The 2010 Awards mark the third year for the and developing countries. The award was presented by ICOLD Honorary President C.V.J. Varma, named a recipient of a 2010 India Power Award. The Awards are presented by the Council of Larry D. Stephens, USSD Executive Director.

Stephens Receives India Power Award

visited the Tehri Dam Powerplant, which was constructed in the hillside on the left. They suggested that INCOLD and USSD meeting with the Indian Committee on Large Dams. We discussed the USSD bid regulating reservoir, just downstream from Tehri Dam, would fill within three days. Project engineers told us that the reservoir would be filled to 70% capacity in five months.

Mr. Stephens shares his impressions of this civil engineering marvel.

The Tehri Dam Project is a joint venture of the Government of India and the state of Uttar Pradesh, and was completed in 2006. The construction cost was about US$1 billion. New Delhi, India. Construction began in 1978 and was completed in 2006. The 12 Priorities for Action are grouped under 3 Strategic Directions. For each Priority for Action a specific Goal has been formulated providing additional guidance for the implementation of targets. The 12 Priorities for Action are grouped under 3 Strategic Directions. For each Priority for Action a specific Goal has been formulated providing additional guidance for the implementation of targets.

By 2015, better rainfed irrigation of a shifting that will improve local capacity, food efficiency by 10%, and water efficiency by 20%

By 2015, better rainfed irrigation of a shifting that will improve local capacity, food efficiency by 10%, and water efficiency by 20%

By 2015, better rainfed irrigation of a shifting that will improve local capacity, food efficiency by 10%, and water efficiency by 20%

By 2015, better rainfed irrigation of a shifting that will improve local capacity, food efficiency by 10%, and water efficiency by 20%

By 2015, better rainfed irrigation of a shifting that will improve local capacity, food efficiency by 10%, and water efficiency by 20%

By 2015, better rainfed irrigation of a shifting that will improve local capacity, food efficiency by 10%, and water efficiency by 20%

By 2015, better rainfed irrigation of a shifting that will improve local capacity, food efficiency by 10%, and water efficiency by 20%

By 2015, better rainfed irrigation of a shifting that will improve local capacity, food efficiency by 10%, and water efficiency by 20%

By 2015, better rainfed irrigation of a shifting that will improve local capacity, food efficiency by 10%, and water efficiency by 20%

By 2015, better rainfed irrigation of a shifting that will improve local capacity, food efficiency by 10%, and water efficiency by 20%

By 2015, better rainfed irrigation of a shifting that will improve local capacity, food efficiency by 10%, and water efficiency by 20%

By 2015, better rainfed irrigation of a shifting that will improve local capacity, food efficiency by 10%, and water efficiency by 20%

By 2015, better rainfed irrigation of a shifting that will improve local capacity, food efficiency by 10%, and water efficiency by 20%

By 2015, better rainfed irrigation of a shifting that will improve local capacity, food efficiency by 10%, and water efficiency by 20%

By 2015, better rainfed irrigation of a shifting that will improve local capacity, food efficiency by 10%, and water efficiency by 20%

By 2015, better rainfed irrigation of a shifting that will improve local capacity, food efficiency by 10%, and water efficiency by 20%

By 2015, better rainfed irrigation of a shifting that will improve local capacity, food efficiency by 10%, and water efficiency by 20%

By 2015, better rainfed irrigation of a shifting that will improve local capacity, food efficiency by 10%, and water efficiency by 20%

By 2015, better rainfed irrigation of a shifting that will improve local capacity, food efficiency by 10%, and water efficiency by 20%