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CUMCTERIZING NATUBAL RESOURCES FOR SUSTAINABLE AGRICULTURE 
IN THE SEMI-ARID TROPICS 

S. I4. Viaani and 8. Eavaran 

I. INTRODUCTION 

The natural resources of a country are it6 most sacred endowment. It 

is a base on which all life depends and in most countries of the world, ia 

t~e life support system of the country. In the recent past, with burgeoning 

populations and the national goals of seeking sell-sufficiency in food and 

fiher production, the resource base is slowly being stripped, often 

ir~eversibly. The main result is man-induced degradation of land resources 

through Inadvertent, inappropriate or misuse of technological innovations. 

Even in the United States, until recently about 3 billion hectares of top 

soil was lost annually with an economic cost of between 3 to 6 billion 

dollars (Napier, 1986). Few estimates of the concomitant loss of soil 

fertility are available. In Zimbabwe, a PA0 study indicated that on an 

average, 1.6 million tons of nitrogen and 0.24 million tons of phosphorus 

are lost per year through erosion and the cost to replace these nutrients 

would exceed US$ 1 . 5  billion (Stocking, 1986). This is an amount which most 

countries cannot afford for maintenance of their agricultural sector. When 

degradation becomes a continuing process, yields decline and the farmer is 

forced to eke a living on another piece of land, which in most instances 

may be a fragile ecosystem -- steeplands or coastal swamps -- since much of 
the better arable land is already under cultivation. The system then 

brcollea iterative to the determinant of all. 



The d i l e m a  today in to reduce this cycle by trying to conserve the 

land resource bare and at the same time, exploiting it to feed and clothe 

the population. These are the basic tenets of surtainable agriculture that 

present immense practical problems to their proper implementation, 

particularly ia developing coustries. 

Enwaran and Vinaani (1990) classify the land resources in four 

categories: 

o Unsustainrble land: these are the fragile ecosystems which should 

be retained in their natural state; 

o Marginally sustainable: normally under foreet or shrub, but if 

cultivated should be brought under a conservation reserve program 

for recuperation. In the event of food shortages, they are 

cultivated; 

o Conditionally sustainable: these are agricultural lands which 

require epecial attention to soil erosion and degradation. 

Monitoring of degradation becomes an important activity of the 

extension service; 

o Prime land: this normally serves as the bread basket of the nation 

and the goal of research support services is to maximize yields. 

Each of these four categories of land can revert to the other 

depending on management. Not only m e t  the management be in tune with the 

land but also the quality of land must be concinuou~ly monitored to 

evaluate its condition. If oneet of degradation is suspected, the kind of 

degradation must be identified and corrected. Though theme are the basic 



principles of land management, they are also prerequiaites for maintaining 

suetainabllity. 

2. U)NSTRAINTS TO A n A I N I N G  SUSTAINABILITY 

Farmers are generally aware of the productivity of their land and 'the 

changes in productivity that take place with time. They are fully conscioul 

and desirous of increasing and maintaining their production. The most 

common situation in developing countries is that farmers are not able to 

sustain the productivity of their land due to one or all of the following 

reasons : 

- socioeconomic status of the farmer - technology: availability, transfer, and acceptance - external intervention and support - intransigencies of the climate 
- soillland constraints 

The first three items are beyond the scope of this paper but are 

crucial in any developmental program seeking sustainable ,and 

environmentally-sound agriculture. Swindale (1988) has elaborated the 

technological and institutional constraints governing sustainable 

agriculture in detail. The significance of climatic and soil constraints to 

adoption of improved technologie~ is well illustrated in the study by 

ICRISAT (ICRISAT, 1988) on the reasons for interregional variations in 

adoption of improved cult.lvars in India. Analysis of factors explaining the 

variation in adoption ceilings across major cereal-producing regions in 

India, confimed that agroclimatic and soil differences were substantially 

more important than infrastructural and institutional differences for all 

the five cereals considered. For sorghum, regional adoption was 

significantly and positively associated with irrigation (P<0.05), June 



ralnfall, fertiliztr aalem, and fractional area eown to norghum in the 

rainy lesson. Adoption was significantly affected by more variable total 

rainfall, more variable September rainfall, higher manlland ration, and 

higher total rainfall, particularly on Vertisols where drainage is a 

problem. 

For pearl millet, adoption wag significantly and positively correlated 

vith June rainfall and vith regional production potential reflected in 

yield in the 1950's and 1960's before hybrlds were introduced. Soils also 

highly influenced ceiling levels. These findings suggest that to achieve 

faster adoption rates, a matching of new genotypes with the climatic 

conditions and soils of the area is an important first step. 

3. LAM) AND SUSTAINABILITY 

In the semi-arid tropics (SAT), the major control of production and 

the type of farming system adopted is dependent on the total amount of 

rainfall, length of humid period, and rainfall reliability at critical 

periods of the phenological stages of the crop as illustrate6 in Fig. 1. 

Soils, their distribution, kinds and microvariability, inrroduce other 

constraints to the production process. As the soil component in 

sustainable agriculture is addressed in the accompanying paper by Eswaran 

and Virmani (1990), it vill not be repeated here. The main objective of 

this paper is to evaluate the climatic constraints and their role in 

sustainable agriculture in the SKI. 

The SAT are characterized by a high climatic water demand. Several 

definition8 of SAT exiat and the criteria used in each vary. (Koppen, 1936; 

Thornthvaite, 1948; Troll, 1965; Hargreaves, 1971). In viev of the 



importance attached to high climatic water demand in the SAT which la a 

rerult of the uniformly high temperacurer throughout the year, the syrtem 

proposed by Troll (1965) is .ore meaningful in the context of sustainable 

agriculture. According to Troll, regions in which the mean annual rainfall 

exceeds potential evapotranspiration for 2 to 4.5 month0 are termed as dry 

SAT and when the duration is 4.5 to 7 months, the area ia defined as vet- 

dry semi-arid tropicn. This clas~ification is ecological in nature. In the 

dry SAT, according to Troll, the general vegetation is thorn savanna, while 

in the wet-dry SAT, it is dry savanna. 

Regions of the SAT are characterized by a highly variable rainfall 

pattern. The coefficient of variability of rainfall in 20-30%. For exmple 

at Hyderabad, India, the mean annual rainfall is 780 mu with a CV of 27%; 

the range is however from about 320 mm to more than 1460 mm in the last 89 

years. For the savanna regions in West Arrica, Kowal and Kassam (1978) 
0 0 

showed that at 16 N latitude and at 0 meridian, the mean annual rainfall 

of 376 mm is expected to have a range from 242 to 502 mm. This variab,ility 

is encountered both within years and seasons. The temporal variations have 

a marked influence on water availability, the length of the growing season 

and hence, on crop growth and development. In order to characterize the 

rainfall environment of the SAT in agronomically relevant terms, Virmani et 

al. (1982) found that the use of a probability approach using short term 

time intervals (e.g., veek or ten day totals of rainfall) vas useful for 

defining the relative dependable period* of rainfall. The data, as ahovn in 

Fig. 2, could be used for deciding the length of the water availability 

Period and the probability of the onset of the rains. 

A rubatantial proportion of the rainfall in the SAT usually occur6 in 

few hish intensity rtoru. b o w e d  (1981) observed that the intenuity 



wually range8 betveen 20 to 60 =/hour, in w e t  instances but intensities 

as high M 120-160 m j h r  have been recorded and are not uncomon. Hence the 

roil loss that accompanies the runoff caused by high intensity s t o m  could 

be substantial. This has been demonstrated at ICRISAT Center (Hiranda et 

al. 1982) and discussed later. 

Though soil moisture is needed during the whole growth period of the 

crop, it is most crucial at critical phenological stages. Crop-weather 

modelers have evaluated this in sufficient detail for use in models, A 

stepwise multiple regression analysis between yield and weekly rainfall, 

can also be employed to obtain a first approximation of the critical stages 

or veeks during the growth period. Supplementary irrigation, fertilizer use 

efficiency and other aspects of crop management, may be related to these 

critical periods. 

4. CRITERIA FOR EVALUATING SUSTAINABILITY 

For a practical assessment of sustainability, the relevant criteria 

for evaluating the suatainability of an agricultural system include: 

4.1 An Assessment of Risk : The farmer's goal is to be able to produce at a 

threshold level which ie a function of his socio-economic status. Hi8 

assessment of risk is a function of the production in relation to his 

inputs. The same relationship will apply in reselrch strategies. If 

irrigation induces salinity over time, this ia obviously not a sustainable 

technology as the additional inputs needed to arrive at the threshold level 

may be prohibitive. 



4.2 An Assessment of Production -, Performance of chc Technology : The 

goals of farmera and scientist la to increase production, which m y  be 

y+ld, quality, durability of the product etc. This m y  be achieved through 

resistance to pest damage, better fertilization, or any of the components 

of the technology. 

4.3 An Assessment of Maintenance of Production Over a Time- frame - 
Stabilit~ of the System : The performance of the technology over a time- 

frame is an equally important cpnsiderstion. There are two sspects to this. 

First is. the worst case scenario which evaluates the technology in the 

severest stress situation whether abiotic or biotic (e.g., drought, pest 

damage). In such a case one vill test for the resilience of the system or 

how the system recovers from the catastrophe. However, when the degradation 

persists and production is significently lowered than the accepted 

threshold, a total revaluation of the technology is required. 

4 . 4  An Assessment of the Impact of the Farming Systems -- Degradation : 

Another aspect, from a land resource point of view, is of course soil 

degradation, both the degree and the additional measures or amelioration 

needed to restore production. These define the stability of the eystem. 

There are few investigations in this area, apart from the work of Mbagvu rt 

a1. (1984) on the loss of top soil on crop production. There is an urgent 

need to evaluate the impacts of soil degradation in a more systematic 

manner. 

Different roila behave differently. Changes in productivity as a 

reault of erosion on Vertisols may be imperceptible in the initial stages 

and only become evident when the effective soil volume is reduced to a 

critical depth. An Alfieol on the other hand behaves differently; lose of a 



few centimeters of top soil may show marked differences in productivity. 

This implies that sustainability must also be seen from a soils point of 

view. Thls is further elaborated by Eswaran and Virmani (1990). 

4.5 An Assessment of the EconOrnlCS of the System from the' Farmers 

Perspective = Profitability : All agricultural systems are drivel! by 

economics. Profitability must also be considered over a time frame. The 

basic question in the SAT is, can the farmer survive during the bad years 

when crops fail and the production levels are low and uneconomic? 

4.6 An Assessment of the Environmental Soundness : This is a recent 

emphasis in agricultural research and development and requires an 

assessment of the environmental impact of the technology. Few methods are 

available and fewer long term data have been generated to develop 

principles and methodology. For some kinds of soil degradation, there are 

visible indicators. The current need is a quantitative approach to assess 

environmental soundnees. 

4.7 Other Factors which include Distance to Market, Land Tenure, and in 

fact 9 Factor that Contributes to the General Improvement o f  - 
Livelihood of the Farmer - these are Acceptability and Feasibility Factors 
------A 

: These socio-economic and institutional factors are as important as the 

technological factors in considerations of sustainability and the desire 

and ability of the farmer to adopt environmen'ally sound agricultural 

practices. 

5. WTtlODOLOGY FOR EVALUATING SUSTAINABILITY 

The basic criteria for evaluating eurtainabillty may be obtained by 

t n  th- **llnu4ns n,.arr<nna 0. nhn- hv V t  m r n i  and Esvnran (1989) 



based on the principles of agrotechnology transfer eaunciated by Silva and 

Ueharr (1985): 

1. Is it te&hnologically feasible? 

2. Is it economically viable? 

3. Is it politically desirable? 

4. Is it administrstively manageable? 

5. Is it socially acceptable? 

6. Is it environmentally sound? 

Esuaran and Virmani (1990) have attempted to quantify these criteria 

vnpirically to illustrate the difference between che traditional and 

improved farming systems. The procedure employed must be refined for wider 

application. 

Another approach is tested here to evaluate sustainability. Any system 

can be dissected to determine the robustness of its components, and thrle 

or the system as a whole could be subject to the tests of suacalnability. 

For purposes of this paper, fanning systems technology will be considered. 

One of the limitations is the absence of long-term data in different agro- 

ecosystems and therefore, for the purposes of illustration of the concepts 

and principles being developed here, the long-term experiments conducted by 

ICRISAT are considered (ICRISAT 1974, 1986). 

In 1976 ICRISAT initiated a set of experiments on a deep Vertieol, at 

ICRISAT Center, Patancheru, India that Dimicked the traditional farmer 

approach and an analogous eet, tr-d 'laproved technology' designed to 

increase the productivity of the land within the socioeconodc framework of 

the dryland farmer. 



ln Pig. 3, the yield obtained each year la plotted for the two 

mysteu. The m n u a l  rainfall ia alro provided. The difference in 

production  level^ already teltifp to the enhanced yields of the improved 

technology. The stability of the improved technology is illustrated by tbe 

behavior of the system during the 'bad' years when rainfall was low such 

ss in 1985 vhen the traditional system was more adversely affected. 

:uulative yields (Pig. 4) illustrate a similar principle. The traditional - 1 
lorghum system gives an annual yield increase of about 0.59 t ha (CV 25%) - 1 
philr the improved technology, gives about 3.33 t ha (CV 232). If an 

Lntercropping system is used (to maximize the utilization of the soil - 1 
noisture), an annual increase of 4.4 t ha is obtained and in addition, 

:his system presents the lowest coefficient of variation (CV 1 7 X )  

Lndicaring greater stability. 

Yield itself is only one criteria of sustainability. Fig. 5a, shows 

:he soil loss in the same watershed. Fig.5b showa soil loss expressed in a 

:umulative manner. Minimizing soil loss over a period of time is also a 

goal of sustainability and the improved system has contributed to this. In 

addition, behavior of the system during adverse times, such as in 1976 vhen 

:here were intense rain storms, is perhaps a more crucial test. Fig. Sa, 

rhows that though the improved technology was superior, it is atill far 

iron perfect. 

Behavior of the system over a long period of time .ia the true test of 

luatainability. An attempt to evaluate this is made in this paper, using 

:rop yield simulation techniques. In the SAT, as indicated previously, the 

ujor determlnmt of crop p e r f o m n c e  is soil moisture. A first estimate of 

rield predictian can b. obtained by relating soil moisture (or rainfall) 

~t @p.elfic period8 during crop growth to its flnal yield. Thr weekly 



rainfall during the growing season was related to masured yield using a 

step-vire multiple regression. The critical week8 and their coefficientr 

required to predict yield with a reliability of more than 80% was thereby 

estimated. These equations were then employed to evaluate yield fpr the 

period 1901 to 1988, for which weekly weather information for Hyderabad ir 

available. In addition a weather generator model developed by the 

International Benchmark Sites Network for Agrotechnology Transfer (IBSNAT) 

project of University of Hawaii (gichardson and Wright, 1984), was employed 

to generate rainfall scenarios for a 25 year period from 1988. 

The regression equation for yield was then used to estimate the yield 

for each of the past 89 years and for 25 years in the future; the 

assumption that all other factors of crop formation were constant and the 

yield was controlled only by the rainfall variability at the critical 

periods of crop growth. The data thus obtained are referred to as 

'simulated yields' in comparison to the 'measured' 13 years of yield. 

In order to asses the risk associated with a given system, a procedure 

developed by Dumanski (1989) was employed. In this procedure, the 

probability of obtaining any yield is plotted against the simulated or 

measured yield. The position of the distribution curve and  it^ shape is 

indicative of propensity to risk and sustainability of the system. 

Figs, ba, 6b, and 6c, show the simulated yields for the years 1976 to 

2014. Fig. 6a, 8howr few differences between traditional and improved 

technology for chickpea. b the crop is grown on the stored moisture at the 

end of the main rainy season, it i n  highly sensitive to roil wirture 

w n d i t i o ~  urd the projections suggest that the improved technology, though 
-1 

b i ~  contributed to slightly improving yieldr (1.07 vr 0.86 t ha ) .  has 



log sra~rrired it; the traditional and improved technologies rhow a 

,oe*b.t rillilar level of high variability. 

Sorghum on the other hand, shows the tremendous improvement in yields 

:hrough the use of improved technology. The average yield for the improved 
-1 

:ethnology is 3.33 t ha , while yields under traditional methods are only 
-1 

1.59 t ha . However, as shown in Fig. 6b, there is still large variability 

Ln the predicted yields. The traditional technology shows a much lower 

Level of yield variability. It is possible that if other components of the 

:ethnology were used to simulate yield, the improved technology would 

)robably show less variability. Yield variability, and thus farmer s 

.ncome, is better stabilized if a mixed cropping system is adopted. This is 
-1 

.llustrated in Fig. 6c, where the mean yield is raised to 4.4 t ha and 

:here is a w r k e d  decrease in variability over time. 

One of the conditions for assessing sustainability is the buffered 

Iature of a given land uoe. A yield probability assessment for both the 13 

fears of measured yield and the 89 years of simulated yield was developed 

.Figs. 7. and 7b). In both figures, r ~ i m i l a r  pattern emerges. first is 

.hat the treditional system is highly buffered as shown by the kurtosis of 

.he probability distribution curve6. The traditional system is only 

lffected in extreme drought situations. The improved systems, though being 

m r e  productive (skewed to higher ylelds), appears to.be less stabilized; 

.he probability c u ~ e s  have a higher kurtosis factor, showing that these 

a r  more prone to fluctuations In soil moisture stress. 

This amlysir clearly shows that in the roll mirture driven m d e l ,  

t f ~ l d  of eropr in the SAT is controlled by moisture stress at critical 

erioas. Thim is uplified by considering an irrigated agriculture system 



(Pigs. 71 and 7b). In Pig. 7b, the yield for tho 13 year period war 

~iaulated, ualng l Resource Capture w d e l  (Monteith et 81. 1989). If soil 

wisture is not liafting, as in irrigated agriculture, tha rorghum yields 

would be significantly higher and the yields would be stabilized over time. 

Fig. 7b, illustrates this irrigated situation in a experiment conducted by 

Buda (1988) for a ten year period. The shift of the curve to the right and 

its lowered kurtosis indicates a higher stability and perhaps 

sustainability in both the measu:ed data (Fig. 7b, and the simulated 

condition (Fig. 7a). Basically, the irrigated system shows a lower degree 

of risk even at higher performance levels. The system needs to be tested 

for longer periods and specifically to examine if there is onset of soil 

degradation (such as salinization), to establish its austainability. 

This kind of analysis amplifies the point raised by Suindale (1988) 

regarding the Asian agricultural scene. He notes that, "the Asian 

agricultural scene reveals considerable differences in productivity. Where 

high input irrigated agriculture is practiced, there ia little gap between 

potential and actual yields at currently available levels of technology. In 

contrast, the yield gap may be a 8  high as 80% or more in the rainfed semi- 

arid areas. The factors responsible are both technological and socio- 

economic". 

It must be stressed again that only one component in the whole system 

is being coneiderad in the previou8 analysis and that the interpretations 

lloy change if the system as a whole were considered. The fact still remains 

that soil wirture is the most important component and that incrae8ing 

yields in the SAT a d  stabilizing them mura require additional research 

efforts in the areas of minture eonrervatlon and utilization. In the 



context of this papar, the methodology presented appears to provide a tool 

to tert etutainability of alternate land uee eystaw. 

From a land resource point of view, there are many conntrainta faced 

by developing countries to attain sus~alnability. Foremost in knowledge of 

the natural resource bare. In many countries, detailed knowledge of the 

soil resource8 is not available. Even when information is available, due to 

lack of internationally coordinated standards and quality control methods, 

there is considerable variation in the quantity and quality of information 

between countries. Simllar considerations apply to the climatic data base. 

A third common characteristic is the absence of baseline information and 

long-term wnitoring for any of the components to assess sustainable 

agriculture. 

S y a t e w  approach, with the application of systems modeling. Geographic 

Information Systems, complimented with expert systems are becoming useful 

toola to evaluate qustainability of agriculture. Testing and designing of 

appropriate systems to fit the socioeconomic profile of the farmer in 

equally important. Research in utilization of land resources in the context 

of fiustainbble and environmentally sound agriculture will require major 

conceptual changes in the design, measurements, and monitoring of 

experiment#. Component research will have to be complibented with ayeterm 

rerearch. 

A. an illrutratioa V i r u n i  et a1. (1982) claeaified Vertiaolr of 

central Iadia into two broad production zonee on the berir of annual 

rainfall : 



o Uruarured ralnfall zone receiving erratic rainfall 

ranging f r m  SW to 750 m, equal to 4 0 4 8 %  of the annual 

potential evapotr~spiration; 

o Assured rainfall zone receiving annual rainfall ranging, 

from 750 to 1250 mm, which ir equal to 43-77% of annual 

potential evapotranspiration. 

Each of t h e ~ e  zones will require different etrategier for increasing 

and 'stabilizing dryland production. With the advent of computer8 a w r e  

refined grouping of the agro-environment can and muet be made. Approaches, 

such ss the one used eerlier point to the improvements in prediction# that 

can be made with reliable long-term data 

M~tching crop requirements to soil and climatic conditions is r 

challenge which is continuously being addressed. Fig. 1, shovs the current 

adaptability of some crops to moisture conditions. Research has two roles 

to play; first to optimize crop performance vithin their adapted moisture 

range condit~ons, and secondly to devise technology to extend the range if 

necessary. The latter becomes ~elevant when sequential cropping oyrtems are 

being considered, specifically when using soil-stored moisture for the 

~econd crop. 

Sophisticated soil, weather, and crop m d e l s  are being developed and 

validated. These currently have mainly a research use due to the fact that 

there are too u n y  models chasing too few data. To make 8urtainable 

agriculture practicable in many counttier, an urgent requirement is the 

generation of rellablr data, m r t  important of which are cliutic and soil 

data. 



Thia study has a h o m  that sustainability conaiderations would require 

testing of farming rysteu over extended t i m  periods. Fig. 8, which 

conaidera only sorghum, s u u r i z e a  the obrervationa with respect to the 

impact of mnagement on production and sustsinability of sorghum on 

Vertisols. The current traditional system is in a sense sustainable but 

yields are very low. The improved dryland system has significantly improved 

yields but they are not stabilized yet. Much higher yields are obtained in 

the irrigated system but extreme care (eg. salinization) must be taken in 

the SAT ritution. The simulated conditions, represented by the yields at 

minimal stress situation (Fig. 8). is an indication of possible yield 

ceilingm obtained under research conditions. The goal is to reach the 

genetic potential of the crop. 

Fig. 8, illustrates the situation with Vertisols. Other soils will 

behave differently and will have different potentials and constraints. 

Currently a Lack of data prevents their evaluation. It is therefore 

necessary to reiterate the conclusion of Swindale et al. (1989): "[here 

should be an increasing emphasis on technologies to increase rainfall use 

efficiency. Soil quality will play a key role in these technologies. Soil 

taxonomy can be used with advantage in matching the suitability of 

different soils to the improved technologies". 

In conclwion, the impact of any sustainable anriculture research 

prograa or development activity must have some or all of the following 

component8 which define IMPACT: 

Inaxpensive - 
Ikrketable - 



Perunant - 
Acceptable - 
Conservation ef fective - 
Technplogy rerponsive - 

)mnski, J. 1989. Understanding and evaluating crop production risks. 
Newsletter 13, International Board for Soil Research m d  Management, 
Bangkok, Thailand. 

Iewaran, H. and S.U. V i m n i .  1990. rhe soil component in sustainabla 
agriculture. In Press: International Sympo8ium on 'Natural Resources 
Uanagement for a Sustainable Agriculture'. New Delhi, India, Feb. 6- 
10. 1990. 

Iargreaves, G.H. 1971. Precipitation dependability and potential for 
agricultural production in Northeast Brazil. EMBRAPA and Utah State 
Univeraity. Logan, Utah. 

loogmoed, W.B. 1981. Analysir of rainfall in some localities of West Africa 
and India. The Hebrew Univereity of Jerusalem, Israel. 

luda, A.K.S. 1988. Simulating growth and yield response of sorghum to 
changes in plant density. Agronomy J., 80:541-547. 

:CRISAT, 1974, 1986, 1988. Annual Report. Published by the International 
Crop Research Institute for the Semi-Arid Tropics, Patancheru, A.P. 
502 324, India. 

Coppen, U. 1936. Handbuch der Kliuatologie. Vol. I part c (Edr. W. Koppen 
and R. Geiger). Gebruder Bortitrager, Berlin, FRG. 

:owal, J.U. and A.H. Kbaaan. 1978. Agricultural ecology of Savannah. 
Clarendon Press, Oxford, UK. 

Uraada, S.U., P. Pathak, and K.L. Srlvastava. 1982. Runoff management on 
r u l l  agricultural watersheds - the ICUISAT experlence. In National 
Seminar on 'Decade of dryland agriculture research in India and 
the thrust in the eighties', Hyderabad, India. 

bateith, J.L., A.K.S. Huda and D. Kidya. 1989. BESUP: A Reaource Capture 
W e 1  for Sorghum and Pearl Millet. In. Modeling the growth and 
development of sorghum and pearl nillet. (Eda. Virmani, S.U., 
B.L.S.Tadon and C. Alagarswuy). ICRISAT Re~earch Bulletin 12. 30-33. 

Ibgvu, J.S.C., R. La1 and T.U.Scott. 1984. Effect# of artificial 
desurfacing on Alfiaolr and Ultirolr in Southern Nigeria. Soil. Sci. 
80e. h. J. 48:828-833. 



Richardron, 'C,W., and D. A. Wright. 1984. WCEN: a model for generating 
daily weather variables. ARS-6, U. S. Department of Agricuiture, 
Wa~hingtoa D.C. ,' USA. 

Napier, T. L. 1986. Socio-econodc factors influencing the adoption of aoil 
erosion control practicer in the United Strtec. Paper presented at the 
"Uorkshop on Erosion Assessment for EEC: Uethods and Uodela", 
Bruaaelr, Belgium, December 1986. 

Silva, J.A. and 6. Uehara. 1985. Transfer of agrotechnology. In (Ed. Silva, 
J.A.) Soil-baaed agrotechnology transfer. Benchmark Soils Project. 
Dept. of Agronomy and Soil Sci. Hawaii Inst, of Trop. Agric. and Human 
Rerourcrr. 2-1 1. 

Stocking, M. 1986. The cost of soil erosion in Zimbabwe in terms of the 
,108s of three major nutrients. Publ. FAO, AGLS, Rome. 

Swindale, L. D. 1988. Developing, testing and transferring improved 
Vertisol technology : the Indian Experience. Proc. Conference on 
Improved Ubnagement of Vertisola. Addis Ababa. Publ. ILCA Ethiopia, 13 - 43. 

Svindale, L.D., S.U.Virmani and, H.Eswaran. 1989. The maintenance of 
improved farming systems in semi-arid Asia. In press. International 
Conf erence on 'Sol1 Qualities in semi-arid agriculture', Saskatoon, 
Canada. 

Thornthwaite, C.V. 1948. An approach towards a rationale classification of 
climate. Geographical Review, 38:55-94. 

Troll, C. 1965. World maps of climatology. (Eds. E. Kodenwalt and H. 
Jwatz). Springer Verlag, Berlin, FRG. 

V i m n i ,  S.U., M.V.K. Sivakumar and S.J. Reddy. 1982. Rainfall probability 
eatinbtes for selected locations of semi-arid India. Research Bull. 
International Crops Rescarch Institute for the Semi-Arid Tropics 
(ICRISAT). 

Virmani, S.U., J.R. Burford and K.L. Sahrawat. 1986. Improved management 
synteas for Vertisols in India. In. Proc. 5th. Inter. Soil 
Clas8ification Workshop. Sudan. 

Viruni, S.M. and H. Eswaran. 1989. Concepts for sustainability of improved 
farning system in the sad-arid regions of deveIoping countries. In 
Pres8. Int. Conf . 'Soil Qurlities in Semi-Arid Agriculture', 
Sarkatoon, Canada. 



SUSTAINABILITY INDEX 

100 

80 

60 

40 

20 

0 -7 - - - - r - - - 1 - r  

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

ARID HUMID 
PEARL MILLET SORGHUM 0 MAIZE RICE 

Fig. 1. Adaptability of some crops to moisture conditionr. 
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Fig. 2. Probability of receiving weekly rainfall exceeding R/PE - 0.33 
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Fig. 3. Suatainable farming ryrtemr traditional va improved 
Sorghum-bared farming ayrtema. 
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Fig. 4. Suatainable farming aptoms traditional va improved 
Sorghum-burd farrnlng ryatern. 
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Fig. Ba. Simulated yielda ot Chickpea undrr traditional and 
improved management eyatema. 
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Fig. 8b. Simulated yielda of Sorghum under traditional and 
i m m d  management ayatemm. 
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