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Abstract Arabidopsis, Mimulus and tomato have
emerged as model plants in researching genetic and
molecular basis of differences in mating systems. Varia-
tions in floral traits and loss of self-incompatibility have
been associated with mating system differences in crops.
Genomics research has advanced considerably, both in
model and crop plants, which may provide opportunities to
modify breeding systems as evidenced in Arabidopsis and
tomato. Mating system, however, not recombination per se,
has greater effect on the level of polymorphism. Generating
targeted recombination remains one of the most important
factors for crop genetic enhancement. Asexual reproduc-
tion through seeds or apomixis, by producing maternal
clones, presents a tremendous potential for agriculture.
Although believed to be under simple genetic control,
recent research has revealed that apomixis results as a
consequence of the deregulation of the timing of sexual
events rather than being the product of specific apomixis
genes. Further, forward genetic studies in Arabidopsis have
permitted the isolation of novel genes reported to control
meiosis I and II entry. Mutations in these genes trigger the
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production of unreduced or apomeiotic megagametes and
are an important step toward understanding and engineer-
ing apomixis.
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Introduction

From ancient times, human beings have experimented with
at least 3,000 species of plants for food production, of
which about 150 cultivated species have entered into the
world’s commerce (Mangelsdorf 1966). The trend has
been, however, to use fewer and fewer crop species, nar-
rowing down to those that give the greatest return for land
and labor. People are mainly fed today by 44 plant species
worldwide, which vary in ploidy, haploid chromosome,
genome size, life form (annual and perennial) and mating
system (autogamous, inbreeding or selfing; allogamous or
outcrossing; mixed mating) (Table 1). Diversity in mating
systems has also been reported in some of the wild relatives
of tomato, rice and wheat (Table 2). Mating systems in
plant populations are influenced by genetic, demographic
and environmental factors (Barrett and Eckert 1990). The
genetic factors for transition from outcrossing to selfing
include flower color, reduced flower size and pollen—ovule
ratio, self-incompatibility (SI, genetic mechanism pre-
venting self-fertilization), herkogamy (spatial separation of
the anthers and stigma), dichogamy (separation at the time
of gender expression in hermaphroditic plants), heterostyly
(self-incompatibility system in which flower morphs differ
in the pistil’s and stamens’ length), gynodiocy (or the
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Vegetative

Mating system

Sexual

form

Life

(Mbp C™1)

Chromosome Genome size

number

Ploidy

Latin
name

Table 1 continued

Common
name
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Vegetative propagation®?

Perennial Controlled crosses

372 (Arumuganathan and Earle 1991) Annual

386 (Bennett and Leitch 1995)

14

18

Diploid

Citrus sinensis

Orange®

Mixed mating®

Carica papaya Diploid

Papaya

Sugary crops

Outbreeder

Perennial Outbreeder

Annual

868 (Bennett and Leitch 1997)
3,724 (Bennett et al. 2000)

18

Diploid

Beta vulgaris

Sugar beet

Vegetative propagationd

64

Octaploid

Saccharum officinarum

Sugarcane

# Modern maize and soybean arose through an ancient allotetraploid event and subsequent diploidization of the genome (Krishnan et al. 2001; Schnable et al. 2009)

° Interspecific and intergeneric hybrids are propagated and selected through nucellar embryony (one form of apomixis)

¢ Trioecious with three sex forms (male, female and hermaphrodite flowers)

Commercial production by vegetative propagation, however, natural outcrossing exists or controlled crosses possible to generate new strain for vegetative production. Genome size expressed

in million base pair (Mbp), 1 picogram (pg) = 965 Mbp (Arumuganathan and Earle 1991)

dimorphic breeding system in which male sterile individ-
uals coexist with hermaphroditic individuals), pollen via-
bility (longevity) and stigma maturity (Barrett and Eckert
1990; Cruden 2000; Dudley et al. 2007; Goodwillie et al.
2009). Seed crops are sexually propagated. The root and
tuber crops are vegetatively propagated; however, con-
trolled crosses are possible to produce hybrids from which
the clones could be vegetatively propagated commercially.

Inbreeding and outcrossing are the two major forms of
sexual reproduction. Apomixis, or asexual clonal repro-
duction through seeds, presents a major potential to agri-
culture as it would enable the fixation of genotypes of
interest (e.g., hybrid vigor), permit true seed production for
vegetatively propagated crops, and speed up breeding
programs and responsiveness to changing environments.

The genomics research approach has advanced consid-
erably in some crops; for example, maize, rice and sor-
ghum genomes have been sequenced (IRGSP 2005;
Paterson et al. 2009; Schnable et al. 2009). Of the several
model plants for studying mating system evolution,
Arabidopsis thaliana (the inbreeder) and Mimulus guttatus
(the outbreeder) genomes have been sequenced (AGI 2000;
Ganko et al. 2009), tomato (Solanum lycopersicum)
genome (euchromatic region) sequencing has advanced
considerably (Mueller et al. 2009), while sequencing
the outbreeder Arabidopsis lyrata has been initiated (JGI
2008).

This review is focused on the floral traits associated with
variation in mating systems, models for dissecting the
molecular bases of differences in mating system evolution,
how mating system and recombination affect molecular
evolution, mapping and cloning of genes associated with
autogamy, gene expression regulating mating systems and
genomics of asexual seed reproduction through apomixis.

Floral traits associated with evolution of mating
systems

The transition from outcrossing (allogamy) to selfing
(autogamy) occurred many times independently among the
angiosperms (Stebbins 1970; Wyatt 1988). Changes in
floral traits, including loss of self-incompatibility and het-
erostyly, reduction in flower size and pollen—ovule ratio,
herkogamy and the timing of self-pollination are associated
with the transition from outcrossing to selfing and are
discussed elsewhere (reviewed in Armbruster et al. 2002;
Tang et al. 2007; Valejo-Marin and Barrett 2009). The
evolutionary transition from diploid to polyploidy has also
been reported to affect changes in mating systems
(Barringer 2007; Husband et al. 2008). We summarize
below the floral traits associated with variation in mating
systems in model and crop plants, which have demon-
strated potential to unravel the genetic and molecular basis
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Table 2 Floral traits associated with mating system variations in wild relatives of some of the agriculturally important crops

Species Mating system

Floral traits associated with

Reference
different mating system

Genus: Lycopersicon

Lycopersicon cheesmani, Autogamy (self-compatible, SC)
L. parviflorum and

L. esculentum

L. chilens, L. hirsutum,
L. pennellii and L.
peruvianum

L. peruvianum (LA4125)

Obligate allogamy
(self-incompatible, SI)

Selfer (self-compatible)

L. pimpnellifolium Facultative allogamy

L. chmielewski Facultative allogamy

(self-compatible, SC)

Genus: Oryza

Oryza sativa f. spontanea
and O. perennis subsp.

Partial outcrossing

balunga
O. perennis Partial outcrossing
O. rufipogon Partial outcrossing
0. nivara Inbreeder
Genus: Triticum
Triticum urartu and Inbreeder
T. monococcum
Genus: Aegilops
Aegilops speltoides Outbreeder
Genus: Secale
Secale cereale Outbreeder

Slightly exerted (flush or recessed
with respect to the anther cone)
stigma leads to selfing

Chen and Tanksley (2004)

Highly exerted stigma leads to cross-
pollination

Small and pale flowers and
spontaneous fruit set

Graham et al. (2003)

Outcrossing highly correlated with Rick et al. (1978)
flower size and to a lesser extent

with the degree of stigma exertion

Differences in flower size and stigma Rick et al. (1976)
exertion; stigma of larger flowers are

strongly exerted (leading to cross-

pollination), while those of smaller

flowers have slightly or not at all

exerted stigma (leading to self-

pollination)

Anther and stigma length, and Virmani and Athwal (1973)
percentage of exerted stigma

associated with outcrossing

Anther length, longevity of pollen
grains, longer time interval from
flowering to pollen emission, length
of stigma and style promote
outcrossing

Oka and Morishima (1967)

Pistil, stamen and glume traits (length,
width and length—width ratio) relate
to increased outcrossing

Uga et al. (2003)

Smaller and upright anthers become Grillo et al. (2009)
dehiscent immediately after the

flower opens

Not described Haudry et al. (2008)

Not described Haudry et al. (2008)

Not described Haudry et al. (2008)

of mating system variation and possibly use that knowl-
edge to alter mating system in other crops.

Model plants

The genera Mimulus (Phrymaceae family), Leptosiphon
(Polemoniaceae family), Leavenworthia (Brassicaceae
family) and Clarkia (Onagraceae family) show tremendous
variability in reproduction system (both between and
within populations). Their selfing evolved frequently and

could be of recent origin, which provides a means for
studying variation during evolution of mating systems. In
Mimulus, an outbreeder such as M. guttatus has larger
flowers, more distinct anther—stigma separation and higher
pollen ovule ratio than the inbreeder M. platycalyx. Vari-
ations in floral traits are also reported among outbreeders in
Mimulus. For example, pollination in M. lewisii is mediated
by bees, whereas it is hummingbirds that facilitate cross-
pollination in M. cardinallis. Both species differ in floral
traits: M. lewisii has large flowers low in anthocyanin and
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carotenoid pigments, and inserted anther and stigma,
whereas M. cardinalis has nectar-rich flowers high in
anthocyanins, and exerted anthers and stigmas (Lin and
Ritland 1997; Schemske and Bradshaw 1999). Further-
more, an allele substitution at a flower locus produces
pollinator shift in Mimulus. The locus YELLOW UPPER
(YUP) controls the presence or absence of yellow carot-
enoid pigments in the petals of pink-flowered M. lewisii,
which is pollinated by bumblebees, and its red-flowered
species M. cardinalis, which is pollinated by humming-
birds. Bradshaw and Schemske (2003) evaluated near iso-
genic lines (NIL) in which the YUP allele from each
species is substituted into the other. The M. cardinalis NIL
with the M. lewisii YUP allele shows dark pink flowers and
receives 74-fold more bee visits than the wild type,
whereas M. lewisii NIL with the M. cardinalis yup allele
shows yellow—orange flowers and receives 68-fold more
hummingbird visits than the wild type. These results
demonstrated a shift in pollinator preference caused by a
single major mutation. The species in genus Leptosiphon
differ in floral traits associated with variation in mating
systems. The selfing species such as L. bicolor have
smaller corolla lobes, corolla tubes, stigma lobes, anthers
and reduced stigma—anther separation than the outcrosser
L. jepsonii (Schemske and Goodwillie 1996). Selfing in
Clarkia is associated with genetically determined stigma
maturation rates, which affect the degree of herkogamy and
protandry, both contributing to autogamy (Dudley et al.
2007).

Cardamom (Elettaria cardamomum), a highly priced
spice, is native to the Western Ghats of southern India.
Both the wild and cultivated cardamom are self-compatible
and there are no reproductive barriers between the two
populations. Domestication has brought about significant
changes in vegetative and reproductive traits and a shift in
effective pollinators from native solitary bees (Megachile
sp. and two species of Amegilla) to social bees (Aphis
dorsata, A. cerana and Trigona iridipennis). The shift in
pollinators seems to be due to the availability of a large
number of flowers for prolonged periods in cultivated
cardamom that can attract and sustain social bees, rather
than due to co-evolution of the flower and the pollinator
(Kuriakose et al. 2009).

Species of Collinisia and Tonella, the two sister genera
of self-compatible annuals that constitute tribe Collinsieae,
show extensive variation in floral size and morphology and
in patterns of stamen and style elongation at anthesis. They
are therefore a good model system for the study of devel-
opmental and morphological traits influencing mating
system. Using a nuclear ribosomal ITS phylogeny, inde-
pendent contrasts and phylogenetically corrected path
analysis, Armbruster et al. (2002) showed that large-

@ Springer

flowered taxa maintain herkogamy early in anthesis by
differential elongation of staminal filaments, which posi-
tions each of the four anthers at the tip of the “keel” upon
dehiscence, whereas small-flowered taxa do not show this
pattern of filament elongation. The styles of large-flowered
taxa elongate late in their 2-5-day anthesis, resulting in late
anther—stigma contact and delayed self-pollination.
Anther—stigma contact and self-pollination occur early in
anthesis in small-flowered species or populations. Thus, the
researchers found complex co-variation of morphological
and developmental traits, as a result of multi-trait adapta-
tion for early selfing and high levels of autogamy, delayed
selfing and high levels of outcrossing or intermediate levels
of outcrossing.

Crop plants

Tomato (Solanum lycopersicum; formerly known as
Lycopersicum esculentum) and its wild relatives are ideal
species for the study of floral variation associated with
changes in mating system. This group consists of 14 clo-
sely related species or subspecies including the domesti-
cated tomato, and also covering the full range of mating
systems, i.e., from allogamy (obligate cross-pollination,
enforced by gametophytic self-incompatibility) through
facultative allogamy (self-compatible but with a wide
variation in cross-pollination) to autogamy (obligate self-
fertilization). Variations in mating systems in this species
are largely influenced by self-incompatibility, flower size
and degree of stigma exertion. Large flowers and highly
exerted stigmas lead to cross-pollination, while small
flowers with slightly exerted stigmas or not at all exerted
stigmas lead to self-pollination (Rick 1984, 1987; Rick
et al. 1976, 1978; Soost 1958; Chen and Tanksley 2004;
Roselius et al. 2005; Moyle 2008). Variations in floral
traits have also been associated with outcrossing in rice
and barley. For example, anther and stigma length, per-
centage of stigma exertion, pollen grain longevity, time
interval from flowering to pollen emission and glume traits
(length, width and length/width ratio) are associated with
outcrossing in some accessions of the wild rice species,
Oryza perennis, O. nivara and O. rufipogon (Oka and
Morishima 1967; Virmani and Athwal 1973; Uga et al.
2003; Grillo et al. 2009), while in barley it is the anther
extrusion, as well anther and stigma size, which relates to
increased outcrossing (Abdel-Ghani et al. 2005). Clearly,
more research is needed to explore variation for floral
traits associated with outcrossing, e.g., stigma exertion,
anther and stigma separation, anther extrusion or pollen
grain longevity, among others. Such variation may provide
a means for modifying the breeding system in some of the
agriculturally important crops.
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Dissecting molecular basis of mating system evolution
in model plants

Arabidopsis thaliana has a small diploid genome, a rapid
reproductive cycle and an autogamous nature. This species
is also a prolific seed producer and its genome has been
fully sequenced (AGI 2000). It diverged from its close
relative A. lyrata about 5 million years ago. The two spe-
cies differ in mating system and life form: the self-com-
patible, annual A. thaliana (2n = 10) is an inbreeding
species with bigger floral organs, fruits and higher seed set
than the self-incompatible, perennial outbreeding species
A. lyrata (2n = 16). The genes of the two species share a
high degree of sequence similarity. Both are amenable to
hybridization; however, A. thaliana—A. lyrata hybrids are
pollen sterile. In contrast, backcrosses with either parent
have been successful in establishing advanced backcross
populations, which could be a useful resource for mapping
and cloning of genes associated with mating system dif-
ferences in this species (Nasrallah et al. 2000; Bomblies
and Weigel 2007).

Tomato and its wild relatives are another model for
studying the molecular basis of mating system differences,
as its wild species have great diversity in mating systems
(“Crop plants”). Tomato is a diploid species (2n = 12)
with a rather small genome (950 Mb), a short life cycle,
and possesses a wide array of genetic and genomic
resources. It is amenable to genetic transformation, ease in
making controlled pollination and hybridization, and is a
prolific seed producer. An international consortium of ten
countries is engaged in sequencing the tomato genome and
it is expected that high quality reference euchromatic
tomato sequences will be available to researchers by 2010
(Mueller et al. 2009). Tomato is also one of the first species
in which significant inroads have already been made
toward understanding the genetic and molecular basis of
quantitative trait variation (Tanksley and Fulton 2007
Moyle 2008).

The wildflower genus Mimulus is another model system
that is being used to elucidate the genetics of speciation,
inbreeding depression, mating system evolution, ecological
adaptation and cytological patterns of evolution (Wu et al.
2007). The species are self-compatible and genetically
highly variable. Their interspecific crossing barriers range
from complete to virtually nonexistent. Many Mimulus
species are clonally propagated, show a short life cycle
(612 weeks) and are easy to emasculate and pollinate. The
species are prolific seed producers. There are substantial
advances in developing genomic resources of Mimulus,
including expressed sequence tags (EST), bacterial artificial
chromosome (BAC) libraries, highly polymorphic gene-
based markers, genetic maps, integrated genetic and physical
maps, and seed stocks (http://www.mimulusevolution.org).

More recently, 321 Mb of its genome (430 Mb) that con-
tain ~ 42,000 genes has been sequenced (Ganko et al. 2009).
Phylogenetically, Mimulus is well placed for broad com-
parative genomic research across the diversity of flowering
plants, based on its relatedness to other model systems for
floral development (Antirrhinum) and to crop plants with
well-developed genomic resources (Solanum, Helianthus
and Lactuca) and to Arabidopsis.

Mating system and recombination affecting molecular
evolution

Mating systems and recombination have significant impact
on molecular evolution in plants. The genomes of organ-
isms vary in their rates and patterns of molecular evolution,
including base composition, protein evolution, and inser-
tion and deletion in non-coding DNA (reviewed in Wright
et al. 2002). A few studies comparing nucleotide diversity
in closely related species of Arabidopsis differing in mat-
ing systems revealed contrasting patterns of nucleotide
variation: lower nucleotide diversity was found at the
alcohol dehydrogenase (Adh) locus in A. lyrata than in
A. thaliana (Savolainen et al. 2000). Although no differ-
ences either in protein evolution rate or codon bias
occurred between A. thaliana and A. lyrata, consistently
smaller intron sizes were found in A. thaliana than
A. lyrata, and higher major codon uses were found for low-
biased genes in A. lyrata (Wright et al. 2002). Leaven-
worthia (Brassicaceae) has breeding systems ranging from
self-incompatible to almost strict selfing. Liu et al. (1998)
reported no variation in DNA sequence polymorphism
among the alleles of the Adh locus sampled within
inbreeding populations of L. uniflora and L. crassa,
whereas they reported high diversity in alleles from pop-
ulations of the outcrosser L. stylosa, and in self-incom-
patible L. crassa populations. When portions of the
cytosolic phosphoglucose isomerase (PgiC) gene in Leav-
enworthia were sequenced, Liu et al. (1999) reported low
sequence diversity in sequences of intron 12 in selfers
(L. uniflora and L. torulosa), but high diversity in self-
incompatible L. stylosa and moderate diversity in L. crassa
with partial or complete self-incompatibility.

Surveys on Drosophila have consistently shown reduced
levels of DNA sequence polymorphism in genomic regions
experiencing low crossing over, although these same
genomic regions exhibit normal amount of interspecific
divergence. Naturally occurring polymorphism in tomato is
positively correlated with the density of crossing over per
physical length, whereas large between-species differences
in DNA sequence polymorphism reflect differences in
breeding systems: selfing species with much less within-
species polymorphism than outcrossing species (Stephan
and Langley 1998). The mating system has a highly
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significant effect on the level of polymorphism, whereas
recombination has only a weak effect on tomato species
(Baudry et al. 2001). Furthermore, Roselius et al. (2005)
demonstrated reduced nucleotide diversity in the self-
compatible populations compared to the self-incompatible
populations in tomato. Clearly, reduction of DNA sequence
polymorphism in regions of low rates of crossing over is
either due to the selective sweep (hitchhiking of neutral (or
nearly neutral) variants on chromosomes bearing rare
accumulation of strongly selected, favorable mutations at
closely linked loci that go rapidly to fixation) or the loss of
neutral or nearly neutral variants as a result of a steady
elimination of linked deleterious mutations from the pop-
ulation (Stephan and Langley 1998).

The probability of meiotic crossing over is not a uniform
function over the physical length of a chromosome region
in many plants and animals. Some chromosome regions
show high densities of meiotic exchanges, whereas other
regions show low density or even a lack of meiotic
exchanges. Gene loci in chromosome regions with low
recombination rates show reduced levels of DNA poly-
morphism compared to chromosome regions with high
recombination rates in Drosophila (Dvorak et al. 1998).
There is a genome-wide reduction of recombination in self-
fertilizing plants. Dvorék et al. (1998) compared the levels
of restriction fragment length polymorphism (RFLP) at 52
single copy gene loci in chromosome regions with low
recombination (centromeric regions) in wheat species dif-
fering in breeding system (five self-fertilizing and one
cross-fertilizing species) and phylogenetic age in the genus
Aegilops. They detected the highest average gene diversity
in cross-fertilizing Ae. speltoides and the lowest in self-
fertilizing Ae. searsii, no heterozygous loci in Ae. bicornis,
but frequent in Ae. sharonensis and Ae. longissima. Their
results suggest that the outcrossing rates vary among the
self-fertilizing species. In all six species, the level of RFLP
at a given locus was a function of the position of the locus
on the chromosome and the recombination rate in the
neighborhood of the locus. Loci in the proximal chromo-
some regions, which showed greatly reduced recombina-
tion rates relative to the distal regions, were significantly
less variable than loci in the distal chromosome regions in
all six species. Moreover, variation in recombination rates
also reflected the haplotype divergence between closely
related species. Loci in the chromosome regions with low
recombination rates were less divergent than those in
chromosome regions with high recombination rates.
However, this relationship was not found among the more
distantly related species. Furthermore, when investigating
the effect of mating system and recombination on molec-
ular evolution in four Triticeae species, two outcrossers
(Secale cereale and Aegilops speltoides) and two selfers
(Triticum urartu and T. monococcum), Haudry et al. (2008)
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found that GC content, possibly driven by biased gene
conversion (bGC), was affected by mating system and
recombination. Selection efficiency, however, is only
weakly affected by mating system and recombination. In
outcrossing lineages, selection efficiency could be reduced
because of high substitution rates in favor of GC alleles.
Outcrossers, but not inbreeders, would therefore suffer
from a “GC-induced” genetic load.

Clearly, mating systems have the greatest influence on
patterns of polymorphism. However, recombination
remains one of the most important factors for crop genetic
enhancement. The success of a breeding program depends
on the ability of plant breeders to bring the desired alleles
together into a new genotype, both by constructing desired
combination of alleles on chromosomes and by designing
the right combination of chromosomes. As indicated by
Wijnker and de Jong (2008), recombination is therefore a
critical process in plant breeding as it allows the intro-
duction of novel allele combinations on chromosomes that
can be used to breed for superior F; hybrids. Gaining
control over increased crossover incidence, altering cross-
over positions on chromosomes or silencing crossover
formation will allow plant breeders to effectively engineer
the allelic composition of chromosomes.

Mapping and cloning of genes associated
with autogamy

The switch from an outcrossing system to selfing is one of
the most prevalent evolutionary trends in plant reproduc-
tion and one that has occurred repeatedly in flowering
plants. However, little is known about the evolution of self-
fertility and its genetic architecture. For example, A. tha-
liana switched to self-fertility as a result of mutations
disrupting the self-incompatibility (SI) system controlled
by the S locus (Koch et al. 2000, 2001; Kachroo et al.
2002). The A. lyrata S locus contains tightly linked
orthologs of the S-locus receptor kinase (SRK) and
S-LOCUS CYSTEINE-RICH PROTEIN (SCR) genes, the
determinants of SI specificity in stigma and pollen,
respectively, but lacks the S-locus glycoprotein gene.
Comparative analysis of the S-locus region in A. lyrata and
A. thaliana identified orthologs of the SRK and SCR genes
and demonstrated that self-compatibility in A. thaliana was
associated with the inactivation of SI specificity genes
(Kusaba et al. 2001). A. thaliana ecotypes exhibit S-locus
polymorphisms and differ in their ability to express the SI
trait on transformation with S-locus genes derived from
A. lyrata (Nasrallah et al. 2004). In their study, at least one
ecotype (C24 containing the SRKb-SCRb construct)
reverted to a stable, self-incompatible phenotype identical
to that of A. lyrata. More recently, Boggs et al. (2009)
identified another four A. thaliana accessions that revert to
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full SI by transformation with AISRKb-SCRb, bringing to
five the number of accessions in which self-fertility was
due to, and was likely caused by, S-locus inactivation.
Analysis of S-haplotype organization revealed that inter-
haplotypic recombination events, rearrangements and
deletions have restructured the S locus and its genes in
these accessions. Furthermore, QTL analysis revealed that
the transition to inbreeding occurred due to at least two,
and possibly more, independent S-locus mutations, and a
novel unstable modifier locus contributed to self-fertility in
Col-0 (Boggs et al. 2009). These ecotype differences are
heritable and reflect the fixation in different A. thaliana
populations of independent mutations that caused or rein-
forced the switch to self-fertility.

The degree to which the stigmas are exerted above the
stamen in flowers is a key determinant of cross-pollination
in many plant species. The QTL mapping approach has
been used to gain insight into the genetic basis of mating
system evolution. For example, using selfing and out-
crossing plants derived from two contrasting natural pop-
ulations of L. pimpinellifolium, Georgiady et al. (2002)
detected major QTL (>25% phenotypic variance) for total
anther length, anther sterile length and style length.
Domestic tomato bears flowers with flush or inserted
stigmas promoting self-fertilization, while most of its wild
relatives are obligate or facultative outbreeders that bear
flowers with highly exerted stigmas. Stigma exertion is a
composite trait that involves interplay between the length
of styles and anthers in a flower. Variation in either stamen
or style length (or both) can therefore affect the degree to
which the stigma surface extrudes above the anthers.
Several QTL for stigma exertion have been reported in
tomato, of which a major QTL, se2.1, was found on tomato
chromosome 2. Mutation at this locus might have been
involved in the evolution from allogamy to autogamy
(Bernacchi and Tanksley 1997; Fulton et al. 1997;
Georgiady et al. 2002). High resolution mapping at the
chromosome region harboring se2.I QTL detected five
tightly linked genes: one controlling style length (style2.1),
three controlling stamen length (stamen2.1, stamen2.2 and
stamen2.3) and the other affecting anther dehiscence
(dehiscence2.1), all with potential to affect stigma exertion
and mating behavior. The cluster of these genes controlling
various aspects of stigma exertion is reminiscent of a ‘co-
adapted gene complex’ or ‘supergenes’ controlling mating
behavior (Chen and Tanksley 2004). More recently, Chen
et al. (2007) cloned style2.1, which encodes a putative
transcription factor that regulates cell elongation in
developing styles. The transition from cross-pollination to
self-pollination was accompanied, not by change in the
STYLE2.1 protein, but rather by a mutation in the Style2.1
promoter, which led to a down-regulation of Style2.]
expression during flower development. Major QTL was

also reported for several floral traits conferring differences
in mating systems in tomato (Georgiady et al. 2002; Chen
and Tanksley 2004). However, both major and minor QTL
contribute to floral morphology associated with mating
system variation in Mimulus (Bradshaw et al. 1995, 1998;
Lin and Ritland 1997; Fishman et al. 2002), Leptosiphon
(Polemoniaceae) (Goodwillie et al. 2006) and Aquilegia
species (Hodges et al. 2002).

Floral morphology associated with mating system plays
an important role in sexual reproduction processes such as
pollination, fertilization and seed setting in rice (Takeoka
et al. 1993). The Asian cultivated rice Oryza indica is
predominantly an inbreeder, while its ancestral wild spe-
cies Oryza rufipogon is a partial outbreeder (Oka and
Morishima 1997). There exists a wide variation for floral
traits (pistil, stamen and glume) between both Oryza spe-
cies. The outcrossing is manifested by the size of the pistil
and stamen, stigma exertion and the angle of glume
opening (Virmani 1994). Multiple genes control floral traits
in rice: 4-7 QTL for glume length, 4-6 QTL for glume
width, 1-3 QTL for length—width ratio of the filled glume
and 20 QTL for anther length (Uga et al. 2003). The
comparison of the locations of the QTL affecting pistil,
stamen and glume positioning revealed that most QTL are
located on different chromosomal regions, suggesting that
phenotypic variation for these traits are primarily con-
trolled by genes unique to each organ, while some regions
that are associated with more than one organ partially
affect those organs.

Stigma exertion is one of the important traits that con-
tribute to the efficient improvement of commercial seed
production in hybrid rice. More recently, Miyata et al.
(2007) reported a major QTL, gES3, for stigma exertion
located at the centromeric region on chromosome 3, con-
tributing to about 32% of the total phenotypic variance. An
NIL for gES3 increased the frequency of the exerted stigma
by 36% compared to that of Koshihikari, suggesting that
qES3 was a promising QTL for the development of a
maternal line for hybrid rice.

The floral traits associated with variation in mating
systems in tomato and rice led to the identification and
cloning of major QTL promoting outcrossing, which may
provide opportunities to alter breeding system in some
crops, i.e., from predominantly inbreeding to outbreeding
for the exploitation of hybrid vigor. Further research should
explore such variation in crop germplasm to identify those
individuals possessing traits to alter breeding systems for
fixing hybrid vigor in agriculturally important crops.

Gene expression regulating mating systems

Cleistogamy is a form of mating system in flowering plants
that has evolved independently a number of times and is
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present in approximately 300 species in 60 plant families
(Lord 1981; Campbell et al. 1983). Typically, cleistoga-
mous plants produce two types of flowers: closed (cleis-
togamous, CL) flowers that require obligate self-pollination
and open (chasmogamous, CH) flowers that allow for
cross-pollination. CL and CH flowers can also be induced
by environmental factors including light intensity, photo-
period, and water and nutrient availability (Morinaga et al.
2008).

The genus Cardamine (Brassicaceae) is closely related
to Arabidopsis, having diverged from the lineage contain-
ing A. thaliana about 13—19 million years ago (Koch et al.
2001). Cardamine kokaiensis is an annual cleistogamous
herb that produces individuals with both CL and CH
flowers or individuals with only CL flowers. The fully
sequenced genome of the Arabidopsis provides means for
producing Arabidopsis-based microarrays, which are
commercially available to study gene expression (Seki
et al. 2002). Moreover, nucleotide sequences of several
genes are well conserved between Cardamine and A. tha-
liana (Koch et al. 2000, 2001; Hay and Tsiantis 2006).
Using chilling treatment to regulate CL and CH flowers in
C. kokaiensis in a growth chamber and employing an
Arabidopsis-based microarray platform, Morinaga et al.
(2008) determined changes in key gene regulatory net-
works involved in the transition from CL to CH flowering
to understand the molecular evolutionary mechanisms
leading to cleistogamy. They detected 69 genes, including
genes related to floral development, auxin, flowering time,
cold-stress and drought-stress, which were differentially
expressed between CL and CH flowers. Furthermore, semi-
quantitative reverse transcriptase polymerase chain reac-
tion (RT-PCR) validated the results for six amplified genes:
three genes (DRMI, SPL5 and At4g29190 orthologs in
C. kokaiensis) expressed lower values in CL than CH
flowers, two genes (HSP81-4 and NMTI) expressed higher
values in CL than CH flowers, and one gene (RD21) was
not differentially expressed between CL and CH flowers.
Such results demonstrate that genetic interactions during
environmental stresses are involved in the evolution of
plant mating systems.

Genomics of asexual seed production through apomixis

Apomixis has evolved independently in various taxa
(Savidan et al. 2001). The switch to apomixis is probably
the consequence of polyploidization and/or hybridization,
which appears to induce a de-regulation of developmental
pathways involved in sexual reproduction (Grimanelli et al.
2001). The genus Boechera is an important model system
for studying apomixis because of its close relationship to
Arabidopsis. Apomixis in the Boechera species is of a
diplosporous type, that is, the 2n (or unreduced)
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gametophyte is derived from the megaspore mother cell.
Although apomixis is usually found only in polyploids,
diploid Boechera has been shown to reproduce asexually
(Kantama et al. 2007). Diploid lines contain heterochro-
matic (Het) or supernumerary chromosomes that could
play a role in the apomictic phenotype. Genomic in situ
studies show that these apomicts are alloploid, as they have
a mixture of B. stricta and B. holboellii-like chromosomes
(Schranz et al. 2006). No hybrids between Arabidopsis and
B. stricta have been reported, but partial sequencing of
B. stricta has demonstrated microsynteny between these
two species, thus opening new avenues for deciphering the
genetic control of apomixis and strengthening the model
status of Boechera for apomixis research (Windsor et al.
2006). Using SuperSAGE, Sharbel et al. (2009) performed
an RNA profiling comparison between ovules of diploid
sexual and apomictic Boechera accessions and identified
over 4,000 differentially expressed mRNA tags between
sexual and apomeiotic ovules. Of these, 543 showed a
developmental timing shift in expression correlated with
apomeiosis. These data, combined with the observation
that apomictic Boechera plants are alloploid, suggests that
apomixis is a consequence of the deregulation of the timing
of sexual events rather than the product of specific “apo-
mixis” genes (Grimanelli et al. 2001).

Hieracium, a genus of daisies native to Eurasia and
North America, displays both sexually and apomictically
reproducing biotypes. Crosses between them yield both
sexually reproducing and apomictic progeny, suggesting
that their mode of reproduction is under relatively simple
genetic control. Sexuality and apomixis are interrelated
pathways sharing common regulatory components (Tucker
et al. 2003). Apomixis in Heracium occurs by apospory, a
developmental process characterized by three distinct
deviations from sexual reproduction: avoidance of meiosis
(apomeiosis) in ectopic megaspore mother cells, an
avoidance of fertilization of these spores before embryo
formation (parthenogenesis) and endosperm development
in absence of fertilization, i.e., autonomous endospermy
(Catanach et al. 2006). Using deletion mutagenesis and
AFLP as a genomic fingerprinting tool, Catanach et al.
(2006) reported that apomixis in H. caespitosum is con-
trolled by two loci. One locus regulates events associated
with the avoidance of meiosis (apomeiosis) and is desig-
nated as loss of apomeiosis (LOA) locus; the other, an
unlinked locus associated with avoidance of fertilization
(parthenogenesis), is designated as loss of parthenogenesis
(LOP) locus. The two genomic regions identified align well
with phenotypic data from the mutants: four AFLP-based
SCAR markers associate themselves with LOA locus, while
three AFLP-based SCAR markers are associated with the
LOP locus. A BAC library from tetraploid apomictic
H. caespitosum was further used to isolate sequences



Sex Plant Reprod (2010) 23:265-279

275

corresponding to the LOA and LOP loci for potential use in
crop improvement programs aiming to incorporate apo-
mixis into target species. In a similar study, apomixis in
daisy fleabane (Erigeron annuus and E. strigosus) was
shown to be controlled by two genetically unlinked loci
that regulate, independently, the formation of 2n female
gametophytes (apomeiosis, diplospory) and autonomous
seed formation, which support the hypothesis that apome-
iosis and autonomous seed formation are genetically dis-
tinct (Noyes 2006). Hence, such traits can be separated and
recombined to create hybrids exhibiting apomixis at near
wild-type levels.

Citrus and mango are the most common apomictic
crops. In these plants, maternal clones are produced
through a pattern of adventitious embryony in which
embryos are initiated from sporophytic cells in the ovule,
such as the nucellus. Although apomixis in Citrus has been
well characterized at the histological level (Wakana and
Uemoto 1987), little information is available on its genetic
control. Genetic mapping of apomixis in a cross between
Citrus volkameriana and Poncirus trifolicata showed the
presence of six QTL responsible for the trait (Garcia et al.
1999), which suggests that the genetic control of apomixis
in Citrus is complex. On the other hand, polyembryony in
mango (Mangifera indica), which is correlated with
adventitious embryony (Fig. 1), is controlled by a single
dominant gene (Aron et al. 1998).

A few forage grasses of commercial value, such as
Brachiaria, Poa and Panicum, are apomictic. Brachiaria is
the most common forage grass in tropical America
(http://www.ciat.org/). B. brizantha reproduces through
apospory, which appears to segregate as one dominant
allele (Ortiz et al. 1997). Panicum maximum (guinea grass),
an important forage grown in most tropical countries, is
also aposporic and apomixis appears to segregate as one
dominant allele (Savidan et al. 2001; Ebina et al. 2005).
Poa pratensis (Kentucky bluegrass) is commonly used in
lawns. While diploids are sexual, many polyploids repro-
duce via apospory, which appears to be linked to the
presence of five QTL (Matzk et al. 2005).

Fig. 1 Seed of an apomictic
mango (Mangifera indica

L. var. Kensington Pride).
Adventitious embryos are
derived from sporophytic
tissues in the ovule. Apomicts
are typically polyembryonic, as
seen in this example in which 11
embryos were found in one seed

Even though no major crop is apomictic, asexual
reproduction occurs in wild relatives of maize (Tripsacum)
and millet (Pennisetum). In diplosporic Tripsacum and
aposporic Pennisetum, gametophytic apomixis is a genet-
ically controlled phenomenon that is inherited in a simple
Mendelian fashion. Interestingly, the DNA segment con-
trolling apomixis is characterized by suppression of
recombination (Conner et al. 2008; Grimanelli et al. 2001).
In Pennisetum, this segment termed apospory-specific
genomic region (ASGR) has a size in the vicinity of 50
megabases, is hemizygous and contains heterochromatin
(Roche et al. 2002; Goel et al. 2003). Recently, Conner
et al. (2008) sequenced and analyzed a small portion of the
ASGR in Pennisetum and Cenchrus, which are two related
apomictic genera, and identified 40 potentially transcribed
genes: two contain sites with similarity to kinase domains
and four contain domains known to bind or alter DNA,
showing homology to Baby Boom (BBM) from B. napus.
Over-expression of the latter results in ectopic formation of
embryos on leaf margins (Boutilier et al. 2002). Therefore,
the ASGR BBM-like proteins are credible apomixis can-
didate genes. Furthermore, the ASGR has a very low gene
density and certain regions have microsynteny with rice
and sorghum genomes, suggesting that a narrowly defined
ASGR region could present genomic colinearity with rice
or sorghum as a tool to assist the discovery of the apomixis
genes (Conner et al. 2008).

The identification of differentially expressed genes in
inflorescences of sexual and apomictic plants might allow
the isolation of genes that represent candidates for the
manipulation of apomixis and introduction of apomixis
into sexual crops. Using differential display analysis of
immature inflorescences of sexual and apomictic tetraploid
genotypes of Papsalum notatum, Laspina et al. (2008)
identified 65 candidate unigenes (34 from apomictic and 31
from sexual plants), of which 45 are functionally catego-
rized. In silico mapping further revealed that five genes
silenced in apomictic plants were clustered in a rice
genomic area that was syntenic with the region governing
apospory in P. notatum and Brachiaria brizantha, of which
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two genes mapped within the set of apo-homologs in
P. notatum. Furthermore, this research also detected that
four genes controlling ploidy were among those expressed
differentially between apomictic and sexual plants. Hence,
several genes involved in aposporous development are also
independently ploidy regulated. In diplosporous and sexual
Eragrostis curvula genotypes, which have differing ploidy
levels, Cervigni et al. (2008) detected 112 of the 8,884
unigenes sequenced from inflorescence-derived libraries
showing that significant differential expression occurs in
individuals with different ploidy levels or variable repro-
ductive modes. Independent comparisons between plants
with different reproductive mode (same ploidy) or different
ploidy level (same reproductive mode) allowed the iden-
tification of genes modulated in response to diplosporous
development or polyploidization, respectively. A group of
genes were differentially expressed or silenced only in the
tetraploid sex plant, presenting similar levels of expression
in the tetraploid apomict and the diploid sex genotypes.
Differential display analysis showed that in general, both
tetraploid apomict and sex expression profiles were more
related and different from the diploid sex, in both inflo-
rescence and leaves. Although it is still not clear how many
genes are involved in apomixis, the identification of several
candidate genes expressed during diplosporous develop-
ment (some of them mapping in regions syntenic to the
locus that govern diplospory in the grasses) may contribute
to a better understanding of the genetics required for fur-
ther manipulation of this trait for the benefit of agriculture.

Apomixis can be used to lock in hybrid vigor or other
desirable agronomic traits, as it avoids the sexual repro-
duction process leading to genetic variation. Fertilization-
independent seed (FIS) genes that control autonomous
endosperm development in Arabidopsis are also present in
rice. Although the role of these genes in rice is still
unclear, knockouts in rice through RNAi (RNA interfer-
ence) have generated lines showing autonomous pericarp
development (http://aciar.gov.au/project/CIM/2002/106).
Clearly, further research will be required to understand
how to trigger embryo and endosperm development in the
absence of fertilization. Once this concept is demonstrated
in rice, the way is open for developing apomictic cultivars
of other cereals (Partners Magazine Winter 2006). More
recently, Ravi et al. (2008) demonstrated that mutation of
the Arabidopsis gene DYAD/SWITCHI1 (SWII), a regula-
tor of meiotic chromosome organization, produces a
switch from reductional meiosis to a mitotic division of
megaspore mother cells; thus, the alteration of a single
gene in a sexual plant, whose molecular identity is
known, can bring functional apomeiosis: a major com-
ponent of apomixis. Moreover, d’Erfurth et al. (2009)
isolated and characterized a novel gene (OSDI) involved
in controlling entry into the second meiotic division. In
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osdl mutants, both pollen and egg cells are unreduced.
These mutants do not show any somatic developmental
defects and, when selfed, produce tetraploid (84%) and
triploid (16%) progeny (d’Erfurth et al. 2009). As unre-
duced gametes are induced by the absence of a second
meiotic division, recombination occurs in the osdl
mutant. By combining this mutation with two others that
affect key meiotic processes, such as recombination
(Atspoll-1) and sister chromatid cohesion (AtrecS),
d’Erfurth et al. (2009) were able to generate a genotype in
which meiosis was totally replaced by mitosis. Such
plants produced functional diploid gametes that were
genetically identical to their mother. Interestingly, as
pollen and egg cells are unreduced, tetraploid progeny of
osdl mutants have a normal endosperm with two maternal
and one paternal contribution. If parthenogenetic devel-
opment of the unreduced egg was triggered, apomictic
seed development would occur, as there are no dosage
effects in the endosperm. Through the isolation of
mutants that shunt meiosis I (Dyad) or meiosis II (OSD1),
apomeiosis, a key element of apomixis, has been isolated.
The missing component for the engineering of apomixis is
the understanding and isolation of genes controlling par-
thenogenesis. Genetic characterization of such a trait,
combined with the genes triggering apomeiosis, may
permit clonal propagation through successive seed gen-
erations of crops and revolutionize agriculture.
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