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Aflatoxin contamination of peanuts poses a risk to human health and has been identified as a major
constraint to trade in eastern Africa. A survey was carried out to obtain baseline data on levels of aflatoxin in
peanuts from major production regions in western Kenya. A total of 384 and 385 samples from Busia and
Homabay districts, respectively, were obtained and analyzed for aflatoxin content with an indirect
competitive ELISA protocol. Levels of aflatoxin ranged from 0 to 2688 and 7525 µg/kg in samples from Busia
and Homa Bay, respectively. Of 769 samples, 87.01% contained b4 µg/kg of aflatoxin, 5.45% were in the range
≥4 and 20 µg/kg, while 7.54% exceeded the Kenya's regulatory limit of 20 µg/kg. There was a highly significant
(χ2=14.17; Pb0.0002) association between district of origin and sample aflatoxin levels. This observation
was supported by a significant (χ2=11.98; P=0.0005) association between levels of aflatoxin and agro
ecological zones. Only 3.26% of the samples from the dryer LM3 zone had N20 µg/kg compared with 10.28% of
the samples from the wetter and humid LM1 zone. There was also a highly significant (χ2=9.73; P=0.0018)
association between cultivar improvement status and aflatoxin levels. Logistic regression analysis revealed
that the odds for peanuts from Busia being contaminated were 2.6 times greater than those for peanuts from
Homabay. Planting improved cultivars would lower the odds of contamination to a half (odds ratio=0.552)
those for local landraces. These results are discussed in relation to the risk of human exposure to aflatoxins
and the need for proper sampling procedures for regulatory purposes.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Peanut is an important crop in terms of nutrition and income in
western Kenya. The nuts contain high levels of protein (Desai et al.,
1999) and are relatively affordable compared to other sources of
protein (Mayatepek et al., 1992). In western Kenya, peanut has the
added appeal in that two crops can be harvested in a year. Western
Kenya encompasses Nyanza and Western provinces, which are main
peanut producing areas in the country according to the Crop
Development Division Annual Report of 2004 (Anon, 2004). Nyanza
province is the country's largest peanut producer with 14,723 ha
under production while Western province with 2667 ha ranks third
after Eastern province (Anon, 2004). Most of the produce is traded in
local markets (Ogwang, 2006).

Aflatoxin contamination of peanuts poses a risk to human health
and has been identified as a major constraint to trade in Africa
(Lubulwa and Davis, 1994). Little is known about the prevalence or
levels of aflatoxin in peanuts harvested in western Kenya. However,

several indicators and anecdotal evidence suggest possible human
exposure to aflatoxins. First, western Kenya has repeatedly recorded
high levels of stunting in children (Central Bureau of Statistics, 2003),
an aspect often positively correlated with long-term ingestion of sub-
lethal doses of aflatoxin (Gong et al., 2002; Bhat and Vasanthi, 2003).
Second, erratic rainfall, high temperatures and high humidity
prevalent in the major production areas favour peanut contamination
and development of aflatoxin. Wet and humid areas have been linked
to higher levels of aflatoxin producing fungi in other parts of Eastern
Africa (Udoh et al., 2000; Kaaya and Kyamuhangire, 2006) and Nigeria
(Atehnkeng et al., 2008). Third, peanuts in Kenya are produced under
small holder conditions, characterised by mechanical damage to pods,
poor harvesting, drying and storage methods, linked to aflatoxin
contamination of peanut elsewhere in sub-Saharan Africa (Jones and
Duncan, 1981; Bilgrami and Choudhary, 1990; Waliyar et al., 2005a).
Fourth, many farmers plant local varieties that are susceptible to
disease such as rosette, mould and leaf spots (Ogwang, 2006). While
disease and pests of peanut are common in western Kenya (Ngugi,
H.K., personal communication), the small holder nature of peanut
cultivation that uses minimal investment in inputs precludes the
use of modern management tactics such as chemical pesticides;
stress from disease and insect pests can predispose peanut plants to
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Fig. 1. Sampling areas within Busia and Homabay districts, stratified based on agro ecological zones. Some sampling points may overlap on the map.
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aflatoxin contamination (Hell et al., 2000; Chapin et al., 2004; Timper
et al., 2004; Kaaya et al., 2005).

In spite of the paucity of data on aflatoxin, production of peanuts in
western Kenya is on the increase due to recent initiatives. For example,
the International Crops Research Institute for the Semi Arid Tropics
(ICRISAT) has introduced improved varieties and seed bulking
programs to meet increasing demand for high quality seed. Increased
production will require peanut traders in the region to seek external
markets that impose strict safety standards. These stringent measures
aremainly driven by the health implications of aflatoxin, which is both
carcinogenic and immunosuppressive (Fooladi and Farahnaky, 2003),
and the toxin's common presence in peanut and maize commodities
(Council for Agricultural Sciences and Technology, 1989). For example,
the European Union (EU) market has a tolerance level of 2 µg/kg for
aflatoxin B1 and 4 µg/kg for total aflatoxin for peanut kernels imported
into the EU (Sobolev, 2007).

To ensure aflatoxin requirements for external markets are attained,
there is a need to develop sampling procedures suited to local
production systems and identify factors associated with high levels of
aflatoxin contamination. Information on factors that influence the
level of aflatoxin is critical to developing mitigating strategies
appropriate for the region. This study was undertaken to: establish
baseline levels of aflatoxin in peanuts harvested in western Kenya;
identify factors associated with high levels of aflatoxin; and to model
the relationship between these factors and the likelihood of a peanut
sample from western Kenya exceeding the national aflatoxin regula-
tory threshold.

2. Methods

2.1. Survey and peanut sample collection

A household survey was carried out in Busia and Homabay districts
in western Kenya (Fig. 1). These districts were chosen based on their
significance in terms of peanut production, and because they offered a
contrasting environment under which peanuts are cultivated. In Busia
district, peanuts are mainly grown in the wetter and more humid
Lower Midlands (LM) agro ecological zone (AEZ), otherwise referred
to as LM1, in contrast with Homabay district where the crop is mainly
produced in the drier LM3 zone.

The survey was based on a total of 769 peanut-growing house-
holds, with 384 and 385 respondents from Busia and Homabay
districts, respectively. Information was collected through personal
interviews using a pre-tested questionnaire, which was developed
after conducting focus group discussions involving 40 and 44 par-
ticipants from Busia and Homabay districts respectively. The partici-
pants were drawn from peanut farmers, village elders, community
leaders and provincial administration staff. Thereafter a total of 40
randomly selected households were used to pre-test the developed
questionnaire, 20 from Asego division of Homabay district and 20
from Butula division of Busia district. Each of the 40 households was
selected by staggering every fourth household within the location
administrative boundary, the starting point being the fourth house-
hold from the division's agricultural office from where activities for
the day commenced.

For the purposes of sampling, the district was stratified into Agro-
Ecological Zones (AEZs), namely LM1, LM2 and LM3, where peanut is
commonly grown. The AEZs are determined based on altitude, mean
annual rainfall, temperature, evapotranspiration and the probability of
successfully growing the main crops of that zone (Jaetzold and
Schmidt, 1982; Ngugi et al., 2002). The sample size for each AEZ was
proportionate to acreage under peanut production (Table 1). Produc-
tion statistics were obtained from the Ministry of Agriculture, while
updated information on the AEZ mapping was acquired from the
Geographic Information Systems Centre at the World Agro Forestry
Centre, Nairobi, Kenya. Within the AEZs, farmers were randomly

selected at village level from a list compiled by the extension staff of
the Kenya Ministry of Agriculture (MOA).

Data collected through the survey included farm size; whether or
not respondents practiced crop rotation; number of times a crop was
weeded per season; fertiliser use (whether commercial fertilisers,
organic fertilisers or no fertiliser was used on the crop); pest and
disease management practices (commercial pesticides, organic pesti-
cides, cultural methods, and no control method at all); whether or not
respondents perceived drought, erratic rainfall, damage bymoles and/
or rats as production problems; type of cultivar(s) planted (whether
improvedor local landrace); aspects of peanut utilisation (e.g.methods
of food preparation and whether crop was sold); and various aspects
of awareness about aflatoxin. Farmers also were asked whether or
not they belonged to a ProducerMarketing Group (PMG); a PMG being
a group of local peanut farmers brought together for the purposes of
sourcing markets and to facilitate technology transfer (Mutegi et al.,
2007). A 1 kg peanut sample was obtained from each interviewed
household for aflatoxin testing. The sample was drawn from different
parts of the farmer's storage container and thoroughly mixed. The
samples were assayed for levels of aflatoxin as described below.

2.2. Determination of levels of aflatoxin

A 200 g sub-sample was drawn from each 1 kg sample and ground
into a fine powder using a dry mill kitchen grinder (Kanchan
Multipurpose Kitchen Machine, Kanchan International Limited,
Mumbai, India). The ground sample was then sub-divided into two
equal portions. The powder was triturated in 70% methanol (v/v 70 ml
absolute methanol in 30 ml distilled water) containing 0.5% w/v
potassium chloride in a blender, until thoroughly mixed. The extract
was transferred to a conical flask and shaken for 30 min at 300 rpm.
The extract was then filtered throughWhatman No.41 filter paper and
diluted 1:10 in phosphate buffered saline containing 500 µl/l Tween-
20 (PBS–Tween) and analyzed for aflatoxin with an indirect
competitive ELISA (Waliyar et al., 2005b) by preparing an aflatoxin–
bovine serum albumin conjugate in carbonate coating buffer at
100 ng/ml concentration and dispensing 150 µl in each well of the
Nunc-Maxisorp® ELISA plates (Thermo Fisher Scientific Inc).

The plates were incubated at 37 °C for 1 h before the toxin solution
was collected and stored in a large glass bottle for disposal. The plates
were washed in three changes of PBS–Tween, allowing a holding time
of 3 min per wash. The plates were blocked with a 200 µl per well
solution of 0.2% bovine serum albumin (BSA) in PBS–Tween and
incubated at 37 °C for 1 h. The blocked plates were then washed in
three changes of PBS–Tween allowing 3 min for each wash. To the
washed plates, 100 µl of peanut kernel extract was added followed by
50 µl of antiserum. Instead of the peanut kernel extract, 100 µl aliquots
of different concentrations of AFB1 (25 ng to 100 pg) were added into
the first 20 wells (two rows of 10 wells each) to serve as a standard.
The plates were then incubated for 1 h at 37 °C to facilitate reaction
between the toxins and the antibody.

The plates were subsequently washed in three changes of PBS–
Tween allowing 3 min for each wash. A dilution of 1:1000 goat anti-
rabbit IgG labeled with alkaline phosphatase was prepared in PBS–
Tween containing 0.2% BSA. A 150 µl aliquot was added to each well,

Table 1
Numbera of peanut samples obtained from households in different agro ecological
zones (AEZ) within each of the two districts surveyed in western Kenya, August 2006

District

AEZ Busia Homabay Total

Lower Midland1 193 (221) 32 (487) 225
Lower Midland 2 152 (174) 161 (2455) 313
Lower Midland 3 39 (45) 192 (2930) 231
Total (n) 384 385 769

a Values in parenthesis represent peanut production in hectares.
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and incubated for 1 h at 37 °C. The plates were washed in three
changes of PBS–Tween, added a 150 µl per well of substrate solution
(p-nitro phenyl phosphate prepared in 10% diethanolamine buffer,
pH 9.8) and incubated for about 1 h at room temperature. Absorbance
was measured at 405 nm in an ELISA plate reader (Multiskan Plus,
Labsystems Company, Helsinki, Finland).

2.3. Statistical analyses

In order to characterise the distribution of aflatoxin levels, samples
were grouped into categories with established economic (levels used
to impose trade restrictions) or biological relevance (based on LD 50 of
various animal species), based on their aflatoxin content (Table 2). For
each district, the percentage of samples in each category was
calculated and plotted against median values for the categories to
obtain frequency distribution histograms. To test if the resulting
frequency distributions were similar for the two districts, the data
were subjected to Kolmogorov–Smirnoff and the Mann–Whitney U
two samples tests (Sprent and Smeeton, 2001). Several probability
distribution models (negative binomial, gamma and lognormal
distributions) were also evaluated for their ability to describe the
frequency distributions. Goodness of fit for the probability distribu-
tionmodels was assessed by analysis of deviance using GenStat Ver 9.1
(Lawes Agricultural Trust, Rothamsted Experimental Station).

To identify factors associated with different levels of aflatoxin, the
samples were grouped into three categories based on their aflatoxin

content: samples with b4 µg/kg; ≥4 µg/kg to ≤20 µg/kg, and N20 µg/
kg. The b4 µg/kg category represents the EU regulatory limit for total
aflatoxins (Felicia, 2004); peanuts in the second group would be
rejected in the EU but accepted under the Kenya Bureau of Standards
(KEBS) limits (Felicia, 2004), while nuts in the third category would be
rejected under the KEBS and EU standards. Categorical data analysis
by means of contingency tables was used to assess for association
between these aflatoxin categories and descriptive variables.

The relationship between factors identified as significantly
associated with levels of aflatoxin and the likelihood of a sample
exceeding Kenya's regulatory limit of 20 µg/kg (here-after considered
contaminated) was modelled using a logistic regression approach.
The binary response variable was the sample level of aflatoxin
(AL) whereby 1≥20 µg/kg and 0=b20 µg/kg. All variables with a
significant association (Pb0.05) were tested as explanatory variables
and those found to be insignificant were dropped to obtain the most
parsimonious model. Categorical data analyses (Stokes et al., 2000)
were carried out using SAS Ver. 9.1 (SAS Institute, Carry, NC).

3. Results

3.1. Levels of aflatoxin in peanut samples from Busia and
Homabay districts

The levels of aflatoxin ranged from 0 to 2687.6 µg/kg and from 0 to
7525.0 µg/kg in samples from Busia and Homabay districts, respec-
tively. Overall, 63.7% of all samples had undetectable levels of aflatoxin
while 7.54% were contaminated based on KEBS standards; 2.1% of
the samples were unsuitable even for animal feed (i.e. exceeded
100 µg/kg) based on FDA action levels. Kolmogorov–Smirnoff (K–S)
and the Mann–Whitney U two samples tests (Sprent and Smeeton,
2001) showed that the frequency distributions of aflatoxin levels in
samples from the two districts were significantly different (K–S
P=0.325; Mann–Whitney U-test: P=0.798 for equal distribution). For
both districts, however, the resulting distributions were highly
skewed to the left indicating that most of the samples were safe
based on the KEBS and EU regulatory limits (Fig. 2). The distributions
were generally well fitted by gamma, negative binomial and
lognormal distributions with the gamma distribution providing the
best fit for samples from the two districts (e.g. deviance values for the
three models were =17.94, 22.72 and 36.13, respectively, for samples
from Busia district).

3.2. Factors associated with levels of aflatoxin

Fig. 3A shows percentage of samples in each of the three categories
of aflatoxin levels plotted against the district of origin, i.e. Busia or

Fig. 2. Frequency distribution of levels of aflatoxin in peanuts from Busia (A) and Homabay (B) based on mid-points of aflatoxin categories with biological and/or economic
importance. Fitted values are frequencies obtained from fitting the gamma probability distribution function to the observed values.

Table 2
Amounts of aflatoxin with biological and/ or economic relevance used to establish
frequency distributions of aflatoxin levels in Busia and Homabay districts

Category
mid-points
plotted (µg/kg)

Category based on
biological and/or
economic relevance
(µg/kg)

Description of economic or biological relevance

0 0 Undetectable levels
2 N0– V4 Permissible levels for total aflatoxins under

the EU regulations (Sobolev, 2007)
12 b20 Permissible levels for total aflatoxins according

to KEBS (Mehan et al., 1991)
60 20–100 Not safe for human consumption under

KEBS standards, but safe for animal feed
(Mehan et al., 1991)

550 100–1000 Based on LD 50 of various animal species
(Mehan et al., 1991)

1500 1000–2000 Based on LD 50 of various animal species
(Mehan et al., 1991)

4000 2000–6000 Manifestation of sickness symptoms—nausea,
headaches, rush (http://ehs.ucdavis.edu/ucbso/
FactSheet_Aflatoxin.html)
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Homabay. A highly significant association (χ2=14.172; P=0.0002) was
found between district of sample origin and aflatoxin levels. The
percentage of safe samples according to KEBS standards was lower in
Busia district (82.62%) compared to Homabay district (91.81%). While
10.70% of samples from Busia district had aflatoxin levels N20 µg/kg,
only 4.09% of samples from Homabay were in this category.

There was a highly significant (χ2=11.983; P=0.0005) association
between AEZ and aflatoxin levels. A pattern was also noted whereby,
the percentage of contaminated samples declined with decreasing
precipitation across the region (i.e. from the wet LM1 AEZ to the drier
LM3 AEZ; Fig. 3B). The frequency of samples containing b4 µg/kg of
aflatoxin was 81.78% in LM1, 86.06% in LM2 and 93.49% in LM3.
Conversely, samples with aflatoxin levels of ≥20 µg/kg were 10.28% in
LM1, 8.71% in LM2 and 3.26% in LM3. Samples that would have
otherwise been accepted under the KEBS regulations but rejected
under the EU regulations were 7.94%, 5.23% and 3.26% for LM1, LM2
and LM3, respectively.

A strong association was noted between levels of aflatoxin and
cultivar improvement status (improved versus local landrace)
whereby improved cultivars had significantly lower percentages of
contaminated samples (χ2=9.748; P=0.0018 as shown in Fig. 3C).
Indeed, for cultivars with a sufficient sample size (nN45) a significant
association (χ2=4.27; P=0.0388) between individual cultivars and
levels of aflatoxin was also noted, with more samples from the im-

proved cultivars having lower levels of aflatoxin compared to the local
cultivars (Table 3). For example, while improved cultivars ICGV 12988
and ICGV 12991 had 92.75% and 95.56% of their samples respectively
below 4 µg/kg, Homabay Local and Local Red had 87.16 and 77.78% in
the same category. On the other hand, ICGV 12988 and ICGV 12991
had 5.80% and 4.44% of the respective samples with aflatoxin levels
≥20 µg/kg, while Homabay Local and Local Red had 4.59% and 15.97%
of the samples in this category.

Table 3
Association between levels of aflatoxin and cultivars commonly grown in Busia and
Homabay districts of western Kenya, August 2006

Cultivar Status of
cultivara

n Percent of samples with different levels
of aflatoxin

b4 µg/kg ≤4–b20 µg/kg ≥20 µg/kg

CG7 I 74 89.19 8.11 2.70
Homabay local L 109 87.16 8.26 4.59
ICGV88 I 69 92.75 1.45 5.80
ICGV 12991 I 135 95.56 0.00 4.44
Local red L 144 77.78 6.25 15.97
Uganda red I 100 81 9.00 10.00
Valencia red I 47 91.49 2.13 6.38

χ2=4.27; P=0.0388.
a Local landrace = L; improved variety = I.

Fig. 3. Percentage of samples in the three categories of levels of aflatoxin plotted against district of origin of the sample (A), agro ecological zones (B), cultivar type (C), and farmer
response to whether or not the crop was damaged by moles (D).
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A significantly higher proportion of samples obtained from farmers
who reported damage from moles as a problem had higher levels of
aflatoxin comparedwith those from farmers who had not experienced
rodent damage. While 83% of peanut samples from farmers reporting
moles as a problem had less that 4 µg/kg per sample, over 88% of the
samples from farmers who had no problemwith this pest were in this
category of less than 4 µg/kg (χ2=4.449; P=0.0349; Fig. 3D).

Although the proportion of samples with b20 µg/kg of aflatoxin
was numerically higher for farmers belonging to PMGs (which, among
other activities train farmers on methods to mitigate aflatoxin
contamination) than non PMG members, the association was not
statistically significant (χ2=3.61; P=0.0573). No significant associa-
tion was detected between levels of aflatoxin and use of fertilisers;
number of times the crop was weeded; application of crop rotation;
disease and pest control or drought during the cropping season.

3.3. Relationship between factors associated with high levels of aflatoxin
and the likelihood of finding a contaminated sample

Logistic regression analysis indicated that aflatoxin level (AL) was
only significantly affected by district of sample origin (DT), and
cultivar improvement status (CIP). There was no significant interac-
tion between district of sample origin and cultivar improvement
status (Table 4). The negative value of the estimate CIP indicates that
samples obtained from improved cultivars were less likely to exceed
the regulatory limit. The fittedmodel describing this relationship was:
logit (AL)=−2.306+0.051 DT−0.594 CIP. The test for goodness-of-fit
(D=0.968; P=0.325) indicated that the model fitted the data well.
Including AEZ as an explanatory variable did not significantly improve
the fit of the model. Based on this model, the odds of a sample from
Busia exceeding Kenya's regulatory limit (20 µg/kg) were 2.65 times
higher (Wald χ2=9.183; P=0.0024) those for a sample from Homabay
district. The odds for a sample from an improved cultivar exceeding
this threshold were a half (odds ratio=0.552) of those for a sample
obtained from a local landrace.

4. Discussion

In this study, the prevalence and levels of aflatoxin in peanuts from
western Kenya were investigated. The factors associated with high
levels of aflatoxin were identified, and the risk of a peanut sample
from the region exceeding the national regulatory threshold of 20 µg/
kg was determined. The results indicate that the levels of aflatoxin
ranged from 0 to N7525 µg/kg and were highly variable; that most
peanuts from western Kenya are generally safe for human consump-
tion but a small proportion of the samples contained very high levels
of aflatoxin. The data also show that peanuts from local landraces and
those harvested in the more humid agro-ecological zones within the
region were more likely to be contaminated with aflatoxin than those
from improved cultivars and/or from less humid agro-ecological
zones.

The data for describing the incidence of aflatoxin levels were well
fitted by gamma, negative binomial and lognormal probability dis-
tributions. This observation has two key implications. First, in com-
paring levels of aflatoxin for any grouping variable (e.g. AEZs, cultivars,
agronomic practices, etc.), the median will be a more appropriate
statistic than the arithmetic mean, because of the highly skewed

distribution of the levels as shown by frequency plots. The second
implication is that in designing sampling protocols for regulatory
purposes, the skewed nature of the distributions in incidence of
aflatoxin levels will need to be taken into account. By identifying the
gamma distribution as the most suitable function for analyzing data
on the incidence of aflatoxin, the results also accord well with those of
Berry and Day (1973) who recommended the gamma distribution for
modelling levels of aflatoxinwhenmost samples contain undetectable
levels. This was based on their study with data on dietary aflatoxin
samples from Murang'a district in central Kenya.

Over 92% of the samples were within Kenya's regulatory limit
(20 µg/kg), while over 87% of the samples were also within the more
strict EU regulatory limit of 4 µg/kg indicating that at household level,
most peanuts have acceptable levels of aflatoxin. These results are
consistent with studies conducted elsewhere in Africa. For example, a
survey carried out in Egypt reported low levels of aflatoxin in
unshelled and shelled raw peanuts (El-Khadem, 1990) while in post-
harvest surveys on rain fed and irrigated peanuts in Sudan, none of the
samples obtained from the households visited contained aflatoxin
levels of more than 15 µg/kg (Singh et al., 1989).

This study also showed lower levels of aflatoxin contamination of
peanuts at household level compared to maize as has been reported in
the survey of 350 maize products conducted in Kenya including in the
Busia district in 2004, whereby N55% of the samples exceeded the
20 µg/kg limit while 35% had aflatoxin levels N100 µg/kg (Lewis et al.,
2005). This observation implies that the risk of human exposure to
aflatoxin from consumption of peanuts is much lower than that
associated with contaminated maize. The significance of this obser-
vation is clearer when one considers that in Kenya peanut is eaten as a
side dish, sauce or snack and consumed in relatively small amounts
compared to maize, which is consumed in larger amounts of 0.4 kg/
person/day (Shepherd, 2003).

Nevertheless, a market survey of peanut aflatoxin contamination
would be insightful in understanding the contribution of market
outlets to the risk of aflatoxin exposure since additional contamina-
tion and aflatoxin accumulation can occur at various stages in the
informal peanut marketing cycle. The likelihood of higher contamina-
tion in market outlets increases when one looks at previous studies,
that have documented high fungal and aflatoxin prevalence and
incidence in marketed peanut kernels and their by products (Verma
and Agarwal, 2000; Ila et al., 2001; Le Anh, 2002). This infers that
greater contamination than present at harvest may occur during the
peanut marketing chain.

Of all the factors studied, only the source of sample origin (district
or agro ecological zone), damage by moles, cultivar improvement
status and cultivar typewere significantly associated with the levels of
aflatoxin in peanut samples. Previously, it was documented that
significant correlations between AEZ and aflatoxin levels existed,
whereby a wet and humid climate tends to aggravate aflatoxin levels.
In neighboring Uganda for example, aflatoxin levels in maize samples
were higher in more humid areas compared to the drier areas (Kaaya
et al., 2006) and similar results were obtained in a recent survey of
maize samples from Nigeria (Atehnkeng et al., 2008). The significantly
higher odds of peanuts from the Busia district being contaminated
compared with those from the Homabay district could be partly
attributed to the distribution of AEZ within the districts; the wetter
and humid LM1 is mainly found in Busia district while the drier LM3 is
mainly found in Homabay district. It is difficult to pinpoint the specific
causes of higher levels of aflatoxin in the wet humid zone, but it is
probable that high moisture does not allow for sufficient drying of
nuts, that are in most cases dried on bare ground or polythene mats in
homesteads or in fewer instances dried in the field, in the study
regions. This is feasible due to frequent rainfall during the peanut
harvestingmonths of July and December. However, it is not possible to
conclusively resolve the issue in the present study because the peanut
samples analyzed were taken from on-farm storages, probably well

Table 4
Parameter estimates from a logistic regression relating levels of aflatoxinwith district of
sample origin and cultivar improvement status

Parameter DF Estimate SE Wald χ2 PNχ2

Intercept 1 −2.306 0.215 115.11 b0.0001
District 1 0.488 0.161 9.18 b0.0024
Cultivar improvement 1 −0.594 0.288 4.27 0.0387

32 C.K. Mutegi et al. / International Journal of Food Microbiology 130 (2009) 27–34



Author's personal copy

after aflatoxin production had occurred. Regardless of the actual
causes, strategies aimed at mitigating the aflatoxin contamination and
human exposurewill likely bemore effective if they are targeted to the
more wet and humid areas of the Busia district.

Unimproved local varieties were associated with higher levels of
aflatoxin compared to improved cultivars. These results concur with
the work of Hell et al. (2003) who documented a positive correlation
between local varieties and increased aflatoxin levels of maize in
Benin. The resistance status of the cultivars assessed in this study to
colonization by aflatoxin-producing Aspergillus species is not known.
However, improved varieties generally tend to be selected for
increased yield and resistance to diseases that may reduce their
susceptibility to infection by Aspergillus sp. Moreover, local landraces
such as Homabay Red, Uganda Red and Red Valencia, have been
reported to be susceptible to rosette, stem rot and mold (Ogwang,
2006), and positive correlations between disease and aflatoxin con-
tamination of peanuts have been documented by many researchers
(Lynch and Wilson, 1991; Udoh et al., 2000; Kasno, 2004; Robertson-
Hoyt et al., 2007).

Attack by moles also was found to be significantly associated with
aflatoxin levels. Damage bymoles predisposes pods to colonization by
aflatoxin producing fungi, and similar damage by terrestrial arthro-
pods has been reported (Dicko et al., 1999). At the same time the
damage increases moisture levels of pods and grains, as documented
by Hell et al. (2000). Pod damage also exposes the kernels to coloniza-
tion by aflatoxin-producing and other saprophytic fungi (Chapin et al.,
2004).

The observation that membership in a PMG was not significantly
associated with levels of aflatoxin was surprising because PMG
members are trained on pre- and post-harvest peanut handling
practices that should result in a reduction in the level of contamina-
tion (Mutegi et al., 2007). The reasons for this observation were not
investigated but it is possible that the awareness-raising program has
not been undertaken long enough to have had an impact. The specific
message being delivered through the PMGs may also need to be
reviewed to ensure more aspects about aflatoxin, especially practices
that reduce the level of peanut contamination are covered. Identifying
the reasons why PMGs were apparently not effective at reducing the
aflatoxin contamination is essential since long-term strategies for
aflatoxin control will depend on the use of such groups as avenues for
disseminating the appropriate control strategies. In the short term, the
risk of aflatoxin exposure in western Kenya can be minimized by
directing control strategies on the more humid agro ecological zones
such as LM1, emphasizing planting of improved cultivars and
protecting the crop from damage by rodents.
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