SHORT COMMUNICATION

Ammonification in air-dried tropical lowland Histosols

K. L. SAHRAWAT*

The International Rice Research Institute, Los Banos, Laguna, Philippines

(Accepted 9 February 1981)

About 30 million ha of Histosols (organic soils) in south and south-east Asia lie uncultivated or are cultivated with poor results (Ponnamperuma, 1978). Because these soils are permanently waterlogged and subside when drained (Driessen, 1978), wetland rice is the crop best suited to them. But although these soils are high in total N, wetland rice often suffers from N deficiency (IRRI, 1976; Ponnamperuma, 1978) presumably because of the absence of the beneficial soil-drying effect on ammonification described by Mitsui (1956), Ventura and Watanabe (1978) and Sahrawat (1980a). Umthini (1976) observed multiple nutritional deficiencies in rice on a flooded peat and recommended air-drying the soil before transplanting as one amelioration measure.

To ascertain whether the N deficiency observed on Histosols was due to the permanently-waterlogged condition I studied ammonification in four Histosols with and without air-drying before anaerobic incubation.

Tropohemists were sampled to a depth of 15 cm at 4 locations in the province of Laguna, Philippines and analysed (Table 1) (Sahrawat 1980b). Wet samples corresponding to 10 g air-dry soil (1 week at 25-35°C) were placed in each treatment were taken out every 2 weeks. Ammonium was determined in 2 N KCl filtered extracts by the method of Bremner (1965).

The NH$_4^+$-N content of all soils that had not been air-dried before anaerobic incubation was 5-10 mg kg$^{-1}$ at the start of the experiment and remained more or less constant during incubation (Fig. 1). In contrast the air-dried soils had 50-200 mg NH$_4^+$-N kg$^{-1}$ at the start, indicating that ammonification had taken place during air-drying. In addition, they showed a surge of NH$_4^+$ release during the first 2 weeks of incubation (Fig. 1) and, after 4 weeks, had produced 200-500 mg NH$_4^+$-N kg$^{-1}$ soil.

The results indicate that (1) Nitrogen deficiency in rice on continuously wet Histosols may be due to the virtual absence of ammonification. (2) Moderate soil drying by drainage or ridging may encourage ammonification and may alleviate N deficiency; and (3) It is speculated that excessive and prolonged soil drying before reflooding may lead to heavy losses of N by denitrification as shown by Terry and Tate (1980a,b). Careful water management is necessary to avoid N deficiency on the one hand and excessive loss of soil organic matter accompanying ammonifica-

![Graph showing effect of air-drying on ammonification in four waterlogged Histosols, incubated anaerobically at 30°C.](image)

Fig. 1. Effect of air-drying on ammonification in four waterlogged Histosols, incubated anaerobically at 30°C.

<table>
<thead>
<tr>
<th>Soil</th>
<th>pH (1:2 H$_2$O)</th>
<th>Organic matter (%)</th>
<th>Total N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.2</td>
<td>36.7</td>
<td>1.48</td>
</tr>
<tr>
<td>2</td>
<td>5.6</td>
<td>22.0</td>
<td>0.56</td>
</tr>
<tr>
<td>3</td>
<td>6.1</td>
<td>39.0</td>
<td>1.20</td>
</tr>
<tr>
<td>4</td>
<td>5.9</td>
<td>42.0</td>
<td>1.40</td>
</tr>
</tbody>
</table>

* Present address: International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), ICRISAT Patancheru P.O., Andhra Pradesh 502324, India.
tion on the other when Histosols are used for wetland rice
cultivation.

Acknowledgements—This work was carried out under a
postdoctoral research fellowship at the International Rice
Research Institute, Los Banos, Laguna, Philippines. I
thank Dr F. N. Ponnamperuma, Principal Soil Chemist,
IRRI for his valuable suggestions during the work and
preparation of the paper.

REFERENCES
BREMNER J. M. (1965) Inorganic forms of nitrogen. In
Agronomy 9, Methods of Soil Analysis. (C. A. Black, Ed.),
pp. 1179–1237. American Society of Agronomy,
Madison, Wisconsin.
763–779. International Rice Research Institute, Los
Banos, Philippines.
IRRI (1976) International Rice Research Institute Annual
LANTIN R. S. (1976) Factors limiting growth of rice on peat
MITSUI S. (1956) Inorganic Nutrition and Soil Amelioration
for Lowland Rice. Yokendo, Tokyo.
PONNAMPERUMA F. N. (1978) Toxic rice soils. In Plant Nu-
trition 1978 (A. R. Ferguson, R. L. Bieleski and I. B.
Ferguson, Eds), Proceedings 8th International Colloquium
SAHRAWAT K. L. (1980a) Soil and fertilizer nitrogen trans-
formations under alternate flooding and drying moisture
SAHRAWAT K. L. (1980b) Urease activity in tropical rice
soils and flood water. Soil Biology & Biochemistry 12,
195–196.
TERRY R. E. and TATE R. L. (1980a) Effect of flooding on
microbial activities in organic soils: nitrogen transform-
TERRY R. E. and TATE R. L. (1980b) Denitrification as a
pathway for nitrate removal from organic soils. Soil
Science 129, 162–166.
VENTURA W. and WATANABE I. (1978) Dry season soil con-
ditions and soil nitrogen availability to wet season wet-