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19.1 Introduction 

The role of legumes in agricultural 
development has been that of providing 
long-term stability to agricultural systems. 
Legumes and cereals have co-evolved since 
ancient times. They have acted as a major 
contributory factor in sustaining agricultural 
production throughout the millennia. Grain 
and forage legumes are grown on �190 mil
lion ha, and their production is about 300 
million metric t worldwide (ICRISAT, 2009). 
Unfortunately, yield improvements in legume 
crops have not kept pace with those of cereals. 

The majority of legumes, apart from 
soybean, have literally been termed' orphan 
crops' in the sense that they are devoid of a 
well-developed infrastructure (both knowl
edge and physical capacity) for genetic and 
genomic analysis or molecular breeding. 
This lack of infrastructure has restricted the 
biotechnological crop improvement strate
gies available for these crops. In this context, 
there is a need to increase the avaIlability of 
genomic data and resources in key species 
and also to decrease the barriers that limit 
the adoption of complex genomic data sets 
by crop improvement specialists. Part of 
the solution lies in training the next gen
eration of scientists to navigate both basic 
and applied plant science. This in turn, 

will improve the capacity for the uptake of 

new biotechnologies and reduce the 'gap' 
between genomics and traditional versus 
modern molecular breeding. This chapter 
provides general concepts of trait mapping 
and molecular breeding in food legumes, cit
ing the examples of soybean, common bean 
and chickpea where development and use 
of genetic and genomic resources are at an 
advanced stage. 

19.2 Challenges in Legume 
Production 

Legume production is greatly challenged 
by numerous biotic and abiotic stresses� 
which result in severe losses to agricultural 
production on a yearly basis. Most legume 
crops are affected by common insect pests, 
diseases and a range of abiotic stresses, 
including adaptation to acid, saline or low
fertility soils as well as adverse weather con
ditions such as drought, cold temperature 
or heat stress. However, the occurrence and 
severity of biotic and abiotic stresses differ 
from crop to crop, and by pathogen and the 
environmental conditions to which the croE 
is exposed, requiring crop-specific - breed=
ing approaches and management practices. 
These stresses are discussed in detail in 
Chapters 15 and 16. 
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The interaction between biotic and 
abiotic stresses is likely to be especially 
complex and damaging to legume crops in 
arid and semi-arid regions of the world, 
and de-convoluting such interactions is an 
important long-term challenge for legume 
improvement and molecular / physiological 
research. Although several breeding strate
gies ranging from classical breeding to more 
directed physiological and molecular genetic 
approaches have been implemented to cope 
with the threats of these stresses, a better 
understanding of the mechanisms under
lying specific stresses wlll make molecu
lar breeding truly feasible. The availability 
of tolerant and resistant cultivars to biotic 
and abiotic stresses is one of the most effec
tive management practices when irrigated 
under a comprehensive integrated manage
ment approach, resulting in cost savings (i.e. 
insecticides, pesticides) and environmental 
protection. 

Biotechnological approaches, such as 
marker-assisted breeding, tissue culture, in 
vitro mutagenesis and genetic engineering, 
can contribute to the speeding up of clas
sical breeding and in overcoming major 
problems, such as lack of natural sources 
of genetic resistance to biotic and abiotic 
stresses and sexual incompatibility (Cook 
and Varshney, 2010). In the near future, 

19.3 Molecular Breeding 

Approaches 

The use of molecular markers for improving 
breeding efficiencies in plant breeding was 
first suggested in 1989 (Tanksley et al., 1989; 
Melchinger, 1990). Today, plant breeding is 
rapidly evolving as more molecular genetic 
tools are being applied to commonly accepted 
field techniques (Kulwal et al., 2010); recent 
advances in genomics have allowed identifi
cation of molecular markers associated with 
traits of interest to breeders. In this context, 
initially a linkage between a gene responsible 
for a trait of interest and a molecular marker 
is established and confirmed, validated 
using breeders' materials and subsequently 
used in DNA diagnostic tests to guide plant
breeding selection efforts (Morgante and 
Salarnini, 2003; Gupta and Varshney, 2004) 
(Fig. 19.1). The process of indirect selection in 
crop improvement can be expedited by using 
molecular markers, which help in alleviating 
several time-/ cost-consuming and labour
intensive aspects of direct screening under 
greenhouse and field conditions. 

Trait mapping 

great success in crop improvement will be Molecular breeding includes the identifica
possible by combining genomic tools with tion of genotypically and phenotypically 
rational selection of germplasm and pre- polymorphic plant genotypes, development 
cise phenotyping for traits of interest, an of segregating mapping populations, geno
approach termed 'genomics-assisted breed- typing of the mapping population, pheno
ing' (Varshney et al., 2005). typing of trait(s) of interest and marker-trait 

Improvement in agronomic/pheno- association analysis. Subsequently, mapped 
logical traits of legumes is crucial in order gene(s) or quantitative trait loci (QTL) can be 
to improve their use as human food, espe- introgressed individually or combined (pyra
cially in developed countries. In the current mided) in an improved cultivar (Gupta et al., 
scenario, legumes have become an increas- 2010a). Two main approaches can be used to 
ingly important concern in marketing and identify marker-trait associations: (i) link
profitability. Therefore, different quality age mapping; and (ii) association mapping 
characteristics of legumes such as seed size, (Fig. 19.1). 
mass and shape, storability, etc. are receiv- In general, linkage mapping-based 
ing greater attention in regard to genetic gene/QTL studies involve: (i) development 
improvemenr.-There-is-also-an-increasing--of an appropriate mapping population from 
interest in improving nutritional character- contrasting parental genotypes for the trait 
istics of legumes with enhanced contents of of interest; (ii) identification of polymor
beta carotene, leutin, isoflavones and other phic markers; (iii) genotyping of the map
nutraceuticals. ping population with polymorphic markers; 



298 S.K. Chamarthi et a/. 

Germplasm 
Molecular 

Association Mapping Elite cultivars and 
collection populations ---.. donor wild species characterization mapping panels 

( ",I \ H'gh�ro"ghp" ,,,J. 
\ / > 

Advanced 
backcross 

Identification of populations 

candidate genes I Precise phenotyping and introgression 
libraries 

Association/LD L Linkage(OTL 
OJ mapping mapping 
c I '0 Marker/gene-tralt association I CD "' 
E! CD Fine mappingl \/ .Q.c - " Mapbased 1'----' ro ro 
§ e cloning 

7'''� .- "-

�� 
> 
c 
0 

0 

NIl> 1 M."OW,,"' 11;;00,0\ 1 �vahdation � 
B_ro�� 1 MAj 1 T T 

I Introgression/pyramiding of deSired 
OTUgene into elite cultivars 

1 1 
Development of superior line/cultivar/variety 

Fig. 19.1. A scheme showing integration of modern genetics and breeding approaches (trait mapping 

and molecular breeding) in crop improvement programmes. GWS, genome-wide selection; LD, linkage 

disequilibrium; MABC, marker-assisted backcrossing; MARS, marker-assisted recurrent selection; NILs, 

near-isogenic lines; QTL, quantitative trait loci. 

(iv) construction of the genetic map based 
on genotyping data; (v) precise phenotyp
ing of the mapping popUlation in different 
environments; and (vi) marker-trait associa
tion using suitable genetic linkage and QTL 
analysis programmes (Varshney et al. 2009b). 
In legume species, linkage mapping-based 
approaches have been extensively used for 
mapping genes / QTL for resistance to dis
eases, nematodes and insects and for toler
ance to abiotic stresses and several agronomic 
traits (Table 19.1). 

Association mapping (also known as 
linkage disequilibrium mapping) has also 
been used in plant species for trait map
ping. It has several advantages over conven
tional linkage mapping approach: (i) it takes 
less time as there is no need to develop a 

specialized mapping population - rather, an 
existing natural population is used; (ii) it is 
less expensive as the same association map
ping panel and genotyping data generated 
can be used for mapping of different traits; 
(iii) resolution of mapping is high because 
of the use of a natural population that has 
several meiotic recombinants, unlike the few 
in mapping populations; and (iv) as com
pared with linkage mapping where a maxi
mum of two alleles are obtained, a higher 
numbers of alleles are obtained to find trait 
associations. 

Association mapping comprises the foT 
lowing two broad categories based on the scale 
and goal of a particular study: candidate gene
based association mapping and whole-genome 
association mapping. The former relates to 
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Table 19.1. Examples of gene/QTL mapping in soybean, common bean and chickpea. 

Crop Trait 

Disease resistance 
Soybean Sclerotinia stem rot 

Phytophthora root rot 

Brown stem rot 

ASian soybean rust 

Soybean mosaic virus 
Sudden death syndrome 

Common Anthracnose 
bean 

Halo blight 
Charcoal rot 

Fusanum wilt 
White mould 

Rust 
Common bactenal blight 

Bacterial brown spot 
Bean common mosaic virus 
Bean golden yellow mosaic 

geminivirus 
Chickpea Ascochyta blight 

Fusarium wilt 

Rust 

Nematode and insect resistance 

Soybean Corn earworm 
Cyst nematode 

Common Leaf hopper 
bean 

Thrips 

Gene/QTL (n) 

16 QTL 

3-8 QTUgenes 

4 QTUgenes 

51oci/QTL 

Rsv1, Rsv3 
4QTL 
Co-genes 

Pse-1 
1 QTL 

PvPR2, PvPR1 
Fin, Phs 

UR-6, UR-13 
6QTL 

2QTL 
bc-3; I 
bgm-1 

AR2, ar1 , ar1 a, 
ar1b, ar2a, 
ar2b, Ar19 

QTLAR" QTLAR2 

13 QTL 
foc-O, foc-1 , 

foc-2, foc-3, 
foc-4, foc-5 

1 QTL 

3QTL 
rhg1, rhg4 

1 QTL 

Tpr6.1 

Reference(s) 
and related 

Marker type(s) reference( s) cited 

SSRs Guo et a/. (2008); 
Vuong et a/. (2008); 
Huynh et a/. (2010) 

AFLPs, SSRs, Han et a/. (2008); lI, 
RAPDs, X. et a/. (2010); 
SCARs Wang et a/. (2010) 

RFLPs, AFLPs, Patzoldt et a/. (2005) 
SSRs 

SSRs, SNPs Garcia et a/. (2008); 
Silva et a/. (2008); 
Chakraborty et a/. 
(2009); Hyten et a/. 
(2009) 

SSRs Shi et a/. (2008) 

SSRs Kazi et a/. (2008) 
RAPDs, AFLPs Rodriguez-Suarez 

et a/. (2007) 

SCARs Miklas et a/. (2009) 
AFLP Hernandez-Delgado 

et a/. (2009) 
RAPDs Schneider et a/. (2001) 

RAPD, SSR Kolkman and Kelly 
(2003) 

SCAR Mienie et a/. (2005) 

SSRs, STSs, lIu et a/. (2008); 
SCARs Vandemark et a/. 

(2008) 
RAPDsl Jung et a/. (2003) 
RAPD;SCAR Johnson et a/. (1997) 

SCAR Blair et a/. (2007b) 

SSRs, RAPDs, Cho et a/. (2004) 
DAF 

SCARs, SSRs, Iruela et a/. (2006, 
RAPDs 2007) 

SSRs, RAPDs Kottapalli et a/. (2009) 
SSRs, STSs, Cobos et a/. (2005); 

RAPDs Iruela et a/. (2007) 

SSR Madrid et a/. (2008) 

RFLPs Rector et a/. (1998) 

SSRs, SCARs, Wu et a/. (2009); 
SNPs Vuong et a/. (2010) 

SSR, RFLP Murray et a/. (2004) 

SSRs Frei et al. (2005) 

Continued 
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Table 19.1. Continued 

Reference(s) 
and related 

Crop Trait Gene/OTL (n) Marker type(s) reference(s) cited 

Bean pod weevil 40TL SSRs, SCARs Blair et al. (2006, 
2007a) 

Bruchlds Arc gene SSRs Blair et al. (2010b, c) 

AbiotIc stress tolerance traIts 

Soybean Waterlogging 60TL SSRs, RFLPs Glthiri et al. (2006) 

Chilling tolerance In 30TL SSRs Funatsuki et al. 

seed yield (2005) 

Salt stress 10TUgene SSR Lee et al. (2009); 
Tuyen et al. (2010) 

Manganese toxicity 30TL SSRs, RAPDs Kassem et al. (2004) 

Phosphorus deficiency fsw1, fsw2, rp1, SSRs, RFLPs Li et al. (2005) 

fsw3, rp2, 
Ip1,lp2 

Iron deficiency chlorosIs 3-190TL SSRs, RFLPs Lin et al. (2000) 

Aluminum tolerance 110TL RFLPs Oi et al. (2008) 

Sulphur-containing 70TL SSRs Panthee et al. (2006) 

amino aCids 

Common Drought 20TL RAPDs Schneider et al 

bean (1997) 

Phosphorus uptake Pup4.1,10.1 RAPDs Beebe et al. (2006) 

and 2.1 

AgronomIc/phenologIcal traits 

Soybean Specific leaf weight, 3-60TL RFLPs Mlan et al. (1998) 

leaf size 
Seed weight 150TL SSRs Csanadi et al. (2001) 

Flowenng time 4-90TL SSRs Su et al (2010) 

Sprout yield 40TL RFLPs Lee et al (2001) 

Seed Isoflavones (genis- 350TL SSRs Zeng et al (2009); 

tein, daldzein, glyclteln) Gutierrez-Gonzalez 
et al. (2010) 

Seed size 70TL SSRs Hyten et al. (2004) 

Seed flooding tolerance 40TL Sayama et al. (2009) 

Ability, frequency and 50TL SSRs, AFLPs Choi et al. (2010); 

effiCiency of somatic Song et al. (2010) 

embryogenesis 
Early maturity EB SSRs Cober et al. (2010) 

OiIgosaccharides and 60TL SSRs Kim et al. (2006) 

sucrose 
Vitamin E content 210TL SSRs Li, H. et al. (2010) 

Chlorophyll a fluorescence 4-130TL Yin et al. (2010) 

parameter 

Developmental behaViour 150TL SSRs Sun et al. (2006) 

Browning In soybean 50TL AFLPs, SSRs Githlrl et al. (2007) 
seed coat 

Domestication 20TL SSRs Liu et al. (2007) 

Seed composition 520TL SSRs II et al. (2007) 

Seed shape 190TL SSRs Salas et al. (2006) 

Photoperiod Insensitivity 20TL SSRs lIu and Abe (2010) 

Net-like cracking of seed coat 20TL SSRs Oyoo et al. (2010) 

Clelstogamy 40TL SSRs, AFLPs Khan et a/ (2008) 
Contmued 
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Table 19.1. Continued. 

Reference(s) 
and related 

Crop Trait Gene/OTL (n) Marker type(s) reference(s) cited 

Bean Seed mass, calcium, iron, 3-260TL AFLPs Guzman-Maldonado 
zinc, tannin content et al. (2003) 

Plant height, climbing 1-90TL SSRs, RAPDs, Checa and Blair 
ability, internode length, SCARs (2008) 
branch number 

Phenological traits, seed 310TL SSRs, AFLPs, Perez-Vega et al. 
size traits, seed quality SCARs, (2010) 
traits ISSRs 

Nutritional traits (iron, zinc, 3-260TL SSRs, RAPDs, Blair et al. (2009a, b, 
tannins, phytate) AFLPs 201 Oa), Caldas and 

Blair (2009); Cichy 
et al. (2009) 

Nodulation number 40TL RFLP Nodari et al. (1993) 
Chickpea Seed size traits 20TL SSRs Hossain et al. (201 0) 

Double podding s SSRs Rajesh et al. (2002) 
Time to flowering 20TL SSRs Lichtenzveig et al. 

(2006) 
Beta carotene, leutin, seed 1-40TL SSRs Abbo et al. (2005) 

weight 
Flower colour Bib 

polyrnorphisms in selected candidate genes 
that appear to have roles in controlling pheno
typic variation for specific traits, while the latter 
surveys genetic variation in the whole genome 
to find marker-trait associations for various 
complex traits (Zhu et al., 2008). In taking the 
decision as to which is the method of choice, 
one has to consider the extent of linkage dis
equilibrium (LD) in the organism of interest. 

Although the association mapping 
approach has been used recently in several cere
als like maize, barley, wheat, etc. (Ersoz et al., 
2007), only a few examples have become avail
able in legume species. The candidate gene
based approach has been successfully used to 
map different loci for iron deficiency chlorosis 
in soybean (Wang et al., 2008). Similarly, several 
candidate genes implicated in oleate biosyn
thesis were mapped and their co-segregation 
with oleate and linoleate QTL investigated 
(Bachlava et a/., 2009). Other examples of trait 
maJ.2.]2ing are shown in Table 19.1. 

Next-generation sequencing and high
throughput genotyping technologies are 
becoming popular in legumes such as chick
pea, common bean and soybean (Yarshney 
et al., 2009a, c, 2010b), accelerating their 

SSR Cobos et al. (2005) 

use in association mapping. For example, a 
high-throughput SNP genotyping platform 
(lliumina GoldenGate assay) developed in 
soybean (Hyten et al., 2008) has been used 
for mapping soybean rust resistance (Rpp3) 
(Hyten et al., 2009), SeN (soybean cyst nema
tode) (Vuong et al., 2010), flooding and fatty 
acids (Vuong et al., unpublished data). 

Molecular breeding 

Once markers are identified for a trait, they 
can be used for a variety of applications 
such as enhancing biological knowledge of 
the inheritance and genetic architecture of 
the trait, in addition to their use in breeding 
programmes. W hen molecular markers are 
used in breeding programmes, it is important 
to take into account the statistical power to 

_
identify QTL numbers, QTL effect, percent
age of phenotypic variation explained, major 
�d minor QTL through use of appropriate 
marker density on the genetic map and rea
sonable population sample size. Furthermore, 
markers identified in one population need to be 
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validated in other population/ germplasm 
collections, and closely linked markers flank
ing the QTL should be used for indirect selec
tion of the trait. 

Figure 19.1 shows a few molecular breed
ing approaches commonly used in breeding 
programmes, which are discussed in the fol
lowing sections. Soybean is the legume crop in 
which these approaches have been most suc
cessful, and where the use of markers in breed
ing programmes is routine. Several improved 
lines/varieties for resistance to different SCN 
races (also known as HG types) (Concibido 
et al., 1996; Cahill and Schmidt, 2004; Arelli 
and Young, 2009); phytophthora root rot and 
brown stem rot (Cahill and Schmidt, 2004); 
insect resistance (Narvel et al., 2001; Walker 
et al., 2002; Warrington et aI., 2008); low lino
lenic acid content (Sauer et al., 2008); yield 
(Concibido et al., 2003); and mosaic virus 
(Saghai Maroof et al., 2008; Shi et al., 2009) 
have been developed and released. In the 
case of common bean the use of molecular 
markers in breeding programmes is inter
mediate between that of soybean and chick
pea, and marker-assisted selection (MAS) 
has been used principally to deploy single 
genes in large-scale programmes at ClAT 
for resistance to quarantined viruses (Miklas 
et al., 2006a, b; Blair et aI., 2007a). More spe
cifically, MAS has been successfully used for 
enhanced resistance to anthracnose in the 
bean cultivar Perola in Brazil (Raganin et al., 
2003), pinto beans in the USA (Miklas et al., 

2003a) and Andean climbing bean in Mexico / 
Colombia (Garzon et al., 2008). On the other 
hand, molecular breeding activities have only 
just been initiated in chickpea. Several suc
cessful examples targeting the development 
of superior lines or released cultivars through 
molecular breeding are listed in Table 19.2. 

Marker-assisted backcrossing 

Marker-assisted backcrossing (MABC) is 
the simplest and most widely used molecu
lar breeding approach in plant breeding. 
MABC has become a fast-track approach for 
increasing the genetic gain of plants, result
ing in the development of improved varie
ties with better yield potential, improved 
quality and resistance against insects, pests 
and diseases (Collard and Mackill, 2008; 
Moose and Mumm, 2008; Ribaut et al., 2010). 
Basically, this approach incorporates desir
able major genes/QTL from an agronomi
cally inferior source (the donor parent) into 
an elite cultivar or breeding line (the recur
rent parent) without transfer of undesirable 
or deleterious genes from the donor (link
age drag). 

The desired outcome of MABC is a line/ 
cultivar containing only the major genes/ 
QTL from the donor parent, while retaining 
the whole genome of the recurrent parent 
(Hospital and Charcosset, 1997; Varshney 
and Dubey, 2009; Varshney et al., 2009b, 
Gupta et al., 2010a). Three types of selection 

Table 19.2. Examples of development/release of improved lines/cultlvars In soybean and common bean 
using molecular breeding approaches. 

Cultlvar/ breeding Country and year 
Crop line Trait of release Reference 

Soybean JTN-5503 Disease resistance USA, 2005 Arelli et al. (2006) 

JTN-5303 Disease resistance USA, 2005 Arelli et al. (2007) 
JTN-5109 Soybean cyst USA, 2009 Arelli and Young 

nematode resistance (2009) 
DS -880 Soybean cyst USA, 2010 Smith et al. (2010) 

nematode resistance 
Bean USPT-ANT-1 Disease resistance USA, 2004 Miklas etal 

(2003b) 
ABCP-8 Disease resistance USA, 2005 Mutlu et al. (2005) 
ABC -Weihing Disease resistance USA, 2006 Mutlu et al. (2008) 
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can be exercised in MABC: foreground, 
recombinant and background. Foreground 
selection involves the selection of target 
genes/QTL on the carrier chromosome with 
the help of two flanking markers (Hospital 
and Charcosset, 1997). It can be used to 
select for laborious or time-consuming traits 
and it allows selection of heterozygous 
plants at the seedling stage and therefore 
identifies plants desirable for backcrossing. 
Furthermore, recessive alleles can be identi
fied and selected, which is difficult to perform 
using conventional methods. 

Recombination events between the target 
locus and linked flanking markers can also 
be identified in backcross (BC) progeny. This 
can be used to reduce linkage drag, which is 
difficult to overcome through the use of con
ventional backcrossing (Frisch et al., 1999b). 
For this purpose, Hospital and Decoux (2002) 
have developed a statistical programme called 
'Popmin' (http://moulon.inra.fr / -fred/ pro
grams/popmin) for calculating the minimum 
population size. 

Background selection involves selection 
of BC progeny with highest proportion of 
recurrent parent (RP) genome, using unlinked 
markers present on 'non-carrier ' chromo
somes (Hospital and Charcosset, 1997; Frisch 
et al., 1999b). The use of background selec
tion during MABC to accelerate the develop
ment of a RP genome with additional genes 
has been referred to as complete line conver
sion (Rib aut et al., 2002). While conventional 
backcrossing takes a minimum of six BC gen
erations to recover the RP genome, the use of 
markers enables the similar degree of progress 
in two BC generations (Visscher et al., 1996; 
Hospital and Charcosset, 1997; Frisch et al., 
1999a, b; Varshney and Dubey, 2009). Studies 
have also shov,'!l that the use of a limited 
number of markers on non-carrier chromo
somes can be sufficient to recover more than 
95% of the recurrent parent genome in three 
BC generations (Visscher et al., 1996; Kumar 
et al., 2010). 

The MABC approach has also been 
used-to-constru.cLneacisogenicline.s -<NILs) _ 

2010b). NILs are developed in the same way 
as advanced backcross (AB) lines by cross
ing a donor parent with a recurrent parent. 
After several generations of backcrossing, the 
advanced backcross lines are expected to con
tain all of the recurrent parent genome except 
for the chromosomal region containing a gene 
or QTL of interest. NILs have been utilized for 
validation of QTL, for fine mapping and can 
also be used directly in breeding programmes 
(Stuber et al., 1999). NILs containing different 
genes affecting the same trait are very use
ful for comparing the effectiveness of these 
genes in different locations or environments 
(Fig. 19.1). 

Another use of MABC is to pyramid 
various genes for multiple traits within the 
same cultivar (Koebner and Summers, 2003; 
Sharma et al., 2004; Saghai Maroof et al., 
2008; Li, X. et al., 2010). Several excellent 
reviews have documented the use of MABC 
for pyramiding genes/QTL resulting in the 
development of superior lines/varieties/ 
hybrids in crop plants (Gupta et al., 2010a, b; 
Kumar et al., 2010; Varshney et al., 2010a), and 
examples in soybean and common bean are 
presented in Table 19.2. However, the use of 
MABC has now been initiated in elite lines of 
chickpea at ICRISAT, in collaboration with its 
partners, for the introgression of QTL/ genes 
for drought-related traits and resistance to 
diseases (fusarium wilt and ascochyta blight). 
In addition, the introgression of root trait QTL 
is in progress in collaboration with the Indian 
Institute of Pulses Research (IIPR) and the 
India and Ethiopia Institute of Agricultural 
Research (EIAR), Ethiopia. Molecular breed
ing for development of superior lines with 
enhanced resistance to fusarium wilt and 
ascochyta blight has been initiated recently 
in collaboration with several Indian part
ners, including IIPR, Jawaharlal Nehru Krishi 
Vishwavidyalaya, Mahatma Phule Krishi 
Vidyapeeth and the Agricultural Research 
Station, Gulburga. 

Marker-assisted recurrent selection 

or chromosome segment substitution lines One of the limitations of MABC is that 
(CSSLs), which are often used for genetic only a limited number of deSIrable alleles 
analysis of genes/QTL (Peleman and van der can be introgressed at a time. To overcome 
Voort, 2003; Lorieux, 2005; Varshn!ry et al., this limitation, particularly in the case of 
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complex traits like drought tolerance, the 
marker-assisted recurrent selection (MARS) 
approach has been proposed for transfer
ring/pyramiding of superior QTL/ gene 
alleles for trait(s) of interest in one genetic 
background (Bernardo and Charcosset,2006; 
Varshney and Dubey, 2009; Gupta et al., 
2010a, b; Ribaut et al., 2010). The genetic 
gain feasible through MARS has been esti
mated as being higher than that via MABC 
(Bernardo and Charcosset, 2006). 

In principle, MARS is a forward breed
ing approach combining MAS (Stam, 1995) 
WIth mcrease in the frequency of favourable 
alleles/QTL at multiple loci (Edwards and 
Johnson, 1994; Koebner and Summers, 2003; 
Eathington, 2005). This involves multiple 
cycles of marker-based selection that include 
improvement of Fz progeny by one cycle of 
MAS based on marker data and phenotypic 
data, followed by three recombination cycles 
of the selected progenies based on marker 
data only and repetition of these cycles to 
develop the population for multi-location 
phenotyping (Rib aut et al., 2010; Tester and 
Langridge, 2010). In MARS, a selection 
index is used that gives weights to markers 
according to the relative magnitude of their 
estimated effects on the trait (Lande and 
Thompson, 1990; Edward and Johnson, 1994). 
For the successful use of MARS, a number 
of factors including heritability of the target 
traits, marker coverage in the genome, reli
ability of marker-trait associations, family 
size, number of families and type of popu
lation should be considered (Mayor and 
Bernardo, 2009). Moreover, knowledge of 
the quantitative traits can be very useful in 
enhancing the selection response through 
MARS with the help of candidate gene mark
ers, or tightly linked markers, each having a 
relatively large effect. The response to MARS 
decreases as the knowledge of the number of 
minor QTL associated with the trait decreases 
(Charcosset and Moreau, 2004; Bernardo and 
Charcosset,2006). 

The MARS approach has been/is being 
used extensively in maize breeding in both 
the private and public sectors. For instance, 
it has been employed to fix six marker loci in 
two different Fz populations that showed an 
increase in the frequency of marker alleles, 

from 0.50 to 0.80 (Edward and Johnson, 1994). 
Several multinational companies, such as 
Syngenta and Monsanto, are using MARS in 
their breeding programmes in several crops, 
including soybean (Rib aut et al., 2010). 

Recently, some international agricultural 
research centres (lARCs), such as ICRISAT and 
CIAT, in collaboration with the Generation 
Challenge Program (GCP), have initiated 
the use of MARS in chickpea and common 
bean, respectively, for pyramiding favour
able drought-tolerant alleles. Therefore, the 
potential of MARS is yet to be demonstrated 
in legume breeding for the development of 
superior lines / genotypes. 

Genome-wide selection 

A new approach based on genome-wide 
marker profiling, called I genome-wide selec
tion (GWS)' or 'genomic selection (GS)" has 
been proposed for complex traits that are 
controlled by many genes / QTL, each of small 
effect. Basically, this method predicts genomic 
estimated breeding values (GEBVs) of prog
enies, which are calculated for progenies 
based on both phenotyping and genotyping 
data. These GEBVs are then used to select 
the superior progeny lines for advancement 
in the breeding cycle (Heffner et al., 2009; 
Jannmk et al., 2010). Several computational 
tools are available or are being developed to 
calculate GEBVs, such as BLUPs (best linear 
unbiased prediction) programmes, and the 
geostatistical mixed model has recently been 
developed as a tool in GS (Robinson, 1991; 
Streeck and Piepho, 2010). This approach is 
not required to elucidate marker-trait asso
ciations by QTL mapping (Bernardo, 2010a, 
b; Tester and Langridge, 2010). Furthermore, 
it has been shown that double-haplOid (DH) 
populations are very useful in GWS compared 
with Fz populations, when many QTL control 
a trait (Mayor and Bernardo, 2009). Currently, 
however, there is little information available 
on the use of GWS in crop plants, although 
recent developments in plant genomics make 
it feasible to generate genome-wide marker 
data (using SNPs) to start GWS in breeding 
programmes. In the next few years GWS is 
expected to be used in legumes, at least in 
soybean. 
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Introgression of superior 
alleles from wild species 

Plant breeders mostly use existing germ
plasm and landraces to develop new varie
ties for desirable agronomic traits. However, 
yields have remained stagnant partly because 
sufficient genetic diversity is missing for 
progress in some of the traits, due to genetic 
bottlenecks that occurred during the domesti
cation process (Tanksley and McCouch, 1997; 
Gur and Zamir, 2004). It is well known that 
wild species/relatives are the reservoirs for 
resistance genes to many biotic and abiotic 
stresses. However, their transfer from wild 
species to elite cultivars through conven
tional breeding has been limited, mainly due 
to the associated transfer of undesired alleles 
(linkage drag). However, it is now feasible 
to recover/transfer the favourable alleles in 
elite germplasm left behind by the domesti
cation process more efficientl� using inno
vative genomics-assisted breeding strategies 
such as molecular maps and integrative QTL 
analysis. In this context, several methods for 
transferring superior alleles from wild spe
cies have been suggested and some of these 
are discussed below. 

One approach is the construction of 
introgression libraries using the genetic back
ground of elite lines by introgressing small 
wild species segments in a systematic man
ner. Introgression libraries are made up of 
introgression lines (lLs) that are produced 
by successive backcrossing (generally three 
to four generations) to the recurrent parent. 
The introgressed fragments can be moni
tored using molecular markers, either in 
each generation or at chosen stages. Fixation 
of the materials is obtained by either selfing 
or using double-haploid methodology. As 
a result, each line possesses one or several 
homozygous chromosomal fragments of the 
donor genotype, introgressed into a recurrent 
background genome. These fragments should 
be arranged continuously from the first to the 
last chromosome, either manually or using 

-a-computeLSoftware::aidecLprocess _(graphi
cal genotyping). The whole donor genome is 
thus represented by a set of small, contigu
ous overlapping fragments. This differs from 
the more traditional approach of in\iToducing 

resistance genes from wild speCIes into elite 
cultivars through genetically balanced map
ping populations of progeny recombinant 
inbred lines (RILs) derived from an early gen
eration (e.g. Fz plants or families or Fcderived 
doubled haploids). Such populations contain 
an equal proportion of exotic and elite geno
types, and deleterious effects of exotic alle
les may mask the desired target gene effect. 
Therefore the development of introgression 
lines represents a significant advantage over 
the previously used RIL-type populations. 
In regard to legumes, some reports on the 
development of introgression libraries have 
become available in soybean using wild soy
bean species (Glycine soja) (Concibido et al., 
2003), and in groundnut from synthetic tetra
ploids (Fonceka et al., 2009). 

Another important approach used in the 
transfer of superior alleles from wild species 
into cultivated germplasm is based on the 
advanced-backcross QTL (AB-QTL) analy
sis proposed by Tanksley and Nelson (1996). 
This method proved effective in detecting 
additive, dominant, partially dominant and 
over-dominant QTL. This approach uses 
repeated backcrossing with the elite parent 
but decreases the number and size of the 
exotic introgressions, thereby redUCing the 
burden of linkage drag. During backcross
ing cycles, the transfer of desirable genes/ 
QTL is monitored by molecular markers. The 
segregating BC2Fz or BC2F3 population gener
ated during backcrossing (Fz or F3 stages) is 
then used not only for recording phenotyp
ing data for the trait of interest, but also for 
genotyping with polymorphic molecular 
markers. These data are then used for QTL 
analysis, leading to simultaneous discovery 
of QTL and the generation of introgression 
lines. Once favourable QTL alleles are iden
tified, only a few additional marker-assisted 
generations are required to develop full NILs 
that can be field tested and used for variety 
development. 

The AB-QTL approach has been used in 
common bean and soybean. For instance, in 
tb.� case of common bean, Blair et al. (2005) 
used a cross between a wild Colombian 
accession and an Andean cultivar to develop 
BCzF3s-derived lines for AB-QTL analysis 
of yield traits, and finding that segregation 
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distortion was minimal except at a few 
domesticahon syndrome genes. Similar pop
ulations have been developed for: (i) intro
gression of high seed iron content from wild 
Mexican accessions into the Andean and 
Meso-American background cvs Cerinza or 
Tacana; and (ii) introgression of drought tol
erance between the common bean gene pools 
from Meso-American sources to Andean 
cultivars as part of the Tropical Legumes 
project on adaptation to drought-prone mar
ginal regions of eastern and southern AfrIca. 
Population SIzes m these AB-QTL map
ping populations have ranged from 157 to 
300 genotypes, with various experimental 
designs used for analysis. In the case of soy
bean, for instance, Chaky et al. (2003) gener
ated 296 BC2F46 backcross introgresslOn !mes 
(BILs) from the cross Glyczne max (Dunbar) x 

Glycine sOJa (PI 326582A). This study provided 
several QTL for seed yield, seed protein and 
oil, in addition to some late-maturing and 
taller BILs. 

19.4 Conclusions 

It is evident that several success stories on 
both trait mapping and molecular breedmg 
are available in soybean. The availability 
of the soybean genome sequence (Schmutz 
et al., 2010) and the establishment of high
throughput SNP genotyping platforms 
(Hyten et al., 2008) are expected further to 
accelerate molecular breeding in soybean 
improvement. 

In the case of common bean, efforts 
aimed at trait mapping and molecular breed
ing are extensive, as compared with chick
pea. However, molecular breeding activities 
in common bean have remamed focused 
mainly on simple inherited traits like dis
ease resistance. In the case of chickpea, 
although several examples on trait mapping 
are available, the use of molecular breed
ing actiVIties as compared with soybean 
and common bean is still at the prelimmary 
stage. As both of these legume crops are 
very lIDportant in sub-Saharan Africa and 
South Amenca (common bean) and South 
Asia (chickpea), CIAT and ICRISAT have 

initiated molecular breeding programmes 
in these crops to improve complex traits 
like drought tolerance, through the use of 
MABC and MARS approaches as a part of 
the Tropical Legume (TL-I) project of the 
Generation Challenge Programme (GCP) 
in collaboration with the Bill and Melinda 
Gates Foundation (BMGF) (http://www. 
generatlOncp.org/gcptli/). With the goal of 
sustainable crop production in these legume 
crops, It is essential that national agricultural 
research programmes in the developing 
countries of sub-Saharan Africa, South Asia 
and South Amenca should lead or actively 
participate in the molecular breeding of 
these legumes. Shortage of appropriate 
human resources and physical infrastruc
ture m developmg countries, however, are 
challenging issues. The establishment of the 
Integrated Breeding Platform (IEP) as a one
stop shop for accessing genotyping services, 
information and data management, decision 
support, statIstical tools and technical sup
port will help m overcoming some of above
mentioned limitations. 

In summary, due to advances in sequenc
ing, genotyping, biometrics and bioinfor
matics, the future of molecular breeding in 
legume crops is promising, not only in soy
bean, common bean and chickpea but also in 
other crops like lentil, faba bean and pigeon 
pea, which are still considered 'orphan leg
ume crops'. 
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