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Abstract 

As a major contributor to the reduced nitrogen pool in the biosphere, symbiotic nitrogen fixation by legumes plays a critical role 
in a sustainable production system. However this legume contribution varies with the physico-chemical and biological conditions
of the nodulated-root rhizosphere. In order to assess the abiotic and biotic constrains that might limit this symbiosis at the agro-
ecosystem level, a nodular diagnosis is proposed with common bean as a model grain-legume, and a major source of plant 
proteins for world human nutrition. The engineering of the legume symbiosis is addressed by participatory assessment of bean 
recombinant inbred lines contrasting for their efficiency in use of phosphorous for symbiotic nitrogen fixation. With this 
methodology, in field-sites chosen with farmers of an area of cereal-cropping in the Mediterranean basin, a large spatial and 
temporal variation in the legume nodulation was found. Soil P availability was a major limiting factor of the rhizobial symbiosis. 
In order to relate the field measurements with progress in functional genomics of the symbiosis, in situ RT-PCR on nodule 
sections has been implemented showing that the phytase gene is expressed in the cortex with significantly higher number of 
transcripts in P-efficient RILs. It is concluded that various tools and indicators are available for developing the ecological 
engineering of the rhizobial symbiosis, in particular for its beneficial contribution to the bio-geochemical cycle of N, and also P 
and C. 
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1. Introduction 

Farmers in most developed countries are recommended to minimize nitrogen fertilization for environmental sake 
whereas those in less developed countries cannot afford it in large agricultural areas. Thus, symbiotic nitrogen 
fixation (SNF) by legumes that already constitutes a major input into agricultural and natural ecosystems may 
provide an ecologically acceptable complement or substitute for mineral nitrogen fertilizers. However, P deficiency 
is a major limiting factor for legume production where legume N nutrition largely depends upon the rhizobial 
symbiosis, particularly in acidified or calcareous soils. Thus, low soil-P availability is a primary constraint to 
legume productivity in many low-input systems. It is also a limitation in high-input systems where soil chemistry 
converts the fertilizer P into less available forms, so that high P fertilization is inefficiently applied. 

A possible explanation is that legumes, especially common bean, have higher P requirements than non symbiotic 
plants [1]. Nevertheless to increase common bean production, it is possible to improve its SNF potential and 
expression under P deficiency [2,3]. Although the large genetic diversity of growth habits and duration, from bushy 
determinate to climbing indeterminate types, was not fully explored in the putative nine distinct gene pools of the 
species [4]. In this study we screened in glasshouse hydroaeroponic culture for genotypic diversity in P use 
efficiency (PUE) for SNF among common bean recombinant inbred lines (RILs) of the cross of the parental lines 
DOR364 and BAT477. The most contrasting RILs were tested for nodulation and growth in field with multi-
location participatory testing in conventional cereal-legume rotation systems in South France. The relation with soil 
P availability and nodule phosphatase expression was considered. 

2. Materials and Methods 

2.1. Hydroaeroponic culture of nodulated common-bean in glasshouse 

Common bean seeds of RILs (F8-9) from the cross of BAT477 and DOR364 were surface-sterilized in Ca 
hypochlorite 3%, washed with sterile distilled water. They were germinated in Petri dish with 0.8% Agar YEM 
media (Vincent, 1970). Selected uniform seedlings of each RIL were inoculated by soaking them 30 min into 100 ml 
rhizobial broth containing around 108 cells ml-1 of Rhizobium tropici CIAT 899. Both rhizobia and seeds were 
initially supplied by the Centro Internacional de Agricultura Tropical (Cali, Colombia). 

Roots of inoculated seedlings were passed carefully through pierced rubber stopper, fixed with cotton fitted 
around the hypocotyl, and placed upon the topper of a 0.40 x 0.20 x 0.20 m vat receiving 15 plants before 
transplanting into a temperature-controlled glasshouse. They were individually transferred during 3rd week into 1 l 
serum bottle for individual-plant culture until harvest during 6th week when they had reached the flowering stage 
(R6-7). 

They received 1 l pl-1 of the nutritive solution from Hernandez and Drevon [6], complemented with sterile 
distilled water and renewed every week, and aerated with 400 ml compressed air min-1 l-1 solution. The pH was 
maintained near 7 through the addition of 1 g CaCO3 l

-1 solution. The solution contained 2 and 1 mM urea starter N 
during the first 2 weeks and at transplanting into bottle, respectively. Thereafter, plants were grown with N-free 
nutrient solution. Every week, 75 or 250 µmol KH2PO4 pl-1 were applied for the deficient or sufficient P treatments, 
namely 75P and 250P. The vats and bottles were distributed in a block design. 

2.2. Nodular diagnosis in multi-location participatory field assessment 

From the screening in the glasshouse, four contrasting RILs were chosen for the multi-location field comparison 
with the local cultivar in Lauragais (France, 43-13 ºN, 02-19 ºE, 130 mas) with 6 farmers of the SPHC (Syndicat des 
Producteurs de Haricot à Cassoulet) in 2003, 3 farmers in 2004 and 2005, and in most contrasting fields of 2 farmers 
in 2006 and 2007. In each field the RILs were sown in May in a 2-m single-row per RIL. This constituted a 
randomized block design, each block being one farmer’s field. The RIL block was included within the local bean 
field in order to reduce border effects and to expose the RILs to similar environment and practices as the local bean 
cultivar, in particular with 0.5 m between rows. 

Nodulation and growth of the RILs were measured in July, at the similar flowering stage as in the glasshouse 
experiment, i.e. when the first pod was 2 cm long. Sampling was performed by excavating 20 cm in depth and 
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around the root system of 10 plants per row, per block. Soil and plant samples were transferred in plastic bags and 
stored in a cold room until further analysis in laboratory. 

Rhizospheric soil was sorted from field plants. The available P of the rhizospheric soil was measured by the 
Olsen method according to standard NF ISO 11263 after extraction by soil agitation with a solution of 0.5 NR 
sodium bicarbonate with pH 8.5. Plants were separated into shoot, root and nodules, and dried at 70 ºC for 2 days to 
constant weight. 

Standard deviations were determined for all the traits. Analyzes of variance and regressions were performed 
using the general linear model procedure of the Statistical Analysis System package (SAS Institute, 2000). Fixed 
effects in the analysis of variance were genotype and treatment. 

2.3. Nodule in situ reverse transcription and PCR amplification 

Three mm diameter nodules were harvested from 5 week-old plants in glasshouse, and thoroughly washed with 
DEPC (diethyl pyrocarbonate) treated water. They were then fixed overnight at 4 °C in tubes containing freshly 
prepared PFA [2% (v/v) paraformaldehyde, 45% (v/v) ethanol and 5% (v/v) acetic acid] as modified from Koltai 
and Bird [7]. Fixed nodules were washed extensively to remove PFA with four changes of DEPC-treated water over 
30 min under regular agitation (2x5 min + 2x10 min). Thereafter, the nodules were included in low-melting agar 9% 
(m/v), dissolved with filtered PBS 1x, and cut into samples of 50 microns-depth using a micro-cut unit. The nodules 
sections were transferred in tubes containing 0.5 ml of DEPC-treated water, and the rest of agar was removed by 
washing with DEPC-treated water heated to 60 °C three times. 

The sections of fixed nodules were incubated with 40 µl RT mix [8x buffer (5x), 1.25 dNTP (10 mM), 0.4 dig-
11-dUTP, 3 Primer rev (10µM), 6.7 DEPC-treated water], and heated to 65 °C for 5 min and then placed in ice for 2 
min. Thereafter, the reverse transcriptase was added to each sample to a final concentration of 5 µl-1 and samples 
were incubated at 42 °C for 1h. After reverse transcription, the RT mix was removed, and the samples were washed 
three times with 100 µl DEPC-treated water. Negative controls (NRT) were prepared by omitting the reverse 
transcription. Thereafter, the PCR reaction was performed in 20 µl of DEPC-treated water and 20 µl of PCR mix [4x 
PCR buffer (10x), 1.2 MgCl2 (50 mM), 0.8 dNTP (10 mM), 0.4 dig-11-dUTP, 1 Primer dir (10µM), 1 Primer rev 
(10cM), 0.2 Taq Poly (5U/µl), 10.4 DEPC-treated water] with 30 cycles thermocycling (95 °C for 3 min, 95 °C for 
30 s; 55 °C for 30 s; 72 °C for 45 s; 72 °C for 2 min) and at 20 °C for 5 min. The PCR mix was removed after 
amplification and the samples were washed three times with PBS 1x. 

Before detection of amplified cDNA, the samples were incubated in 100 µl of blocking solution [BSA 2% with 
triton 0.3% (3 µl.ml-1) for 30 min under gentle agitation in darkness at 37 °C. Then the blocking buffer was removed 
and replaced by 100 µl of acid phosphatase-conjugated anti-dioxygenin diluted 1:1000 in BSA (2%). The samples 
were incubated 90 min at room temperature and then washed three times (5 min, 10 min and 10 min) in filtered PBS 
(1x) to remove excess antibody. Detection was carried out using the enzyme-labeled fluorescent ELF-97 
endogenous phosphatase. ELF substrate was diluted 1:40 in the detection buffer, vigorously shaken and filtered 
through a 0.22-µm filter [8]. Samples were incubated in 20 µl ELF substrate-buffer solution for 20 min in the dark 
and transferred to washing buffer for 3 washings of 1 min were performed, then mounted and observed immediately 
with gray-scale view camera using image J software for analysis. 

3. Results and discussion 

3.1. Screening for N2-dependent growth in controlled environment under low P 

In a preliminary screening, a large diversity of adaptation to deficient P supply was found in hydroaeroponics 
under glasshouse with RILs 5, 6, 7, 12, 26, 28, 34, 60, 64, 75, 104 and 115 that were tolerant to deficient P, in 
contrast with RILs 1, 4, 11, 24, 27, 29, 32, 37, 38, 62, 73, 83, 124 and 147 that were sensitive, as illustrated in Fig. 
1A. This experiment was repeated with most contrasting RILs of the above screening with RILs 7, 28, 75 and 115 
being significantly more efficient than RILs 83, 124 and 147 (Fig. 2A). The RIL 115 confirmed to be one of the 
most efficient RILs with a mean N2-dependent growth of 8 g DW plant-1 corresponding to a yield potential higher 
than 4 t grain ha-1. The shoot / root ratio decreased under P deficiency since there was no decrease in root growth 
under deficient P supply except for RILs 104 and 147. 
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Fig. 1. Contrasting recombinant inbred lines 115 and 147 in (A) glasshouse hydroaeroponics under deficient P, farmer's field in Lauragais (B) 
with limitation in N2 fixation for 147, (C) with extensive nodulation for 115 

Fig. 2. Biomass of shoot (A) and nodules (B) of contrasting recombinant inbred lines of the cross of BAT477 x DOR364 in glasshouse
hydroaeroponic culture under sufficient (white) versus deficient (grey) P supply. Data are means and standard deviation of 10 replicates at 

flowering stage 

The ratio of shoot / nodule was calculated on the basis of the shoot biomass minus 1.8 gDW that corresponded to 
the growth of the plant without nodulation (i.e. the growth exclusively due to the supply of N by the seed and the 
starter urea in the hydroaeroponic culture). Since the level of additional growth depended upon the amount of N2

fixed and the efficiency of its utilisation for growth, this ratio was considered as an estimate of the efficiency in use 
of the rhizobial symbiosis (EURS). Under P sufficiency, RILs 34 and 115 were the most efficient by contrast with 
RILs 28 and 83 that expressed a significantly lower EURS (Fig. 2B). Under P deficiency, RILs 7 and 115 had the 
highest EURS, by contrast with RIL124 that shows the lowest EURS. 

3.2. Field observation of contrasting RILs in conventional cereal cropping systems 

The contrasting RILs 115 and 104 versus 124 and 147 were tested with a participatory approach in fields in
Lauragais. In 2004, the highest and lowest values for mean shoot growth of the RILs in one field, were 19 and 9 g 
SDW pl-1, respectively for field 3 and 2, with mean growth around 15 g SDW pl-1 in other fields. However the 
RIL104 shows generally a lower growth than RIL115 whatever the field. The RIL 124 shows a significantly lower 
growth than RIL115 in field 3. A leaf yellowing was observed with RIL147 compared to RIL115 in field 2 (Fig. 
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1B), that resulted in significantly lower growth of RIL147 (7 g SDW pl-1) than RIL115 (12 g SDW pl-1) at flowering 
stage. Nodulation (Fig. 1C) was the lowest in field 2, with less than 2 mg NDW pl-1, with a large proportion of 
plants harbouring no detectable nodules. It was the highest in field 3 with a maximum nodule mass of 54 mg NDW 
pl-1, corresponding to more than 50 nodules per plant. Thus, nodulation varied considerably among fields. 
Nevertheless, there was no significant correlation between nodulation and growth in any field by contrast with 
observations during some previous years in this reference zone [9] or in hydroaeroponics [10]. 

This field tests were repeated in 2005 in 4 fields of Lauragais where nodulation was again quite variable spatially. 
In field 2 the nodulation was as low as in 2004 except for RIL104 that harboured a mean of 13 mg NDW pl-1. The 
later was associated with a lower growth for RIL104 (4 g SDW pl-1) than for other RILs (6 g SDW pl-1), and it was 
significantly lower than in 2004. In field 4 the growth was similar among RILs, with a low nodulation of 10 mg 
NDW pl-1. In field 5, nodulation was contrastingly much higher than in other fields, with nodule mass varying 
between 300 mg NDW pl-1 in RIL115 and 50 mg NDW pl-1 in RIL147. Although the growth was higher for RIL147 
(10 g SDW pl-1) than RIL115 (8 g SDW pl-1), and there was no relation between growth and nodulation. In field 6, 
results were intermediate. 

During 2006, the farmers of the SPHC proposed to change the protocol with a few meters unsown on the 6 rows 
where RILs were sowed. Unfortunately, this generated a heterogeneity that resulted in much lower growth of 
common bean in this sub-plot, except in field 3 from which data of growth and nodulation at flowering stage were 
processed. RIL147 and 115 show similar growth of 15 g SDW pl-1 as that in 2004. This was associated with a 
significantly higher nodulation for RIL115 (120 mg NDW pl-1) than RIL147 (45 mg NDW pl-1), confirming the 
good potential of the field 3 for nodulation. 

During 2007, the comparison was restricted to RILs 115 and 147 in contrasting fields 1 and 2 with 3 replicated 
blocks in each field. The mean growth was the highest in field 1 with similar growth of 25 g SDW pl-1 for RILs 115 
and 147. In field 2 the growth of RIL115 was 18 g SDW pl-1 which was significantly higher than the 15 g SDW pl-1

of RIL147. Nevertheless in both fields nodulation was very low, confirming that it may vary largely between years 
as previously observed in field 1 with the locally grown cultivar [9]. 

3.3. Physiological characterization of contrasting RILs 

In order to study the mechanisms of the RIL effects on soil P bioavailability, a rhizotron system was developed 
with 1 mm soil-layer on which the nodulated legume was transferred after 2 weeks in hydroaeroponic pre-culture, as 
described by Kouas et al. [11]. A significant decrease of 1 and 1.5 unit of soil pH was found, with RIL115 under 250 
and 75 P, respectively (Fig. 3). This acidification may result in a rhizospheric stimulation of P solubilization by the 
most efficient genotype, namely RIL115. 

Fig. 3. Rhizotron methodology showing common-bean lines at flowering stage after transfer from hydroaeroponics at 4 week growth onto neutral 
Cazevieille soil, with subsequent change in soil pH depending upon P supply 
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The Olsen P in the rhizospheric soil in Lauragais 2005-07 varied from a mean of 15 mg P Kg-1 soil in fields 2, 4 
and 5 to more than 30 mg P Kg-1 soil in fields 1, 3 and 6. Also a large spatial variation within each field was found: 
e.g. from 6 to 21 mg P Kg-1 soil in field 4, and from 24 to 65 mg P Kg-1 soil in field 3. In 2007, the Olsen P was 
significantly higher in the rhizosphere of RIL 115 than 147 in two fields. 

Fig. 4. Nodule sections of RIL115 showing in situ RT-PCR signal in green for (A) acid phosphatase and (B) phytase. IC, inner cortex; MC 
middle cortex; IZ, infected zone 

Acid phosphatase (AP) primers were designed from leaf Phaseolus vulgaris AP sequence, for localization on 
nodule section. The green signal in Fig. 4A shows that PvAP was widely expressed in nodule cortex, both inner (IC) 
and middle (MC), and to less extent in non-infected cells of the infected zone (IZ). Since nodule phytase activity 
was found to increase under P deficiency [12], primers of phytase were designed from Glycine max and Medicago 
truncatula sequences, for phytase localization on nodule section. The green signal in Fig. 4B shows that phytase was 
widely expressed in nodules, and essentially localized in nodule cortex, both inner and middle.

4. Conclusions and prospects 

The selection procedure in glasshouse hydroaeroponic culture maximizing the rhizobial symbiosis under highly 
controlled P supply is an innovative approach to select for the use of P by nodulated legumes. It complements other 
approaches that are focused on the acquisition of P. These RILs can be used to (i) assess the adaptation of grain 
legumes in low N&P soils of agro-ecosystems, with common bean as a model, (ii) identify soils where P offer is 
deficient for the legume N2-dependent growth, (iii) search for mechanisms and genes from the improvement of 
efficiency in use of P for N2 fixation, (iv) improve local or commercial varieties of common bean for adaptation to 
low P availability. The seeds of these 6 RILs are ready to identify soils where P deficiency is a limiting factor of 
SNF and the subsequent yield of grain legumes. 

Six Recombinant Inbred Lines (RILs) of common bean (Phaseolus vulgaris) have been selected among the 
progenies of the cross between BAT477 and DOR364 for their efficiency in the use of P for symbiotic N2 fixation. 
Adaptation to low P availability was partially due to a lower reduction of nodule number and mass for tolerant than 
for sensitive RILs. However in some exceptional RILs, the adaptation to deficient P was associated with a large 
growth of individual nodules, which partly compensated for the decrease in nodule number. Another compensation 
process was the increase in nodule activity. The later could be estimated by the ratio of plant mass per unit mass of 
nodule (namely the efficiency in use of the rhizobial symbiosis), and by the respiration linked to nitrogenase activity 
[13]. 

Further development of the improvement of EUP for SNF of legumes can contribute to stabilize the legume 
yield. It consists in using the RILs in a differential approach to identify mechanisms and genes responsible for the 
difference in the use of P for N2 fixation, with such a methodology as Supersage (in cooperation with Frankfurt 
University), and with in situ RT-PCR and hybridisation. The RILs are also used in ecosystem research to assess the 
role of the EUP for SNF in adaptation of legumes to low fertility soils. The contribution of our work to sustainable 
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agriculture reveals the role of P biogeochemical cycles in the legume rhizosphere and their benefit for the associated 
or rotated crops. The use of the RILs in participatory assessment with producers in multilocation tests within agro-
ecosystems is pursued for transfer of knowledge and generation of technology. 
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