ratio was 1.05. The total number of maize leaves in monoculture was 25% higher than in association with beans. Plant light in both cropping systems, however, was about the same. Stem diameter was 22.7% thinner in association than in monoculture.

The Relative Importance of Above- and Below-Ground Resource Use in Determining Yield Advantages in Pearl Millet/Groundnut Intercropping — Summary

M. S. Reddy and R. W. Willey

*International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, India*

Experiments were carried out at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) to study the growth patterns and resource use of selected intercrop combinations to gain an understanding of the factors that enable intercropping to achieve yield advantages over monocropping. The basic approach is to examine the actual growth pattern in some detail to determine how component crops compete with each other and whether they are able to "complement" each other in space or time.

The experiments were carried out from 1978-1980, during four different seasons, at ICRISAT. The experimental sites were on medium-deep alfisols that have an available water holding capacity of about 100 mm in the top 90 cm of the profile.

All treatments were grown in 30-cm rows in a 1 millet row : 3 groundnut rows arrangement. Within-row spacing for each crop was the same in monocrop and intercrop and was equal to the estimated optimum spacing for the monocrop (15 cm for millet, equivalent to 22.2 plants/m² for the monocrop; and 10 cm for groundnut, equivalent to 33.3 plants/m² for the monocrop); all intercrop treatments, therefore, were simple "replacement" treatments of 25% millet : 75% groundnut. A basal fertilizer application of 50 kg P₂O₅/ha was applied to all plots. Monocropped and intercropped millet were top-dressed with N at the same rate per row; unless stated otherwise, this was equivalent to 80 kg/ha in monocropping (20 kg/ha in intercropping expressed over the area occupied by both crops). The cultivars used were BK-560 millet (80-85 days duration), which grows to a height of about 1.8 m, and Robut 33-1, a semi-spreading groundnut (110-120 days duration).

Beginning 20-25 days after sowing, samples were collected from an area ranging from 1.8-2.4 m² for estimating dry matter and area of green leaf laminae. The sampling interval was 1 week during the 1978 rainy season and 10 days during all other seasons. Plants were dug up but roots were not included in the dry matter estimates. Harvesting areas ranging from 20-50 m² were used to obtain a final estimate of total dry matter (still excluding roots), seed, or pod yields, and yield components.

Light interception was measured using tube solarimeters. One solarimeter per plot in monocrop treatments and two solarimeters per plot in the intercrop treatments were placed at ground level and the difference between these and a control solarimeter recording full incident light was measured as integrated daily totals. It was thought that growth in the groundnut rows adjacent to the millet might differ from central groundnut rows, so the two intercrop solarimeters were arranged to give equal weighting to all rows across the 1:3 pattern.

Considering the results of all the experiments, however, it can be concluded that improved efficiency of light use can occur in this millet/groundnut combination and that it can be an important determinant of the yield advantage. This light factor seems to be less involved under conditions of moisture stress, despite the evidence of higher relative yield advantages under these conditions. In contrast, evidence presented suggests that under conditions of nitrogen stress, improved efficiency of light use may still make an important contribution.

Discussion

Chowdhury (question): Please refer to Tables 1 and 5. It is indicated that you have 25% of the total
sole crop millet population in the intercrops and
the yields in intercrop seem to be 50% of the sole
crop. Is it possible to get double the yield of cereal
due to intercropping?

Reddy (answer): As you have seen, the use of
sunlight was a major factor for yields. The yield
was double because the number of tillers and
heads were double in intercropped millet com-
pared with sole crop tillers.

Mills (question): Why was partitioning done in
your intercropping experiment?

Reddy (answer): The main objective
of partitioning was to inhibit root interaction.
Generally, it is considered that there is a transfer of
nitrogen from legumes to cereals; hence, we
wanted to confirm it with partition.

Malithano (question): How comparable are the
results under artificial water stress to those under
conditions of lack of rainfall?

Reddy (answer): We have a rainy season from
June to September and during this period the
control of moisture stress is not possible. Howev-
er, it can be done in October. Hence, we can have
a moisture stress experiment then.

Wilson (question): Have you ever tried millet
and groundnut in the same row, like the farmer
does in practice?

Reddy (answer): The farmers grow a bit more
groundnut but they do it under mixed cropping.

Effects of Moisture Availability on Intercropping
and Yield Advantages — Summary

M. Natarajan and R. W. Willey

*International Crops Research Institute for the Semi-Arid Tropics*
*(ICRISAT), Patancheru, Andhra Pradesh, India*

In the semi-arid tropics, the availability of water
is a major concern. Although there have been
specific suggestions that intercropping may result
in more efficient use of water, there has been little
factual evidence on whether or not the relative
advantages of intercropping are affected by
changes in water supply. A series of experiments
on the effect of moisture regime have been initiated
at the International Crops Research Institute for
the Semi-Arid Tropics (ICRISAT) and some of the
results to date are summarized in this paper.

Three experiments were carried out on alfisols
that had a water holding capacity of 100 mm in the
90 cm profile. The three crops involved were
groundnut, millet, and sorghum; their monocrop
populations in all experiments were 333 000,
333 000, and 150 000 plants per hectare respec-
tively. In the first experiment, the cereal/ground-
ut intercrops consisted of 50% of the sole cereal
population plus 100% of the sole groundnut
population, but thereafter all intercrops had sim-
ple “replacement” populations as indicated by
their row arrangements. All treatments were in 30
cm rows. The basic fertilizer applied was 46 kg
P₂O₅/ha and 18 kg N/ha. Nitrogen was top-
dressed to the sole cereal plots at a rate of 62
kg/ha, and the same rate per row was applied to all
cereals in the intercrops.

During the postrainy season of 1977, stress and
no-stress treatments were created in the main
plots by flooding twice and four times, respective-
ly, to bring the profile moisture to field capacity
each time. Rainfall during the growing period
amounted to 75 mm. In addition to the mono-
crops, intercrop treatments included: 1 row millet:
2 rows groundnut; 1 row sorghum : 2 rows
groundnut; and 1 row millet : 1 row sorghum. All
monocrops showed a good response to different
moisture regimes. The three combinations gave
significant advantages ranging between 20-25% in
the stress treatment but little or no advantage in
the no-stress treatment. Examination of the yields
of the individual crop components, however, indi-
cated that in the no-stress situation the balance of
competition favoured the dominant component.

During the postrainy season of 1978, no-stress
and stress treatments were achieved by irrigating
every 10 days and every 20 days, respectively,
with a “Perforain” spray. The total amount of
water applied through irrigation was approximate-
ly 470 mm in the no-stress treatment and
approximately 270 mm in the stress treatment.