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Problem Identification 
Climate change (48) has a number of observed, anticipated, or 

possible consequences on crop health worldwide, as a series of 
reviews have discussed (3,10,17,20,21,35,60), especially recently 
(18,29,30,36,38,54,65,68,88,100,118,129). Global change, on the 
other hand, incorporates a number of drivers of change 
(72,83,141), including global population increase, natural resource 
evolution, and supply–demand shifts in markets, from local to 
global. Global and climate changes interact (Fig. 1) in their effects 
on global ecosystems (72). 

Identifying and quantifying the impacts of global and climate 
changes (123) on plant diseases is complex (20,118). A number of 
nonlinear relationships, such as the injury (epidemic)–damage 
(crop loss; 153) relationship, are superimposed on the interplay 
among the three summits of the disease triangle (host, pathogen, 
environment; 139). These relationships depend on (i) production 
situations (sensu Rabbinge and De Wit [103]—the ecological, so-
cial, and economic context where agriculture takes place), (ii) 
pathosystems, and (iii) the occurrence of other injuries to plants. 
Work on a range of pathosystems involving rice, peanut, wheat, 
and coffee has shown the direct linkage (Fig. 1A) and feedback 
between production situations and crop health (110). Global and 
climate changes influence the effects of system components on 
crop health (Fig. 1B). For instance, shifts in production situations 
(107) may accelerate, leading to a new crop health status; or the 
range of management options may decline because of changes in 
production situations; or again, adaptations to changes may gener-
ate new disease threats (because of, e.g., the introduction of novel 
crops). The combined effects of global and climate changes on 

diseases, therefore, vary from one pathosystem to another within 
the tetrahedron framework (humans, pathogens, crops, environ-
ment; 156) where human beings, from individual farmers to con-
sumers to entire societies, interact with hosts, pathogens, and the 
environment. Figure 1 proposes a very simplified (16: Fig. 26.7, p. 
770) view of a complex, networked (92) system, with an emphasis 
on man-made agricultural systems. Figure 1 attempts to distinguish 
the effects of global change from those of climate change, which 
we refer to as “indirect” and “direct”, respectively, bearing in mind 
that both climate and global changes refer to sets of drivers that are 
not independent. 

This article highlights international phytopathological research 
addressing the effects of global and climate changes on plant dis-
eases in a range of crops and pathosystems. We first propose a 
typology of pathosystems that may help assess the importance of 
diseases in relation with the structure of Figure 1, and may help 
prioritize options for management. Challenges to address plant 
diseases under global and climate changes in the developing world 
are then briefly addressed. Third, a series of current research ap-
proaches are briefly presented. Fourth, outcomes of these methods 
on a range pathosystems are highlighted. Fifth, we propose an 
outlook of approaches and priorities to address the management of 
crop health in a changing developing world. 

The following framework and the set of examples in this article 
indicate how progress is taking place, with several entry points of 
developing strategies that incorporate a number of different op-
tions, and how the harnessing of new methodologies will help bet-
ter identify priorities, target research products, and enhance tech-
nology diffusion. 

A Broad Typology of Plant Diseases  
and of Approaches to Manage Them 

Drawing from the medical literature (64), we propose to con-
sider plant diseases in three broad categories—chronic, acute, and 
emerging (Fig. 2)—using these terms in a way similar to public 
health medicine. We define the terms as: 
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(i) chronic, a disease that occurs on a systematic basis over large 
areas, causing regular attrition in system performances, including 
reductions in crop yield; 

(ii) acute, a disease that occurs irregularly, both temporally and 
spatially, and which, when occurring, may cause massive disrup-
tions in system performances; and 

(iii) emerging, a disease whose range is expanding to new areas. 
Such a categorization is by no means intended to be prescriptive, 

i.e., a disease may belong to more than one of these categories, 
sometimes because of the very changes we witness today. Figure 2, 
for instance, shows that diseases can overlap among categories. 

This categorization connects with the assessment framework for 
complexities developed by Garrett et al. (36), and may help prob-
lem identification and the development of solutions. One may pro-
pose that: 

(i) the level of biological interactions is similarly variable across 
the three groups of diseases; 

(ii) chronic diseases are less responsive to climate variables 
across their range; 

(iii) diseases within each of the three groups are similarly vari-
able in their responsiveness to climate change; 

(iv) chronic diseases are often less variable in their spatial varia-
tion, whereas acute and emerging diseases show increasing levels 
of variability; 

(v) chronic diseases are often associated with strong feedback 
with crop and disease management; 

(vi) there is an increasing discrepancy between epidemic and man-
agement networks from chronic to acute, and to emerging diseases; 

(vii) the three types of diseases may have similarly variable ef-
fects on ecosystem services; and 

(viii) the three types of diseases may have equally variable con-
sequences on climate change. 

Again, the above eight assumptions should not be seen as pre-
scriptive, chiefly because one disease may belong to more than one 
of the three groups (chronic, acute, or emerging). A series of patho-
systems is considered in turn in this article to gauge these hypothe-
ses and to show that generalizations can be dangerous. Yet the link-
age between Figures 1 and 2 may provide useful insights for 
comparison. 

Chronic diseases call for lasting solutions. While this applies to 
any disease, chronic diseases have to be managed every season. 
Chronic diseases further pose the challenge of often being persis-
tent constraints in production situations where other yield-reducing 
and yield-limiting factors often occur. In this context, “lasting solu-
tions” refer to control options that account for both a multiple-con-
straint environment and a limited range of control choices. Solu-
tions for chronic diseases do not need to provide complete disease 
control, but rather lead to (i) limited crop losses, (ii) production of 
stable results that farmers can trust, thus enhancing technology 
adoption, and (iii) prevention of the occurrence of quality losses, 
including toxin accumulation, a recurrent public health issue (68) 
that hampers income generation for poor farmers. By contrast, 
acute diseases require much higher levels of control. These levels 
often should not be maintained for extensive periods, however. 
This is because (i) pathogens may adapt to the selection pressure 
created by these management options, which (ii) in turn may lead 
to negative externalities or hidden costs, such as pesticide mis- or 
over-use (138) or the use of less-preferred varieties by farmers 
under normal conditions. Emerging diseases represent the greatest 
difficulty. By definition, they lead to risk uncertainty over time and 

 

Fig. 1. A simplified representation of the effects of global and climate change on plant diseases. A Shows relationships between production situations and crop health (110), 
as demonstrated in a number of (multiple) pathosystems of rice in tropical Asia, peanut in West Africa, wheat in Western Europe, and coffee in Central America. B Illustrates 
in a simplified manner how the Production situation - Crop health association is affected, directly or indirectly, by the interacting global change and climate change (derived 
from 16). 
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space; and this very uncertainty, and the fear it generates, often 
lead to considering such problems as priorities. 

An overview of international agricultural research suggests that 
the bulk of the efforts have been devoted to acute diseases (includ-
ing bacterial blight and blast in rice, dry root rot in chickpea, and 
late blight in potato) and, in a more erratic manner, to emerging 
diseases such as stem rust of wheat, wheat blast, and Phytophthora 
blight of pigeonpea. By and large, it would seem that chronic dis-

eases, such as brown spot in rice, wheat spot blotch, and maize ear-
rot, have not received the level of attention they deserve (Fig. 2). 
One element to explain the emphasis given to acute diseases is that 
the key control option targeted by international research programs 
has often been to breed for complete resistance with major genes: 
this is because breeding for such types of resistance on huge num-
bers of entries was possible. Recently, paradigm shifts have taken 
place. For instance, CIP has implemented research toward durable 

 

                                     Fig. 2. Schematic categorization of some important diseases in the developing world on various key crops. 
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resistance to late blight based on partial resistance and careful 
genotype by environment (G × E) analysis (151). CIMMYT em-
ploys a similar multiple, minor genes–based adult-plant resistance 
approach for wheat rusts (119). 

Challenges 
Key challenges we wish to underscore are: 
(i) Crop losses (yield and quality) caused by diseases amount to 

a double penalty: the “untaken harvest” (80), and the waste of re-
sources invested in crops (inputs, labor, land, seeds, water, and 
non-renewable energy). The latter component of the penalty is not 
borne by farmers only, but also by communities, societies, and 
entire economies. Obviously, the less-developed world is more 
vulnerable to these two components. 

(ii) The lag between research onset and product deployment by 
farmers is commonly 30 to 40 years (2,6,89,90). This stresses the 
need for forward-looking approaches enabling prioritization and 
problem-definition (58) frameworks to guide research. 

(iii) Because of nonlinear relationships (39,51,52) and interac-
tions (and thus emerging properties of pathosystems; 24,137) 
among the four elements of the disease tetrahedron, combined 
effects of climate and global changes on disease may have unex-
pected consequences. One analogy here is useful: climate change 
alone predicts global water demands that are quite different from 
those associated with climate change and human population 
growth combined (142). 

So far, most plant pathologists addressing climate change effects 
on plant disease have focused on the direct effects of climate vari-
ability on single diseases (e.g., disease cycles, Fig. 1B). However, 
indirect effects triggered by climate and global changes, via shifts 
in cropping practices and their socio-economic contexts (Fig. 1B), 
are important, much more rapid (i.e., have relaxation times much 
smaller) than climate change–induced variation, and may become 
increasingly so in their effects on plant diseases. 

Approaches 
Simulation modeling. Simulation models are powerful tools to 

answer questions of the “what if…?” type (155) by assessing a 
system’s responses to variation in its parameters or its driving 
functions (23). Thus, simulation modeling is an effective approach 
for addressing the impact of global and climate changes on crop 
diseases. Because they are process-based, simulation models can 
improve our quantitative understanding of the dynamics of epidem-
ics or yield loss buildup. They are also useful for the formulation 
of strategies, management decisions, research priorities, and the 
analysis of future scenarios. Simulation models often mobilize 
detailed biological understanding and quantification of the proc-
esses involved, including the effects of weather (102). They are 
therefore suitable for studies of climate change effects on plant 
diseases. 

Many weather-driven epidemiological models have been devel-
oped and used to predict plant disease epidemics under variable 
climatic conditions (26,108). In many cases, daily or hourly 
weather data (25) are used as model inputs to match the time step 
of the processes simulated (e.g., infection). Such high-resolution 
weather data are not, however, generated for climate change sce-
narios by current climatic models. Two approaches have so far 
been implemented to address this issue: (i) interpolation of weather 
data (150), and (ii) generation of high-resolution weather data from 
low-resolution weather data using stochastic weather generators 
(43,66). A third promising approach involves the development of 
metamodels (125,126). 

Agrophysiological models simulating the physiological effects 
of disease injuries on crop and yield have also been developed for 
many crops (110,133), and this quantitative knowledge can be used 
to model yield losses under climate and global changes. Since a 
crop in general is exposed to several diseases, which often interact 
in their yield-reducing effects, multiple disease models can be used 
to predict the relative importance of diseases during a crop cycle, 
as well as the efficiencies of different crop health management 

strategies under future scenarios. Such validated models exist for 
two key crops on a global scale, wheat and rice (98,146–148). 

Addressing both plant disease epidemics and their impact on 
crop losses can be achieved by coupling dynamic simulation mod-
els of epidemics with crop models (59,102). Such an approach has 
been advocated to analyze the effects of climate and global 
changes (133). The implementation of such models, however, re-
quires (i) the availability of generic, simple models that can be 
modified for diverse production situations for use at a global scale, 
and (ii) coordination and standardization of collection of input 
data. Generic modeling platforms from collaborative international 
research, such as IBSNAT (8) and CROPSYST (127), can be 
considered as starting points. However, model simplification and 
testing (93) will be required to address large-scale future scenarios. 
In order to incorporate the human element of the disease tetrahe-
dron (156), such as farmers’ attitudes to risk in decision making 
(152), simulation modeling should preferably go beyond climate 
effects on crops and diseases. Modeling the disease effects of vary-
ing production situation components (109) in response to global 
change elements such as fallow period duration, fertilizer input, 
crop rotation, or water stress has not been addressed adequately, 
and should be emphasized in future research. 

The relevance of simulation modeling has been questioned for 
not translating results into direct, field-based applications (11,143). 
The purpose of the approach we refer to here is strategic rather 
than tactical (153), and has shown progress in Europe and at CIP 
(40). New progress is underway where simulation models can be-
come effective tools for technology targeting. 

Ecological niche modeling. We need to anticipate invasion risks 
from both exotic and indigenous pests (61,129). Ecological niche 
models, or species distribution models, are powerful tools to pre-
dict future disease epidemics, and provide support for developing 
strategies against new threats. 

Ecological niche models are defined here as correlative models 
that predict a species’ potential geographical range based on two 
types of georeferenced data, biological data describing the species’ 
known distribution (presence and absence) and environmental data 
that describe the landscape conditions where the species is found 
(33,94,140). A broad range of algorithms are used in these models. 
Because of their reliance on environmental data, e.g., climatic or 
weather data, these models are well suited to studies of the effects 
of climate change on plant disease, and exotic pest introductions. 

The ability of ecological niche models to use limited data such 
as species presence and generic environmental data makes them 
complementary to simulation models. In many cases correlative 
approaches can provide a reasonable indication of high-risk areas 
for prioritization. 

One may distinguish different classes of ecological niche mod-
els. Climate envelope models, which involve climate matching, 
have been used to create predictive maps of critical pests’ risk. 
CLIMEX and NAPPFAST, for instance, have been used by plant 
pathologists for predicting plant disease occurrences. CLIMEX 
(130) exemplifies well these tools, and has been used by plant pa-
thologists to predict the likelihood of pathogen establishment under 
current climatic conditions (95,99) or, more rarely, under climate 
change scenarios (97). NAPPFAST (North Carolina State Univer-
sity – United States Department of Agriculture [USDA] Animal 
and Plant Health Inspection Service [APHIS] Plant Pest Forecast-
ing; 69) is a more recent model that was developed for rapid risk 
assessments, and has been used for first guesstimates of establish-
ment risk for exotic pests (69). 

Other model algorithms exist that have not been as widely used 
by plant pathologists, but could prove to be useful. The Open-
Modeller (77) software package employs several “plug-ins” or 
model algorithms used for ecological niche modeling in one pack-
age. This is useful for comparing the predictions of several differ-
ent models or combining them into an ensemble model of species’ 
ranges, which results in more robust forecasts (5). 

The ecological niche model approaches discussed here currently 
can only utilize presence/absence and environmental information 
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to predict disease risk at a specific geographic point, usually a grid 
cell in a geographic information systems (GIS) raster file. This 
makes ecological niche models useful for identifying current high-
risk locations or interactions in future scenario analysis. Future 
challenges exist in analyzing the distribution of plant diseases. This 
departs from many ecological distribution model applications, 
because it involves (i) an interaction between at least one host and 
a pathogen species, (ii) pathogen reproduction, evolution, and dis-
persal, at extremely variable rates, and (iii) human intervention as a 
defining factor of agricultural systems. Thus, information about the 
spatial structure of host availability and the risk of disease buildup 
in neighboring areas are important features to assess risk at any 
given location (36,70,71). These effects should be incorporated 
into ecological risk models in a GIS to achieve a more complete 
picture of risk. 

Geographic information systems and mapping disease risks. 
Uses of GIS in plant pathology implement early concepts devel-
oped by Weltzien (144,145). GIS brings about the possibility of 
overlaying, geographically, a wide range of very different informa-
tion, whether pertaining to pathogens, hosts, and environments, as 
well as to socio-economic and infrastructural systems, such as road 
networks (and thus access to markets and inputs), or irrigation 
systems. The information can also be organized over time. The 
ability of the GIS to integrate such diverse data has resulted in its 
widespread application in agricultural sciences. GIS is commonly 
used to evaluate and model the spatial distribution of plant disease 
or to analyze relationships between environmental factors and plant 
disease intensity. Such information, when mapped together, creates 
a powerful tool for monitoring and management. Inclusion of geo-
referenced socio-economic data can add important targeting and 
impact assessment information. The body of techniques associated 
with GIS has been instrumental in understanding, managing, and 
predicting public and animal health (42,96). The International 
Agricultural Research Centers were early users of GIS, with initial 
activities dating back to the early 1980s (15). GIS technology is 
increasingly applied to cover many different aspects of plant dis-
ease research and management. General approaches are high-
lighted using selected examples. 

International disease networks, global germplasm collections, 
and extensive multi-decadal international trials all constitute rich 
data resources that can support geo-spatial analysis of plant dis-
ease. GIS can exploit these resources in diverse ways, from the 
perspective of disease resistance discovery, of disease monitoring, 
as well as for risk mapping and epidemiological purposes. Global 
gene banks can also be mined to maximize the likelihood of find-
ing desirable traits involving the spatial predictions of areas where 
selection pressures may occur (e.g., disease-prone environments). 
For instance, Bhullar et al. (7) describe the utility of the approach 
for identifying new sources of resistance to powdery mildew in 
wheat. 

Monitoring and forecasting of trans-boundary diseases relies on 
coordinated international surveillance networks. GIS provides a 
platform for data management of disease surveys, integrated analy-
sis of dispersal, and risk assessment. Hodson and DePauw (44) 
describe the application of GIS for monitoring and risk assessment 
of new virulent races of wheat stem rust, whereby standardized 
global disease survey data are integrated with wind models, crop 
varietal distribution, crop phenology, and climatic data. 

Climate-based probability mapping for plant disease or disease 
vectors using GIS has also received considerable attention. Cus-
tomized software tools such as Floramap (53) have been used to 
determine climate probability models for important disease vectors 
such as whitefly (74). Coupling of disease forecasting models to 
climate databases within a GIS enables predictions that combine 
the spatial perspectives of GIS with the stronger representation of 
temporal processes of forecast models. Hijmans et al. (43) outline 
this GIS-linked model approach for potato late blight. Use of such 
climate-based, GIS-linked models facilitates exploratory analysis 
of likely distributional shifts under differing climate scenarios 
(125,126). 

Use of GIS to determine spatially explicit disease management 
outcomes is another approach. Using GIS, Phytophthora blight 
(PB) caused by P. drechsleri f. sp. cajani was monitored in the 
major pigeonpea growing regions of the Deccan Plateau of India. 
GIS indicated that PB occurs on improved as well as local cultivars 
of pigeonpea, irrespective of soil types and cropping systems (84). 
Based on this information and historical weather and disease data 
over four decades, simulation of different disease management 
option outcomes, including host plant resistance, has been initi-
ated. 

Technology targeting. The importance of technology targeting 
for efficiently implementing disease management tools as global 
change and climate change unfold is highlighted with three con-
trasting examples. 

Chickpea and pigeonpea are mainly grown in different cropping 
systems by resource poor farmers in harsh, climatically and eco-
nomically volatile environments of Asia and Africa. Host plant 
resistance to diseases thus represents a primary research objective 
in such environments (84,85). In this context, research on the ef-
fects of climate and global changes on host–pathogen interactions 
is critical to develop durable resistances. Dry root rot of chickpea 
and Phytophthora blight of pigeonpea are two key examples. 
Epidemiological knowledge, combined with biophysical and socio-
economical understanding, are then required to deploy resistances 
and achieve sustainable disease management. 

Potato viruses represent another example of the potential use of 
modeling for technology targeting. Farmers throughout the high-
land tropics have traditionally produced seed at higher altitudes 
where vector populations are lower (135). As accelerated climate 
change in higher mountain ranges allows insect vectors to reach 
higher elevations, the virus-free (or virus-low) areas disappear. 
This has the double cost of pushing farmers up into ever-more 
fragile environments and, eventually, denying farmers seed produc-
tion options. A logical solution to this problem is the introduction 
of potato cultivars with high levels of virus resistance. However, as 
noted, the lead-time needed for variety development to have im-
pact, particularly in a vegetatively propagated crop, highlights the 
need for accurate identification of high-risk zones, as well as of 
low-risk zones, where potato seed production is feasible. 

The toolkit for rice leaf blast management is another example, 
with three groups of tools: knowledge, physical, and communica-
tion tools (132). Rice varieties, whose resistances represent the 
pillar of the management of several major diseases (82), are part of 
the first group. The over-arching link between these groups of tools 
is a systems-based knowledge of blast epidemiology that incorpo-
rates elements as diverse as decision aides, cultural knowledge, and 
fungicide and fertilizer use. Technology targeting in this case is 
again strongly dependent, not only on biophysical (epidemiologi-
cal, population genetics) information, but also on socio-economic 
understanding: the toolkit does not have only to be inherently 
effective; it also has to be adopted by farmers. 

Ground truth. Ground truth, i.e., the actual measurements of 
disease in the field, their proper recording and processing, requires 
sufficient resources, including skilled manpower (49,56,131,
134,156). Much of this information, over space, i.e., over pro-
duction situations as they evolve, as well as over time (50), used to 
be gathered by extension systems and national organizations, 
which cannot be replaced by international research. 

Persistence pays (2,89): strong benefits can be derived from sus-
tained support to the agricultural research and development sector. 
Yet the agricultural extension systems in many developing coun-
tries are weakening. This decline cannot be disconnected from 
global change: this is partly a reflection of policies, of different 
ways farmers are seen in their roles toward societies, and perhaps 
of a different way farmers see their roles themselves. Policy mak-
ers in particular often take crop health assessment, monitoring, and 
management for granted, despite the methodology, skills, and 
training required to generate the reliable information needed to 
make recommendations. Thus, extension systems are frequently 
transferred to local, e.g., provincial, authorities, often leading to 
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reduced coordination and efficacy, which unfortunately coincides 
with increased demands for information and knowledge associated 
with adapting to climate and global changes. The process of di-
versifying production systems away from reliance on climate-
sensitive or market-vulnerable crops or practices is very knowledge 
intensive, and formal extension services by themselves will not be 
able to meet the substantial knowledge and information demands. 
Overall, the financial resources allocated to the agricultural system 
have been shrinking (2,89), often under the assumptions that (i) the 
private sector would replace public services, and (ii) farmers would 
gain more autonomy, in part because of increased wealth, in part 
because of increased knowledge. 

Extension systems are progressively declining in the developed 
world, too. However, while farming in, e.g., Western Europe, is an 
occupation chosen by few, farming is often the only option for the 
millions of resource-poor farmers in the developing world. Being a 
farmer in Western Europe implies considerable levels of training 
and leads to access to multiple sources of information, while farm-
ers in the developing world still depend on their own knowledge 
and, in general, limited access to information. In a world of transi-
tion, insufficient information and inadequate training puts farmers 
in a weak position among the many stakeholders of agriculture. 

This decline in ground truth intelligence results in extreme diffi-
culties in several areas. One is difficulty in ensuring that proper 
measures are being undertaken when emerging disease problems 
occur, such as the yellowing syndrome of rice in the Mekong Delta 
(I. R. Choi, IRRI, personal communication). A second is difficulty 
in generating sufficient evidence to show that, in some instances, a 
crop health problem does not necessarily have the importance it is 
supposed to have according to some of the stakeholders of plant 
protection––including scientists. Lack of information leads to 
uncertainty; uncertainty leads to fear; fear leads to overreaction 
(154). A third is the use of blanket recommendations for pesticides, 
leading to pesticide misuse and abuse, as well as the erosion of 
decades of farmers’ knowledge in managing crop health. 

The following section highlights how ground truth is critical for 
advances in managing diseases under global and climate changes 
in the developing world. Ground truth represents the very fabric on 
which our research is based, against which we can test models, 
assess strategies, and measure ex-ante and ex-post impacts. Ground 
truth appraisal using a systems approach (e.g., for rice, 
109,110,112) also enables progress in prioritizing the importance 
of diseases, their relationships with production environments, and 
technology targeting for disease management as global changes 
take place. 

The following examples show how the problems faced, and the 
solutions envisioned, may differ. This is of course due to the wide 
differences among the considered pathosystems, but also, and per-
haps more importantly, to the social and economic backgrounds 
where agriculture takes place in the world’s ecoregions. Depending 
on the latter group of reasons, rather than the former, the impact of 
global and climate changes on the importance of diseases, and on 
the relevance of solutions, vary. 

Selected Examples of Outcomes 
Rice. Rice diseases may be chronic (such as brown spot; Fig. 2), 

acute (such as rice blast or rice tungro disease), or emerging (such 
as the rice yellowing syndrome, which develops in the Mekong 
Delta [I. R. Choi, personal communication]). Climate change ef-
fects on rice diseases and pests have been carefully studied for a 
few pathosystems (133). Much of this work has focused on specific 
diseases, aiming in particular at analyzing the effects of climate 
change components on specific disease cycle phases in given 
pathosystems (55) and modeling the effects of climate change on 
risk probability (epidemics) or risk magnitude (yield losses) using 
generic crop growth models such as ORYZA or CERES-Rice. One 
early effort is exemplified by the development of BLASTSIM, a 
simulation model for leaf blast epidemics (12). This paved the way 
toward two directions. First, epidemics of leaf blast under climate 
variability were addressed by combining BLASTSIM to a climate 

data generator in a GIS. Thus, blast epidemics were simulated at 
53 locations in Asia representing a range of agroecologies (66). 
Second, BLASTSIM was coupled to CERES-Rice and weather 
generators in a GIS to assess yield losses associated with rice blast 
(67). Efforts in modeling yield losses also led to a CERES-Rice 
based model enabling addressing the effects of blast, weeds, and 
defoliators in isolation or in combination (98). 

Further research concerned the characterization of injury profiles 
(diseases, animal pests, and weeds) and production situations 
(cropping systems, crop rotation, and management) in the tropical 
and subtropical lowlands of Asia (112), which roughly account for 
90% of Asia’s and 80% of the world’s rice output. This risk prob-
ability analysis was complemented by an experimental risk magni-
tude study where yield losses caused by injury profiles in a range 
of production situations corresponding to attainable yields varying 
from 1 to 10 t ha-1 were analyzed (111). This enabled the develop-
ment of RICEPEST, a simple, generic, production situation–
specific yield loss model (147). RICEPEST represents a tool to set 
research priorities in plant protection for rice. Beyond considering 
only yield losses, this model further allows one to consider yield 
gains accrued from new plant protection technologies, alone or in 
combination. One important outcome from this research is that 
disease syndromes were shown to be strongly associated to produc-
tion situations (112) and by drivers of agricultural change (water 
stress, labor shortage, reflected by a shift from transplanting to 
direct-seeding crop establishment; 108). Thus, risk factors for syn-
dromes of injuries attached to production situations as wholes, or 
their components, can be derived (109). Importantly, variation in 
these components of production situations depends on global 
change, climate change, or both. 

New steps are underway. One is the recent development of 
EPIRICE (S. Savary, I. B. Pangga, J. Aunario, L. Willocquet, and 
A. Nelson, Crop Prot., in press), a generic epidemiological model 
for fungal, viral, and bacterial diseases that accounts for different 
levels of hierarchy in a crop canopy (leaves, sheaths, entire plants) 
depending on the nature of the disease. EPIRICE has been 
parameterized for five major (Asian) rice diseases (brown spot, leaf 
blast, bacterial blight, sheath blight, and tungro), and has been 
linked to a GIS to simulate potential epidemics (Fig. 3). Another 
step will be to link RICEPEST to a GIS in order to develop global 
simulated risk magnitude maps. Critical to the success of these new 
steps will be the acquisition of geo-referenced ground truth data. 
These different simulation modeling, statistical modeling, and GIS 
approaches can be combined to develop scenario analyses, where 
the best control tools can be determined, based on biophysical and 
socio-economic contexts. The biophysical and socio-economic 
contexts, in turn, will define domains where strategies may be 
deployed. 

Wheat. Two wheat-based pathosystems illustrate very different 
paths of relationships of Figure 1, and extreme examples of the 
categories of Figure 2, with one chronic disease and a group of 
diseases that belong to the acute–emerging groups. 

Spot blotch, caused by the hemibiotroph Cochliobolus sativus, is 
the main chronic disease affecting resource-poor farmers in mar-
ginal lands, in warmer wheat growing regions where relative hu-
midity and night-time temperature are high (9,115). Such condi-
tions prevail in parts of Brazil, as well as in the vital rice-wheat 
system of the eastern Gangetic plains, where the disease is recur-
rently severe. Spot blotch intensity depends on crop physiology, 
and thus on environmental factors, including soil fertility (low N 
and K in particular), water supply, and heat (104,113,114). In 
South Asia, the optimum wheat growing period ranges from the 
second half of November to March–April. Any delay in wheat 
sowing (after rice) increases the risk of crop exposure to heat stress 
(i.e., warmer night-time temperatures) at critical growth stages. 
This stress, if associated with the physiological switch from 
vegetative to reproductive, increases the susceptibility to spot 
blotch in late sown crops (115). Thus, while the areas for optimum 
wheat cultivation in South Asia are expected to decline in the fu-
ture (45) as a result of changing climate, yield losses to spot blotch 
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are expected to increase (115). Improved crop management pro-
vides spot blotch control. Thus, breeding for resistance combined 
with good crop husbandry are the main components of an efficient 
integrated management of the disease (27). Wheat spot blotch 
shares many similarities with rice brown spot (Cochliobolus mya-
beanus): brown spot depends heavily on crop physiological predis-
position and mainly occurs in poor soils (lacking K and/or N) 
when drought occurs (82). As in spot blotch of wheat, good crop 
husbandry and improved water supply contribute to disease con-
trol. Parallel epidemiological analysis and syntenic modeling of the 
two diseases could enable the definition of joint parameters for 
breeding for resistance and disease management. Changes in crop-
ping practices, including reduced tillage (wheat) or direct seeding 
(rice) to avoid heat stress, adaptation to declining agricultural la-
bor, and optimization of resources (water, energy) will affect these 

diseases on the two crops. Strategies to address these shifts in dis-
ease importance do not differ and call for similar management 
options. 

The spread of obligate wheat rust (Puccinia spp.) pathogens de-
pends on large numbers of propagules being dispersed over large 
distances onto suitable hosts. Globalization increases the risk of 
accidental introductions, while increased severity at a given loca-
tion increases the probability of windborne movement and the 
emergence of new virulences. Yellow rust, for instance, has been 
shown to adapt to warmer environments (73). Further, the move-
ment of the Yr9-virulent race of P. striiformis from the East African 
highlands from 1985 to the Indian subcontinent (Nepal, 1997) 
exemplifies the spread of the disease associated with the ”western 
disturbance” weather system (78). Earlier, virulence for the Yr2 
gene had been first recorded in Turkey and traced to Pakistan 

Fig. 3. Simulated global maps of potential rice brown spot epidemics. A, Mean areas under potential disease progress curve (AUPCs) of disease severity on leaves in
%.days simulated using EPIRICE using global daily climate data and crop establishment dates over cropping seasons averaged over 12 climatic years (1997–2008). B,
Standard deviation of AUPCs of potential brown spot epidemics. 
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(121). These examples suggest that Asia’s entire wheat area, except 
perhaps China, consists of a single epidemiological zone, which is 
of even greater concern when considering that genetically uniform 
‘‘megacultivars’’ cover most of the area grown to wheat (28). The 
emergence of a Sr31-virulent strain of stem rust (P. graminis f. sp. 
tritici), typified by race TTKSK (Ug99), triggered international 
concern, since commercial cultivars are strongly susceptible 
(119,120). Anticipating the spread of new virulent pathotypes and 
preparing the replacement of existing varieties for resistant ones in 
vulnerable wheat-growing regions such as West and South Asia is a 
priority. GIS tools are increasingly used to integrate factors deter-
mining likely spread (44). The combination of improved crop 
distribution and biophysical data at high spatial resolutions also 
enables exploring scenarios for disease risk (45). Increased avail-
ability of near real-time daily weather data should further improve 
predictions, as well as enable region-scale modeling of dynamic 
processes such as disease progression or crop water status (45). A 
dedicated web portal (Rust SPORE) and associated tools, e.g., 
RustMapper (19), provides up-to-date information on the current 
status and potential spread of Ug99 and its derivatives. Continued 
investment in disease and environmental monitoring, development 
and deployment of durable resistant varieties, and effective seed 
multiplication and delivery systems, will be required to address 
both current and future challenges posed by wheat rusts. 

Potato. Potato late blight typifies the acute disease group, yet 
with areas where it must be considered a chronic disease (Fig. 2). 
The total losses to potato late blight caused by Phytophthora in-
festans alone were recently estimated at nearly $US 13 billion (10 
billion Euros) in developing countries (41). The management of 
late blight is particularly difficult in the tropical (and subtropical) 
highlands because in these areas potatoes are produced year-round 
and disease is generally present at all times (32). Therefore, farm-
ers must protect plants from emergence to harvest. Traditionally, 
farmers have used a number of approaches to control late blight, 
including planting mixtures of genotypes (136) and planting more 
susceptible cultivars at higher altitudes. The latter practice is effi-
cient because higher altitudes correspond to lower disease risk, 
since disease severity is reduced by low temperatures (57), as in 
the case of the high-altitude production areas in Peru that were 
virtually blight free until recently. Because of rising temperatures, 
however, some high-altitude communities have recently seen late 
blight for the first time, with devastating results (W. Perez, per-
sonal communication). 

The primary adaptation components include a more frequent use 
of resistant cultivars and increased disease management know-how 
among farmers. The International Potato Center (CIP) and its part-
ners in developing countries have identified a number of potato 
genotypes that provide levels of resistance to P. infestans that 
greatly reduce the need for fungicide application. The challenges 
that remain include the identification of particular genotypes that 
fit local conditions and needs (particular markets or subsistence 
needs) and then multiplication and diffusion of these selected 
materials. The latter is hindered by the low multiplication rate of 
potato and by the absence of structured seed systems in developing 
countries (135). Farmers need to understand basic epidemiological 
concepts to enhance host resistance and fungicide efficiencies. 
Capacity building is therefore critical for successful management 
strategies (4,81). 

CIP has been working on risk assessment related to the effects of 
climate change on late blight for nearly a decade. The initial ap-
proach has been to use technology based on simple decision rules 
run within a GIS to display potential late blight risk (43). This 
work has evolved more slowly than initially hoped, especially be-
cause of the mismatch between available climate data and model 
requirements. The initial plot-level forecasts for risk require hourly 
temperature and humidity data, while data available from global 
climate models are spatially and temporally much coarser (126). 
Work is underway to downscale climate change data to finer reso-
lutions. A more recent approach is to calibrate disease risk models 
for coarser resolution input weather data using metamodels (125). 

The potential is strong for climate change modeling of late 
blight risk for several reasons. First, late blight is highly weather 
driven (31). Second, in addition to the nascent spatial modeling 
indicated above, there is extensive experience on plot and plant 
level simulation modeling and a good understanding of disease 
epidemiology. Finally, spatially specific aerobiological models 
have been developed and validated (122). 

Maize. Maize, the staple food for millions in Africa, Latin 
America, and Asia, is mainly produced under rainfed conditions, 
making it vulnerable to climate variability and rainfall patterns 
(46,47,79,124). We especially focus here on one major group of 
chronic (Fig. 2) maize diseases, which lead to mycotoxin con-
tamination, because this group of diseases is expected to strongly 
respond to climate change (68,91), and because of the public health 
problems they entail (34,105). 

Maize ear rots are caused by a range of fungi, among which 
Fusarium graminearum, F. verticillioides, Aspergillus flavus, and 
A. parasiticus are the most important (14). Under suitable condi-
tions, A. flavus and A. parasiticus produce aflatoxin, F. verticil-
lioides produces fumonisin, and F. graminearum produces de-
oxynivalenol (DON) and zearalenone (ZEA) that render maize 
unsafe for human and animal consumption (14). Production of 
toxins may take place prior to harvest, but in many cases, it in-
creases after harvest under favorable postharvest conditions. 

Maize ear rot fungi are widely distributed in the tropics, but can 
occur anywhere in food systems. Increases in temperature might 
result in a shift in the distribution range of mycotoxin-causing 
fungi and the types of mycotoxins they produce, because of the 
specific ecological requirements of each mycotoxin-producing 
fungus (13,101). Increased temperatures and occurrences of 
droughts may for instance lead to geographical displacement of F. 
graminearum by F. verticillioides, translating into a shift from 
deoxynivalenol and zearalenone to fumonisin. 

Environmental conditions adverse to the plant (such as drought, 
high temperatures [106], soil nutrient deficiency, or animal injuries 
[62]) have been shown to favor infection by A. flavus and F. 
verticillioides, and mycotoxin accumulation (22). The A. flavus 
population increases during hot dry weather, resulting in increased 
aflatoxin contamination. The case of acute aflatoxicosis in Kenya 
in 2004 is well documented (63,128). Insects may also (i) act as 
vectors (larvae spreading spores from kernel to kernel), (ii) provide 
ingress into kernels, and (iii) predispose the plant to infection (76). 
Insect injury depends, in turn, on both crop management and cli-
matic conditions. 

Therefore, the mycotoxin problem requires considering a series 
of interacting components: (i) pathogens, (ii) epidemics, including 
spread by vectors, (iii) toxin production, (iv) crop status, and (v) 
storage environment, all of which are influenced directly or indi-
rectly by global change or climate change. The need for strength-
ened research to reduce infection by toxin-producing fungi and the 
accumulation of toxins during storage should involve a systematic 
monitoring of mycotoxins-producing fungi, particularly in high-
risk environments, linked to geo-referenced mycotoxin and cli-
matic data, in order to better predict health risks from mycotoxin 
contamination. 

A general lack of information among farmers, extension special-
ists, and policy makers in most developing countries on the causes 
of mycotoxin contamination is slowing progress toward minimiz-
ing the burden of mycotoxins. Capacity building of stakeholders in 
languages they can understand is needed for successful manage-
ment of mycotoxins. 

Legumes. The many diseases of legumes in the developing 
world may be illustrated by dry rot of chickpea as an acute–emerg-
ing disease and by Phytophthora blight of pigeonpea as an emerg-
ing disease (Fig. 2). Models addressing legume diseases in the 
tropics have not so far emphasized the effects of climate and global 
change. However, weather-dependent models to predict the devel-
opment of legume diseases such as Ascochyta blight and Botrytis 
gray mold in chickpea have been developed to provide sounder 
bases for fungicide use (86). 
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Increased heat and drought stress and monsoon shifts in South 
Asia tend to push legume production toward more marginal lands, 
where management options are fewer. Climate change alters the 
spectrum of diseases in terms of pathogen distribution and viru-
lence and appears associated with the emergence of new patho-
types. For example, with increased temperature and more frequent 
moisture stress, Rhizoctonia blight is becoming more intense in 
typically tropical-humid areas, while viruses and rusts dominate in 
warm but dry zones. Data collected in India from 2000 to 2010 
show higher incidence of dry root rot (Rhizoctonia bataticola) in 
chickpea varieties that are resistant to Fusarium wilt in years when 
temperatures exceed 33°C (84,116). This is consistent with green-
house experiments where different soil moisture levels and 
temperatures were manipulated, showing that R. bataticola in-
fected chickpea plants and caused dry root rot faster at 35°C with 
soil moisture levels less than or equal to 60% (116). By contrast, 
cooler temperatures and wetter conditions are associated with in-
creased incidence of stem rot on soybean (Sclerotinia scle-
rotiorum), blights in chickpea, lentil, pigeonpea, and pea, and an-
thracnose (Colletotrichum spp.) in lentil and chickpea (85,87,149). 
Recently, studies indicated that the epidemic of Phytophthora 
blight of pigeonpea (Phytophthora drechsleri f. sp. cajani) in India 
over the last decade can be attributed to high intermittent rainfall 
(>300 mm) within a week during the crop season (85,117). 

It is critical that there be progress toward pro-poor, environmen-
tally neutral, host plant resistances, as well as toward drought toler-
ance in chickpea (ICRISAT), beans (CIAT), and cowpea (IITA) 
(1,37), combined with systems-adapted integrated disease manage-
ment technologies. 

Outlook and Conclusions 
Despite, or because of, the close interaction between climate 

change and global change (Fig. 1), far too little research has ad-
dressed the effects of the latter on crop health. Global change may 
affect crop health in quite different ways depending on the type of 
disease considered (Fig. 2). This is because global change entails 
different networked relationships (75,92) in influencing disease 
increase (or suppression) and impact, depending on whether a dis-
ease is chronic, acute, or emerging. The network theory and its 
approaches (75,92) offer a fresh, novel, and probably useful way to 
consider such relationships. This is even more important when one 
considers that chronic, acute, and emerging diseases will predomi-
nantly call for strategic long-term, strategic short-term, or tactical 
(110,153) decisions, respectively. Thus, different elements are 
likely to play different roles in a hierarchical network of stake-
holders, including farmers, advisors, farmers’ communities, retail-
ers, consumers, policy-makers, and research planners. 

In addition to the network theory, this article touched upon only 
a sample of methods to analyze and interpret data, including 
simulation modeling, ecological niche modeling, and GIS. These 
methods may lead to applications, if they are shared by a suitable 
range of disciplines, whose linkage will determine the level of 
relevance of plant protection in the years to come. These methods 
offer, to varying degrees, opportunities for interdisciplinary work 
and impact, as this article illustrates. 

Never have there been so many new methods available for plant 
pathologists to analyze data. However, the availability of ground 
truth data on crop health will soon become a serious issue: the 
collection of systems-based, holistic data remains the keystone 
toward progress to understand and manage constantly evolving 
pathosystems. Effective disease management depends on these 
combinations of resources, methods, and disciplines. We believe 
that such combinations exist, with massive benefits toward food 
security in a biosphere shared by seven billion humans. 
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