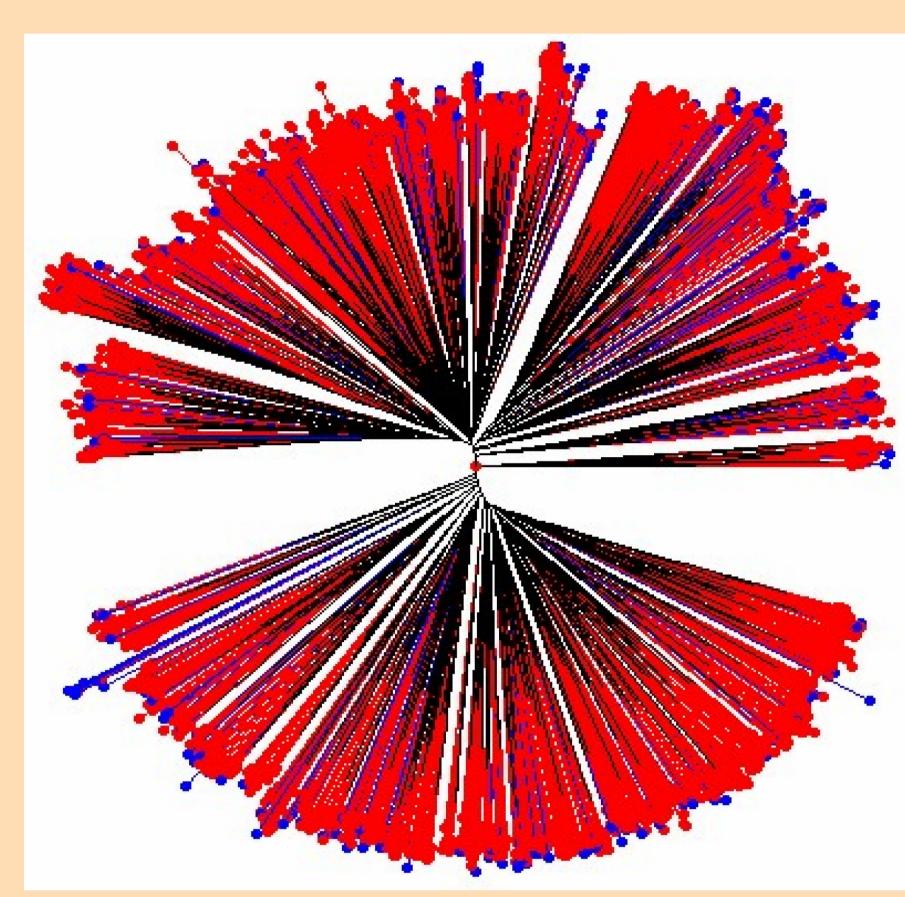


Mining Allelic Diversity Associated with Drought and Salinity Tolerance in the Reference Subset of Chickpea Germplasm Collections



HD Upadhyaya¹, SL Dwivedi¹, SM Udupa², RK Varshney¹, BJ Furman², M Baum², CLL Gowda¹, J Kashiwagi¹, V Vadez¹, L Krishnamurthy¹, VP Prasanth¹, DA Hoisington¹, S Chandra¹, and S Singh¹

¹International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru PO 502324, AP, India ²International Center for Agricultural Research in the Dry Areas (ICARDA), PO Box 5466, Aleppo, Syrian Arab Republic

Chickpea is the 4th largest grain legume crop, predominantly grown in Asia. Drought, salinity, and variations in temperature are the major abiotic constraints. CGIAR genebanks maintain a large collection of chickpea germplasm. For enhancing the utilization of chickpea germplasm in breeding and genomics applications, a global composite collection (Upadhyaya et al. 2006) and reference subset have been developed (http://www.generationcp.org).

A Historical Perspective of Composite Collection and Reference Subset in Chickpea Genetic structure of composite collection Allelic richness 1791 alleles (994 rare and 797 common) Range 14-67; Average 36 alleles/locus Marker polymorphism (PIC) and PIC: 0.468 to 0.974 gene diversity (GD) GD: 0.534 to 0.975 Kabuli 117, desi 310, pea-shaped 5 Seed type-specific alleles Region-specific alleles 122 Mediterranean (M) West Asia (WA) 121 South and Southeast Asia (SSEA) 123 Kabuli and desi Common alleles 458 SSEA and WA M and SSEA 33 M and WA 39 74 Wild Cicer specific alleles Genetic structure of reference subset (300 accessions) Allelic richness 78% (1403 alleles) of the 1791 alleles of the composite collection 8 to 56 alleles, 28 alleles per locus Allelic range Marker polymorphism (PIC) and PIC: 0.488 to 0.964; GD: 0.540 to 0.965 gene diversity (GD)

• 300 accessions representing reference set • Remaining 2615 accessions of the composite collection (2915 accessions) Figure 1. Tree diagram of the chickpea reference subset showing allelic diversity in composite collection

Phenotypic Screens for Drought Tolerance

• A PVC cylinder (18 cm diameter and 120 cm tall) technique developed to screen for droughtavoidance root traits (Kashiwagi et al. 2006)

Figure 2. PVC-based screening technique for drought tolerance in chickpea

Assessing Genetic Variation in Chickpea Mini Core for Drought and Salinity Tolerance

Variability for drought and salinity tolerance traits **Drought** (Kashiwagi et al. 2005)

- Largest variation for root length density (RLD) and plant dry weight to RLD (PDW/ RLD) ratio
- Several accessions with high RLD and PDW/RLD ratio identified
- ICC 8261 with largest RLD and deepest root while ICC 4958 with prolific and deep roots
- Landraces from central Asia showed relatively larger RLD

Figure 3. Genotypic variation for root mass in chickpea germplasm

Salinity (Vadez et al. 2007)

- Six-fold variation for seed yield under salinity (80mM NaCl)
- Desi's had higher salinity tolerance than Kabuli's
- Number of filled pods the major salinity tolerance trait
- Tolerance not related to the shoot Na⁺ or K⁺ concentrations
- Several tolerant accessions identified

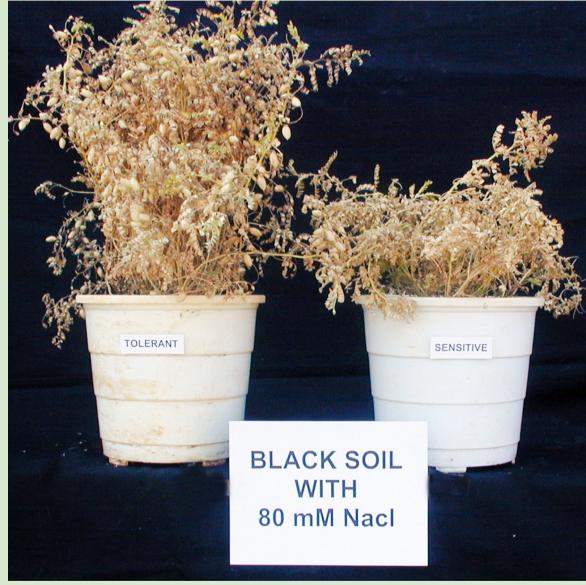


Figure 4. Genotypic variation for salinity tolerance in chickpea germplasm

Phenotypic Screens for Salinity Tolerance

• A pot (27 cm diameter) screening technique for salt tolerance (80mM to 100mM NaCl) developed (Vadez et al. 2007)

Future Perspective to the Utilization of Reference Subset in Chickpea Genomics and Breeding

- Saturate with more number of SSRs and DArT markers
- Evaluate for drought and salinity tolerance
- Evaluate for agronomic and seed quality traits
- Detect allelic variation associated with drought and salinity using association genetics
- Identify accessions with contrasting response for diverse uses

References

Kashiwagi J, Krishnamurthy L, Crouch JH and Serraj R. 2006. Variability for root characteristics and their contributions to seed yield in chickpea (Cicer arietinum L.) under terminal drought stress. Field Crops Res. 95:171-181.

Kashiwagi J, Krishnamurthy L, Upadhyaya HD, Krishna H, Chandra S, Vadez V and Serraj R. 2005. Genetic variability of drought-avoidance root traits in the mini core germplasm collection of chickpea (Cicer arietinum L.). Euphytica 146:213-222.

Upadhyaya HD, Furman BJ, Dwivedi SL, Udupa SM, Gowda CLL, Baum M, Crouch JH, Buhariwalla HK and Singh S. 2006. Development of a composite collection for mining germplasm possessing allelic variation for beneficial traits in chickpea. Plant Genet. Resour. 4:13-19.

Vadez V, Krishnamurthy L, Serraj R, Gaur PM, Upadhyaya HD, Hoisington DA, Varshney RK, Turner NC and Siddique KHM. 2007. Large variation in salinity tolerance in chickpea is explained by differences in sensitivity at the reproductive stage. Field Crops Res. (in print).