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Abstract

Information on the potential of pollen mediated gene flow (PMGF) in

sorghum is required for ensuring varietal purity and to mitigate risk

transgenic gene flow. Replicated trials were conducted in Kenya using

a local landrace, �Ochuti� as pollen donor surrounded by male-sterile

pollen baits. Frequency of PMGF decreased with the increase of

distance from pollen sources and was significantly influenced by wind

direction and speed. Anther dehiscence correlated with increase in

vapour pressure deficit in the morning. A negative exponential

regression model with logarithmic transformation of PMGF and

square-root transformation of distance from source field best fitted the

data. Up to 50% of female florets on a male sterile (MS) plant were

pollinated at 1 m from pollen source and declined to 14% at 10 m. The

maximum distance of PMGF using the PMGF model, based on a

threshold of one seed per MS plant, was 203 m when data above the

95th percentile is considered. However, in the presence of self-

produced pollen of male-fertile target plants, the possibility of long-

distance cross-pollination may be very low.

Key words: sorghum — pollen dispersal — gene flow —
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Sorghum is one of the major food grains in the world covering

about 50 million hectares worldwide (FAOSTAT 2009). Its
production is constrained by biotic and abiotic factors
especially in low input subsistence farming systems (Hauss-
mann et al. 2000). To overcome some of these constraints, the

crop is targeted for improvement through classical plant
breeding and modern biotechnological approaches (Borrell
et al. 1999, Haussmann et al. 2004). In sorghum, significant

progress has recently been made in genetic transformation
through both agro-bacterium and particle bombardment
(Zhao et al. 2000, Howe et al. 2006). Various alien genes have

been successfully engineered into sorghum to enhance resis-
tance to diseases, pests and nutritional value of the crop (Zhu
et al. 1998, Girijashankar et al. 2005, Tesso et al. 2008).

Although biotechnology can provide solution to some intrac-
table constraints in sorghum production, the potential of gene
flow from genetically modified (GM) to non-GM or to weedy
or wild relatives in centres of crop diversity needs to be

assessed (Ellstrand 2001, Snow 2002, Gepts and Papa 2003,
Snow et al. 2003).

The most debated environmental biosafety concerns with

respect to deployment of GM crops include: (1) direct and

indirect effects of toxic transgenes to non-target organisms

(O�Callaghan et al. 2005); (2) potential risks associated with
the development of resistance to biotic-resistance transgenes in
the target organisms (Li et al. 2007, Wu et al. 2007 ); and (3)
transgene escape to crop landraces and wild relatives through

gene flow and its potential ecological consequences (Ellstrand
et al. 1999, Wilkinson et al. 2000, Ellstrand 2001, Lu and
Snow 2005, Mercer et al. 2007). The main ecological concerns

about GM crops are the potential weediness or invasiveness in
the crop itself or in its wild or weedy relatives as a result of
introgression of fitness-enhancing abiotic and biotic GM traits

including herbicide, insect, and disease resistance, and
drought-tolerance traits (Warwick et al. 2009). Transgene
escape from a GM crop variety to its non-GM crop counter-

parts or wild relatives can easily occur via pollen mediated
gene flow (Ellstrand et al. 1999, Ellstrand 2001, Ellstrand 2003,
Lu and Snow 2005). So far, natural hybridization has been
reported to occur in crop/wild ancestor complex in 22 of the

world�s most important crop species, including Sorghum
(Ellstrand et al. 1999, Ellstrand 2003). The promiscuity of
sorghum with its congeners is apparent from the numerous

studies which show genetic and/or morphological evidence of
crop-to-wild gene flow, especially where the interfertile wild
and cultivated sorghums grow sympatrically (Doggett 1988,

1991, Aldrich and Doebley 1992, Aldrich et al. 1992, Morrell
et al. 2005, Barnaud et al. 2009).
Besides GM gene flow, the potential of gene flow from non-

improved to improved cultivars is an additional source of
concern for ensuring purity of improved varieties during seed
production. Contamination of improved varieties by pollen
from non-improved cultivars in neighbouring fields may

compromise their agronomic performance. Currently, farmer
preferred landraces from various African countries are being
improved using marker-assisted breeding for important traits

such as resistance against striga, a parasitic weed (Folkertsma
et al. 2005) and drought tolerance (Borrell et al. 1999). The
future stability of these introgressed traits depends on mini-

mizing intercrossing with non-modern cultivars that grow on
farmers diverse fields. Intercrossing would result in recombi-
nation among genes conferring traits of interest, particularly
those that are recessively expressed.

Risks associated with GM gene flow as well as erosion
of purity of improved varieties are most relevant under
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traditional farming systems as compared with commercial
farming. In Africa, subsistence farmers often plant large
varietal diversity to serve their diverse needs as well as to lower
the risk of crop failure (Teshome et al. 1999, Barnaud et al.

2007). For example, up to 40 landraces in a single village and
up to a dozen landraces per field have been reported (Barnaud
et al. 2007). Mix-planting of different cultivars is also com-

monly practiced. Where land fragmentation is high, neigh-
bouring fields may form a mosaic of different landraces that
grow side-by-side. The likelihood of PMGF under such

conditions is quite high. Indeed, landraces that are mix-
planted have been shown to have little genetic differentiation
among them (Barnaud et al. 2007, Rabbi et al. 2010). In order
to maintain the identity of their landraces despite extensive

PMGF, farmers mainly rely on visual selection of particular
combination of morphological traits (Barnaud et al. 2007)
rather physical or temporal isolation of their multiple land-

races. This selection method may not be effective in traits that
cannot be visually assessed by the farmers.
Moreover, subsistence farmers predominantly rely on tradi-

tional seed systems such farm-saved seeds or from relatives
and neighbours (Almekinders et al. 1994). The free flow of
genes through pollen and seed exchange substantially increases

the potential of transgene escape as well as contamination of
modern varieties. These complexities and lack of monitoring in
most parts of Africa makes detecting and containing GM-
spread difficult once it enters such complex system.

Previous attempts to measure gene flow in situ were based on
the detection of diagnostic morphological markers when
cultivated and wild-weedy sorghum grow sympatrically (Dogg-

ett and Majisu 1968, Aldrich and Doebley 1992, Aldrich et al.
1992). Arriola and Ellstrand (1996) used isozyme markers
to measure PMGF between wild and weedy sorghum

(S. halepense) in an experimental system. More recently,
Schmidt and Bothma (2006) estimated PMGF using male
sterile (MS) sorghum as pollen baits. However, the closest

sampling distance to the pollen source of that study was 13 m.
Thus no information is available on PMGF below that
distance. Furthermore, as PMGF is dependent on environ-
mental factors, more studies are required in order to come up

with a reliable PMGF model. In the present study, PMGF was
measured in two seasons from 1 to 100 m so as to provide a
more realistic PMGF model. Furthermore, PMGF may vary

widely among environments even for similar sampling dis-
tances and experimental designs in both inbred crops such as
wheat (Gustafson et al. 2005) and rice (Chen et al. 2004,

Messeguer et al. 2004, Song et al. 2004, Jia et al. 2007) as well
as outbreeding crops such as maize (Gustafson et al. 2006).
Main factors influencing PMGF include the reproductive
biology (e.g. outcrossing rates), environmental or climatic

conditions, wind speed and direction during flowering, and
spatial relationship and phenology of pollen donor and
recipient plants (Manasse 1992). Thus there is need for more

studies on PMGF in sorghum in order to come up with
generalized conclusions.
The objective of this study is to determine the extent and

pattern of PMGF from the grain sorghum cultivar �Ochuti�
using MS lines as pollen traps. �Ochuti� is a durra-type landrace
being widely grown in Western Kenya by subsistence farmers.

This region accounts for about 70% of sorghum production in
Kenya (Ngugi et al. 2002) and it is characterized by highly
fragmented agricultural landscape with average field size of
less than 0.5 ha. To meet their subsistence needs, farmers in

this region also rely on a large varietal diversity that are often
mix-planted (Mutegi et al. 2009, Rabbi et al. 2010). The
landrace was selected for this study because: (1) it can be
considered as a representative of the landraces grown in

Western Kenya, (2) it has a low outcrossing rate of �4% ( I. Y.
Rabbi, H. H. Geiger and H. K. Parzies, unpublished data).
This should answer the question: do genotypes with low

outcrossing contribute to pollen mediated gene flow and at
what magnitude?

Materials and Methods

Field experiments: Field experiments were conducted using Sorghum

[Sorghum bicolor (L.) Moench], during the long rain (LR) and short

rain (SR) seasons of 2006 at the ICRISAT Kiboko dry land field

research station in Eastern Kenya (Latitude 2.39361 S and longitude

37.79194 E). The trial was conducted in a non-sorghum growing area.

A diagrammatic representation of the experimental design is shown in

Fig. 1. �Ochuti� was planted in the centre of a field as a quadratic block

of 100 m2. Serving as pollen receptors were rows of two MS-lines

(ATX 623 and ICSA 88006) planted in eight canonical directions (N,

NE, E, SE, S, SW, W and NW). Although they do not produce viable

pollen, they display normal fertility. Thus, pollen flow can be

estimated on the basis of seed set. In each direction, two rows per

receptor-line were planted in an alternating fashion. Plant spacing was

30 · 75 cm for both pollen donor block and recipients strips. Pollen

recipients were planted continuously up to 50 m and thereafter as

blocks. The area between the pollen recipients were left as fallow.

In order to synchronize flowering between �Ochuti� and the receptor

lines, a pre-experiment was conducted in the previous SR season of

2005. The two MS lines, ATX 623, released by the Texas Agricultural

Experimentation Station, US, and ICSA 88006 released by the

International Crops Research Institute for the Semi-Arid Tropics

(ICRISAT) were chosen. The above mentioned lines flowered at

67 days after planting (d.a.p) and 70 d.a.p, respectively. As �Ochuti�
flowered at 74 d.a.p, it was planted 6 days earlier than the MS lines in

the main experiment. The central pollinator plot was sown on March 8

in the LR season of 2006 and October 20 in the SR season. At

maturity, five plants per MS line were harvested at 0.1 intervals from

log100 (=1 m) through to log102 (=100 m). This enabled intense

sampling at close distances to the source where pollen dispersal

declines rapidly than at far distances. Actual distances in meters were

1, 1.3, 1.6, 2.0, 2.5, 3.2, 4.0, 5.0, 6.3, 7.9, 10.0, 12.6, 15.8, 20.0, 25.1,

31.6, 39.8, 50.1, 63.1, 79.4 and 100 m (Fig. 1).

An on-site weather station, Weather Monitor II� (Davis Instru-

ments Corp), mounted on a 10 m post was used to record meteoro-

logical information, including wind speed and direction, temperature

and relative humidity. Weather data was recorded in half-hour

intervals from the beginning until the end of flowering.
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Fig. 1: Experimental set-up for measuring PMGF using male-sterile as
baits
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Anther dehiscence of �Ochuti�: Diurnal pollen release pattern of

�Ochuti� was monitored bi-hourly for 24 h per day during the SR

season of 2006. Pollen grains were captured on a sticky transparent

tape (Cellotape�) placed below the panicle canopy every 2 h from

6:00 am and 6:00 pm for 24 h, thus finishing at the same times the

following day. This was done from January 15 to January 20, 2006.

The pollen grains were photographed under a Wild Heerburg (M5)

light microscope against a black background. Hourly vapour pressure

deficit (VPD) values were calculated from air temperature and relative

humidity using the formulae of Wang et al. (2004). Vapour pressure

deficit is the difference between actual and saturation vapour pressure,

expressed in Kilopascals (kPa).

Statistical analysis: Analysis of data and fitting of curvilinear models

were carried out using the STATGRAPHICS Centurion XV software

(http://www.statgraphics.com). Different regression models were fitted

to the data and the model with the highest coefficient of determination

(r2) was considered as the best model for the data. Three regression

lines were fitted to the data of each season. The first line was calculated

from all data-points. The second line represents the data above the

95th percentile, and the third line the 99th percentile (i.e. plants

producing more seeds than the lower 95th and 99th percentile cut-off

levels). Parameters of these lines were determined by the common non-

linear least squares regression method (Gallant 1975).

Results
Diurnal pollen shedding pattern of landrace �Ochuti�

The diurnal pattern of pollen release of �Ochuti� was found to
be dependent on VPD (Fig. S1). Peak pollen release time
occurs between 8:00 am and 10:00 am, immediately following
the rise in VPD caused by increase temperature and the

corresponding decline in relative humidity in the morning.
During clear days, the pollen release occurred around 8:00 am
and during cloudy days, it occurred later than 8:00 am (data

not shown).

Weather data

The prevailing wind direction in the LR experiment was from
SW in the morning hours (08:00–12:00 am) and from E in the

afternoons (15:00–18:00 pm) (Fig. 2a). Wind speed in the
study site generally increased as the day progresses and
average wind speed was higher in the afternoon (7.41 km/h)
compared with the morning period (5.34 km/h). More

instances where wind speed exceeded 10 km/h were recorded
in the afternoon compared with the morning. In the SR
experiment, wind direction was more stable than in the LR

season and mainly came from N and NE in the morning hours
and E in the afternoon hours (Fig. 2b). Wind speed was
generally lower during morning periods (4.43 km/h) than in

the afternoon (9.26 km/h).

Pollen mediated gene flow

The staggered planting dates of the pollen donor and
recipients resulted in synchronization of flowering times.
Materials started to flower in mid May 2006 in the LR and

early January 2007 in the SR experiments. Pollen mediated
gene flow was more frequent in the downwind direction in
both seasons (Fig. 2c,d) but the SR experiment furnished

substantially lower mean numbers of seeds in the up-wind
directions. Percentage of seed set on MS plants at various
distance from pollen source were estimated from overall data

as well as the data above 95th percentile in the LR and SR

experiments. These were calculated by dividing the number of
seeds by the average number of florets per panicle (3385.3,
SD = 615, N = 12). Using data above the 95th percentile, a
rapid decline in seed setting rate on MS occurred between

1 m (50%) and 10 m (14%), and reached 1% at 60 m. On the
contrary, estimates based on the overall data showed 6.6%
and 1.8% seed setting rates at 1 and 10 m from pollen

source, respectively. Furthermore, less than 1% seed setting
rate can occur at 20 m from pollen source based on the
overall data.

Correlation between wind direction and cross-pollination

patterns

Variation in seed set was compared with wind direction
patterns, and correlation coefficients (r2) were calculated. Only
morning data was used in the analysis. Wind speed was

categorized into three classes (<5, 5–10, and >10 km/h). In
the first experiment (LR), correlation between wind direction
and seed set was moderate when unclassified wind direction

frequencies were analysed (r2 = 0.535, P ¼ 0.05), but
increased when wind speed of more than 18 m/s were used
(r2 = 0.66, P ¼ 0.01). In the second experiment (SR), the wind

was more stable in speed and direction. Thus a stronger
correlation between wind direction and seed set was observed
in this case (r2 = 0.933, P ¼ 0.01).

Best fitting models of PMGF

Various transformations of the axes were implemented in

order to determine a model describing relationship between
PMGF and distance. The best fit was obtained by the equation
y = exp (a + bxc) where y is the number of seeds at a

particular distance, a is the number of seeds immediately

0

2

4

6

8
N

NE

E

SE

S

SW

W

NW

0

20

40

60

80
N

NE

E

SE

S

SW

W

NW

0–18 m/s 18–36 m/s >36 m/s 

0

100

200

300

400
N

NE

E

SE

S

SW

W

NW

0

150

300

450

600
N

NE

E

SE

S

SW

W

NW

(a) (b)

(d)(c)

Fig. 2: Relative wind direction (values in %) recorded at 30-min
intervals and number of seeds found on MS plants in the various wind
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seasons of 2006
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adjacent to the source, x is the distance from the source and b
is a model parameter describing the steepness while c describes
the curvature of the line. Parameter c was fixed at 0.5, that is, a
square root transformation of distance because it closely fitted

our data and it is well supported in the literature (Gustafson
et al. 2005, 2006, Geines et al. 2007). Figure 3a demonstrates
the relative advantage of the above model compared with an

exponential model without square-root transformation of
distance (c = 1) (Fig. 3b). The model of PMGF appears as
a concave-upward curve, thereby matching the scatter-plot

trend of the data while the latter model appears as a straight
line (Fig. 3b). As a result, it tends to underestimate PMGF at
closer distance as well as the tail-end while it overestimates it in
the middle distances. Similar pattern were obtained from the

SR experiment (data not shown).

Coefficient of determination (r2) of the models, were high
considering data above the 95th percentile and moderate for
the total data set in each of the two seasons (Table 1). When
the model was used to extrapolate distances for reaching a

threshold of at least one seed per plant, in general when all
plants are used for regression analysis, 103 m is obtained for
the LR season and 111 m for the SR season experiments

(Fig. 4). On the contrary, up to 203 m would be required to
reach this threshold when the data above the 99th percentile is
used (Table 1).

Discussion
Timing of anther dehiscence in �Ochuti�

The diurnal pattern of anther dehiscence in cv. �Ochuti�
showed that pollen release reaches a peak during morning

hours. This agrees with the viewpoint that weather factors
have a strong effect on airborne pollen flow (Song et al. 2004,
Schmidt and Bothma 2006). Anther dehiscence in angio-
sperms depends on two mechanisms: (1) environmentally-

linked hygroscopic absorption of water by pollen (Keijzer
1999), and (2) disappearance of the anther�s locular fluid and
partial dehydration of the pollen (Pacini 2000). The latter

mechanism seems to favour anther dehiscence in cv. �Ochuti�
as pollen shedding is correlated with an increase in VPD
caused by increase in temperature and the accompanying

decrease in relative humidity in the morning. Indeed, very
little or no pollen was shed in the hours preceding 08:00 am.
The former mechanism of anther dehiscence has been reported
to occur in an Australian sorghum cultivar �MR Buster��
(Ryley 2005). Ryley (2005) found that this cultivar�s pollen
release was favoured by highly humid air during the
early hours of the morning (03:00 am) when VPD was at its

lowest.

Variation of gene flow with distance and wind direction

This study shows a sharp decrease of PMGF within the first
10 m of the source field. Beyond this distance, the pollination

gradient declined less rapidly and PMGF was detected up to
100 m, the maximum distance investigated. It is difficult to
compare the PMGF gradient of this study with that of
Schmidt and Bothma (2006) because of differences in sampling

strategies. In their study, the authors started sampling at 13 m
from source. In rice, a predominantly self-pollinating crop,
gene flow gradients show rapid decline within the first 5 m

(Yuan et al. 2007). PMGF in maize, a highly outcrossing
species, generally decreases rapidly over short distances of up
to 30 m, with low cross-pollination detected over few hundred

meters (Ma et al. 2004, Goggi et al. 2007). Luna et al. (2001)
reported that cross-fertilization in maize could occur at a
maximum distance of 200 m from the source. PMGF between
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Fig. 3: Plots showing better fitting curvilinear PMGF model based on
(a) square-root transformation of distance from pollen source
compared with (b) non-transformed distance. Each point represents
individual MS plants. Outer bounds indicate the 95% confidence
interval of the model (inner line)

Table 1: Estimates of regression
parameters, coefficient of determi-
nation (r2), and significance levels
(P) three pollen dispersal models in
the LR and SR seasons of 2006

Season Data used a b r2 P Distance (m)1

LR 2006 All plants 6.597 )0.65 75.9 <0.0001 103
Data above 95th percentile 8.263 )0.64 96.0 <0.0001 168
Data above 99th percentile 8.608 )0.67 97.1 <0.0001 165

SR 2006 All plants 4.603 )0.44 27.7 <0.0001 111
Data above 95th percentile 7.771 )0.55 95.6 <0.0001 200
Data above 99th percentile 8.033 )0.56 96.6 <0.0001 203

1Estimated distance at which at least one seed per plant is expected.
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GM and non-GM bentgrass, a highly outcrossing perennial

species was reported to occur at great distances of 20 km
(Watrud et al. 2004).

Average PMGF was higher in the LR than in the SR
experiment (Fig. 2c,d). Two factors could have led to the

observed differences: Firstly, frequent changes of the wind
direction in the LR experiment led to substantial amount of
seed formation in N, NE and E directions whereas the stable

wind directionality in the SR resulted in most of the seeds to
be formed in S and SW directions. The remaining four
directions contributed very little seeds and this resulted in

comparatively lower average seed set. Secondly, higher aver-
age wind speed observed in the morning hours of the LR
season resulted in more pollen transportation and deposition
on the MS bait plants. Other factors that would have led to

seasonal difference in the pattern of PMGF include base
temperature and day length (Quinby 1973). As �Ochuti� and
the MS plants generally flowered at the same times, the minor

difference in day length could have had little influence on the
results. The effect of base temperature could not be ascer-
tained as it was not measured.

The estimated seed setting rates on MS pollen recipients in
this study were comparable to that of Schmidt and Bothma
(2006), who reported an average seed setting rate of 2.5% at

13 m. In the present study, average seed setting rate at the
same distance were 2.1% in the LR and 0.6% in the SR. When
the upper 5th percentile data is used, seed setting rates was
found to be high close to the pollen source, whereby up to 50%

of florets on MS plants were pollinated. As pollen flow is
unidirectional, only the side of a MS recipient facing pollen
source is pollinated, thus explaining the 50% pollination rate
at the closest distance sampled.

Model of gene flow

The model of PMGF as a function of distance from the source
plants can be used to determine the isolation distance required
to reduce the probability of hybridization between adjacent

genotypes to below preset limits. The negative exponential
model with a logarithmic- and square root-transformation of
the seed numbers per MS plant and distance from pollen
source, respectively, that was fitted to our data also performed

well in other cereal crops such as wheat (Gustafson et al. 2005,
Geines et al. 2007) and maize (Gustafson et al. 2006, Porta
et al. 2008). A previous model of sorghum crop-to-crop

PMGF proposed by Schmidt and Bothma (2006) did not fit
our data. In the latter study, the authors employed exponential
and power functions on double log-transformation. The

exponential model underestimated PMGF at closer distances
as well as the tail-end of the distribution in our data (Fig. 3b).
The power model did not fit our data at all and had the

opposite effect of overestimating gene flow at close as well as
far distances (not shown).
Based on our model, the maximum distance required to

reach a threshold of one seed per plant (�0.03% cross-

pollination rate on male-sterile plants) based on data above the
99th percentile was determined to be 203 m in the SR season
and 165 m in the LR season. This distance is slightly lower

than that of Schmidt and Bothma (2006) which was estimated
at 238 m. However, this prediction is only valid under �average
recorded� weather conditions. Extreme wind conditions can

significantly alter the cross-pollination levels and result in
long-distance PMGF.

Implications of this study to crop-to-crop and crop-to-wild

PMGF

Measurement of PMGF is an essential component of ecolog-

ical risk assessment of GM crops as pollen is the main vehicle
to disseminate alien genes (Rong et al. 2004). However, the
transfer of the findings of the present study to male-fertile

cultivated and wild sorghum plants needs careful consider-
ation as the frequency of the PMGF is mainly determined by
the outcrossing rates of a pollen recipient (Ellstrand et al.

1999, Lu and Yang 2009). The likelihood of crop-to-crop
PMGF is expected to be low as foreign pollen has to compete
with pollen from the receptor plants, which is normally
responsible for between 60% and 95% autogamy in cultivated

sorghum (Ellstrand and Foster 1983, Pedersen and Toy 1998,
Djè et al. 1999, Barnaud et al. 2008). For instance in a
concurrent estimation of PMGF using male-sterile and male-

fertile baits in maize, Wang et al. (2006) reported a 17-fold
decrease in outcrossing when MF baits was used instead of
MS ones. In addition, the extended stigma receptivity in the

absence of self-pollination of up to 16 days (Shertz and
Dalton 1980, cited in Schmidt and Bothma 2006) substantially
increases the amount of PMGF when male-sterile plants are

used as receptors.
On the contrary, the extent of PMGF from cultivated to

wild sorghum such as Johnsongrass (Sorghum halepense (L.)
Pers.) is expected to be significantly higher than that of crop-
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Fig. 4: Plots showing the amount of seeds produced per MS-plant and
fitted model of PMGF based on square-root transformation of
distance and log10 of seed set in the (a) long rain and (b) short rain
season experiments
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to-crop because of the highly outcrossing nature (Snow and
Ejeta 2007). Indeed, Morrell et al. (2005) found 32% frequen-
cies of crop-specific alleles in Johnsongrass populations that
were adjacent to sorghum fields in Texas and Nebraska, USA.

Furthermore, Arriola (1995) detected hybridization between
sorghum and Johnsongrass at 100 m from the crop, the
maximum distance examined. This suggests that long-distance

cross-pollination should not be excluded when cultivated and
wild sorghum occurs sympatrically.
In the current study, �Ochuti� was shown to release adequate

amounts of pollen despite having low outcrossing rate of about
5% (Rabbi et al. unpublished). An important implication of
this observation is that cultivars with low outcrossing rates
may still have high potential of pollinating wild relatives of

sorghum that are usually characterized by high outcrossing
rates. An asymmetric gene flow that is predominantly from
crop-to-wild is expected when wild and cultivated grow

sympatrically. However, this hypothesis needs to be experi-
mentally verified as other factors such as pollen competition
may play a significant role.

Conclusions

The occurrence of PMGF can be restricted to preset limits with
use of appropriate isolation distance. This is feasible in
commercial farming but can be difficult in subsistence
agriculture. In situations where agricultural land is highly

fragmented and farmers grow multiple varieties in their small
fields, strong pollen flow over short distance (0–10 m) as
detected in this study can lead to substantial inter-cultivar

hybridization, thus posing a challenge in the maintenance of
cultivar purity. Similarly, if transgenic varieties are introduced
into this system, it is almost inevitable that transgenes will

introgress into the local cultivars. In addition, once transgenes
enters these systems, it may be difficult or even be impossible to
control as the system is based on the free flow of genes through

pollen and seeds. Sympatric occurrences of diverse wild and
cultivated sorghums have been reported in many of the
sorghum-growing regions of Africa (de Wet 1978, Tesso et al.
2008, Barnaud et al. 2009, Mutegi et al. 2009). Furthermore,

wild and cultivated sorghum commonly flower together (Tesso
et al. 2008). In Kenya, intermediate forms between wild and
cultivated sorghum belonging to the S. bicolor ssp. drummondii

(sudangrass) are frequently found in predominantly sorghum
growing areas (Mutegi et al. 2009). Careful consideration of
these factors in the light of PMGF in sorghum is required

before deployment of GM sorghum in the subsistence farming
systems. As PMGF mainly depends on the outcrossing rate of
the target variety, further studies using male-fertile plants as
pollen baits is required.
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