CP 34/4 PLANT GENETIC RESOURCES ---INDIAN PERSPECTIVE

Proceedings of the National Symposium on Plant Genetic Resources Organised by NBPGR at New Delhi

March 3-6, 1987

Edited by R. S. PARODA R. K. ARORA AND K. P. S. CHANDEL

NATIONAL BUREAU OF PLANT GENETIC RESOURCES NEW DELHI-110012

PROSPECTS OF UTILISING GENETIC DIVERSITY IN PEARL MILLET

G. HARINARAYANA*, S. APPA RAO** AND MELAK H. MENGESHA**

*All India Coordinated Pearl Millet Improvement Project, College of Agriculture Campus, Pune **ICRISAT, Patancheru, India

INTRODUCTION

Pearl millet [Pennisetum typhoides (Burm.) Stapf and Hubb. Syn. P. americanum (L.) Leeke] is a cross pollinating diploid with a wealth of variability accumulated through natural selection. Its polyphyletic origin (genetic load), introgression between weedy and wild relatives and the cultivated types, and the ecological diversity have enhanced this natural variation. Human selection further augmented the diversity of pearl millet. Large numbers of genetic stocks of pearl millet have been assembled at ICRISAT through various agencies (Appa Rao, 1980). Only a part of the germplasm has been extensively evaluated and much less has been utilised.

GENETIC RESOURCES

Little more than 18,000 accessions of pearl millet representing 42 countries have been assembled at ICRISAT (Table 1). India has

Table 1.	Pearl millet	germplasm	accessions at	ICRISAT	(December, 1986)
----------	--------------	-----------	---------------	---------	------------------

Continent	Source	Country(s) (No.)	Accessions (No.)
Africa	Known/	29	6598
	Unknown		11
America	Known	3	106
Asia	India	1	11140#
	Others	6	146
Australia	Known	1	4
Europe	Known	2	28
Total		42	18033

*Includes 7600 lines contributed by AICPMIP

provided 11,140 genetic stocks. They include 1,469 collections of Rockefeller Foundation—IARI, which is part of 1,532 world collections from 17 countries catalogued by Murty *et al.* (1967). Nearly 7,600 lines, genetic and breeding stocks, were contributed by Indian Pearl Millet Programme during first half of 1970's.

These Indian collections were further augmented since 1977. Realising that the partial replacement of locals by improved cultivars promoted introgression; ICRISAT and ICAR in association with the Agricultural Universities launched new collecting missions. The efforts yielded 2,794 collections from various states of India (Table 2).

 Table 2. Pearl millet germplasm accessions from India, 1977-86 (ICRISAT-ICAR-Agricultural Universities)

State(s)	Date of Collection	Samples collected (No.)
Andhra Pradesh	January, 1977	70
Andmu i ludoon	October, 1980	133
Andhra Pradesh, Orissa	October, 1984	113
Bihar, Orissa, Madhya Pradesh	November, 1986	32
Gujarat	September—October, 1978	455
Karnataka	November, 1980	22
	October-November, 1981	5
	March, 1980	1
Madhya Pradesh	September-October, 1978	17
·	December, 1978-January, 1979	24
Maharashtra	September—October, 1978	408
	October-November, 1981	122
Orissa	January, 1977	28
Punjab	October, 1983	204
Rajasthan	January, 1977	366
	September-October, 1978	14
	October, 1986	111
Tamil Nadu	April, 1978	200
	June, 1980	7
Uttar Pradesh	October, 1979	462
Total		2794

CHARACTERISATION AND EVALUATION

Utilisation demands characterisation and evaluation of germplasm. Multilocational evaluation not only uncovers hidden variability but also reveals environmentally induced variation. This is particularly true of outbreeding species like pearl millet.

Murty et al. (1967) evaluated 2,345 genetic stocks of pearl millet in 13 environments over 8 locations, but characterised only 1,532 accessions in their catalogue after eliminating the duplicates and entries that failed to germinate. They studied 23 characters which revealed wide range of variation for metric and qualitative characters (Table 3). They also identified promising accessions and countries with high frequency of promising cultures for vegetative characters (early growth vigour, tiller number, days to 50 per cent flowering, plant height etc.), ear characters (length and girth of ear, number of seeds/sq. cm. etc.),

Table 3. Variation for 19 characters in 1532 collections of pearl millet

Characters	Indian	Exotic
1. Vegetative Characters		
50% flowering (days)	52-77	53-85
Plant height (cm)	60-77	49-111
Tillers (No.)	57	-2-13
Plant colour	Green	Green
Node colour	Green-Tan	Green-Purple
Leaf colour	Green-Tan	Green-Tan
2. Ear Characters		
Ear length (cm)	16-22	19-40
Ear girth (cm)	50–70	50-80
Grain density (No./sq. cm)	15-35	14-24
Bristle length (mm)	5–15	5-25
1000 grain weight (g)	3-8	5-15
Bristle colour	Red-Purple	Green-Purple
Glume colour	Yellow-Brown	Yellow-Dark Brown
Glume covering	Half covered	3/4 covered
Seed colour	Deep brown-Slate	Brown-Slate
Seed size	Medium	Small-Medium
Seed shape	Oblong-Oval	Oblong-Round
Endosperm colour	White	White
Endosperm texture	Sugary-Partly	Waxy-Hi ghly
	Glutinous	Glutinous
Accessions (No.)	1105	427
Country(s)	1	16

Source : Murty et al., 1967

GENETIC DIVERSITY IN PEARL MILLET

		Kharif (F	Kharif (Rainy season)		, `	tabi (Post-	Rabi (Post-rainy season)	
Characters	Minimum	IP No.	Maximum	IP No.	Minimum	IP No.	Maximum	IP No.
			146		=	10401	310	5115
Plant height (cm)	35	10401	c/4 041	6894	34	4021	8	6051
Flowering (Days)	رر 1	5427	210			6271	263	0515
Tillers (No.)	2.8	4021	15		2.5	4021 8710	21	7470
Leaf/node number	9	3123	25		0 01	10401	105	6231
Leaf length (cm)	25	10401	120		2 61	3586	82	1960
Leaf width (mm)	= ;	10402	Villans		Glabrous	5854	Villous	8482
Hairiness*	Glabrous	4096	Purole		Green	5387	Purple	5731
Pigmentation•	Green	2000	39.5		37	5243	31	1404
Spike exertion (cm)	Ĵ,	0.618	165		s i	8190	021	
Spike length (cm)	. 1	8210	64.5		13 V 1000	4/06 4704	V. compac	1 5321
Spike density	V. loose	5797	V. compac		371	4021	2814	5335
Grain No./spike	489	8190	3337		2.84		17.16	9404
1000 grain weight (g)	2.54	3089	19.32 Clabular		Obovate		Globular	5296
Grain shape*	Obovate	168	Durale		White		Purple	8182
Grain colour*	White		Purple		Corneous		Starchy	5153
Endosperm texture*	Corneous		SIAIUIU		61		8	2095
Bristle length (mm)	2 Green	3812 2095	Purple		Green		Purple	2695

174 PLANT GENETIC RESOURCES—INDIAN PERSPECTIVE

disease resistance (downy mildew, Sclerospora graminicola; ergot, Claviceps fusiformis; smut, Tolyposporium penicillariae; rust, Puccinia penniseti etc.) and drought resistance.

ICRISAT evaluated 16,968 accessions for 18 characters. This unfolded wide morphological diversity for components of growth and production (Table 4). The ICRISAT collections also revealed greater genetic diversity for all the characters as compared to the collections by Murty *et al.* (1967). These differences appear to be due to the number of collections and the countries represented, and consequently the depth of diversity assembled. This underlines the need for free international collection, conservation, documentation and exchange.

Special screening efforts revealed disease, insect and drought resistant accessions (Table 5). The identification of ergot and smut resistant lines added fillip to disease-resistance breeding.

Table 5. Evaluation of pearl millet germplasm

Characters	Accessions	Promising lines		
	(No.)	Number	Per cent	
Disease Resistance ¹				
Downy mildew	2753	124	4,50	
Ergot	2800	24	0.86	
Smut	1800	34	1.89	
Rust	2562	86 ·	3.36	
Insect Resistance [®]				
Mythimna sp.	100	8	8.00	
Shootfly	424	45	10.61	
Aphids	100	14	14.00	
Shoot Bugs	100	8	8.00	
Thrips	29	3	10.34	
Spider mites	324	31	9.57	
Drought Resistance ^a	509	2	0.39	
Quality Characters ⁴				
Protein	3523	100	2.84	
Sugar	8	4	50.0 0	
Other Characters				
Male sterility	16968	5	0.03	
Glossy leaf	16968	8	0.05	
Dwarf lines	15388	6	0.04	
Genetic stocks	15388	692	4.50	
Viable chlorophyll mutants	16968	11	0.06	

Source: Pearl millet subprogrammes: 1. Pathology, 2. Entomology, 3. Physiology, 4. Biochemistry and 5. Genetic Resources Unit: 1CRISAT, Patancheru, 502 324, Andhra Pradesh, India. Chemical analysis revealed few protein rich lines. Biochemical characterisation and enzyme typing would go a long way in improving the nutritional and processing quality, and the physiological efficiency for increasing productivity.

Stability of accessions and gene pools

Each accession of pearl millet is a small random sample enriched with rare phenotypic variants. The sample size and cross pollination. therefore, change the composition of the accessions of pearl millet. The variability has been, therefore, assessed over years and seasons to identify stable and variable accessions of pearl millet. Comparison of germplasm collections from Rajasthan (Vyas and Srikant, 1984; Appa Rao et al., 1986), Maharashtra (Appa Rao et al, in press), Uttar Pradesh (Appa Rao et al., 1983), Tamil Nadu (Appa Rao et al., in press), Malavi (Appa Rao et al., 1985) and Ghana (App Rao et al., 1985) during kharif (rainy season) and rabi (post rainy season) at Patancheru, revealed wide range of variability for several traits (Table 6). Most of the Uttar Pradesh accessions flowered a week earlier and grew taller in *kharif* than in *rabi*. Most other characters listed in Table 6 remained stable indicating that the accessions can be classified into logical groups. The Uttar Pradesh collections were, therefore, divided into 7 groups based on shape. length and thickness of spike. Similarly, the Rajasthan collections were grouped into 7 types-Jakharana, Sulkhania, Gullisita, Karauli and Barmer types had basal tillers, longer earheads, non-shattering spikelets and small glumes that partly covered the grain, while Chadi and Desert types had several nodal tillers, sequentially maturing earheads, shattering spikelets and glumes which almost covered the grain.

UTILISATION AND POTENTIAL

The pearl millet variability, as discussed in previous section, provides unlimited potentialities for its utilisation. Some aspects of genetic diversity directly related to productivity or its components, and useful sources of genes are discussed.

Flowering and maturity

Flowering time and maturity assume special significance in crops like pearl millet grown under dry conditions during monsoon season. Flowering time is also influenced by photoperiod sensitivity enabling selection of grain and forage types. The 50 per cent flowering time ranged from 33 to 140 days in the world collection offering wide scope for tailoring the genotypes to the environmental conditions. Appa Rao (1979) identified early flowering genotypes in collections from Gujarat. Early flowering appears to be controlled by two genes- e_1 and e_2 (Hanna and Burton, 1985). $e_1 e_1$ genotypes flower in 49 days and $e_2 e_2$ genotypes in 38 days as compared to the control (76 days). Early flowering could, therefore, be easily transferred into productive and adapted genotypes. ICRISAT constituted a medium maturity composite by random mating 197 geographically diverse Indian and African lines, all flowering in 45-55 days (Rai *et al.*, 1985). They also mentioned that Serere Composite 1 introduced from Uganda flowers in 47 days.

of peral millet accessions

U.) 1982			l Nadu ress(e)	Mal 1986		Ghana 1985(g)
<i>Kharif</i> (456)	Rab! (456)	Kharif	Rabi	Kharif (243)	<i>Rabi</i> (243)	• (227)
67 48-80	73 50–79	87 53–135	74 53-95	64 56–116	62 50–78	47 37-140
250 162-291	140 84-198	274 160-392	129 68-174	249 146-380	154 79-225	225 120-315
2	2	3		2		2
1-5	1-4	1-11	-	1-5		1-3
9	9	7	-			7
5-13	5-12	5-9	-			5-12
11	10	12	-			
7-17	7–15	9–15			-	
60	58	57				46
45-82	41-77	47-74			*	30-60
35	33	28		_		31
25-45	23-42	23-37	-			20-45
23	22	21	14	25	25	22
14-34	12-38	13-34	8-20	16-33	15-39	6-53
23	22	18	-	22	22	27
17-33	15-29	13-32		16-35	15-45	15-39
6	6	3		2		
5-38	4-36	2-17		1-9		-
			—			
		_				
7	7		5	6		14 8-18
6-8	6-8	-	3-7	2-9		9-10

Rao et al., (In press); (d) Appa Rao et al., 1983; (e) Appa Rao et al., (In press);

Plant height

⁹ Variation for plant height offers the greatest potential for the evolution of varieties for different agricultural systems—dry, irrigated, mechanised etc. Five dwarf genotypes have been identified by Burton and Fortson (1966). Fourteen dwarf stocks of pearl millet were isolated after screening 15,388 accessions (Appa Rao *et al.*, 1986). The dwarfing gene in 10 of the 14 dwarfs was allelic to d_2 and 4 indicated two gene

Table 6 Comparative performance of pearl millet germplasm

						•
Character	Statistical para-	Rajasthan 1984(a) 1986(b)			Maharashtra [In Press(c)]	
	meters	1984(a) (122)*	1986	(6)		
•		(122)*	<i>Kharif</i> (380)	R abi (380)	Kharif	Rabi
50% flowering	Mean	56	58	68	65	65
(days)	Range	52-66	45-71	51-79	42-85	51-70
Plant	Mean	186	217	197	225	151
height (cm)	Range	139-241	120-310	153–270	135-310	120–200
Productive	Mean	3	3.		2	2
tillers (No.)	Range	1-8	1-6		1-5	1-5
Stem thick-	Mean	10	7		9	8
ness (mm)	Range	8-12	6-9		6-14	5–13
Node number	Mean Range	10 8-13	10 9–10		10 8-12	10 × 8-11
Leaf length	Mean	65	53		57	49
(cm)	Range	56-77	48–60		48-63	39-56
Leaf width	Mean	35	30		36	32
(cm)	Range	27-48	22-34		27-43	23–37
Ear length	Mean	30	24		19	15
(cm)	Range	20-33	1040		11-17	10-22
Ear girth	Mean	7	20		23	24
(mm)	Range	8-10	9-33		16–29	17-33
Bristle length (mm)	Mean Range		3 1-10		3 1-20	_
Grain density (cm)	Mean Range	21 12-34				
loco grain	Mean	8		8	8	8
weight(g)	Range	6–10		6-11	5-11	6–12

Accessions (No.) evaluated

Source: (a) Vyas, K.L. and Srikant, 1984; (b) Appa Rao et al., 1986; (c) Appa Rao et al., (In press) (f) Appa Rao et al., 1986; (g) Appa Rao et al., 1985.

PLANT GENETIC RESOURCES-INDIAN PERSPECTIVE

non-allelic loci. They are from Niger (IP 8056), Mauritania (IP 8214), India (IP 10401) and ICRISAT (IP 10402). The d_2 has been incorporat. ed into ms lines like Tift 23 A₁, Tift 239 A₁, 126 A₁ and 81 A₁. Seven diverse tall composites have also been converted into d_2 background providing a broad dwarf genetic base for breeding dwarf parents and dwarf open pollinated varieties (Andrews *et al.*, 1985).

Seed characters

Seed size and grain weight are the most significant factors that directly contribute to grain yield. Seed size is positively correlated with seedling growth vigour which indirectly influences plant height, tiller number, ear length and grain yield (Chhina and Phul, 1982). The seed size in pearl millet varies from very small (1000 grains weigh 3 g.) to very bold (1000 grains weigh 19 g.) seeds with different grades of sizes. Bold seeded collections predominantly occur in accessions from Ghana, Togo and Uganda.

Pearly white pearl millets

Depigmented pearl millet grain blended with wheat improves surface appearance, internal appearance and eating characteristics (Naikare et al., 1986). Light pigmented pearl millet grains which vary from white to yellow have been identified in germplasm from Chad, Ghana, Togo and Uganda. These pearly pearl millets are also sweeter and contain higher protein (more than 15 per cent) and may have great future in bettering the nutritional quality and improving the appearance of bakery products. They may also find a place in irrigated farming and acceptability by the elite segment of the society.

Sweet pearl millets

The search for alternate uses of pearl millet revealed the occurrence of genotypes with high sugar in their stems (Table 5). Comparative studies at ICRISAT indicated 5 to 20 per cent sugar in 8 accessions: 4 being from Tamil Nadu (Appa Rao *et al.*, 1982). At Coimbatore, the sugar content in 68 genotypes ranged from 3 to 16 per cent based on brix readings (AICMIP, 1985). FD 832 (16.2 per cent) recorded the highest sugar content followed by NEP 18-5023-2 (15 per cent) and Giant Bajra (13.8 per cent). Popularisation of sweet pearl millets coupled with extraction of jaggery like in sweet sorghums may boost the shrinking economy and the social lives of the chronically poor pearl millet growers inhabiting the semi-arid tropics. It is likely that several genotypes with high sugar still remain undiscovered in the germplasm.

Male sterility

Male sterility affords easy production of hybrid seeds on large mele. Both, the genes for sterility (Gill et al., 1973; Rao and Koduru, 1978 and Rao and Devi, 1983) and the sterile cytoplasms appear to necur in the genetic resources. Following the discovery of A₁ cytoplasm (Burton, 1965), Athwal (1961) isolated L 66A₂ from an African (Nvasaland) line IP 189 and L 67 A₃ in a natural cross involving another African line (Athwal, 1966). Pokhriyal et al. (1976) also developed 5054 A1 from a Nigerian line, and 5141 A₁ from an Indian landrace. Appadurai et al. (1982) developed another male sterile line 732 A from the cross between an Andhra Pradesh line PT 819 and a Coimbatore line PT 732, the male sterile appears to be different from A_1 , A_2 and A_3 sources. Male steriles have been developed from Ugandan germplasm (Vohra, 1982). Marchais and Perpes (1985) further identified a CMS system in Wild \times Cultivated Pearl Millet crosses which is different from the identified systems. It is, therefore, apparent that the variability for cytoplasmic systems is as great as for genetic systems in pearl millet.

Disease resistance

Downy mildew, ergot, smut and rust are the important diseases of pearl millet. Downy mildew in particular devastated the single cross hybrids in India, calling for eternal vigilance. Ergot and smut occur in favourable seasons and are less wide spread and less threatening. Rust occurs sporadically. Nevertheless, all these diseases deserve effective control to reduce losses in productivity and to eliminate the toxic principles in the food grains and the forage. The incorporation of hostplant resistance offers the best choice for effectively checking the occurrence and spread of these diseases.

Downy mildew: Fortunately, downy mildew resistance occurs widely in the germplasm. Ex-bornu from Nigeria, 3/4 Ex-bornu and 3/4 Hainei Kirei from Niger have contributed to downy mildew resistance in 1,700 pedigree selected pearl millet lines (Andrews *et al.*, 1985).

Ergot: The resistance to ergot is not as widespred as in the case of downy^emildew. More than 2,500 genetic stocks and 7,300 advanced breeding lines have been screened for resistance to ergot (Thakur *et al.*, 1985). Low degree of resistance to ergot has been observed in 20 genetic stocks from India (10), Nigeria (7) and Uganda (3). High level of resistance to ergot has been achieved through pedigree breeding (Thakur *et al.*, 1982) or through the development of composites/synthetic ICMS 8034 (Andrews *et al.*, 1985). Thirteen of these 20 line: showed resistance to downy mildew and smut at ICRISAT revealing the multiple disease resistance which can be incorporated into single cultivar.

Smut: The resistance to smut has been noticed in accessions from India, Mali, Nigeria, Senegal, South Africa and Zimbabwe (Murty et al., 1967 and Sangwan and Thakur, 1981). Thakur et al. (1986) screened more than 1,500 genetic stocks and 6,200 advanced breeding lines, and identified smut resistant lines in accessions orginating from Cameroon (4), India (11), Lebanon (1), Mali (8), Niger (2), Nigeria (2), Senegal (4) and Uganda (2). Smut resistance has been transferred into agronomically superior inbred lines as well as into synthetic varieties like ICMS 8282 and ICMS 8283 (Andrews et al., 1985).

Rust: Rust reduced dry matter concentration, dry matter yield particularly yield of leaves and grain, total sugars and *in vitro* digestibility (Monson *et al.*, 1986). Search for rust resistance revealed a dominant gene for resistance in 2696-1-4 S2, a selection from the germplasm originating from Chad (Andrews *et al.*, 1985). Hanna *et al.* (1987) identified a dominant gene for rust in 3 accessions of *Pennisetum americanum* subsp. monodii from Senegal.

Weedy and wild relatives

Wild millets (Marchais and Pernes, 1985) and interspecific hybrids like *Pennisetum schweinfurthii* Pilger $\times P$. americanum (L.) Leeke (Hanna and Dujardin, 1986) can provide new sources of cytoplasmic male sterility. Bramel-Cox *et al.* (1986) indicated that it is possible to select lines with transgressively increased grain yield and growth rate in crosses between cultivated pearl millet \times primitive landraces or weedy or wild relatives. Apomictic genes from related species like *Pennisetum squamulatum* Fresen. (2n=28) could also be incorporated in protogynous pearl millet (Dujardin and Hanna, 1986) for preventing floral diseases.

References

- AICMIP (All India Coordinated Millets Improvement Project). 1985. Coordinator's Review. Indian Council of Agricultural Research, New Delhi.
- Andrews, D. J., S. B. King, J. R. Mitcombe, S. D. Singh, ¹K. N. Rai, R. P. Thakur, B. S. Talukdar, S. B. Chavan and P. Singh. 1985. Breeding for disease resistance and yield in pearl millet. *Field Crops Res.* 11: 241-258.
- Appadurai, R., T. S. Raveendran and C. Nagarajan. 1982. A new male sterility system in pearl millet. Indian J. agric. Sci. 52: 832-834.
- Appa Rao, S. 1979. Pearl millet collection in Gujarat and Maharashtra. Genetic Resources Progress Report No. 10. A. P. Patancheru, 502 324, India : International Crops Research Institute for the Semi-Arid Tropics.

- Appa Rao, S. 1980. Progress and problems of pearl millet germplasm maintenance. Pages 279-282 in, Trends in Genetical Research on Pennisetums, V. P. Gupta and J. L. Minocha (Eds). Punjab Agricultural University, Ludhiana.
- Appa Rao, S., M. H. Mengesha, G. Harinarayana and C. Rajagopal Reddy. Collection and preliminary evaluation of the pearl miller germplasm from Maharashtra. Indian J. Genet. (In Press).
- Appa Rao, S., M. H. Mengesha and C. Rajagopal Reddy. 1983. Collection and preliminary evaluation of pearl millet germplasm from Uttar Pradesh. Indian J. Genet. 43: 261-271.
- Appa Rao, S., M. H. Mengesha and C. Rajagopal Reddy. 1986. New sources of dwarfing genes in pearl millet (*Pennisetum americanum*). Theor. Appl. Genet. 73: 170-174.
- Appa Rao, S., M. H. Mengesha and C. Rajagopal Reddy. Variation and adaptation of pearl millet germplasm in Tamil Nadu, India. Indian J. Genet. (In Press).
- Appa Rao, S., M. H. Mengesha and D. Sharma. 1985. Collection and evaluation of pearl millet (*Pennisetum americanum*) germplasm from Ghana. *Econ. Bot.* 39: 25-38.
- Appa Rao, S., M. H. Mengesha, P. K. Sibala and C. Rajagopal Reddy. 1985. Collection and evaluation of pearl millet germplasm from Malawi. *Econ. Bot.* 40: 27-37.
- Appa Rao, S., M. H. Mengesha and V. Subramanian. 1982. Collection and preliminary evaluation of sweet-stalk pearl millet (*Pennisetum*). Econ. Bot. 36: 286-290.
- Appa Rao, S., M. H. Mengesha, K. L. Vyas and C. Rajagopal Reddy. 1986. Evaluation of pearl millet germplasm from Rajasthan. Indian J. agric. Sci. 56: 4-9.
- Athwal, D. S. 1961. Recent developments in the breeding and improvement of bajra (pearl millet) in Punjab. Madras agric. J. 48: 18-19 (abstr.).
- Athwal, D. S. 1966. Current plant breeding research with special reference to Pennisetum. Indian J. Genet. 26A: 75-85.
- Bramel-Cox, P. J., D. J. Andrews and K. J. Frey. 1986. Exotic germplasm for improving grain yield and growth rate in pearl millet. *Crop Sci.* 26: 687-690.
- Burton, G. W. 1965. Pearl millet Tift 23A released. Crop Soils. 17: 19.
- Burton, G. W. and J. C. Fortson. 1966. Inheritance and utilisation of five dwarfs in pearl millet (*Pennisetum typhoides*) breeding. Crop Sci. 6: 69-72.
- Chhina, B. S. and P. S. Phul. 1982. Association of seed size and seedling vigour with various morphological traits in pearl millet. Seed Sci. & Technol. 10: 541-545.
- Dujardin, M. and W. W. Hanna. 1986. An apomictic polyhaploid obtained from a pearl millet × Pennisetum squamulatum apomictic interspecific hybrid. Theor. Appl. Genet. 72: 33-36.
- Gill, K. S., H. Singh and N. B. Singh. 1973. Inheritance of genetic male sterility in pearl millet. J. Res., Punjab Agric. Univ. 10: 1-10.
- Hanna, W. W. and G. W. Burton. 1985. Morphological characteristics and genetics of two mutations for early maturity in pearl millet. Crop Sci. 25: 79-81.
- Hanna, W. W. and M. Dujardin. 1986. Cytogenetics of *Pennisetum schweinfuethii* Pilger and its hybrids with pearl millet. Crop Sci. 26: 449-453.
- Hanna, W. W., H. D. Wells and G. W. Burton. 1987. Dominant gene for rust resistance in pearl millet. J. Hered. 76: 134.