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19.1 Introduction

The role of legumes in agricultural
development has been that of providing
long-term stability to agricultural systems.
Legumes and cereals have co-evolved since
ancient times. They have acted as a major
contributory factor in sustaining agricultural
production throughout the millennia. Grain
and forage legumes are grown on ~190 mil-
lion ha, and their production is about 300
million metric t worldwide (ICRISAT, 2009).
Unfortunately, yield improvements in legume
crops have not kept pace with those of cereals.

The majority of legumes, apart from
soybean, have literally been termed ‘orphan
crops’ in the sense that they are devoid of a
well-developed infrastructure (both knowl-
edge and physical capacity) for genetic and
genomic analysis or molecular breeding.
This lack of infrastructure has restricted the
biotechnological crop improvement strate-
gies available for these crops. In this context,
there is a need to increase the availability of
genomic data and resources in key species
and also to decrease the barriers that limit
the adoption of complex genomic data sets
by crop improvement specialists. Part of
the solution lies in training the next gen-
eration of scientists to navigate both basic
and applied plant science. This in turn,
will improve the capacity for the uptake of

new biotechnologies and reduce the ‘gap’
between genomics and traditional versus
modern molecular breeding. This chapter
provides general concepts of trait mapping
and molecular breeding in food legumes, cit-
ing the examples of soybean, common bean
and chickpea where development and use
of genetic and genomic resources are at an
advanced stage.

19.2 Challenges in Legume
Production

Legume production is greatly challenged
by numerous biotic and abiotic stresses,
which result in severe losses to agricultural
production on a yearly basis. Most legume
crops are affected by common insect pests,
diseases and a range of abiotic stresses,
including adaptation to acid, saline or low-
fertility soils as well as adverse weather con-
ditions such as drought, cold temperature
or heat stress. However, the occurrence and
severity of biotic and abiotic stresses differ
from crop to crop, and by pathogen and the
environmental conditions to which the crop
is exposed, requiring crop-specific breed-
ing approaches and management practices.
These stresses are discussed in detail in
Chapters 15 and 16.
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The interaction between biotic and
abiotic stresses is likely to be especially
complex and damaging to legume crops in
arid and semi-arid regions of the world,
and de-convoluting such interactions is an
important long-term challenge for legume
improvement and molecular/physiological
research. Although several breeding strate-
gies ranging from classical breeding to more
directed physiological and molecular genetic
approaches have been implemented to cope
with the threats of these stresses, a better
understanding of the mechanisms under-
lying specific stresses will make molecu-
lar breeding truly feasible. The availability
of tolerant and resistant cultivars to biotic
and abiotic stresses is one of the most effec-
tive management practices when irrigated
under a comprehensive integrated manage-
ment approach, resulting in cost savings (i.e.
insecticides, pesticides) and environmental
protection.

Biotechnological approaches, such as
marker-assisted breeding, tissue culture, in
vitro mutagenesis and genetic engineering,
can contribute to the speeding up of clas-
sical breeding and in overcoming major
problems, such as lack of natural sources
of genetic resistance to biotic and abiotic
stresses and sexual incompatibility (Cook
and Varshney, 2010). In the near future,
great success in crop improvement will be
possible by combining genomic tools with
rational selection of germplasm and pre-
cise phenotyping for traits of interest, an
approach termed ‘genomics-assisted breed-
ing” (Varshney et al., 2005).

Improvement in agronomic/pheno-
logical traits of legumes is crucial in order
to improve their use as human food, espe-
cially in developed countries. In the current
scenario, legumes have become an increas-
ingly important concern in marketing and
profitability. Therefore, different quality
characteristics of legumes such as seed size,
mass and shape, storability, etc. are receiv-
ing greater attention in regard to genetic

19.3 Molecular Breeding
Approaches

The use of molecular markers for improving
breeding efficiencies in plant breeding was
first suggested in 1989 (Tanksley et al., 1989;
Melchinger, 1990). Today, plant breeding is
rapidly evolving as more molecular genetic
tools are being applied to commonly accepted
field techniques (Kulwal et al., 2010); recent
advances in genomics have allowed identifi-
cation of molecular markers associated with
traits of interest to breeders. In this context,
initially a linkage between a gene responsible
for a trait of interest and a molecular marker
is established and confirmed, validated
using breeders” materials and subsequently
used in DNA diagnostic tests to guide plant-
breeding selection efforts (Morgante and
Salamini, 2003; Gupta and Varshney, 2004)
(Fig. 19.1). The process of indirect selection in
crop improvement can be expedited by using
molecular markers, which help in alleviating
several time-/cost-consuming and labour-
intensive aspects of direct screening under
greenhouse and field conditions.

Trait mapping

Molecular breeding includes the identifica-
tion of genotypically and phenotypically
polymorphic plant genotypes, development
of segregating mapping populations, geno-
typing of the mapping population, pheno-
typing of trait(s) of interest and marker-trait
association analysis. Subsequently, mapped
gene(s) or quantitative trait loci (QTL) can be
introgressed individually or combined (pyra-
mided) in an improved cultivar (Gupta et al.,
2010a). Two main approaches can be used to
identify marker—trait associations: (i) link-
age mapping; and (ii) association mapping
(Fig. 19.1).

In general, linkage mapping-based
gene/QTL studies involve: (i) development

‘improvement. There is alsoar increasing—of an appropriate mapping population from

interest in improving nutritional character-
istics of legumes with enhanced contents of
beta carotene, leutin, isoflavones and other
nutraceuticals.

contrasting parental genotypes for the trait
of interest; (ii) identification of polymor-
phic markers; (iii) genotyping of the map-
ping population with polymorphic markers;
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Fig. 19.1. A scheme showing integration of modern genetics and breeding approaches (trait mapping
and molecular breeding) in crop improvement programmes. GWS, genome-wide selection; LD, linkage
disequilibrium; MABC, marker-assisted backcrossing; MARS, marker-assisted recurrent selection; NiLs,

near-isogenic lines; QTL, quantitative trait loci.

(iv) construction of the genetic map based
on genotyping data; (v) precise phenotyp-
ing of the mapping population in different
environments; and (vi) marker—trait associa-
tion using suitable genetic linkage and QTL
analysis programmes (Varshney et al. 2009b).
In legume species, linkage mapping-based
approaches have been extensively used for
mapping genes/QTL for resistance to dis-
eases, nematodes and insects and for toler-
ance to abiotic stresses and several agronomic
traits (Table 19.1).

Association mapping (also known as
linkage disequilibrium mapping) has also
been used in plant species for trait map-
ping. It has several advantages over conven-
tional linkage mapping approach: (i) it takes
less time as there is no need to develop a

specialized mapping population — rather, an
existing natural population is used; (ii) it is
less expensive as the same association map-
ping panel and genotyping data generated
can be used for mapping of different traits;
(iii) resolution of mapping is high because
of the use of a natural population that has
several meiotic recombinants, unlike the few
in mapping populations; and (iv) as com-
pared with linkage mapping where a maxi-
mum of two alleles are obtained, a higher
numbers of alleles are obtained to find trait
associations.

Assodation mapping comprises the fol
lowing two broad categories based on the scale
and goal of a particular study: candidate gene-
based association mapping and whole-genome
association mapping. The former relates to
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Table 19.1. Examples of gene/QTL mapping in soybean, common bean and chickpea.

Reference(s)
and related
Crop Trait Gene/QTL Marker type(s) reference(s) cited
Disease resistance
Soybean  Sclerotinia stem rot 16 QTL SSRs Guo et al. (2008);
Vuong et al. (2008);
Huynh et al. (2010)
Phytophthora root rot 3-8 QTL/genes AFLPs, SSRs, Han et al. (2008); L,
RAPDs, X. et al. (2010);
SCARs Wang et al. (2010)

Common
bean

Chickpea

Brown stem rot

Asian soybean rust

Soybean mosaic virus
Sudden death syndrome
Anthracnose

Halo blight
Charcoal rot

Fusarium wilt
White mould

Rust
Common bactenal blight

Bacterial brown spot

Bean common mosaic virus
Bean golden yellow mosaic

geminivirus
Ascochyta blight

Fusarium wilt

Rust

Nematode and insect resistance

Soybean

Common
bean

Corn earworm
Cyst nematode

Leaf hopper

Thrips

4 QTL/genes

5 loci/QTL

Rsv1, Rsv3
4 QTL
Co-genes

Pse-1
1 QTL

PvPR2, PVvPR1
Fin, Phs

UR-6, UR-13
6 QTL

2 QTL
bc-3; 1
bgm-1

AR2, ar1, arla,
arib, ar2a,
ar2b, Ar19

QTL,g., QTLag,

13 QTL

foc-0, foc-1,
foc-2, foc-3,
foc-4, foc-5

1QTL

3QTL
rhgt, rhg4

1QTL

Tpr6.1

RFLPs, AFLPs,
SSRs
SSRs, SNPs

SSRs
SSRs
RAPDs, AFLPs

SCARs
AFLP

RAPDs
RAPD, SSR

SCAR
SSRs, STSs,
SCARs

RAPDs!
RAPD; SCAR
SCAR

SSRs, RAPDs,
DAF

SCARs, SSRs,
RAPDs

SSRs, RAPDs

SSRs, STSs,
RAPDs

SSR

RFLPs

SSRs, SCARs,
SNPs

SSR, RFLP

SSRs

Patzoldt et al. (2005)

Garcia et al. (2008);
Silva et al. (2008);
Chakraborty et al.
(2009); Hyten et al.
(2009)

Shi et al. (2008)

Kazi et al. (2008)

Rodriguez-Suéarez
etal. (2007)

Miklas et al. (2009)

Hernandez-Delgado
et al. (2009)

Schneider et al. (2001)

Kolkman and Kelly
(2003)

Mienie et al. (2005)

Liu et al. (2008);
Vandemark et al.
(2008)

Jung et al. (2003)

Johnson et al. (1997)

Blair et al. (2007b)

Cho et al. (2004)

Iruela et al. (2006,
2007)

Kottapalli et al. (2009)

Cobos et al. (2005);
Iruela et al. (2007)

Madrid et al. (2008)

Rector et al. (1998)

Wu et al. (2009);
Vuong et al. (2010)

Murray et al. (2004)

Frei et al. (2005)
Continued
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Table 19.1. Continued

Reference(s)
and related
Crop Trait Gene/QTL (n) Marker type(s) reference(s) cited
Bean pod weevill 4 QTL SSRs, SCARs  Blair et al. (2006,
2007a)
Bruchids Arc gene SSRs Blair et al. (2010b, c)
Abiotic stress tolerance traits
Soybean  Waterlogging 6 QTL SSRs, RFLPs  Githiri et al. (2006)
Chilling tolerance in 3 QTL SSRs Funatsuki et al.
seed yield (2005)
Salt stress 1 QTL/gene SSR Lee et al. (2009);
Tuyen et al. (2010)
Manganese toxicity 3 QTL SSRs, RAPDs  Kassem et al. (2004)
Phosphorus deficiency fswi, fsw2, rp1, SSRs, RFLPs Li et al. (2005)
fsw3, rp2,
Ip1, Ip2
Iron deficiency chlorosis 3-19 QTL SSRs, RFLPs  Lin et al. (2000)
Aluminum tolerance 11 QTL RFLPs Qi et al. (2008)
Sulphur-containing 7 QTL SSRs Panthee et al. (2006)
amino acids
Common  Drought 2QTL RAPDs Schneider et al
bean (1997)
Phosphorus uptake Pup4.1,10.1 RAPDs Beebe et al. (2006)
and 2.1
Agranomic/phenological traits
Soybean  Specific leaf weight, 3-6 QTL RFLPs Mian et al. (1998)
leaf size
Seed weight 15 QTL SSRs Csanadi et al. (2001)
Flowering time 4-9 QTL SSRs Su et al (2010)
Sprout yield 4QTL RFLPs Lee etal (2001)
Seed isoflavones (genis- 35 QTL SSRs Zeng et al (2009);
tein, daidzein, glycitein) Gutierrez-Gonzalez
et al. (2010)
Seed size 7 QTL SSRs Hyten et al. (2004)
Seed flooding tolerance 4 QTL == Sayama et al. (2009)
Ability, frequency and 5QTL SSRs, AFLPs  Choai et al. (2010);
efficiency of somatic Song et al. (2010)
embryogenesis
Early matunty E, SSRs Cober et al. (2010)
Oligosaccharides and 6 QTL SSRs Kim et al. (2006)
sucrose
Vitamin E content 21 QTL SSRs Li, H. et al. (2010)
Chlorophyll a fluorescence  4-13 QTL - Yin et al. (2010)
parameter
Developmental behaviour 15 QTL SSRs Sun et al. (2006)
Browning in soybean 5QTL AFLPs, SSRs  Githin et al. (2007)
seed coat
Domestication 2QTL SSRs Liu et al. (2007)
Seed composition 52 QTL SSRs L1 et al. (2007)
Seed shape 19 QTL SSRs Salas et al. (2006)
Photoperiod insensitivity 2 QTL SSRs Liu and Abe (2010)
Net-like cracking of seed coat 2 QTL SSRs Oyoo et al. (2010)
Cleistogamy 4 QTL SSRs, AFLPs  Khan et af (2008)

Continued
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Table 19.1. Continued.

Reference(s)
and related
Crop Trait Gene/QTL (n) Marker type(s) reference(s) cited
Bean Seed mass, calcium, iron, 3-26 QTL AFLPs Guzman-Maldonado
zinc, tannin content et al. (2003)
Plant height, climbing 1-9 QTL SSRs, RAPDs, Checa and Blair
ability, internode length, SCARs (2008)
branch number
Phenological traits, seed 31 QTL SSRs, AFLPs, Pérez-Vega et al.
size traits, seed quality SCARs, (2010)
traits d ISSRs
Nutritional traits (iron, zinc, = 3-26 QTL SSRs, RAPDs, Blair et al. (20093, b,
tannins, phytate) AFLPs 2010a), Caldas and
Blair (2009); Cichy
et al. (2009)
Nodulation number 4 QTL RFLP Nodari et al. (1993)
Chickpea Seed size traits 2QTL SSRs Hossain et al. (2010)
Double podding s SSRs Rajesh et al. (2002)
Time to flowering 2QTL SSRs Lichtenzveig et al.
(2006)
Beta carotene, leutin, seed 14 QTL SSRs Abbo et al. (2005)
weight
Flower colour B/b SSR Cobos et al. (2005)

polymorphisms in selected candidate genes
that appear to have roles in controlling pheno-
typic variation for specific traits, while the latter
surveys genetic variation in the whole genome
to find marker-trait associations for various
complex traits (Zhu et al., 2008). In taking the
decision as to which is the method of choice,
one has to consider the extent of linkage dis-
equilibrium (LD) in the organism of interest.
Although the association mapping
approach hasbeen used recently in several cere-
als like maize, barley, wheat, etc. (Ersoz et al.,
2007), only a few examples have become avail-
able in legume species. The candidate gene-
based approach has been successfully used to
map different loci for iron deficiency chlorosis
in soybean (Wang et al., 2008). Similarly, several
candidate genes implicated in oleate biosyn-
thesis were mapped and their co-segregation
with oleate and linoleate QTL investigated
(Bachlava et al., 2009). Other examples of trait
mapping are shown in Table 19.1.
Next-generation sequencing and high-
throughput genotyping technologies are
becoming popular in legumes such as chick-
pea, common bean and soybean (Yarshney
et al., 2009a, ¢, 2010Db), acceleratihg their

use in association mapping. For example, a
high-throughput SNP genotyping platform
(Ilumina GoldenGate assay) developed in
soybean (Hyten et al., 2008) has been used
for mapping soybean rust resistance (Rpp3)
(Hyten et al., 2009), SCN (soybean cyst nema-
tode) (Vuong et al., 2010), flooding and fatty
acids (Vuong et al., unpublished data).

Molecular breeding

Once markers are identified for a trait, they
can be used for a variety of applications
such as enhancing biological knowledge of
the inheritance and genetic architecture of
the trait, in addition to their use in breeding
programmes. When molecular markers are
used in breeding programmes, it is important
to take into account the statistical power to
identify QTL numbers, QTL effect, percent-
“age of phenotypic variation explained, major
and minor QTL through use of appropriate
marker density on the genetic map and rea-
sonable population sample size. Furthermore,
markers identified in one population need tobe
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validated in other population/germplasm
collections, and closely linked markers flank-
ing the QTL should be used for indirect selec-
tion of the trait.

Figure 19.1 shows a few molecular breed-
ing approaches commonly used in breeding
programmes, which are discussed in the fol-
lowing sections. Soybean is the legume crop in
which these approaches have been most suc-
cessful, and where the use of markers in breed-
ing programmes is routine. Several improved
lines/varieties for resistance to different SCN
races (also lown as HG types) (Concibido
et al., 1996; Cahill and Schmidt, 2004; Arelli
and Young, 2009); phytophthora root rot and
brown stem rot (Cahill and Schmidt, 2004);
insect resistance (Narvel et al., 2001; Walker
et al., 2002; Warrington et al., 2008); low lino-
lenic acid content (Sauer et al., 2008); yield
(Concibido et al., 2003); and mosaic virus
(Saghai Maroof et al., 2008; Shi et al., 2009)
have been developed and released. In the
case of common bean the use of molecular
markers in breeding programmes is inter-
mediate between that of soybean and chick-
pea, and marker-assisted selection (MAS)
has been used principally to deploy single
genes in large-scale programmes at CIAT
for resistance to quarantined viruses (Miklas
et al., 2006a, b; Blair et al., 2007a). More spe-
cifically, MAS has been successfully used for
enhanced resistance to anthracnose in the
bean cultivar Perola in Brazil (Raganin et al.,
2003), pinto beans in the USA (Miklas et al.,

2003a) and Andean climbing bean in Mexico/
Colombia (Garzon et al., 2008). On the other
hand, molecular breeding activities have only
just been initiated in chickpea. Several suc-
cessful examples targeting the development
of superior lines or released cultivars through
molecular breeding are listed in Table 19.2.

Marker-assisted backcrossing

Marker-assisted backcrossing (MABC) is
the simplest and most widely used molecu-
lar breeding approach in plant breeding.
MABC has become a fast-track approach for
increasing the genetic gain of plants, result-
ing in the development of improved varie-
ties with better yield potential, improved
quality and resistance against insects, pests
and diseases (Collard and Mackill, 2008;
Moose and Mumm, 2008; Ribaut et al., 2010).
Basically, this approach incorporates desir-
able major genes/QTL from an agronomi-
cally inferior source (the donor parent) into
an elite cultivar or breeding line (the recur-
rent parent) without transfer of undesirable
or deleterious genes from the donor (link-
age drag).

The desired outcome of MABC is a line/
cultivar containing only the major genes/
QTL from the donor parent, while retaining
the whole genome of the recurrent parent
(Hospital and Charcosset, 1997; Varshney
and Dubey, 2009; Varshney et al., 2009b,
Gupta et al., 2010a). Three types of selection

Table 19.2. Examples of development/release of improved lines/cultivars in soybean and common bean

using molecular breeding approaches.

Cultivar/breeding Country and year
Crop line Trait of release Reference
Soybean JTN-5503 Disease resistance USA, 2005 Arelli et al. (2006)
JTN-5303 Disease resistance USA, 2005 Arelli et al. (2007)
JTN-5109 Soybean cyst USA, 2009 Arelli and Young
nematode resistance (2009)
DS-880 Soybean cyst USA, 2010 Smith et al. (2010)
nematode resistance
Bean USPT-ANT-1 Disease resistance USA, 2004 Miklas et al
(2003b)
ABCP-8 Disease resistance USA, 2005 Mutlu et al. (2005)
ABC-Weihing Disease resistance USA, 2006 Mutlu et al. (2008)
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can be exercised in MABC: foreground,
recombinant and background. Foreground
selection involves the selection of target
genes/QTL on the carrier chromosome with
the help of two flanking markers (Hospital
and Charcosset, 1997). It can be used to
select for laborious or time-consuming traits
and it allows selection of heterozygous
plants at the seedling stage and therefore
identifies plants desirable for backcrossing.
Furthermore, recessive alleles can be identi-
fied and selected, which is difficult to perform
using conventional methods.

Recombination events between the target
locus and linked flanking markers can also
be identified in backcross (BC) progeny. This
can be used to reduce linkage drag, which is
difficult to overcome through the use of con-
ventional backcrossing (Frisch et al., 1999b).
For this purpose, Hospital and Decoux (2002)
havedeveloped a statistical programume called
‘Popmin’ (http://moulon.inra.fr/~fred/pro-
grams/popmin) for calculating the minimum
population size.

Background selection involves selection
of BC progeny with highest proportion of
recurrent parent (RP) genome, using unlinked
markers present on ‘non-carrier’ chromo-
somes (Hospital and Charcosset, 1997; Frisch
et al., 1999b). The use of background selec-
tion during MABC to accelerate the develop-
ment of a RP genome with additional genes
has been referred to as complete line conver-
sion (Ribaut et al., 2002). While conventional
backcrossing takes a minimum of six BC gen-
erations to recover the RP genome, the use of
markers enables the similar degree of progress
in two BC generations (Visscher et al., 1996;
Hospital and Charcosset, 1997; Frisch et al.,
1999a, b; Varshney and Dubey, 2009). Studies
have also shown that the use of a limited
number of markers on non-carrier chromo-
somes can be sufficient to recover more than
95% of the recurrent parent genome in three
BC generations (Visscher et al., 1996; Kumar
et al.,2010).

The MABC approach has also been
used.-to_construct_near-isogenic_lines (NILs)
or chromosome segment substitution lines
(CSSLs), which are often used for genetic
analysis of genes/QTL (Peleman and van der
Voort, 2003; Lorieux, 2005; Varshney et al.,

2010b). NILs are developed in the same way
as advanced backcross (AB) lines by cross-
ing a donor parent with a recurrent parent.
After several generations of backcrossing, the
advanced backcross lines are expected to con-
tain all of the recurrent parent genome except
for the chromosomal region containing a gene
or QTL of interest. NILs have been utilized for
validation of QTL, for fine mapping and can
also be used directly in breeding programmes
(Stuber et al., 1999). NILs containing different
genes affecting the same trait are very use-
ful for comparing the effectiveness of these
genes in different locations or environments
(Fig. 19.1).

Another use of MABC is to pyramid
various genes for multiple traits within the
same cultivar (Koebner and Summers, 2003;
Sharma et al., 2004; Saghai Maroof et al.,
2008; Li, X. et al.,, 2010). Several excellent
reviews have documented the use of MABC
for pyramiding genes/QTL resulting in the
development of superior lines/varieties/
hybrids in crop plants (Gupta et al., 2010a, b;
Kumar ef al., 2010; Varshney et al., 2010a), and
examples in soybean and common bean are
presented in Table 19.2. However, the use of
MABC has now been initiated in elite lines of
chickpea at ICRISAT, in collaboration with its
partners, for the introgression of QTL/genes
for drought-related traits and resistance to
diseases (fusarium wilt and ascochyta blight).
In addition, the introgression of root trait QTL
is in progress in collaboration with the Indian
Institute of Pulses Research (IIPR) and the
India and Ethiopia Institute of Agricultural
Research (EIAR), Ethiopia. Molecular breed-
ing for development of superior lines with
enhanced resistance to fusarium wilt and
ascochyta blight has been initiated recently
in collaboration with several Indian part-
ners, including IIPR, Jawaharlal Nehru Krishi
Vishwavidyalaya, Mahatma Phule Krishi
Vidyapeeth and the Agricultural Research
Station, Gulburga.

Marker-assisted recurrent selection

One of the limitations of MABC is that
only a limited number of desirable alleles
can be introgressed at a time. To overcome
this limitation, particularly in the case of
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complex traits like drought tolerance, the
marker-assisted recurrent selection (MARS)
approach has been proposed for transfer-
ring/pyramiding of superior QTL/gene
alleles for trait(s) of interest in one genetic
background (Bernardo and Charcosset, 2006;
Varshney and Dubey, 2009; Gupta et al.,
2010a, b; Ribaut et al., 2010). The genetic
gain feasible through MARS has been esti-
mated as being higher than that via MABC
(Bernardo and Charcosset, 2006).

In principle, MARS is a forward breed-
ing approach combining MAS (Stam, 1995)
with increase in the frequency of favourable
alleles/QTL at multiple loci (Edwards and
Johnson, 1994; Koebner and Summers, 2003;
Eathington, 2005). This involves multiple
cycles of marker-based selection thatinclude
improvement of F, progeny by one cycle of
MAS based on marker data and phenotypic
data, followed by three recombination cycles
of the selected progenies based on marker
data only and repetition of these cycles to
develop the population for multi-location
phenotyping (Ribaut et al., 2010; Tester and
Langridge, 2010). In MARS, a selection
index is used that gives weights to markers
according to the relative magnitude of their
estimated effects on the trait (Lande and
Thompson, 1990; Edward and Johnson, 1994).
For the successful use of MARS, a number
of factors including heritability of the target
traits, marker coverage in the genome, reli-
ability of marker-trait associations, family
size, number of families and type of popu-
lation should be considered (Mayor and
Bernardo, 2009). Moreover, knowledge of
the quantitative traits can be very useful in
enhancing the selection response through
MARS with the help of candidate gene mark-
ers, or tightly linked markers, each having a
relatively large effect. The response to MARS
decreases as the knowledge of the number of
minor QTL associated with the trait decreases
(Charcosset and Moreau, 2004; Bernardo and
Charcosset, 2006).

The MARS approach has been/is being
used extensively in maize breeding in both
the private and public sectors. For instance,
it has been employed to fix six marker loci in
two different F, populations that showed an
increase in the frequency of marker alleles,

from 0.50 to 0.80 (Edward and Johnson, 1994).
Several multinational companies, such as
Syngenta and Monsanto, are using MARS in
their breeding programunes in several crops,
including soybean (Ribaut et al., 2010).

Recently, some international agricultural
research centres (IARCs), suchas ICRISAT and
CIAT, in collaboration with the Generation
Challenge Program (GCP), have initiated
the use of MARS in chickpea and common
bean, respectively, for pyramiding favour-
able drought-tolerant alleles. Therefore, the
potential of MARS is yet to be demonstrated
in legume breeding for the development of
superior lines/genotypes.

Genome-wide selection

A new approach based on genome-wide
marker profiling, called ‘genome-wide selec-
tion (GWS)’ or ‘genomic selection (GS)’, has
been proposed for complex traits that are
controlled by many genes/QTL, each of small
effect. Basically, this method predicts genomic
estimated breeding values (GEBVs) of prog-
enies, which are calculated for progenies
based on both phenotyping and genotyping
data. These GEBVs are then used to select
the superior progeny lines for advancement
in the breeding cycle (Heffner et al., 2009;
Janrunk et al., 2010). Several computational
tools are available or are being developed to
calculate GEBVs, such as BLUPs (best linear
unbiased prediction) programmes, and the
geostatistical mixed model has recently been
developed as a tool in GS (Robinson, 1991;
Streeck and Piepho, 2010). This approach is
not required to elucidate marker—trait asso-
ciations by QTL mapping (Bernardo, 2010a,
b; Tester and Langridge, 2010). Furthermore,
it has been shown that double-haploid (DH)
populations are very useful in GWS compared
with F, populations, when many QTL control
a trait (Mayor and Bernardo, 2009). Currently,
however, there is little information available
on the use of GWS in crop plants, although
recent developments in plant genomics make
it feasible to generate genome-wide marker
data (using SNPs) to start GWS in breeding
programumes. In the next few years GWS is
expected to be used in legumes, at least in
soybean.
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Introgression of superior
alleles from wild species

Plant breeders mostly use existing germ-
plasm and landraces to develop new varie-
ties for desirable agronomic traits. However,
yields have remained stagnant partly because
sufficient genetic diversity is missing for
progress in some of the traits, due to genetic
bottlenecks that occurred during the domesti-
cation process (Tanksley and McCouch, 1997;
Gur and Zamir, 2004). It is well known that
wild species/relatives are the reservoirs for
resistance genes to many biotic and abiotic
stresses. However, their transfer from wild
species to elite cultivars through conven-
tional breeding has been limited, mainly due
to the associated transfer of undesired alleles
(linkage drag). However, it is now feasible
to recover/transfer the favourable alleles in
elite germplasm left behind by the domesti-
cation process more efficiently, using inno-
vative genomics-assisted breeding strategies
such as molecular maps and integrative QTL
analysis. In this context, several methods for
transferring superior alleles from wild spe-
cies have been suggested and some of these
are discussed below.

One approach is the construction of
introgression libraries using the genetic back-
ground of elite lines by introgressing small
wild species segments in a systematic man-
ner. Introgression libraries are made up of
introgression lines (ILs) that are produced
by successive backcrossing (generally three
to four generations) to the recurrent parent.
The introgressed fragments can be moni-
tored using molecular markers, either in
each generation or at chosen stages. Fixation
of the materials is obtained by either selfing
or using double-haploid methodology. As
a result, each line possesses one or several
homozygous chromosomal fragments of the
donor genotype, introgressed into a recurrent
background genome. These fragments should
be arranged continuously from the first to the
last chromosome, either manually or using
—a-computer_software-aided_process (graphi-
cal genotyping). The whole donor genome is
thus represented by a set of small, contigu-
ous overlapping fragments. This differs from
the more traditional approach of infroducing

resistance genes from wild species into elite
cultivars through genetically balanced map-
ping populations of progeny recombinant
inbred lines (RILs) derived from an early gen-
eration (e.g. F, plants or families or F,-derived
doubled haploids). Such populations contain
an equal proportion of exotic and elite geno-
types, and deleterious effects of exotic alle-
les may mask the desired target gene effect.
Therefore the development of introgression
lines represents a significant advantage over
the previously used RIL-type populations.
In regard to legumes, some reports on the
development of introgression libraries have
become available in soybean using wild soy-
bean species (Glycine soja) (Concibido et al.,
2003), and in groundnut from synthetic tetra-
ploids (Foncéka et al., 2009).

Another important approach used in the
transfer of superior alleles from wild species
into cultivated germplasm is based on the
advanced-backcross QTL (AB-QTL) analy-
sis proposed by Tanksley and Nelson (1996).
This method proved effective in detecting
additive, dominant, partially dominant and
over-dominant QTL. This approach uses
repeated backcrossing with the elite parent
but decreases the number and size of the
exotic introgressions, thereby reducing the
burden of linkage drag. During backcross-
ing cycles, the transfer of desirable genes/
QTL is monitored by molecular markers. The
segregating BC,F, or BC,F; population gener-
ated during backcrossing (F, or F, stages) is
then used not only for recording phenotyp-
ing data for the trait of interest, but also for
genotyping with polymorphic molecular
markers. These data are then used for QIL
analysis, leading to simultaneous discovery
of QTL and the generation of introgression
lines. Once favourable QTL alleles are iden-
tified, only a few additional marker-assisted
generations are required to develop full NILs
that can be field tested and used for variety
development.

The AB-QTL approach has been used in
common bean and soybean. For instance, in
the case of common bean, Blair et al. (2005)
used a cross between a wild Colombian
accession and an Andean cultivar to develop
BC,F;s-derived lines for AB-QTL analysis
of yield traits, and finding that segregation
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distortion was minimal except at a few
domesticahon syndrome genes. Similar pop-
ulations have been developed for: (i) intro-
gression of high seed iron content from wild
Mexican accessions into the Andean and
Meso-American background cvs Cerinza or
Tacana; and (ii) introgression of drought tol-
erance between the common bean gene pools
from Meso-American sources to Andean
cultivars as part of the Tropical Legumes
project on adaptation to drought-prone mar-
ginal regions of eastern and southern Africa.
Population sizes in these AB-QTL map-
ping populations have ranged from 157 to
300 genotypes, with various experimental
designs used for analysis. In the case of soy-
bean, for instance, Chaky et al. (2003) gener-
ated 296 BC,F,  backcross introgression lines
(BILs) from the cross Glycine max (Dunbar) x
Glycine soja (P1326582A). This study provided
several QTL for seed yield, seed protein and
oil, in addition to some late-maturing and
taller BILs.

19.4 Conclusions

It is evident that several success stories on
both trait mapping and molecular breeding
are available in soybean. The availability
of the soybean genome sequence (Schmutz
et al., 2010) and the establishment of high-
throughput SNP genotyping platforms
(Hyten et al., 2008) are expected further to
accelerate molecular breeding in soybean
improvement.

In the case of common bean, efforts
aimed at trait mapping and molecular breed-
ing are extensive, as compared with chick-
pea. However, molecular breeding activities
in common bean have remained focused
mainly on simple inherited traits like dis-
ease resistance. In the case of chickpea,
although several examples on trait mapping
are available, the use of molecular breed-
ing activities as compared with soybean
and common bean is still at the preliminary
stage. As both of these legume crops are
very important in sub-Saharan Africa and
South America (common bean) and South
Asia (chickpea), CIAT and ICRISAT have

initiated molecular breeding programmes
in these crops to improve complex traits
like drought tolerance, through the use of
MABC and MARS approaches as a part of
the Tropical Legume (TL-I) project of the
Generation Challenge Programme (GCP)
in collaboration with the Bill and Melinda
Gates Foundation (BMGF) (http://www.
generationcp.org/geptli/). With the goal of
sustainable crop production in these legume
crops, 1tis essential that national agricultural
research programmes in the developing
countries of sub-Saharan Africa, South Asia
and South America should lead or actively
participate in the molecular breeding of
these legumes. Shortage of appropriate
human resources and physical infrastruc-
ture 1n developing countries, however, are
challenging issues. The establishment of the
Integrated Breeding Platform (IBP) as a one-
stop shop for accessing genotyping services,
information and data management, decision
support, statistical tools and technical sup-
port will help 1n overcoming some of above-
mentioned limitations.

In sumumnary, due to advances in sequenc-
ing, genotyping, biometrics and bioinfor-
matics, the future of molecular breeding in
legume crops is promising, not only in soy-
bean, common bean and chickpea but also in
other crops like lentil, faba bean and pigeon
pea, which are still considered ‘orphan leg-
ume crops’.
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