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     The importance of genomics for human health and agricul-
tural applications led to the development of high-throughput 
sequencing methods that can generate data rapidly at a rela-
tively low cost. Several such technologies, commonly known as 
next-generation sequencing (NGS), have been developed over 
the last decade ( Mardis, 2008 ;  MacLean et al., 2009 ;  Metzker, 

2010 ). Among them, Illumina (http://www.illumina.com), Roche 
454/FLX (http://www.454.com), and ABI-SOLiD (http://www.
appliedbiosystems.com) are already in commercial use, and 
others such as Heliscope (http://www.helicosbio.com) and 
Pacifi c Biosciences (http://www.pacifi cbiosciences.com) are 
recent entrants. These technologies differ not only in their 
sequencing chemistry but also in terms of rate of data genera-
tion, average length of sequence reads, accuracy, and costs 
( Varshney et al., 2009 ). 

 NGS is being increasingly applied for crop genome sequenc-
ing ( Imelfort and Edwards, 2009 ;  Marshall et al., 2010 ;  Varshney 
et al., 2011 ), and the availability of reference genome sequences 
for human and several animal and plant species has triggered 
whole genome resequencing of genotypes of such species by 
using NGS technologies ( Bentley, 2006 ;  Hillier et al., 2008 ; 
 Hudson, 2008 ;  Wang et al., 2008 ;  Wheeler et al., 2008 ;  Ahn 
et al., 2009 ). The alignment of resequence data with a refer-
ence genome facilitates the identifi cation of sequence variants 
such as single nucleotide polymorphisms (SNPs) and insertion –
 deletions (indels) between individuals as well as with the 
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   •     Premise of the study:  Next-generation sequencing (NGS) technologies are frequently used for resequencing and mining of 
single nucleotide polymorphisms (SNPs) by comparison to a reference genome. In crop species such as chickpea ( Cicer arieti-
num ) that lack a reference genome sequence, NGS-based SNP discovery is a challenge. Therefore, unlike probability-based 
statistical approaches for consensus calling and by comparison with a reference sequence, a coverage-based consensus calling 
(CbCC) approach was applied and two genotypes were compared for SNP identifi cation. 

  •     Methods:  A CbCC approach is used in this study with four commonly used short read alignment tools (Maq, Bowtie, No-
voalign, and SOAP2) and 15.7 and 22.1 million Illumina reads for chickpea genotypes ICC4958 and ICC1882, together with 
the chickpea trancriptome assembly (CaTA). 

  •     Key results:  A nonredundant set of 4543 SNPs was identifi ed between two chickpea genotypes. Experimental validation of 224 
randomly selected SNPs showed superiority of Maq among individual tools, as 50.0% of SNPs predicted by Maq were true 
SNPs. For combinations of two tools, greatest accuracy (55.7%) was reported for Maq and Bowtie, with a combination of 
Bowtie, Maq, and Novoalign identifying 61.5% true SNPs. SNP prediction accuracy generally increased with increasing reads 
depth. 

  •     Conclusions:  This study provides a benchmark comparison of tools as well as read depths for four commonly used tools for 
NGS SNP discovery in a crop species without a reference genome sequence. In addition, a large number of SNPs have been 
identifi ed in chickpea that would be useful for molecular breeding.  
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discovery. 
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technologies are being used in our research to identify SNPs in 
crop species such as chickpea  (Cicer arietinum  L.; Fabaceae) 
and pearl millet ( Pennisetum glaucum  L.; Poaceae) that do not 
have a reference genome sequence. In addition to several other 
studies,  Varshney et al. (2009)  proposed using a transcript as-
sembly (TA) based on Sanger ESTs or 454/FLX transcript reads 
as a reference and then mapping reads, generated from tran-
scriptomes of parental genotypes of mapping/segregating popu-
lations. The bioinformatics analysis tools currently available, as 
mentioned already, have limited utility in this regard because they 
identify SNPs between the genotypes and the reference genotype 
whose genome/transcriptome is used for mapping the reads. 

 When calling variants based on short reads (especially those 
generated by the fi rst version of NGS machines like Illumina 
GA I), there are at least two major challenges: the fi rst is the 
poor read quality, especially toward the 3 ′  end of sequence reads. 
This is likely to affect the reliability of consensus calling, par-
ticularly at positions with lower coverage. The second major chal-
lenge is accuracy of mapping of reads especially when these are 
single-ended and short ( ≤ 36 bp). To address these issues, this 
study explores the possibility of using coverage-based consen-
sus calling (CbCC) and comparison of CbCC results for SNP 
calling without considering the reference sequence. In this con-
text, the current study was undertaken with the following objec-
tives: (1) CbCC for reads from two chickpea genotypes, (2) 
comparison of four open source tools (Bowtie, Maq, Novoalign, 
and SOAP2) to identify SNPs, and (3) optimization of the read 
depth criteria. In addition, this analysis has also provided SNPs 
to develop genetic markers for use in genetics research and 
breeding applications in chickpea. 

 MATERIALS AND METHODS 

 Short sequence read and transcript assembly (TA) data sets   —     Illumina 
GA I sequencing of transcripts from drought-stress-challenged tissues of 
chickpea genotypes ICC4958 and ICC1882 generated 15.7 and 22.1 million 
reads of 36-bp length, respectively (SRA030700.1,  Hiremath et al., 2011 ). 
These genotypes are the parents of a mapping population that segregate for 
drought tolerance. For mapping reads, the chickpea transcriptome assembly 
(CaTA), comprising 98   534 tentative unique sequences (TUSs) including 46   740 
contigs and 51   794 singletons, was used as a reference ( Hiremath et al., 2011 ). 

 Mapping tools for aligning reads to the chickpea transcriptome assem-
bly   —     Four tools, Maq ( Li et al., 2008 ) (version 0.7.0; http://maq.sourceforge.net/), 
SOAP2 ( Li et al., 2009 ) (version 2.18; http://soap.genomics.org.cn/soapaligner.
html), Bowtie ( Langmead et al., 2009 ) (version 0.12.7; http://bowtie-bio.
sourceforge.net/index.shtml), and Novoalign ( Hercus, 2009 ) (version 2.03.12; 
http://www.novocraft.com/main/index.php) were used for mapping the reads 
onto the CaTA. In case of Maq, Bowtie, and SOAP2, mapping was performed 
using following criteria: (1) for each read, a maximum of seven mismatches 
i.e., two in seed region (fi rst 24 bases) and fi ve in nonseed region were allowed, 
and (2) the sum of quality of mismatch bases should not exceed 70. Because 
Novoalign does not have the option to specify the above parameters, default 
parameters are used for mapping. With all the tools, reads were allowed to map 
randomly if multiple best alignments were found. 

 CbCC-based SNP calling   —     Aligned reads from all four tools were used for 
defi ning the major base across the alignment for each genotype using an in-house 
developed Perl script (ConsensusCallingSNP.pl,  http://www.icrisat.org/azam_
et_al_2012/ConsensusCallingSNP.pl ). Subsequently, the major base (which is a 
base in majority or consensus base on a locus) at each position in aligned reads 
was compared between both genotypes. If a variation is found between the major 
bases of the two genotypes, the variation was reported as candidate SNP. 

 Experimental validation of SNPs   —     For validating the predicted SNPs, two 
approaches, allele-specifi c sequencing ( Nayak et al., 2010 ) and KASPar SNP 

reference genome sequence. High-throughput transcriptome se-
quencing, also known as RNA-seq ( Wang et al., 2009 ), using 
NGS technologies can be used for variant detection ( Imelfort 
et al., 2009 ), splice-site detection ( Sultan et al., 2008 ) and gene 
expression profi ling ( Marioni et al., 2008 ;  Morin et al., 2008 ). 
Plant researchers have started to use NGS approaches routinely, 
especially with the decreasing costs associated with NGS tech-
nologies ( Varshney et al., 2009 ;  Edwards and Batley, 2010 ). 
While NGS is being used for allele discovery and gene expres-
sion analysis in model or major crop species ( Deschamps et al., 
2010 ;  Duran et al., 2010 ;  Hyten et al., 2010a ;  Lu et al., 2010 ), 
SNP marker discovery is the major growth area of NGS appli-
cations in plant species that do not have a reference genome se-
quence data ( Duran et al., 2009a ;  Trick et al., 2009 ;  Parchman 
et al., 2010 ;  Dubey et al., 2011 ;  Garget al., 2011 ;  Hiremath 
et al., 2011 ). 

 Several bioinformatics tools are available to detect SNPs 
from sequence data generated using traditional Sanger se-
quencing approach ( Barker et al., 2003 ;  Zhang et al., 2005 ; 
 Stephens et al., 2006 ;  Duran et al., 2009b ,  c ;  Jayashree et al., 
2009 ). These are generally unsuitable for the detection of SNPs 
from short sequence reads such as those generated by Illumina/
Solexa or ABI-SOLiD technologies. In the last few years, sev-
eral tools have been developed for SNP discovery from short 
read data. These tools generally employ three steps for SNP 
identifi cation: (1) alignment of reads from different genotypes 
onto a reference sequence (i.e., mapping), (2) the generation of 
a consensus sequence for individual genotypes on the basis of 
posterior probability (i.e., consensus calling), and (3) the iden-
tifi cation of SNPs by comparison with the reference sequence 
(i.e., SNP calling). 

 A number of open source tools are currently available that 
can execute one, two, or all three steps mentioned. For instance, 
Maq ( Li et al., 2008 ), SOAP2/SOAPsnp ( Li et al., 2009 ), 
Mosaik/PolyBayes ( Marth et al., 1999 ), and Bowtie ( Langmead 
et al., 2009 ) are tools that can perform mapping, consensus call-
ing, and SNP calling, while several others such as Novoalign 
( Hercus, 2009 ) and RMAP ( Smith et al., 2008 ) can only be used 
for mapping. In case of mapping, all tools use heuristics tech-
niques to align reads to the reference because running accurate 
alignment algorithms to identify all possible places where reads 
may map to the reference sequence is computationally infea-
sible ( Flicek and Birney, 2009 ). Therefore, these tools use vari-
ous approaches to identify a subset of places in the reference 
sequence where the best mapping is most likely to be found. 
Then, more accurate alignment algorithms such as Smith-
Waterman are run on the limited subset ( Batzoglou, 2005 ). Al-
gorithms used to search the small set of potential alignments 
in the reference sequence can be broadly classifi ed into two 
main categories: hash based, hashing either reference sequence 
(Novoalign) or reads (Maq); and Burrows – Wheeler transfor-
mation ( Flicek and Birney, 2009 ;  Li and Homer, 2010 ) (e.g., 
Bowtie and SOAP2). For consensus calling, in general, the pos-
terior probability of all bases from different reads is often com-
puted. Subsequent comparison with the reference sequence 
identifi es SNPs. 

 Apart from the open source tools mentioned, some proprie-
tary tools are also available as a part of workbench or integrated 
analyses solutions, e.g., NextGENe (http://www.softgenetics.
com/NextGENe.html), CLCBio Genomics workbench (http://
www.clcbio.com), ELANDv1 or ELANDv2 from Illumina (http://
www.illumina.com/support/sequencing/sequencing_software/
casava/downloads.ilmn), and Alpheus ( Miller et al., 2008 ). NGS 



3February 2012] AZAM ET AL. — COVERAGE-BASED CONSENSUS CALLING TO IDENTIFY SNPS

proportion of such reads was quite large, discarding these reads 
was not affordable. Therefore, a unique location, selected 
randomly was assigned to such reads. This strategy has been 
pre viously applied with human data set ( Li et al., 2008 ). 

 Coverage-based consensus calling   —      Aligned reads for each 
genotype from all four tools were used for coverage-based con-
sensus calling (CbCC). A Perl script was written (Consensus-
CallingSNP.pl) that defi nes the major base at every position of 
the aligned sequences for each genotype using the following 
criteria: (1) the base quality is  > 20, (2) the minimum read depth 
is 2 in both genotypes, and (3) the frequency of the major base 
( f  major ) in each of the two genotypes is  > 0.66. 

 The current data sets comprise single short reads ( ≤ 36 bp), 
which contain sequence errors, especially toward the 3 ′  end of 
reads. In addition, because multiple best hits were identifi ed for 
47 – 60% of reads, a unique location was selected randomly for 
such reads. In this case, a probability-based statistical approach 
for consensus calling, as performed in general cases ( Marth 
et al., 1999 ;  Li et al., 2008 ), is not appropriate. Considering the 
multiple read mapping and the lack of a genomic reference, the 
CbCC approach is a more appropriate method for consensus 
calling, especially when using relatively small and low-quality 
data sets. 

 SNP discovery and validation   —      On the basis of a compari-
son of CbCC results from four alignment tools, a total of 7015 
SNPs was predicted. Novoalign predicted the least number of 
SNPs (1272), with the maximum number identifi ed by Bowtie 
(2454). Maq and SOAP2 predicted 1329 and 1960 SNPs, re-
spectively ( Table 1 ). A signifi cant portion of SNPs predicted by 
each tool was unique to the tool ( Fig. 1 ). For example, No-
voalign had the maximum proportion of unique SNPs (58.3%), 
while Maq had the fewest unique SNPs (33.6%). Bowtie and 
SOAP2 predicted 43.9% and 35.6% unique SNPs. Unique SNP 
identifi cation can be attributed to the different sensitivity of 
read alignments using different tools. This may be due to the 
intrinsic alignment policy or different algorithms employed to 
identify the best alignment or may be due to random placement 
of multiple best hit ( Souche et al., 2007 ). After considering re-
dundancy, a total of 4543 nonredundant SNPs were predicted 
( Fig. 1 ). 

 To estimate the accuracy of SNP prediction using each of the 
four alignment tools, a set of 224 randomly selected SNPs was 
validated. A total of 190 SNPs were selected for validation using 
allele-specifi c sequencing of PCR amplicons in both directions 
using Sanger sequencing. In addition, KASPar assays were de-
veloped to validate 34 SNPs. Only 79 of the predicted SNPs 
(35.3%) were found to be correct (60 SNPs via allele-specifi c 
sequencing and 19 SNPs via KASPar assays). In a comparison 
of these results with other studies including  Brassica napu s 

genotyping (KBioscience, England, http://www.kbioscience.co.uk/) assays were 
applied. In the case of allele-specifi c sequencing, primer pairs were designed 
using the program Primer3-v.0.4.0 ( Rozen and Skaletsky, 2000 )/GENETOOL 
(version 1.0; http://www.doubletwist.com), based on the corresponding TUS so 
that the selected SNP is present in the target sequencing region. Subsequently, 
these primer pairs were used to generate amplicons for ICC4958 and ICC1882, 
and these amplicons were sequenced following the protocol of  Nayak et al. 
(2010) . Sequence data generated for both genotypes were compared with the 
sequence of the corresponding TUS at the targeted SNP position using DNA 
Baser (DNA Baser Sequence Assembler v3.0, 2011; Heracle BioSoft, http://
www.DnaBaser.com). In some cases, SNP genotyping was conducted using 
KASPar assays at KBioscience UK. Complete details on the principle and pro-
cedure of the assay are available at http://www.kbioscience.co.uk/reagents/
KASP_manual.pdf. The called alleles were compared with those of the pre-
dicted SNPs in the corresponding TUS. 

 All the raw data as well as the processed data related to the manuscript can 
be accessed through the URL: http://www.icrisat.org/azam_et_al_2012/index.
html . 

 RESULTS AND DISCUSSION 

 Mapping of reads onto CaTA   —      Illumina GA I sequencing 
on RNA samples isolated from drought-stress-challenged root 
tissues of two genotypes namely ICC4958 (drought tolerant) 
and ICC1882 (drought susceptible) generated 15.7 and 22.1 
million reads of 36-bp length, respectively (SRA030700.1, 
 Hiremath et al., 2011 ). Four tools, Bowtie, Maq, Novoalign, 
and SOAP2 were used for mapping 37.8 million reads of these 
genotypes onto the chickpea transcriptome assembly (CaTA), 
developed in an earlier study ( Hiremath et al., 2011 ) ( Table 1 ). 
Among these tools, Bowtie could align 73.6% and 63.5% of 
reads from ICC4958 and ICC1882, respectively, while SOAP2 
aligned 68.5% and 58.7% of reads in these genotypes. These 
observations were not unexpected because the tools employ 
different algorithms and parameters. For instance, Maq and No-
voalign use a hash-based algorithm, while Bowtie and SOAP2 
are based on Burrows – Wheeler transformation ( Flicek and 
Birney, 2009 ;  Li and Durbin, 2009 ;  Li and Homer, 2010 ). How-
ever, the hashing strategies used by Maq and Novoalign are 
different ( Flicek and Birney, 2009 ;  Li and Homer, 2010 ); Maq 
makes hashes of reads and then searches for set of potential 
good alignments, while Novoalign makes a hash of the refer-
ence sequence. 

 When aligning reads onto the CaTA, 47 – 60% of reads identi-
fi ed more than one location. This is not uncommon ( Pasaniuc 
et al., 2010 ), and similar results have been observed in other 
organisms including animal (17 – 24%) ( Mortazavi et al., 2008 ; 
 Costa et al., 2010 ;  Li et al., 2010 ) and plant species (52%) ( Li 
et al., 2010 ). Duplicate mapping could be due to the following 
reasons: (1) low quality of the reference sequence (CaTA) or 
sequencing errors in the reads, (2) occurrence of paralogous 
gene families, and (3) high similarity between alternatively 
spliced isoforms of the given gene ( Li et al., 2010 ). Because the 

  TABLE  1. Mapping of short sequence reads and SNP prediction between genotypes ICC 4958 and 1882 of chickpea. 

Tool

Mapping on to CaTA
No. of TUSs having 
alignment in both 

genotypes

Predicted SNPs 
between ICC4958 

and ICC1882

ICC 4958 ICC 1882

Reads aligned % of alignment Reads aligned % of alignment

Bowtie 11   530   446 73.6 14   036   566 63.5 46   170 2454
Maq 11   446   328 73.1 13   959   395 63.1 45   525 1329
Novoalign 11   481   173 73.3 13   869   083 62.7 46   029 1272
SOAP2 10   731   068 68.5 12   957   191 58.7 44   304 1960
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individual tools highlighted the superiority of Maq, as 50.0% of 
Maq predicted SNPs were found to be correct in the validation 
study. In contrast, only 30.2% of SNPs identifi ed by Novoalign 
were correct. When comparing combinations of two tools, 
55.7% accuracy was reported for SNPs predicted by both Maq 
and Bowtie (class V), while SNPs predicted by both Novoalign 
and SOAP2 (class X) were the least accurate (38.1%). Among 
combinations of three tools, class XIV (Bowtie, Maq, and No-
voalign) provided greatest accuracy (61.5%). It was observed 
that inclusion of Maq in a combination of two or three tools 
provided greatest accuracy. As expected, class XV containing 
SNPs predicted by all four tools provided the greatest accuracy 
(62.5%). 

 The confi dence of a predicted SNP being correct increases if 
it is predicted by more than one tool ( Souche et al., 2007 ). For 
instance, in the current study, 2962 (65.2%) SNPs were unique 
to a particular tool, and 1581 (34.8%) SNPs were identifi ed by 
more than one tool. When these results were correlated with 
true positives, SNPs unique to one tool showed a poor rate 
(mean 31.2%) of accuracy compared to those identifi ed by two 
(mean 46.6%), three (mean 53.9%), or all four tools (62.5%). 
An attempt was made to estimate the accuracy rate of predicted 
SNPs that are unique to individual tools. The greatest accuracy 
(47%) was observed for SOAP2, which compared to 9% for 
Novoalign (Appendix S1, see online Supplemental Data for this 
article). These results highlight the use of SOAP2 for SNP dis-
covery because it identifi ed a greater proportion of unique SNPs 
compared to the other tools. The present analysis suggests No-
voalign has a low accuracy rate (30%), fi ndings which support 
earlier studies ( Xu et al., 2011 ;  Yu, 2011 ). 

 Comparison of SNP prediction and validation for different 
read depths   —      To identify the optimal read depth for SNP pre-
diction, we analyzed SNPs that were predicted at different 
thresholds of read depth in the context of the validation results. 
Four different read depth thresholds 2, 3, 4 – 10, and  > 10 were 
assessed. The number of SNPs predicted by each of the tools at 
different read depths has been summarized in  Table 3 . Most 
of the predicted SNPs(40.0 – 44.3%) are from the category with 
read depth 2. Between 33.6 and 33.7% of SNPs were predicted 
at a read depth of 3, 16.7 – 17.6% at a depth between 4 and 
10, while only 5.5 – 9.2% of SNPs were predicted at a read 
depth  > 10. 

 As the read depth increases, the rate of SNP prediction ac-
curacy also increases (online Appendix S2). The rate of SNP 
prediction accuracy was poor (20.0 – 26.7%) at read depth of 2. 
As the depth increased to 3, Maq had the greatest accuracy 
51.6%, much higher than the other tools (20.7 – 38.7%). Simi-
larly, at a depth of 4 – 10, Maq demonstrated the greatest accu-
racy (58.6%) compared to 44.4% for Novoalign and 47.6% and 
47.2% for Bowtie and SOAP2, respectively. At read depths of 
 > 10, Novoalign showed the least accuracy (60.0%), Maq and 
SOAP2 showed 75.0% each, and Bowtie showed 82.4%, though 
these fi gures may not be precise due to the relatively small 
number of SNPs predicted at this read depth. The greater 
SNP prediction accuracy at higher read depth is similar to ob-
servations in other species such as  Eucalyptus grandis  (83%) 
( Novaes et al., 2008 ), maize (85%) ( Barbazuk et al., 2007 ), soy-
bean (79 – 92%) ( Hyten et al., 2010a ), and common bean (86%) 
( Hyten et al., 2010b ). However, it is important to note that our 
results are mainly based on short sequence reads and low 
coverage data as compared to data sets in the other studies 
mentioned. 

(84 – 91%) ( Trick et al., 2009 ),  Eucalyptus grandis  (83%) ( Novaes 
et al., 2008 ), maize (overall 85%, while at lower depth 64%) 
( Barbazuk et al., 2007 ), rice (96.4%) ( Deschamps et al., 2010 ), 
soybean (79 – 92%) ( Hyten et al., 2010a ) and common bean 
(86%) ( Hyten et al., 2010b ), our SNP discovery rate as well as 
prediction accuracy is low. Lower SNP frequency is a result of 
the narrow genetic base of the gene pool of cultivated chickpea 
as well as the use of transcript reads for SNP discovery ( Gujaria 
et al., 2011 ;  Hiremath et al., 2011 ). Differences in prediction 
accuracy in chickpea as compared to other species as mentioned 
earlier can be attributed to the larger data sets, use of paired 
reads as well as the availability of reference genome sequences 
in several of the aforementioned studies. Considering a 35.3% 
success rate across the total nonredundant (4543) SNPs, a set of 
1602 valid SNPs can be anticipated, and this set of SNPs will be 
helpful to integrate in the transcript genetic map ( Gujaria et al., 
2011 ). These markers will be useful to accelerate research and 
breeding applications in chickpea by deploying markers for the 
molecular characterization of germplasm collections, genetic 
diversity studies, trait mapping, and marker-assisted selection 
studies ( Upadhyaya et al., 2011 ). 

 Comparison of four tools   —      To compare the use of different 
combinations of alignment tools, we categorized all predicted 
SNPs into 15 classes ( Table 2 ). Each class represents SNPs 
either unique to each tool or an intersection of two or more tools. 
From this set, 224 SNPs were selected for validation, but only 
79 of these SNPs were found as true positives. The prediction 
and validation results for these SNPs were compared across all 
15 classes where stringent classes are subsets of larger classes. 
For example, class XII (Bowtie, Maq, SOAP2), is the subset of 
class V (Bowtie, Maq), class VII (Bowtie, SOAP2), and class IX 
(Maq, SOAP2), and class XV (Bowtie, Maq, Novoalign, SOAP2) 
is the subset of all classes. Detailed comparative analysis across 

 Fig. 1.   A venn diagram showing distribution of predicted SNPs by 
different/ combination of tools. Numbers of SNPs predicted by the four 
tools have been shown in four differently colored ellipses. The numbers of 
SNPs present in intersections of two or more ellipses represent the SNPs 
detected by combination of two or more tools. Sum of the number of SNPs 
present in different intersections in a given ellipse represents the number of 
redundant SNPs for the respective tool.   
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 In terms of the future implications of this study in the crop 
species without a reference genome, SNP discovery using the 
optimized tools and approaches and their genotyping using 
GoldenGate or KASPar assays is expected to be in greater use 
for accelerating genetics research and breeding applications. In 
the long term, due to decreasing costs in NGS technologies, 
SNP discovery and imputation of allele, in case of missing data, 
across the germplasm collection or mapping populations, popu-
larly called genotyping-by-sequencing (GBS), is going to be 
the approach of future. Recommendations made in this study 
will be very useful while analyzing GBS data especially in the 
crop species without a gold-standard reference genome. 
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