so as to get F5 

self-bulk seeds for field screening against pearl millet downy mildew. 

3.1.3. Evaluation of test cross hybrids 

Testcross hybr~ds were evaluated for phenotyping gram yield performance and its 

component traits during October 2001 (Rainy season at Tamil Nadu, 2001). Field trials 



were conducted in two environments. one at TNAU. Co~mbatore itself and another at the 

TNAU Regional Research Station (RRS), Bhavan~sagar. Testcross seeds from all 136 

Ilnes, their parents and the commercial hybrid control COHCU-8 were evaluated In an 

dpha design with 18 x 18 plots. The testcross hybrids were sown in plots of 2 rows x 4 m 

w ~ t h  three replications. Inter-row spacing was maintained at 0.6 m and plots initially over 

sawn. were thinned w~thin two weeks of seedling emergence to a unlform plant stand of 

dpproxlmately 12 plants per row (30 cm spacing between plants within the row) in both 

environments, for an average final plant population density of 50,000 per ha. 

Recormended cultural practices were followed during the entire crop growth period. 

3.1.4. Screening for downy mildew resistance 

Selfed seeds from the F4 self-bulks mapping population progenies were used for 

screening against downy mildew in both locations (1.e. TNAU, Coimbatore and RRS, 

Bhavanisagar) during October 2001. screening was done in sick plot conditions i.e. 

fields, having sufficient oospore inoculum. The infector-row technique was followed 

(Williams et al . ,  1981, as modified by Singh et al.. 1993) to screen against downy 

mildew. 

The disease screening was done in the following way: 

The line 7042 (S) was sown as an infector in every 5Ih row, 3 weeks prior to 

sowlng of the test materials to develop a viable sporangial load for the test matenals. At 

two-leaf stage the infector rows were spray inoculated with a viable sporangial 

suspension (10' sporangia m ~ . ' )  during the late evening hours, afler irrigation. Frequent 

furrow irrigation was given during the first 15 days after inoculation to promote high 

humidity favoring a higher frequency of infected plants at an early growth stage. 



The Fc selfed seed bulks produced by selfing of F, self-bulks mapping population 

progenies were sown three weeks after the infector rows sown in the intercrossing rows 

after the infection rows have developed 50-60% disease incidence. A well-known - 
susceptible control (HB 3 )  genotype was also sown along w ~ t h  the test material after 

every 20 entries to monitor variation in the level of disease incidence across the field. 

Test materials and controls were sprayed with viable sporangial ~noculum ( lob  

sporangia m ~ " )  when they reached two-leaf stage to increase the likelihood of disease 

development in genetically susceptible individuals. 

All the test lines and controls were sown In rows of 4m length with two 

replications. Standard package of practices were followed. 

3.2. Observations recorded in mapping population testcross hybrid yield trials 

The following observations were noted in the F,  testcross hybrids from both locations. 

Time to 50% stigma emergence in days (ET) 

Flowering time was recorded as the number of days fTom sowing until 50% of the plants 

in each plot produced stigmas on their main stem panicles. 

Plant height (PH) 

Plant height was measured from the base of the stem to the tip of the panicle at maturity. 

Data was recorded on five random plants from the middle of each row, and was recorded 

In cm. 



Productive tiller number (PT) 

Number of productive tillers per m2 was taken by counting the panicles from individual 

plants occupied per m' area from the mlddle portion of the rows. 

Panicle length (PL) 

Length of panicle on the main stem was measured for the same plants considered for 

plant height in each plot and recorded In cm. 

Panicle circumference (PCR) 

Girth of the panicle was measured in cm using vernier caliper on all those plants for 

which panicle length was measured, and this was converted to circumference by 

multiplying girth by x.  

Grain yield per season (GY) 

Panlcles were threshed and their grains cleaned. Weight of the grains in grams was 

recorded from each plot. 

Thousand-grain mass (TGM) 

One thousand grains were counted and their weight (in grams) was recorded for all the 

entries. 

Grain yield per  day (GYD) 

This is calculated by dividing plot grain yield per season with total number of days taken 

to attain physiological maturity (approximated as time to 50% stigma emergence + 25) 

and expressed in grams per plot per day. 



Single-panicle grain mass (SPGR.1) 

rh l s  IS the ratio between plot grain yield and the number of productive tillers per plot and 

was expressed in grams. 

Single-panicle grain number (SPGN) 

This is derived from the ratio of slngle panicle gram mass and thousand grain mass and 

expressed in numbers. 

Grain number per unit area (GNPS) 

Grain number per panicle surface unit area is obtained by the following formula: 

Panicle gram number 

GNPS = ............................................. 

Panicle c~rcumference x panicle length 

3.3. Scoring of disease incidence for downy mildew screening trials 

Dlseased plants were ~dentified by the scoring method developed at ICRISAT (Singh 

er al., 1997). 

3.4. Statistical analysis 

The statistical analyses were done using the program, GENSTAT s ' ~  edition (1993). 

Analysis of variance, F-ratio and heritability (mean and plot basls) were calculated for 

each observed or calculated trait for single-stte data sets from Coimbatore and 

Bhavanisagar, and across-locations, for both yield trials and downy mildew screening 

trials. 



3.4.1. Linkage map construction 

.A previously constructed RFLP marker-based genetic linkage map for the cross 

PT 732B P 1449-1. developed at John lnnes Centre by Dr. Katries Devos and 

co-workers, using the 136 progenies in the current study has used to locate the QTLs. 

Thls map consists of seven linkage groups wlth different lengths, which b%ry from 27.6 to 

177.6 cM (Haldane), and accommodates a total of 60 RFLP markers (Figures 1.1-1.3). 

The linkage map was constructed using the program MAPMAKERJEXP 3.0 (Lander 

er ul., 1987). 

3.4.2. QTL analysis 

3.4.2.1. Data processing for yield trials 

Plot values for grain yield and yield components data from Coimbatore, Bhwanisagar 

and across-locations were subjected into square root and log-transformations before 

regression analysis. Time to 50% stigma emergence, plant height and time to 50% stigma 

emergence together with plant height were used as predictors of plot yield performance. 

All the traits were regressed with these predictors individually and the residuals from this 

analysis were then used to map QTLs for grain yield and its component traits. This 

procedure was adopted after initial QTL analyses suggested very strong effects of 

flowering..time and plant height QTLs (perhaps linked) on nearly all other agronomic 

tralts studied. 

3.4.2.2. Data processing for downy mildew screening trials 

Data recorded from Coimbatore, Bhavanisagar and across-locations were converted into 

percentage disease incidence values and these were subjected to QTL analysis. These 
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Figure 1.3: RFLP-based genetic l~nkage map o f  F, mapping population developed from the cross PT 732B x P 1449-L show~ng 
LG 5. LG 6 .  and LC 7 



data were also transfomied Into arc-srn \slues (rad~ans) and used for detecting downy 

mrldew resistance QTLs. 

3.4.2.3. Mapping QTLs for.yield trials 

Res~dual data from Cormbatore. Bhavanrsagar and across-locations from 136 mapping 

population testcross hybrids were sorted into progeny order corresponding to the marker 

genotype data set. QTL mapplng was then carried out using MAPMAKERIQTL version 

I .  l b (Lander and Botstein, 1989; L~ncoln el ul., 1992a). An additive genetic model from 

the program was used because testcross progenies derived from a heterozygous FZ plant 

are a sample of the two parental alleles in combination with the tester allele, and the 

average of the heterozygote is the average of the two homozygotes (Cowen, 1988; Beavis 

et al., 1994; Yadav et a/., 2002), so only additive effects are detected in such testcrosses 

and dominance effects can not be detected. 

3.4.2.4. Mapping QTl,s for downy mildew screening trials 

Percentage of mean disease rncidence and radians from arc-sin transtbrmat~on were used 

for detecting downy mildew resistance QTLs from screens using the Coimbatore, 

Bhavanisagar and across-locations data sets. MAPMAKERIQTL version I .  l b was used 

to identify these QTLs. A free genetics model was considered as suitable because 

phenotyping was done in the F2-derived Fr self-bulk population. 





Eleven important agrononilc tralts, ~ncluding grain y~eld dnd 11s components. were 

phenotyped and the~r  mean perfbrniance were recorded, .4nalysis of variance was 

calculated for all the tralts at Coimbatore. Bhavanrsayar and across-locations. lndiv~dual 

locat~on data and pooled data showed sign~ficant difference Ibr all the characters under 

study and interactions between genotypes and the locations were not significant for any 

of the characters, permitting Interpretation of these traits using only the across-location 

means (Tables 1-3). Heritability calculation showed significant higher values for most of 

the traits (>50%), which IS a prerequisite for effectwe QTL mapplng. 

4.1. Mean performance for different traits 

Time to 50% stigma emergence 

Testcross hybrids at both locations took a minimum of 40 days for completing 50% 

stlgma emergence. Sim~larly 47 days was the maxlmum for completing 50% stigma 

emergence at both trial sites. Heritability for this trait was only 51% at Coimbatore and 

reached its maximum value (79%) when the statistical analysis was performed using 

pooled data from across the two test srtes. 

Plant height 

The tr~al  at Coimbatore had shorter statured plants than that conducted at Bhavanisagar, 

but maximum height was almost the same for both locations (177 cm). Heritability for 

this trait reached maximum at Coimbatore. while Bhavanisagar had lower heritability 

values. 



Panicle length 

Highest mean values for panicle length uas obtained in Bha\an~sagar. This location had also 

highest maximum values fbr panicle length (32.4 cm). Bhavanisagar and  cross-locat~ons 

data showed maximum heritability values. 

Panicle circumferences 

The two locat~ons had slrnllar mlnlmum mean values for panlclc circumference, but 

Coimbatore had highest maximum panicle circumference (10.7 cm), where as Bhavanisagar 

registered the highest mean values for this trait (8.6 cm). Heritabll~ty for thls trait was more 

lhan 90% at both locations and across-locations. 

Productive tiller number 

Data from both locations revealed that mean performance for n i~nimum number 

productive tiller number were same. The maxlmum number o fp roduc t~ve  l~l lers  was also 

same for both locations. Across-locations data had the highest broad sense hentability 

(73%) for this trait. 

Thousand-grain mass 

It was observed that thousand-grain mass reached minimum value (6 . lg)  at Coimbatore and 

had a maximum value of 12.6 g at Bhavanisagar. Individual locations and across-locations 

had high broad-sense heritability values for the trait (97 to 9896). 



Single-panicle grain mass 

Bhavanlsagar had htghcst Inem \ d u e  (8.9 g)  but Coimbatore rtg~stcrcd the maximum 

observed value (14.4 g) for t h ~ s  trait. Broad-sense heritabil~ty calculated acrcss-localions was 

the hi$er (839'0) than that !?om indib~dual locations data. 

Single-panicle grain number 

Values in Bhavan~saga  ranged from 685 to 1302 g and the mean values attained the 

maximum of  953 g. Heritability (plot basis) was very low in both Locations (3  1 and 21%, for 

Coimbatore and Bhavanisagar respectively) but broad-sense hentab~lity was more than 50% 

ibr [he across-locations analys~s. 

Grain yield per day 

Bha~anlsagar had maximum values for ga in  yield per day and ~t also had the highest mean 

values. Where as Coimbatore had the mintmum value for thls trait. Hentab~lity (broad-sense) 

for p n  yield per day was 8796 when pooled data were taken for consideration. 

Grain number per unit panicle surface area 

Both locations registered similar minimum and maximum values for g a i n  number per unit 

panicle surface area. Also both locat~ons had low plot-basis heritability but broad sense 

heritability at across-locations had higher values (55%). 









4.2. Correlation studies 

Grain yield 

G r a ~ r ~  yleld per season 1s the ultlnlate trait that was taken first as an explanatory vanable 

and correlated with other traits to lind the relat~ve contribution of cach constant tralt to 

the observed yield variat~on. The results are shown In the Table 4. 

Plant he~ght, psn~cle c~rcunifercnce. thousand-yra~n mass. s~nyle-pan~cle grain 

mass, single-panicle grain number. grain yield per day and g a i n  nuinber per unit pan~cle 

surface area had positive correlations with graln yield per season. Tra~ts like time to SO% 

stlgrna emergence, panicle length and productive t~ller number were correlated negatively 

w ~ t h  grain yield at both locations. Coimbatore showed the highest positive correlations 

for plant height (0.620),  pan~cle circumference (0.642), gram y~eld per day (0.983) and 

s~ngle-panicle grain number (0.283). For grain number per unit panicle surface area. 

Bhavanisagar registered the higher correlation. In both locations the trait grain yield per 

Jay was closely correlated with grain yield per season. 

Coimbatore had higher values for traits negatively correlated w ~ t h  grain yield per 

season 1.e. time to 50% stigma emergence (-0.520) and productive tiller number (-0.421) 

than did Bhavanisagar where panicle length was highly negat~vely correlated (-0.527) 

w ~ t h  grain y~e ld  per season. 

Time to 50% stigma emergence 

Productive tiller number and panicle length were the two traits showing positive 

relationships with time to 50% stigma emergence at both locations. Other characters 

rncluding g a i n  yield per season showed a negative correlation with time to 50% stigma 

emergence. 
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disease incidence was also severe. reach~ng nearly lit)',. Hcrltability lor the disease 

~ n c ~ d e n c e  values (for both percentage diseased plants and the arcsin-transfbrmed data) 

were high enough for use to niap QTLs. D~sease  ~ n c ~ d e n c e  ( O O )  at Bhavanisagar had the 

highest heritability (plot basis). T h ~ s  locat~on also showed highest herita6ility for arc-sin 

transformed disease incidence 

4.4. Information on linkagemap 

A Previously constructed RFLP linkage map was used for this study. This linkage map 

was developed From the cross PT 732 R x P 1449- 2 using 58 RFLP probes detecting 60 loci. 

Seven linkage groups (LGs; singular = LC) were constructed using MAPMAKEWEXP 

multipoint analysis with the LOD threshold value of 2 0 and a recornbinallon fraction of 0.5. 

The mlnirnum and maximum length of linkage groups varied from 27.6 cM (LG 3) to 

177 6 cM (LG 1 ). These linkage groups were used Ibr mapping QTL for both in test cross 

hybrids for yield and its components tralts and In F5 population lvr mapplng downy 

rn~ldew resistance QTLs. 

Linkage group 1 

LG I has a length of 177.6 cM (Haldane units) and t h ~ s  is thc lengthiest LG in pearl 

rnlllet. It accommodates 15 markers with d~fferent marker intervals. LOD score of this 

group was very high (-365.0), much higher than the other linkage groups. 



Table 5 :  ANOVA for percentage and arcs~n-lransiormed \slues for do\*ny ni~ldew tncldcnce 
from tnals conducted at Colmbatore. Bha\onlsagsr drld across-loca~~o~is. 2001,2002 

- -- - --- - - 
Paramerers Co~mbarore Bhd~dn~sdgdr Across 1 acaMons 

- - .. -- --. . -- . -.. -- ~ 

percentage radlans percentage radlarls percentage radians 
. . ~. .- - SEF) 12.70 0 20  1 1  57 0.17 857 0.11 

Mean 49.2 0 57 51.6 0.01 5; 9 0.55 
CV (9'0) 36.52 49 45 31.10 38.01 23 81 27.94 
F,rat~o 3 83** 3 03** 4  73** 4  $2'. 401**  3 86.' 
11: (plot bass) 59 5 0  (15 Oh 00 5 9 
i i  (mean bass 74 07  ' 9 7)  7 5 7 4 

n, ' SE oe ' 3 1** J 2**  3 0 3.3'' 3 X b *  l . l O *  

S~gn~f icant  at the 0 1 level of probab~l~ty 



Linkage group 2 

f h ~ s  group has S I X  markers w~th  the total d~stance of 87 ') cM She order ot' [Ire markers 

on t h ~ s  l~nkage group 1s .Ypsn1708ri. .Yp~n1706. .Ypsm?s. .Ypsnr.SY?, .Qsnt32l and 

Ypsnr70Rb The LOD score of t h ~ s  l~nkape group \\As -170 39 

Linkage group 3 

Tlic total length of t h ~ s  l~nkage group I S  27 6 cM Th~s  1s the shortest pearl rn~llet l~nkape 

group although 11 accommodates I0 markers. The LOD score of this group IS -162.28. 

Linkage group 4 

T h ~ s  group has the length of 100 0 cM and has I I markers w~th  optlmum ~nter-marker 

~ntervals to detect QTLs. 

Linkage group 5 

SIX markers occup~ed LG 5 The maxlmum l~kcl~hood positlon of the marker ~ntervals I S  

Ypsm815, .Ypsm328, .Ypsm73.4, ,Yrmll-I. .Ypsm719 and .Ypsm735o The total length of 

thls linkage group IS 30 2 cM and its LOD score I S  -137 84. 

Linkage group 6 

LG 6 accommodates seven markers In a length of 83 1 cM This group has the LOD score 

of -205 52 



Linkage group 7 

Thls IS the smallest linkage group In terns of number of markers. I r  has only f i ~ e  markers 

~ n d  their correct order 1s .\psttr!69, .'t'rrtr9-!h. .\psnlblS. .Yps1117l; and .Yps1tr834. The 

length of this group 1s 37.6 cM tc~th LOD score of -1  43 03 

4.5. Mapping QTLs 

I'he constructed linkage map from the cross P'T 7 3 1  0 x P 1449.2 uslng 136 individuals 

was used for mapplng QTLS lor y~eld and 11s related tralts. Software package 

MAPMAKERIEXP version 3.0b was used for constructing linkage groups and 

MAPMAKERIQTL version I .  I b was used for detecting QTLs. 

4.5.1. MAPMAKERIQTL 

The interval mapping method as implemented In MAPMAKEWQTL was used with a 

LOD of 2.0 as threshold value for detecting significant QTLs. The additive genetic model 

tiom this software package was used as the phenotyp~ng was done In testcross hybrids. 

For thls, the command "sequence [all: additive]" was used to restnct the genetic model 

only to additive effects. 

For mapping downy mildew resistance QTLs, phenotyping was done in the Fp self 

bulks. So, all possible genetlc models (additive, dominant and recessive) were 

considered. This is carried out by uslng the command "sequence [all]". Combined effects 

of multiple QTLs were calculated by multiple QTL models for two QTLs, three QTLs 

etc. The qualifying criteria for accepting a multiple QTL model was a LOD score of two 

units more than the highest LOD score of the best model having one less QTL. 



1-OD = Min~nium qual~fylng [.OD score for acceptance of a multiple 

QTL model with (11) QT1.s. 

= ? + L O D ( n - I )  

LOD ,,.I, = Max~mum LOD score for observed model witk (n- I )  QTLs. 

4.6. QTLs for agronomic traits 

.4 total o f  18 QTLs were '~dent~iied across seven linkage groups for nine traits, but 

yenomlc regions flanked by only seven markers loci controlled all these QTLs. The 

details of the QTLs detected on different linkage groups are shown in Tables 6-22. 

Graphical representation of LOD values obtained from different types of transformation 

for diffcrent traits are shown in Figures 2.1-7 3. 

Mean values at Coimbatore, Bhavanisayar and across-localions from the mapping 

population testcross [(PT 7328 x P 1449-2) x PT 4450) consisting of 136 hybrids were 

used for mapping QTLs for the different tralts. Square root and log-transformed values 

from Coimbatore. Bhavanisagar and across. locations were used to map these QTLs in an 

attempt to reduce distribution abnormalities in the trait data set. Plant height, time to 50% 

stlgma emergence, and plant height together with time to 5096 stigma emergence were 

used as predictors of other traits using liner regression, and the res~duals from these 

regressions were used to locate QTL positions. Most of the detected QTLs are situated on 

LG 4. LG 2, LG 6 and LG 7 are the other groups having QTLs. No QTLs were detected 

on LG I ,  LC 3 and LC 5. 



Time to 50% stigma emergence 

.A slngle QTL was ldentlfied for time lo jOoo stlgia enicrgericc 21 C.u~mbatore, uslng 

log-transfom~ed data. T h ~ s  QTL for tlme ro 5090 s t l q a  micryencc IS sltuatcd on LG 4 and 

explained 7.8% of observed phenotypic vanation with a LOD value of 2 .  I .  The additive 

effect of  the P 1449-2 parent allele at this QTL decreased flowering by 0.5 day 

Plant height 

.A slngle QTL was mapped on LG 81 for plant height. This QTL liad its minimum LOD 

score of 2.83 at Bhavanisagar when l o ~  transformed values were used. But the maximum 

LOD value of 6.95 was obtalned at Colmbatore when square root transformed values 

were used. At this maximum LOD a maximum explanation of observed phenotypic 

variance was (23.9%) also obtained. Additive genetic model gave the maximum value of 

0.7984 for thls maximum LOD score, which corresponds to an increase of plant height by 

one cm when the P 1349-2 parent allele is present. 

Panicle circumference 

For panlcle clrcurnference one QTL was ident~fied on the bottom of LG 4. The panicle 

clrcumference QTL was observed between the marker loci XpsmSl2 and Xpsm344 when 

regressed against plant hcight and time to 50% stigma emergence at both locations. The 

significant LOD score for this QTL ranged from 2.46 to 7.46. The phenotypic variance 

ranged from 10.1 to 26.6%, depending upon the data manipulations used prior to QTL 

mapping. At the maximum LOD value (7.46) the additive effect of the allele from P 

1349-2 increased the panicle circumference by 6.5 cm. 



Panicle length 

ihls tralt had d s~ngle QTL. tvhlch IS locdted betireen the marker IOCI .Ypsmj68 and 

Ypvmjl? on LG 3 Nearly all types of transformat~on of data from horh locat~ons and all 

[he res~duals from different types of funct~ons detected t h ~ s  QTL T h ~ s  @I'L dt the LOD 

score of 6 5 2  evpla~ned 22  750 of the ohscned phenotyp~c Landnce dt Colmbatore 

rhousand-grain mass 

Two QTLs were ~ d e n ~ ~ f i e d  for thousand-gram mass These QTLs are both located on 

LG 4 but at d~fferent Intervals (,Ypsm306- .Ypsm4?lc and .Ypsm568- .Ypsm512). A 

rnaxlmurn LOD score of 7 4 was obtalned for thls tralt by using square root 

transformat~on of data from Bhavan~sagar when plant helght used bs a pred~ctor But the 

maximum portlon of observed phenotyp~c vanance ( 1  1 6%) was expla~ned when tlrne to 

50% stlgrna emergence was used as a pred~ctor of t h ~ s  tralt 

Grain yield per season 

One QTL for gram y~eld per season was mapped at the bottom of LG 3 T h ~ s  QTL was 

detected when gram y~eld per season was regressed on tlme to 50% stlyma emergence 

from both types of tra~sfotmat~on. Square root transformat~ons and log transfonnat~ons 

gave more or less slrnllar LOD scores ( 2  6) and R' values (10 0) They also exhlblted 

slmllar addltlve effects (0 SI), wh~ch correspond to an Increase of grain y~eld per season 

by 0 3 g/m2 when a P 1449-2 allele replaced that of PT 7328 



Grain yield per day 

rhree QTLs \\ere ldentlfied for prun );~eld per dab JI \a~.lous ~ n t c r \ ~ l s  on l.(j 1. These 

~ntervals are .'fpsf?rYJ to .Y)s~~rtiI. .\pstnj68 to .Yps1115l? ~ n d  .\j1~1rr306 to .\psn142lc. The 

middle QTL between marker loc~  .\psrrr568 and .Ypst~rSI?, recorded thc maxllnurn LOD 

(7.71) and explained the largest portlon of the obsened phenotypic ~anGice  (10.7). This 

\vis obta~ned by regressing grarn yleld per day J_qalnst llnlc to 5O"i,  stlgrna emergence 

uslng log-transformed data from Bhavanisagar. 

Productive tiller number 

:I maxlmum of four QTLs were obtalned for this tralt on four d~fferent linkage groups 

(LG 2, LG 4. LG 6 and LG7). The maximum LOD peak of 2.02 was found at Coimbatore 

uslng log transformation together with time to 50% stigma emergence as a function. A 

rnaxlmum of 15.44'0 for R' was explained by a slngle QTL, which was located on LC 2 

(between .Ypsr1132/ and .Ypsrn70Rh) with the additive effect of 0.6900 corresponding to a 

decrease of t~ller number by 0.3 m" when the PT 1449-2 allele was replaced for that of 

PT 732B at this locus. 

Single-panicle grain mass 

.Ypsrn84- .Ypsm6/2, ,Ypsm579- .Ypsrn613b and ,Yrrn9_2h- Xpsw618 are the three marker 

loci intervals accommodating QTLs for this trait on LC 4. LG 6 and LG 7 respectively. 

The QTL on LG 6 explained more of the observed phenotypic variance (15.4%) than 

other QTLs, and had a LOD value of 2.19. However the QTL on LG 4 had the highest 

LOD score (3.58) and explained 12.4 % o f  observed phenotypic variance. 
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LOD scores across seven pearl millet linkage groups 

[rgend P('R-parr~cle circumference. PI.-pan~cle.iength. SP(iM-s~ngle-paoiclr gram nlasc. 1'1'-producl~ve 11lier ~ n ~ m h e r .  
PH- plant he~ghl as predictor. _SEPH- time lo 50°c atig~nn emergence and plant he~ght as predictors 

Figure 2.1 : QTL LOD peaks for various traits using plant height and ti~rle to SO%, stigma cnlergcnce 
together with plant height as predictors of log-kansformed values from Coirnbatort: yield trial. 

2 3 4 5 6 7 

LOD scores across seven pearl miltal linkage groups 

Legend PCR-panicle circumference: pH-plant he~ght; PI.- panicle length: PI - product~ve t~ller number; SPGM- 
Flngle-panicle grain mass. -SE- time to 50% stigma emergence as predictor 

Figure 2.2: QTL LQD peaks for various lraits using time to 50% sligma emergence as a 
predictor of square root-transformed values from Coirnbatore yield trial. 









1 2 3 4 5 6 7 

LOD scores across seven pearl millet linkage groups 

I (;end 1 7 1  ticink! to 50% stigma emergence: PCK- p m ~ c l e  c~rcumkrencr ,  PL-pan~cle length. S I J ( i M -  ~ ~ n g l c - p a n ~ c l e  gram 
.,,I,.. PT- productlvr tlller number. P H -  plan1 he~ght as pre+ctor. _SF.PII- tllllr to 50% s!xgInn rlllergrl~ce and plant h e ~ g  
!.predictors 

I ilgure 3 1 : QTL LOD peaks for various traits using plant height and time to 50% stigma enlergence 
~wgethcr with plant height as predictors of log-lransfornled values li.orn Coimbatore yield trial. 

I 

1 2 3 4 5 6 7 

LOD scores across seven pearl millet linkage groups 

]Legend. GYD- grain yield per day. PCR- panicle circumference; PH- plant height, PI.- panicle length; PT- 
productive tiller number: SPFM- single-panicle grain mass: -SE- tlme lo 50% stigma emergence as predictur 

Figure 3.2: QTL LOD peaks for various traits using time to 50% stigma emergence as a 
predictor of logtransformed values from Coimbatore yield trial. 









2 3 4 5 6 7 

LOD scores across reven pearl mlllst linkage groups 

Lagend: PC'K- p a ~ ~ ~ c l r  c~rcumference: PL.- ~)aoiclr length. 1'OM- thousand-g~a~n mass. _SF.PH- ti111e to 50% stigma 
emergence and plant height as pred~ctors 

Figure 4.1 : QTL LO11 peaks for various traits using plant height and time to 50% stignla 
emergence as a predictor of square root-lransfonned values from Bhavanisagar yield trial. 

2 3 4 5 6 

LOD scores across seven pearl millet linkago groups 

]&lend: GY D- grain yield per day; GY- grain yield; PCK- panicle circumference, PH- plant height: PI,- panicle 
length. TGM- thousand gram mass: _SE- time to 50% stigma emergence as predictor 

Figure 4.2: QTL LOD peaks for various traits using days to 50% stigma emergence as a 
predictor of square root-transformed values from Bhavanisagar yield trial. 







l'able 16: QTL assoc~ated w1tl1 grab11 y~c ld-dr teml~n~~,g  !I-alts of pearl millet Inapplng progeny rcstc~oss 11yh11ds us~ng clnic tv SO?,, stlgnla 
emergence as  a predictor of  log-translbrmed values of other tralts at Bhavan~sagar. 

. .- 11nk) ,live ac -transToiiGd 
Trait Marker interval moue " *,&IS "ad:~tive effects - .  -- 

Grain yield per day Xpsn1568-Xpsm5 12 4 4.0 2.71 10.7 0.5208 3.3 g 

Grain yield Xpsn1568-Xpsm5 12 4 4.0 2.68 10.6 0.51 77 3.3 g 

Panicle circumference Xpstn5 12-.Ypsn1344 4 2.0 5.89 21 4 0.7378 5.5 cnl 

Plant height Xpsn15 12-Xpsnr334 4 4.0 2.83 9.9 0.5 148 3 3 c m  

Panicle lennth Xpsn15 12-Xpsn1344 4 0.0 5.9 1 20.1 -0.6947 0.2 cm 

Table 17: QTL associated with grain yield-determining traits of pearl millet mapping progeny testcross hybrids using plant heigl~k togethrr 
with time to 50% stigma emergence as a predictor of log-transformed values of other traits at Bhavanisagar. 

-- 
L~nkage Position LOD i t~ve ac -trans o r n i i  

Trait Marker interval 
WOUP " Z e c t s  "ad~itive etftkts - - 

Panicle circumference Xpsr115 12-Xpsr11344 4 2.0 2.90 11.3 0.5391 3 5 cnl 

Panicle length Xpstr15 12-.+st11344 4 0.0 ~- - 3.36 12.0 -- - 0.5381 0.3 cm 
- -  



1 2 3 4 5 6 7 

LOD scores across seven pearl m~llet linkage groups 

lrgend. GYD- gram yleld per day, PTR- pan~cle c~rcumference: PI: panicle length. 1'C;M- thousand-grain mass. 
.PI{- plant helght as predictor. SEPI I -  tlme lo 50% stigma emergence and plant height as predictors 

Figure 5.1 : QTL LO11 peaks for various traits using plant height and time to SO% stigma 
emergence as a predictor of log-transformed values from Rhavanisagar yield trial. 

8 '- G Y D  SE 

' GY-SE 

1 PCR SE 
I PH SE 

2 3 4 5 6 7 

LOD scores acroas seven pearl millet Ilnluge groups 

Legend: GYD- gram y~eld per day, GY- grain yield, PCR- pan~cle circumference. PH- plant height: PI.. panicle 
length: -SE- time to 501 stigma emergence as predictor 

Figure 5.2: QTL LOD peaks for various traits using time to 5090 stigma emergence as a 
predictor of log-transformed values from Bhavanisagar yield trial. 
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LOD scores across seven pearl milkt linkage groups 

Legnd: GYD- grain yleld per day:PCR- pmcle cucumference: PL- panicle length: TGM- ihousand grain mass: GY- grain yield; PH- plant height; 
-pH- plant height as predictor: -SE- time to 50% s t i p a  emergence as predictor: -SEPH- time to 50% stigma emergence and plant height as predictors 

Figure 5.3: Comparison of QTL LOD peaks for various traits using different types of predictors of log-transformed 
values fmm Bhavanisagar yield trial 





Table 19: QTL. associated witl&gra~n y~eld-detemi~nlng l ~ d ~ t s  ofpearl m~llel nlapplng progeny testcross 11yb11ds uslng Ilnle to SO':.. st~gnia 
eniergence as a predictor of square I-ool-lransfonlred values of other trails at across-localions. 

Marker interval L'nkage Position LOD ltlve axitrans o r n l T  
Trait 

group R' ",":ccts 'addit~ve eLects 

Panicle circumference Xpssz5 12-Xpsnz344 4 0.0 5.97 21 -0 0.7059 0.5 cm 

Plant height Xpsn15 12-Xpsnz344 4 4.0 6.48 22.5 0.7752 0.6 cnl 

Panicle length Xpsnz568-Xpsn15 12 4 6.0 6.22 22.1 -0.7406 0.5 can 

Single-panicle grain mass Xpsnz84--l(psn1612 4 4.0 2.78 
-. . - - 

9 0 0.4812 0.2 g 
- 



1 2 3 4 5 6 7 

LOD scores across seven pearl millet linkage groups 

legend PCR- pan~cle c~rcumferance: PL.- panlclz length: PT- product~ve tlllrr numher. SPGM- s~nglz-patiiclr 
grain ~nass. _PI+- plant he~ght as predictor 

Figurc 6.1 : QTL LOD peaks for various traits using plant heighl as a predictor of square 
root-transformed values from across-locations 

2 3 4 5 6 

LOD scores across seven pearl millet linkage groups 

Legend: PCR-panicle circu~nference; PH- plant height; PANICLE LENGTII- pan~cle length: SPCM- single 
panicle grain mass: _SE- time to 50% stigma emergence as predictor 

hgure 6.2: QTL LOD peaks for various traits using time lo 50% stigma emergence as a 
rredictor of square root-transformed values from across-locations 









1 2 3 4 5 6 

LOD scores across seven pearl millet linkage groups 

Izgend.  PCR- pamcle clrcumferencr: PI.- pan~cle  length. PI'- product~ve t~ller numbel. SPOM- s~ngle-panlclr 
gram mass, _pH- planl he~ght  as predictor: _SEPII- tlme to 50% sngma emergence and plant height as predictors 

Figure 7.1 : QTL LOD peaks for various traits using plant height and time to 50% stigma 
emergence as a predictor of log-transfornmed values from across-locations 

2 3 4 5 6 7 

LOD scores across seven pearl millet linkas4 groups 

k g e n d :  PCR- panicle c~rcumference. PH-plant height. PL- panlcle length, SPGM- single-panicle gram mass: _SE- 
h e  to SOW stigma emergence as predictor 

Figure 7.2: QTL LOD peaks for various traits using time to 50% stigma emergence as a 
predictor of log-transformed values from across-locations 



2 3 4 5 6 7 

LOD scores anou seven pew1 millet linkage groups 

Legend. PCR- pan~cle cucumference: PL- pan~cle length: PT- productive tiller number: SPGM- s~ngle-panicle gain mass; PH- plant height; -pH- 
plant height as predictor: _SE- tirnr to SO% stlgma emergence as predictor: -SEPII- time to 50% stigma emergence and plant height as pd~Ct06 

Figure 7.3: comparison of QTL LOD peaks for various traits using different types of predictors of log-transformed 
values from across-locations 



1.7. QTLs for downy mildew resistance 

Data on total and d~seased plant counts per plot were converted to disease incidence (%) 

and arc-sin of this number in radians. These values were used for mapping QTLs for 

downy mildew resistance. A total of five QTLs were obtained from Coimbatore, 

Bhavanisagar and across-locations. LOD peaks are shown in Figures 8.1-8.3. 

Coimbatore 

Two QTLs were mapped uslng downy mildew screening results from Coimbatore. Both 

mapped to LG 2 at different intervals. The QTL located between the marker loci 

.Ypsm708a and Xpsm706 had the maximum LOD score (4.77) and explained as much as 

18.9% of the observed phenotypic vanance. This was obtained from arc-sin transformed 

values. The P 1449-2 allele at this locus mean was associated with lowerir~g of disease 

incidence by 2%. This QTL for disease resistance behaved largely as if it was dominantly 

inherited (Table 23). 

Bhavanisagar 

This location also had two QTLs but situated on different linkage groups, i .e, on LG 1 

and on LG 4. The QTL at LG 4 had a higher LOD score (3.69) and explained a greater 

portion of the observed phenotypic variance (41.5). This QTL is mapped between marker 

loci Xpsm464 and Xpsm716, and was inherited recessively. The P 1449-2 parental allele 

at this QTL had an additive effect of 2% mean disease incidence (Table 24). 

Across-locations 

Totally two downy mildew resistance QTLs were identified for across-locations data. 

One was similar to that of the QTL found both at Coimbatore and Bhavanisagar, which 



was located in LC 2. Another QTL. a new one was mapped from across-locations data. 

which was not found In ~ndividual locations. This QTL has  Identified using multiple 

QTL model by fixing the previously mapped QTL, wh~ch located between the marker 

loci Xpsm 7080 to Xpsm 706. The command "sequence [.Ypsm 7080- .Yp'psm 706:additivel 

[all]" was used to get this new QTL. The program fixed first QTL at ;his location and 

identified the'second QTL wlth the LOD value of  4.67, which was more than 2 to that of  

the fixed QTL (Table 25). 





1 2 3 4 5 6 7 

LOD scores across seven pearl millet linkage groups 

1,egznd. C'O- C'oimbatore locat~on. _PER- percentage. _ARC'- r td~ans ol arc-s~n 

Figure 8.1: QTL LOD peaks for downy mildew resistance from Coimbatore ttial 
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LOD scores across seven pearl millet linkage groups 

Legend BHA- Bhavan~sagar locatton _PER- percentage. .AR('- radlans ot arc-sln 

- BH4PER 

BHA ARC 

Figure 8.2: QTL U)D peaks for downy mildew resistance from Rhavanisagar trial 



LOD scores across seven pearl millet linkage groups 

U g m d  0. Cauobdmre location: B H A  Bhannirapr locanon; A C -  across locat~ons. P E R -  pmml.; - a C -  rad~ua of arc-sin: 
MULTI- multiple QTL model for radians of arc-sin values 

F i s h  8.3: Comparison QTL UID peaks for downy mildew resistance from Coimbato~.  Bhavuusaga and acms-lmtioar 





5. DISCUSSION 

Mean performance of the mapping population testcross hybrids 

Mapping population testcross hybrids were raised at two locations in Tamil Nadu, 

namely Coimbatore and Bhavanisagar. The mean performance for all eleven observed 

tram was ri~ore or less s~milar at both locat~ons. Analys~s of variance study indicated high 

sl~nlficant vanatlon for the mean performances of individual entrles for all the traits 

under study at both test locations, b i t  that the interaction between these two locations and 

the individual entries (genotypes) was not significant for any of the traits. This may be 

due to the physical closeness of the places where trials were conducted and the similarity 

In sowing dates and agronomic practices used for the two tnals. The first trial location 

Coimbatore, located at 1 I' latitude and 77' longitude and the second trial location 

Bhavanisagar. located at 11' 08' latitude and 77' 29' longitude. The soil types and 

packages of agronomic practices employed were simllar. so that the environment may not 

have had much opportunity to differentially influence the mean performance of the 

mapplng population testcrosses. 

Trials were conducted at different locations to identify or elucidate the effect of 

rhe environment and assess the relative importance of genotype x environment 

~nteraction effects and genotype effects, because differential expression of a phenotypic 

trait by genotypes across environments, or genotypic x environment interaction is an old 

problem of primary importance for quantitative genetics and plant breeding trials 

(Eberhard and Russel, 1966; Falconer, 1981; Via and Lande, 1987; Tiret et ul., 1993). 

Though the mean performances were similar for the two test locations. data from 

Bhavanisagar showed a slight increase in mean performance for the following traits: plant 



height, panicle circumference, productive tiller number, grain yield per season, grain 

yield per day, single-panicle grain mass and single-panicle gram number. Other traits like 

time to 50% stigma emergenc,e. panicle length and grain number per unit area registered 

very similar mean values at the two test locations. 

Though the data from two location trials were not significantiy different, the 

existing variation between two location trials may give different results on QTL mapping. 

With this precaution, QTL analysis was done for individual locations entry means as well 

as pooled means across-locations. 

It is important to realize that heritability is a property not only of a character but 

also of the population in which this character was measured and of the environmental 

circumstances to which individuals are subjected prior to this measurement (Falconer, 

1960). Also estimating heritability for a particular trait is the prime-most concern for 

even a simple selection scheme. This is applicable for QTL mapping also. The reliability 

of the QTL mapping depends very highly on the heritability of the individual traits 

(Kearsy and Farquhar. 1998). 

Heritability (plot basis) studies from the individual location data sets revealed that 

all the traits registered heritability (plot basis) values greater than 50% excluding for 

single-panicle grain number and grain number per unit panicle surface area. At 

Coimbatore thousand-grain mass registered the highest heritability (plot basis) value of 

93% followed by panicle circumference (75%). Other traits namely time to 50% stigma 

emergence, plant height, panicle length, ~roductive tiller number, grain yield per season, 

Qraln yield per day and single-panicle grain mass showed moderate heritability values 

ranging from 40 to 70%. Single-panicle grain number and p i n  number per unit panicle 



surface area were the two tralts having poor heritability values. .4t Bhavanisagar plant 

height recorded the highest heritability (plot basis) value of 95% followed by 

thousand-grain mass, which ,had a heritability value of 93%. When compared to 

Coimbatore location, the her~tability values for all the traits were higher in Bhavanisagar. 

- 
Broad sense heritability values for pooled locations were higher for all the traits than plot 

bass heritability values obtained from individual locations data sets. Single-panicle grain 

number and gram number per un~t  panicle surface area too had higher broad-sense 

hentability values (>SO%) from the pooled data sets. 

Correlation studies 

Correlation studies provide indications of the extent of linkage and pleiotropism of genes 

controlling the different traits. Grain yield per season was taken as the dependant variable 

and the other traits were correlated with this. Plant height, panicle circumference, 

thousand-grain mass, grain yield per day, single-panicle grain mass, single-panicle grain 

number and grain number per unit panicle surface area were the traits positively 

correlated with grain yield per season. Among these traits, ga in  yield per day registered 

the highest significantly positive correlation with grain yield per season at individual 

locations as well as with entry means from pooled analysis of data. This was followed by 

single-panicle grain mass, thousand-grain mass, panicle circumference and plant height 

which had similar values towards the contribution to grain yield per season. Improvement 

of grain yield per season may be achieved by increasing values of these positively 

correlated traits. 

Time to 50% stigma emergence, productive tiller number and panicle length were 

the three traits associated negatively with grain yield per season. Among these traits time 



to 50% stigma emergence had the strongest negative correlat~on w~th  grain yield per 

season. Selection of early flowering lines may enrich the hybrid yield potential of pearl 

m~llet genotypes in this mapping population, 

When time to 50% stigma emergence was taken as a dependent variable, 

productive tiller numbers and panicle length were associated positively wTth this trait. All 

other traits exhibited negative relationships with time to 50% stigma emergence. Plant 

he~ght was also considered as a dependent variable and its relationship with other traits 

was assessed. Grain yield per day and panicle circumference had higher positive 

associations with plant height. Time to 50% stigma emergence, productive tiller numbers 

and panicle length were the three traits associated negatively with plant height. 

From these correlation studies it can be concluded that time to 50% stigma 

emergence, productive tiller numbers and panicle length had strong associations with one 

another. This may be due to the linkage or pleiotropism among these traits. As they have 

negative associations with grain yield per season, it can be concluded that selection of 

early flowering types with shorter panicles and less number of panicles per plant will 

improve the total grain yield of hybrids produced by crossing PT 4450 with progeny 6om the 

cross of PT 732B and P 1449-2. Correspondingly, selection of tall genotypes having good 

panicle circumference, single-panicle grain mass and thousand-grain mass would likely 

directly improve the grain yield potential ofhybrids on this mapping population. 

Mean performance of downy mildew screening trials 

Mean disease incidence values were converted into disease incidence percentages and 

radians of arc-sin transformed percentage values. The disease incidence percentage was 



more severe at Bhavanisagar than at Coimbatore. Both locations registered significant 

differences for disease incidence percentages between mapping population progenies, as 

well as for radian values. Heritability (plot basis) values for these two measures of 

disease reaction were also high, giving confidence of success in mapping QTLs 

conferring resistance against downy mildew disease. 

Mapping QTLs 

Knowledge gamed from QTL mapplng expenments is of greatest interest to plant 

breeders if the results are directly applicable to practical breeding programs. Therefore, 

when such experiments are initiated, one of the most important questions is the choice of 

population for phenotyping experimental materials. For field trials. we used testcross 

progenies related to a commercially important hybrid, looking for opportun~ty to improve 

upon this combination, in a manner that comes closest to the applied plant breeder's 

situation. In applied breeding programs, the tester is often an elite inbred line chosen 

because of its use as a commercial hybrid parent. Therefore mapping of QTL for such 

testcrosses promises (i) an insight into the relative importance of additive effects with 

regard to testcross performance and their underlying genetic factors and (ii) the design of 

a more efficient breeding strategy (Schan er al., 1994). So, this study formulated to 

~dentify opportunities for favourable contributions in terms of additive effects of the 

inbred P 1449-2 towards improvement the hybrid performance of seed parent PT 732 in 

combination with PT 4450. 

Grain yield in cereals is generally controlled by a number of quantitative trait loci 

(QTLs) and is affected by environmental factors, making it difficult to manipulate and 

improve in plant breeding programs. Grain yield can be dissected into a number of 



component traits such as thousand grain number, productive tiller number, panicle length. 

etc depending upon the crop concerned. These component traits are also under the control 

of QTL and the effects of individual QTLs on phenotypic variation are relatively small. 

Some QTLs however are less environmentally sensitive and have high heritabilities than 

grain yield itself (Bezant et al.. 1997). Further, the standard relationship between various 

yield component traits are not found for all QTLs, so it should be possible to identify 

specific QTLs that can be manipulated wlthout adversely affecting otherwise correlated 

traits (Hash. 2000; Yadav er al. ,  2002b). Therefore, while looking for QTLs controlling 

grain yield, QTLs for yield components should also be determined to provide more useful 

~nformation. 

QTL for time to 50% stigma emergence 

From the MAPMAKER program, a single QTL was identified on linkage group (LG) 4 

for time to 50% stigma emergence (Figure 9.1). This QTL had an additive effect of 0.5 

days with the earlier flowering allele inherited from parent P 1449-2. So this parent 

contributed early flowering to the testcross hybrids with elite. pollinator PT 4450. Using 

this genomic region it may be possible to transfer the early flowering allele from 

P1449-2 to PT 732A/B. Yadav et al., (2002a) mapped two QTLS for time to 50% stigma 

emergence in pearl millet with one situated near the bottom of LG 4 and the other 

mapped to the bottom of LG 6. 

QTL for plant height 

A single QTL was mapped for mapping population testcross hybrids plant height. This 

QTL mapped to the bottom of LG 4 (Figure 9.1). A significant LOD score of 6.95 was 



recorded from the Colmbatore data set. The allele from P 1449-2 had s positive additive 

effect of 6 cm for this trait, and increased the plant height of hybrids. This particular QTL 

explained 24% of the observed p;~enotypic variance for testcross hybrids plant height at 

Coimbatore. 

This QTL is likely to be considered as d2 dwarfing gene (~zhaguvel .  2001), for 

which mapping population parents PT 7328 and P 1449-2 have the dwarf and tall alleles, 

respectively. Dwarf phenotypes can be considered as a consequence of mutations that 

occur in genes involved in plant height expression (Lin et al., 1995). Dwarf mutants of 

pearl millet have been studied (Kadam er al., 1940; Burton and Forston. 1966; Appa Rao 

er ul., 1986) and at least four single recessive genes have been reported i .e.,  dl and d~ 

(Burton and Forston, 1966) and dl and d ,  (Appa Rao el al., 1986). with possible presence 

of additional modifying factors. The d2 dwarfing allele may have a pleiotropic effect 

since d2 near-isogenic lines have longer and narrower panicles, wider leaves and smaller 

seeds then their tall counterparts (Rai and Hanna, 1990). 

The d2 dwarfing gene mapped to the bottom of the LG 4 in the mapping 

population IP 18293 x Tifl 238D1 (Azhaguvel, 2001). The d2 dwarfing was inherited 

from the parent 1P 18293. The parent Tiff 238Dl had one more dwarfing gene, d,, which 

mapped to LG I.  From the current study, it was clear that the d2 dwarfing gene from PT 

732B had a significant contribution to height reduction in the testcross hybrids with elite 

pollinator PT 4450, suggesting that PT 4450 and its hybrid with PT 7328, i.e., CoHCU-8 

are infact also genetically dwarf at this locus. 



QTL for panicle circumference 

For panicle circumference. one QTL was identified in the middle of LG 4. This QTL was 

detected using different rransfoimations and using Coimbatore. Bhavanisagar and 

across-locations data sets, after regressing out the effects of time to 50% stigma 

emergence, plant height and time to 50% stigma emergence together with plant height as 

predictors of panicle circumferences. The highest LOD peak was oblained from the 

Co~mbatore data set using time to 50% stigma emergence as a predictor. At this LOD 

score, the QTL had an additive effect of 0.9, with increased panicle circumference 

inherited from parent P 1449-2. This QTL has a favourable effect on hybrid performance 

so it will be useful to introgress this genomic segment from P 1449-2 into PT 7328. 

QTL for panicle length 

Panicle length was also observed to be largely under the control of a single QTL and this 

QTL also mapped to LG 4. Nearly all the predictors allowed detection of this QTL in the 

interval between markers Xpsm.568 and XpsmSI2. The P 1449-2 allele for this QTL 

decreased the panicle length of hybrids, in agreement with the observations of Rai and 

Hama (1990) on the effect of the tall allele at the nearby d2 dwarf gene locus on this 

character. 

QTLs for productive tiller number 

For productive tiller number, up to four QTLs were obtained, which were mapped to four 

different linkage groups (Figures 9.1 and 9.2). All four QTLs explained similar portions 

of phenotypic variation, but the QTL located on LG 2 explained a comparatively higha 



Ponlon ( 15 4%) For this QTL the allele from P 1449-2 reduced the number of productive 

t~llers 

QTLs for thousand-grain mass 

Two l~nked QTLs on LG 4 were mapped for thousand-gram mass Thesetwo QTLs were 

detected using Bhavanlsagar data and both types of transformat~on The QTL s~tuated In 

the marker interval between Ypsm568 and Xpsm512 expla~ned the h~gher proportion 

( 11  6%)  of observed phenotyp~c vanatlon The a d d ~ t ~ v e  effect of thls QTL IS 0 3 g, wh~ch 

IS tnhented from the tall parent P 1449-2 Usually dwarf plants, reduced the gram mass In 

the hybnds lead to reduct~on In y~eld Desp~te lower gram mass and gram y~eld  In the 

dwarf plants, ~t IS posslble to produce dwarf hybnds w ~ t h  y~elds equal to the tall hybnds 

by selection of su~table poll~nator Breed~ng programs on dwarf pexl  mlllet should be 

successful ~f they are des~gned to take advantage of poslt~ve ~nteract~ons between the 

dwarf hab~t and speclfic genet~c background (B~d~nger  and Raju, 1990) 

QTL for grain yield per season 

For gram y~eld per season a s~ngle QTL was mapped near the bottom of LG 4 It 

explained 10% of observed phenotyp~c vanance The favourable allele for thls QTL was 

~nhented from parent P 1449-2, whlch had the a d d ~ t ~ v e  effect of 0 Sl that 1s equal to a 

gram y~eld Increment of 3 3 g m 2  At the plant populat~on denslty used In thrs study 

(50.000 plantsiha) t h ~ s  corresponds to a y~eld advantage of 3,300 giha = 33 kgha 

Transfer of t h ~ s  genomlc segment may be useful to Improve the gram y~eld of the hybnd 

of PT 732A x PT 4450 = CoHCU-8, but would clearly be associated w ~ t h  an Increase In 



plant height due to the strong l~nkage of  this QTL to the tall allele at the t i :  dwarfing gene 

locus. 

QTLs for grain yield per day 

Grain yield per day can be considered to be an important trait, where i t  explains the 

source and ,sink relationship aAer flowering. Up to three QTLs were found to be 

associated with g a i n  yield per day in this study. These QTLs were distributed on LC 4 at 

different positions. Of these QTLs one was detected from the Coimbatore data set and the 

other two were detected from the Bhavanisagar data set. QTLs from Bhavanisagar using 

log transformation and time to 50% stigma emergence as a predictor, explained a higher 

portion of the observed phenotypic variances (10.7%). The corresponding additive effect 

for this locus was 0.52, i .e.,  0.3 g per day of  grain yield with the favorable allele inherited 

from the parent P 1449-2. 

QTLs for single-panicle grain mass 

Four QTLs for single-panicle grain mass were obtained on LG 4 (2 QTLs), LG 6 (1 QTL) 

and L C  7 (1 QTL) (Figures 9.1 and 9.2). Data from Coimbatore detected all the three 

QTLs, where as across-locations data produced only two QTLs, r .e . ,  those mapping to 

LG 4 and L C  7. In all the cases, the QTLs for single-panicle grain mass co-mapped with 

QTLs for productive tiller number, with the parental alleles associated with increased 

single-panicle grain mass appearing to have negative pleiotropic effects on productive 

tiller number. This negative relationship between the two traits is commonly observed in 

pearl millet. 
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Figure 9.2: Genetic linkage map of PT 732 x P 1449-2 showing e - productive tiller number 
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QTLs for downy mildew resistanre 

Pearl mlliet downy m~ldew has hrstor~cally been considered to be a quantltatlve trart, 

slgnlficantly affected by the 2nvlronment (whlch 1s often confounded W I I ~  pathogen~c 

vanablllty differences) Host plant reslstance agalnst downy mlldew was cont~nuously 

dlstnbuted In the F? Fq progenies used In t h ~ s  study as has been found in most prevlous 

studles on the genetrcs of pearl m~llet downy mildew reslstance (S~ngh et a l .  1980, 

Basavara~u el al , 1981, Dass er a1 . 1984, Shlnde et a!. 1984, Jones er 01,  1995) 

At least five different QTLs were mapped for downy mlldew resrstance on four 

linkage goups  uslng dlsease rncrdence percentage and radlan values (Frgures 10 1 and 

10 2 )  Of these, two QTLs were ldentrfied from Colmbatore data mapped to LC 2, two 

QTLs from Bhavanlsagar data mapped to LC 1, and LC 4 and one QTL From across- 

locations data mapped to LC 7 

QTLs from the Colmbatore data and across-locat~ons means were lnhented In an 

additlve fashlon Alleles from P 1449-2 contnbuted t h ~ s  reslstance However, the two 

QTLs detected from Bhavanlsagar were lnhented recess~vely and parent PT 732 was the 

contnbutor of thls reslstance The majonty of prevlous research on the genetlcs of downy 

m~ldew res~stance In pearl mrllet has found dominance to be an ~mportant component of 

reslstance (Appadura~ el (11, 1975, G111 et 01,  1978, Pethanl er u l ,  1980, Basavaraju 

el a1 , 198 1, Shlnde et a1 , 1984, Mehta and Dang, 1987) and over dom~nance has also 

been detected (Slngh er a1 , 1978, Basavaraju et a1 , 1981, Dass er a1 , 1984) However, 

the inheritance of downy rnlldew reslstance In pearl millet 1s at least occaslonall~ found 

to be recessive (Slngh er 01,  1978) and recesswe reslstance genes, although unco-on, 

have been found In other plant-pathogen systems (Day. 1974, De Wltq 1992) 







Unfortunately. whlle useful In hybr~d seed product~on plots, such recessively lnhented 

resistance 1s unl~kely to contr~bute pos~t~vely to hybr~d performance In tamers field 

General discussion 

total of 18 QTLs were obtained from t h ~ s  study, uslng square root transformat~on and 

log transfomatlon of agronomlc data sets from Colmbatore, Bhavamsagar and 

across-locations Between these two transfonnat~ons, the square root transfonnat~on gave 

74 QTLs and log transformation gave 23 QTLs (Table 26) Out of three pred~ctors ( I  e , 

time to 50% stigma emergence, plant helght and tlme to 50% stlgma emergence together 

wlth plant helght), time to 50% stlgma emergence produced 34 QTLs followed by plant 

helght whlch revealed 21 QTLs and tlme to 50% stlgrna emergence together w ~ t h  plant 

helght mapped 6 QTLs Out of these 18 QTLs, only seven genomlc Intervals were 

respons~ble for all the QTLs controlllng agronomlc traits ( I  e , some of the genomlc 

reglons were respons~ble for controlllng more than one tra~t) Out of these seven genomlc 

reglons, LG 4 had four and LG 2, LG 6 and LG 7 each had one genomlc reglon 

contnbut~ng to the detected QTLs 

In LG 4, the Interval flanked by marker loc~  Xpsm568 and Xpsm512 had the 

control over five tralts, lncludlng graln y~eld per season The other tralts controlled by 

this genomlc reglon were panlcle circumference, panlcle length, thousand-gram mass and 

gram y~eld  per day Marker Interval Xpsm84 to Xpsm612, wh~ch 1s also on LG 4 

controlled three tralts, 1 e , productive tlller number, graln yleld per day and 

s~ngle-panlcle gram mass It seems hlghly l~kely that genes or gene blocks in these two 

regions may have ple~otrop~c effects on these traits SO transfemng these particular 









reglOns, which are controll~ng major tralts, to the parent PT 732 may be advantageous 

~ n d  reasonable since In most cases P 1449-2 was found to contribute the favorable allele 

But from the correlat~on stud~es 11 was found In the mater~dl studled that pan~cle 

length and productlve t~ller numbers were assoc~ated w ~ t h  each other and both are havlng 

negative relatlonshlp with y~eld So refinement of these genomlc reglo-ns may prov~de 

more ~nfomlatlon about ~ n d ~ v ~ d u a l  tra~ts. whlch may be controlled by d~fferent QTLs Of 

course. refinement of the map posltlons of QTLs controlling these tram w ~ l l  requlre 

genotyp~ng and phenotyplng a substant~ally larger mapplng populat~on So further 

analysis of the exlstlng data sets may be requlred to just~fy the substantla1 costs that thls 

refinement would requlre 

Although d~fferent QTLs were obtaned from the two d~fferent test locat~ons, it IS 

better to restnct d~scuss~on of ap?l~cat~on to the QTLs from the across-locat~ons due to 

stat~st~cal constraints Across-locat~ons data set produced only SIX QTLs, which mapped on 

LG 4 and LG 7 and only four genomlc reglons [three on LG 4 (Xpsm568-Xpsm512, 

Ypsm84-Xpsm612 and 4psmjl.?-Xpsm344) and one on LG 7 (Xrm9-2b-Xpsrn618)l were 

respons~bie W ~ t h  respect to traits, plant he~ght, pmcle crrcumference, pmcle length, 

productlve tlller number and angle-pan~cle gram mass were the tralts for whlch QTLs 

could be mapped from analys~s of the across-locat~ons entry means 

Tralts such as plant he~ght, panlcle circumference and single-~anlcle grain mass 

were posltlvely correlated w ~ t h  gram y~eld and gram yleld per season and these regions 

were controlled by three different reglons (two controlling slngle-panlcle grain mass and 

the other controlling plant helght, pan~cle length, and panicle circumference) So 



transferring these genomic regions may offer the chance to Improve grain yield 

performance of hybrlds of PT 7 3 2 8 .  

Opportunities for Marker-Assisted Selection (MAS) to improve CoHCU-8 

The advent of  molecular-marker based techniques has had a large impact on quantitative 

genetics. Marker-based methods applied to segregating populations have provided us 

with a means to locate quant~tative trait loci (QTLs) to chromosomal regions and to 

estimate the effects of QTL allele substitution (Lander and Botsteln, 1989). The ability to 

estimate gene effects for a quantitative trait can be very useful for the design and 

dpplication of new, more efficient, breeding strategies. .A new selectlon strategy, 

marker-asslsted selectlon (MAS), has been proposed by many authors as a way to 

increase gains from selection for quantitative traits (Tanksley, 1993; Lee, 1995; Kearsey - 
and Pooni, 1996). In backcross breeding programs, it has been shown that MAS can be 

effective in reducing linkage drag and optimtzing population sizes, by permitting 

effective selection against the donor genome except for allele(s) in the genomic region to 
-.-. - 

be Introduced from the donor MAS can also Improve selectlon for qudntltat~ve tralts by 

selecting for the presence of spec~fic marker alleles that are llnked to favorable QTL 

alleles that would be othenv~se difficult to select for phenotypically (Berloo and Stam, 

1998) Published reports of successful appllcatlon ofthls strategy to Improve hybnd yleld 

performance are just beginning to appear. 

From this study, it is clear that different regions of pearl millet genome are 

specifically associated with grain yield component traits such as plant height, panicle 

circumference and single panicle-grain mass when across-locations data was considered. 

These traits were positively correlated with grain yield and grain yield per season. These 



three genomic regions also explained significant portions of observed phenotypic 

~ariance for their respective traits and these traits all had high heritab~lity values. Soller 

and Beckmann (1990) stated !hat MAS for quantitative traits w ~ t h  high h2 would not 

necessarily be as efficient as conventional breeding. However, for a quantitative trait with 
y-- 

hlgh-e, MAS could still be effective after major QTL controlling the tr'lit are fixed and 

the h2 of remaining genetlc variation is reduced (Paterson et al., 1991). 

The parent PT 732A serves as the female parent for producing conunercial hybrids 

(hybrids X6 and CoHCU-8) that have been released h m  Tamil Nadu Agricultural 

University. So improving the yield potential of PT 732B (maintainer of PT 732A) may 

usher in new ways for increasing :he grain yield of hybrids that can be produced for 

Tamil Nadu using this seed parent. The QTLs identified from this study can be used in a 

maker-assisted backcrossing program for hybrid parental line improvement because their 

effects have already assessed in testcrosses to the best available hybrid produced from 

crosses onto PT 732A. So marker-assisted backcrossing of P 1449-2 alleles for putative 

QTLs on LG 4 and LG 7 into the PT 732B background may be effective to improve the 

y~eld potential of hybrids produced on PT 732A. Yadav et al. (2002a) suggested a similar 

strategy in pearl millet to transfer the drought tolerance QTLs into elite pollinator inbred 

H 771833-2 (male parent of early-flowering released hybrid HHB 67) using marker- 

assisted backcrossing to introgress genomic segments from donor PRLT 2/89-33. 

To obtain durable resistance for downy mildew there are two ways. One is 

pyramiding genes from all known sources (Jones et al., 1995) and the second possibility 

is the production of hybrids that are genetically heterogeneous for disease resistance, thus 

mimicking the durable resistance of open-pollinated cultivars (Witcombe and Hash, 



2000) This could be accompl~shed by produc~ng a set 01 backcross I~nes, each d~ffenng 

for d ~ l n g l e  resistance gene. and allow~ng these l~nes to recomblne durlng mult~pllcation 

of the male sterile Ilne breeder seed In the hybr~d seed product~on cham Incorporating 

more than one dom~nant gene effective agalnst pathogen populdt~on Into each component 

line may be expected to Increase reslstance durab~llty 

Hash el (2000) d~scussed an alternative procedure of marker-ass~sted transfer 

of QTLs In pearl mlllet I he first successful appllcat~on of marker-asslsted select~on for 

pearl m~llet has been enhancement of downy m~ldew reslstance of Inbred poll~nator 

H 771833-2 (male parent of popular early-matunng pearl m~llet hybnd HHB 67) Several 

Improved verslons of thls poll~nator have been developed at ICRISAT using thls "fast 

track" marker-assisted backcross procedure (Sharma, 2001) T h ~ s  has been demonstrated 

to be a tlme and cost eftic~ent route for the appllcatlon of marker-based downy mlldew 

res~stance breed~ng In t h ~ s  crop Such approaches may be warranted to Improve the 

d~sease reslstance of e l~ te  hybr~d parental l~ne  PT 732B and 11s male-stenle counterpart 

PT 732A 

We have ~dentltied the preclse locat~on of QTLs by ordinary l~nkage mapp~ng, 

wh~ch has become a standard startlng polnt for map-based clon~ng (Tanksley er a l ,  

1995) In plants, several econom~cally ~mportant genes have been Isolated by map-based 

cloning, lncludlng a photopenod-sens~t~ve gene (flowering gene) In Arahldo~sls 

(Puttem111 et a / ,  1995) However, ~t would be reasonable now to confirm these QTL 

locations using CIM (Composlte-~nterva1 mapp~ng) methods as lm~lemented In the 

QTL Cartographer and PLABQTL software packages 



Most genetlclsts and breeders consider QTLs to be chromoson~al locations of  

indicldual genes or goups  of  genes that influence complex traits (Stuber er ul., 1999) -- 
Although it is often tac~tly assumed that a QTL represents a single genetic determinant 

(Or factor), there are examples of Individual QTLs that have been resolved into multiple 

genetlc factors by recombination (Graham et 01.. 1997; Yamamoto et ul: 1998). For the 

rnanlpulation of the vast majority of QTLs in plant breeding programs. it may not be 

Important to determine whether the QTL represents a single genetic factor or a cluster of 

tlghtly linked genes. However, ~f cloning of specific QTLs is paramount to their 

ut~lization, then the chromosomal location must be limited to a manageable piece of DNA 

(Paterson, 1998) 

Recent advances in molecular genetics have promised to revolutionize 

agricultural practices. As stated by Lande and Thompson (1990) "There are, however, 

several reasons why molecular genetics can never replace traditional methods of 

dgncultural improvement. but instead should be integrated with conventional methods to 

obtaln the maximum improvement in the economic value of domesticated populations." 

Their analytical results, as well as the more recent computer simulations and the limited 

empirical results, however, are encouraging and support the use of DNA-based markers 

to achieve substantial increases in the efficiency of artificial selection. 





6. SUMMARY 

Pearl millet [fet~t~rserlrt?r glrrarto?~ ( L . )  R. Br.] is an Important staple food crop for 

rnlllions of rural people living in semi-arid regions of tropical and sub-tropical Asia and 

Africa. In parts of USA. South Amenca and Southern Africa it is cultiva_ted for feed and 

forage purposes. Pearl m~llet is a crop that can be grown in adverse agro-climatic 

conditions like drought. heat and infertile so~l .  It is the only crop that gives assured 

harvest to the farmers whose subsistence is totally dependant on farming in hot, dry 

marginal environments. Among the diseases affecting pearl millet, downy mildew is the 

most devastating. This is caused by the pseudo fungal pathogen Sclerospora graminicola 

(Sacc.) J .  Schrot.. 

Improvement of yield and breeding for resistance to pests and diseases are the 

prime concerns of the breeders. This study was designed to identify genomic regions 

from donor P 1449-2 with the potential contribute to yield increments in the genetic 

background of released hybrid CoHCU-8 and also for downy mildew disease resistance. 

One hundred and thirty-six F2-derived Fd mapping population progenies of a pearl 

millet mapping population (skeleton-mapped F2 individuals) obtained from a cross of 

PT 732B and P 1449-2 were used as a source population for this study. PT 4450 is an 

elite pollinator line that produces an agronomically superior released hybrid (CoHCU-8) 

when crossed to PT 732A. It was used as a pollen source for crossing with these FJ 

self-bulks. Testcross hybrids produced from these crosses were raised for the purpose of 

phenotyping during the rainy season (October, 2001) at two locations in Tamil Nadu: 

Tamil Nadu Agricultural University, Coimbatore and Regional Research Station, 



Bhavanisagar. For downy m~ldew screening, selfed seeds from the FA self-bulks were 

raised at the two above-ment~oned locations during the rainy season of 2001. 

Results from the yield.trials showed that there was significant variation for all 

observed traits within the set of mapplng population testcrosses at each location, and 

there was no sign~ficant genotype x environment interaction for any of tfie 11 agronomic 

tralts considered in this study. Hentab~lity estimates for individual traits from the y~eld 

trials at two different locations and pooled data across these two locations had reasonably 

h ~ g h  values (>SO%), which were sufficient to permit QTL mapping procedures to identify 

genomic regions contributing to the observed variability. Grain yield per season was 

positively correlated with most of the observed tram including plant height. But time to 

50% stigma emergence, productive tiller number and panicle length were associated 

negatively with grain yield per season. 

From the downy mildew screening trials, the data set 6om the two locations each 

rvh~bited s~gnificant genetic differences, but there was also significant genotype 

x environment interaction indicating that the vimlences constitutions of the pathogen 

populations at these two locations were different. The heritability (plot basis) values were 

also high enough to do the QTL analysis. 

Yield trial data from the two locations were subjected to two types of 

transformations namely, square root and log, so as to minimize the heterogeneity in the 

data sets. Improvement of yield is a complex process. To minimize this complexity and 

facilitate identification of QTLs that d ~ d  not directly correspond to major genes affecting 

plant height and flowenng time (which are relatively simply inherited traits known to 

grain yield and its components), plant height, time to 50% stigma emergence and plant 



height together with t ~ m e  to 50% stlgma emergence were used as pred~ctors I e .  all the 

dgronomlc traits were regressed w ~ t h  these pred~ctors. and the res~duals trom these 

regressions for each abronomlc tralt were subjected to QTL mapplng 

A previously constructed l~nkage map uslng 60 RFLP markers for the [(PT 732B 

P 1449-2)- based] mapplng populat~on were used for locatlng QTLs QTL analys~s w ~ t h  

the MMMAKERJQTL program showed d~fferent QTL posltlon for d~fferent tralts In 

total, 18 QTLs were obta~ned for nlne d~fferent tralts from the Colmbatore. Bhavan~sagar 

and across-locat~ons data sets Among these nlne tralts, tlme to 50% stlgma emergence, 

pan~cle c~rcurnference, plant helght, pan~cle length and gram y~eld per season each 

reglstered one QTL, thousand-gram mass reglstered two QTLs, gram y~eld per day 

reglstered three QTLs and s~ngle-pan~cle gram mass reglstered four QTLs However, 

these 18 QTLs were under the control of only seven genomlc reglons, suggesting roles of 

t~ght  llnkage andlor ple~otroplsm In the lnhentance of these oRen correlated tralts Of 

these seven genomlc reglons, LC 4 had four reglons, LC 2, LC 6 and LC 7 each had one 

genornlc reglon contnbutlng QTLs In LC 4 the reglon flanked by marker loc~  XpsmS68 

and .YpsrnSIZ contnbuted to control over five tram ~ncludlng gram y~eld per season 

Across-locations data produced SIX QTLs for agronomic tralts studled They were 

on LC 4 and LC 7 Totally four genomlc reglons vl: , three on LC 4 and one on LC 7 

shared these SIX QTLs The tralts controlled by these QTLs Included plant he~ght, panicle 

~~rcumference, pan~cle length, product~ve t~ller number and s~ngle-~anlcle graln mass 

For downy mildew. five d~fferent QTLs were mapped on four linkage groups by 

using disease lncldence percentages and then arc-s~n transferred radians values Of these, 



two QTLs were detected from the Colmbatore data set on LC 2. two QTLs from the 

Bhavanlsagar data set on LC I and LG 4, and one QTL from across-locat~ons on LG 7 

Marker-ass~sted select~on prov~des an opponunlty to Improve the effectiveness of  

quantltatlve t ram by selecting for the presence of spec~fic marker alleles that are llnked to 

favorable QTL alleles From thls study. ~f we consjdered only the acros's-locations data 

set, different reglons of pearl m~llet genome were detected as spec~lically associated with 

gram y~e ld  per season. plant he~yht. pan~cle c~rcumfcrence and s~ngle-pan~cle gram mass 

QTLs for these tralts also explained slgnlficant portlons of observed phenotyp~c vanatlon 

So marker-ass~sted backcross~ng from P 1449-2 to move putatlve QTLs on LG 4 and 

LG 7 Into the PT 732NB background may be effective to Improve the yleld potentla1 of 

hybnds of e l ~ t e  seed parent PT 732, at least those hybnds produced wlth ellte pollinator 

PT 4450 

For lmprovlng the reslstance agalnst downy m~ldew marker-ass~sted transfer 

~ n d \ o r  pyramldlng of the reslstance genes (or QTLs) may glve good results 
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