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Selection before backcross during exotic germplasm introgression
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A B S T R A C T

Introgression of genes from exotic germplasm into breeding populations can broaden the genetic base of

crop improvement. Only a very small percentage of genetic variability has been used in crop breeding

programs. Traditionally, F1 plants are used to backcross to the adapted lines or populations. An

alternative approach is to backcross the F2 individuals selected for agronomic acceptability. Our

objective was to determine whether selection before backcross would lead to more progenies with both

high yield and acceptable levels of agronomic performance than direct backcross without selection. To

test the feasibility of the proposed approach, we conducted parallel experiments in which two exotic

sorghum accessions were crossed to two adapted sorghum parents and further backcrossing was

conducted with either F1 or selected F2 plants. Fifty random S1 families were evaluated in three test

environments. Although selection before backcross resulted in a higher frequency of families with

maturity equal to or earlier than those of the adapted parents, no consistent changes in grain yield and

plant height were observed between populations with and without selection. Similar results were found

with either an inbred or a population as the recurrent parents. Given these findings and the extra

generation required, we do not recommend selection before backcross in the process of introgression of

exotic germplasm.

� 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Among methods available in traditional plant breeding,
including single cross, three-way cross, backcross, and cyclic
population improvement, backcross remains the common choice
to introgress the beneficial alleles from exotic germplasm into
adapted breeding materials (Eaton et al., 1986). Backcrossing
maintains the desired genetic complexes already present in the
adapted genotypes while allowing recombination between exotic
and adapted genomes. Various theoretical and empirical studies
have demonstrated that introgression of unadapted germplasm of
low yield potential required at least one backcross to the adapted
parent to recover or increase the yield potential of the adapted
parent (Lambert and Leng, 1965; Dudley, 1982; Cox and Frey,
1984).

Although exotic germplasm has found a greater use in sorghum
[Sorghum bicolor (L.) Moench] compared with other crops, adapted
elite germplasm continues to be the preferred source of favorable
alleles in U.S. sorghum breeding programs (Bramel-Cox and Cox,
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1989). The predominance of two sorghum introductions (SC170
and SC110) in the released parental lines and their significant
contribution to the commercial hybrid germplasm pool demands a
need to diversify the sorghum germplasm pool (Duncan et al.,
1991). Besides adapted inbreds, introgression can also be
conducted with an adapted population as the recurrent parent.
Bramel-Cox and Cox (1989) proposed that an adapted population
allows each allele or combinations of alleles from the exotic donor
parent to express in a much broader background and thus
increases the opportunities to extract favorable epistatic combina-
tions between the exotic and adapted alleles. Indeed, Menkir et al.
(1994a) found that a higher percentage of lines with acceptable
grain yield, plant height, and maturity was derived with the
population backcrossing scheme than with the inbred back-
crossing scheme.

The traditional introgression procedure consists of backcross-
ing an unselected sample of the F1 to a recurrent parent, either
inbred or population. If the primary trait (e.g., grain yield) is
complexly inherited but fairly independent of secondary traits,
such as plant height or maturity, selection in F2 population for
segregates that most closely resemble the recurrent parent for the
secondary traits before backcross would enhance the introgression
of beneficial alleles from the exotic parent. LeRoy et al. (1991)
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found that selection for small seed size during backcrossing in the
introgression of genes for small seed size from the wild soybean
(Glycine soja) into the cultivated species (Glycine max) increased
the frequency of backcross progeny with smaller seed weights
compared with backcrossing without selection. A very limited
number of field based studies have been conducted on breeding
method because of the difficulties involved in this kind of study—
seed availability, sample size, and multiple environment testing
(Arbelbide and Bernardo, 2004; Tabanao and Bernardo, 2005).

No study conducted to evaluate the effectiveness of selection
before backcross in the introgression of exotic germplasm to
adapted breeding materials in sorghum has been reported. Our
objective was to determine whether selection before backcross
would lead to more progenies with both high yield and acceptable
levels of agronomic performance in plant height and days to
flowering than direct backcross without selection. We tested this
hypothesis by backcrossing two exotic sorghum accessions
(Segeolane and SC408) to two adapted sorghum parents, an
inbred (CK60) and a population (KP9B), and comparing grain yield,
plant height, and days to flowering of the families derived with or
without selection.

2. Materials and methods

2.1. Backcross scheme

The four matings used in this study were derived from the
crosses of two adapted sorghum parents (CK60 and KP9B) with two
exotic sorghum accessions (Segeolane and SC408) (Fig. 1). Overall,
two backcross schemes were compared across four different
genetic backgrounds. For backcross without selection, the usual
way of backcrossing F1 to the adapted parent was conducted,
whereas backcrossing selected F2 individuals to the adapted
parents was done for backcross with selection scheme (Fig. 1). The
four different genetic backgrounds were derived from the
combinations of two exotic accessions and two adapted parents.
As described in the later paragraphs 50 S1 families were tested for
each of the eight resulting populations (Fig. 1).

CK60 is an old adapted three-dwarf inbred line with a genetic
male sterile gene (ms3ms3) to facilitate crossing, and KP9B is a
Fig. 1. Different breeding schemes with or without selection before backcross with

either an inbred or a population as the recurrent parent. NS, non-selection; S,

selection.
broad-based random mating population with genetic male sterility
developed at Kansas State University (Zavala-Garcia et al., 1992).
Segeolane is an accession of race Kafir cultivated as a landrace in
Botswana, and SC408 is a conversion line derived from a
Caudatum-Guinea landrace from Nigeria, which was released in
1974 following four generations of backcrossing in the TAES-USDA
conversion program (Quinby, 1974; Rosenow and Dahlberg, 2000).

In the CK60 matings, bulk pollen was collected from 5 to 10
plants of each exotic parent and used to pollinate 8–14 genetic
male sterile plants of CK60. A bulk mixture of the BC0F1 plants of
each mating was sown for backcrossing to CK60 and for self-
pollination to produce BC0F2. The unselected BC1F1 was obtained
by pollinating each of 10–12 genetic male sterile plants of CK60
with bulk pollen taken randomly from 8 to 10 BC0F1 plants in each
mating. The selected BC1F1 was obtained by pollinating a similar
number of genetic male sterile plants of CK60 with bulk pollen
taken from 8 to 10 BC0F2 plants selected to have agronomic
acceptability on the basis of plant height, flowering time, and
panicle type. Notice that it was not possible to consider grain yield
at this stage because selection was done prior to or during
flowering time. As in the regular plant breeding process, this
selection is based on the judgment of the breeders to select against
plants that are tall, late maturing, or have a loose panicle. More
than 100 male-fertile F2 plants were harvested from the unselected
and selected BC1F2 generations of the matings of CK60 with
Segeolane and SC408.

Because of the heterogeneity in KP9B, randomly chosen male
sterile (ms3ms3) plants of KP9B were crossed individually with
plants of each exotic accession to produce 22–36 plant-to-plant
crosses (BC0F1). Each plant-to-plant cross was sown in a separate
row for crossing to the adapted population and for self-pollination
to produce the BC0F2. Each BC0F1 was mated individually to
randomly chosen sterile plants of KP9B to form the unselected
BC1F1. The selected BC1F2 was obtained by crossing the most
agronomically acceptable BC0F2 plants of each BC0F1 to randomly
chosen male sterile plants of KP9B. At least 10 male-fertile F2

plants were harvested from the unselected and selected BC1F2

generations of every plant-to-plant cross in the matings of KP9B
with Segeolane and SC408. For all four matings, 50 F2-derived S1

families were randomly chosen from the selected and unselected
populations to enter the field test.

2.2. Field experiments

Field experiments were conducted at three environments (i.e.,
location-year combination): Garden City, KS, in 1991, Garden City,
KS, in 1992, and Manhattan, KS, in 1992. Each experiment
consisted of 50 randomly F2-derived S1 families from the selected
and unselected BC1 of all four matings (eight populations) and the
four parents (CK60, KP9B, Segeolane, and SC408). The experiments
were conducted in two replications of a blocks-in-replication
design with a split-plot arrangement. The eight mating-backcross
method populations were assigned randomly to eight main plots.
The 50 F2-derived lines from each population were split into two
sets of 25 lines. Each set, along with four entries of the adapted
parent and one entry of the exotic parent, were assigned randomly
to the two subplots in the main plot. The subplot was a single row
6 m in length; rows were 75 cm apart.

Soil types were a Kahola silt loam (fine-silty, mixed, Mesic
Cumulic Hapluidoll) at Manhattan and a Ulysses silt loam (line-
silty Mesic Aridic Haplustoll) at Garden City. The trials were
planted on May 20, 1991, in Garden City, June 20, 1992, in Garden
City, and May 23, 1992, in Manhattan. Before planting, 56 kg ha�1

nitrogen was applied in both years at each location. Weeds were
controlled at Garden City with a preemergence application of 4-–
5 kg ha�1 propachlor and at Manhattan with 9.41 kg ha�1 Ramrod-



Table 1
Mean squares from the combined analysis of variance of five traits of each mating within BC1 populations tested in three environments.

Source of variation Grain yield Days to flowering Plant height

Unselected Selected Unselected Selected Unselected Selected

CK60 � Segeolane

Entry 1.44** 1.98** 4.15** 4.17** 4.82** 4.69**

Entry � environment 0.93 0.97** 0.40 0.44* 0.22 0.29

CK60 � SC408

Entry 1.82** 2.33** 2.16** 3.40** 3.90** 3.42**

Entry � environment 1.60** 0.86* 0.91** 0.57 0.54** 0.63**

KP9B � Segeolane

Entry 1.53 1.71** 3.06** 3.33** 2.60** 3.78**

Entry � environment 1.24** 0.97 0.96** 0.90** 0.95** 0.75**

KP9B � SC408

Entry 2.05** 2.88** 2.86** 2.22** 2.63** 3.38**

Entry � environment 0.97** 0.82** 0.94** 1.25** 1.02** 0.76**

*Significantly different at P = 0.05 level.
** Significantly different P = 0.01 level.
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Atrazine. Plots were thinned to final populations of
131,000 plants ha�1 at Manhattan and 87,000 plants ha�1 at
Garden City. During the growing season, plots received 396 mm
of precipitation at Garden City, 1991, 397 mm at Garden City, 1992,
and 576 mm at Manhattan, 1992. In 1991, all experimental plots in
Garden City were machine harvested, and grain yield of individual
plots was recorded. Plots were hand harvested in both Garden
City and Manhattan in 1992, and grain yield was obtained from
an area 1 m long and 75 cm wide in each plot. Days to
flowering were recorded as the number of days from planting to
the date when at least 50% of the panicles in a plot were shedding
pollen. After anthesis, plant height was measured from the ground
to the panicle tip and recorded as the average of 2–8 plants per
plot.

2.3. Statistical analysis

Analysis of variance for all traits within each mating and
backcross method was computed for individual environments and
combined over environments. Raw data for each trait were
standardized with a block mean of zero and standard deviation
of 1 to adjust for a significant block effect as suggested by Zavala-
Garcia et al. (1992). Standardized data were used to compute
analyses of variance for each population within an environment
and overall. Replications, blocks, and lines were assumed to be
random. Genetic variance estimates for each population were
estimated by equating the observed mean squares to expected
mean squares and solving for the appropriate component.
Approximate standard errors for genetic variance estimates were
calculated according to the method of Hallauer and Miranda
(1981).

The independent t-test was used to test for differences in the
selected and unselected backcross populations (Ott, 1988). The
difference between the mean yield of an F2-derived line and its
parent was tested by using Fishers protected LSD (Ott, 1988) with
the standard error calculated from the individual population error
mean square. A positive transgressive segregate was defined as a
derived line with a mean yield that exceeded its adapted parent’s
mean yield by at least two standard deviations. The significance of
the difference between the mean of the 10 top-yielding lines and
the mean of the adapted parent was tested by using the LSD
calculated from the individual population error mean square (Cox
and Frey, 1984). Significance of differences among the parents was
tested with the LSD calculated from the error mean squares pooled
over populations.
3. Results

In the combined analysis of variance, interactions of entry by
environment were significant for grain yield, days to flowering,
and plant height for most of the matings in both selected and
unselected populations (Table 1). Significant variation for grain
yield occurred among entries in all populations except in the
unselected KP9B � Segeolane population. The variations captured
by entry and entry by environment interaction were comparable
between selected and unselected populations across all traits. In
general, the genetic variance estimates for the selected popula-
tions were similar to those of the unselected populations across
traits. Although significant entry by environment effects were
observed across traits, many of these interactions were mainly
due to scale change, and the differences in trait values were
generally consistent across environments. Therefore, we present
the results from the combined analysis across environments
unless otherwise specified to show the difference across
environments.

3.1. Mean performance

Mean grain yields across all BC1F2-derived families in Garden
City, 1991, Garden City, 1992, and Manhattan, 1992 were 3.9, 5.8,
and 8.1 mg ha�1, respectively. Mean grain yields were highest in
Manhattan, 1992 because of greater precipitation and more
favorable growing conditions. Generally, both adapted parents,
CK60 and KP9B, flowered earlier than the two exotic accessions,
Segeolane and SC408, and were significantly shorter (Table 2). Of
two exotic accessions, Segeolane was significantly taller and later
flowering than SC408 across all environments. As expected,
significant genotype by environment interaction led to varied
mean grain yields of these four parents across environments.

Compared with unselected populations, a reduced days to
flowering was observed for the selected populations across all
matings and environments except for KP9B � Segeolane in Garden
City, 1992 (Table 3). Reductions in the mean days to flowering were
significant for most of the populations. Plant height of the selected
population was either unchanged or significantly reduced com-
pared with that of the unselected populations in most matings
except for KP9B � Segeolane. For grain yield, out of 12 compar-
isons, there were six cases in which the selected population yielded
significantly lower than its counterparts without selection but only
two cases in which a significant increase in grain yield was
observed in the selected population.



Table 2
Mean grain yield, days to flowering, and plant height for the four sorghum parents

(KP9B, CK60, Segeolane, and SC408) in three environments.

Environment and parent Yield

(mg ha�1)

Days to

flowering

Plant height

(cm)

Garden City, 1991

CK60 3.23b* 72b 100b

KP9B 4.52a 72a 111a

Segeolane 4.56a 81b 176c

SC408 3.23b 76c 127d

Garden City, 1992

CK60 5.93b 70b 131a

KP9B 5.84bc 67a 126a

Segeolane 6.43a 77c 186b

SC408 6.43ac 70b 149c

Manhattan, 1992

CK60 7.50b 75b 143b

KP9B 8.70a 71a 148a

Segeolane 7.70b 79c 219c

SC408 7.60b 74b 185d

* With each environment, estimates of trait mean followed by the same letter

were not significantly different at P = 0.05 level.

Table 3
Means for grain yield, days to flowering, and plant height for the selected and

unselected backcross populations of sorghum grown in three environments.

Environment and mating Selection Yield

(mg ha�1)

Days to

flowering

Plant height

(cm)

Garden City, 1991

CK60 � Segeolane Unselected 3.21 73 118

Selected 4.11* 72* 116

CK60 � SC408 Unselected 3.46 74 123

Selected 3.36 67* 118*

KP9B � Segeolane Unselected 4.62 72 121

Selected 3.63* 70* 137*

KP9B � SC408 Unselected 3.97 71 118

Selected 3.35* 70* 114*

Garden City, 1992

CK60 � Segeolane Unselected 5.80 71 144

Selected 6.00 69* 152

CK60 � SC408 Unselected 5.78 69 165

Selected 5.27* 67* 148*

KP9B � Segeolane Unselected 5.51 68 138

Selected 6.03* 69* 152*

KP9B � SC408 Unselected 4.66 70 143

Selected 4.93 68* 133*

Manhattan, 1992

CK60 � Segeolane Unselected 8.23 76 164

Selected 7.38* 74* 161

CK60 � SC408 Unselected 8.96 75 187

Selected 7.26* 73* 162*

KP9B � Segeolane Unselected 7.48 73 162

Selected 7.40 72* 179*

KP9B � SC408 Unselected 8.49 72 173

Selected 7.90* 72 157*

* Significantly different from the unselected population mean at P = 0.05 level.
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3.2. Progeny distribution

Grain yield of progenies as expressed in standardized units in
the selected and unselected populations fell symmetrically around
the adapted parents, CK60 and KP9B (Fig. 2). There was no obvious
shift in the frequency distribution of the derived lines toward
either higher or lower yielding classes across environments.
Likewise, the proportions of positive transgressive segregates for
grain yield did not have a consistent increase pattern across
matings.

The 10 highest-yielding families of each mating for the selected
and unselected populations were compared with the adapted
parent for grain yield, days to flowering, and plant height (Table 4).
The top families from the unselected and selected populations
Fig. 2. Frequency distribution of progenies of each mating for grain yield expressed in standard units for unselected and selected backcross populations in three environments.



Table 4
Mean grain yield, days to flowering, and plant height expressed as percentages of

the adapted parent for the 10 highest yielding lines of each mating in selected and

unselected backcross populations of sorghum.

Mating Selection Yield Days to

flowering

Plant height

CK60 � Segeolane Unselected 146 102 117

Selected 132 103 117

CK60 � SC408 Unselected 142 101 124

Selected 118 96 113

KP9B � Segeolane Unselected 119 104 111

Selected 122 102 123

KP9B � SC408 Unselected 118 102 113

Selected 112 99 108

Table 6
Number of sorghum lines that had at least a 10% higher grain yield than the adapted

parent and were within the range of the adapted parent for days to flowering and

plant height in three environments.

Mating Garden City, 1991 Garden City, 1992 Manhattan, 1992

CK60 � Segeolane

Unselected 10 12 8

Selected 6 4 0

CK60 � SC408

Unselected 4 0 0

Selected 0 0 0

KP9B � Segeolane

Unselected 4 0 0

Selected 2 4 2

KP9B � SC408

Unselected 0 6 0

Selected 0 0 4
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across all matings yielded higher than the adapted parents. This
increased yield of the top families was accompanied mostly by a
significant increase in plant height.

3.3. Agronomic acceptability and grain yield

Because the adapted parents were the most acceptable in terms
of days to flowering and plant height, we further examined the
proportions of families falling within and outside the range of the
adapted parent (CK60 or KP9B) for days to flowering and plant
height (Table 5). In the current study, agronomic acceptability was
defined by days to flowering and plant height. An agronomically
acceptable plant height or flowering date was either less than or
equal to that of the adapted parent. The proportion of families with
acceptable days to flowering was greater for selected populations
across matings, but no consistent pattern was observed for plant
height. Across all environments, there were few significant
correlations among grain yield, days to flowering, and plant height
in both selected and unselected populations.

An agronomically acceptable family was defined as having at
least a 10% higher grain yield than the adapted parent but with
days to flowering and plant height close to that of the adapted
parent. Contrary to the expectation, the overall proportion of
agronomically acceptable families obtained from unselected
populations (3.7%) was higher than that obtained from the
selected populations (1.8%) (Table 6). This trend was generally
consistent across environments.

4. Discussion

One of the major constraints associated with using exotic
germplasm in an applied plant breeding program is lack of an
efficient method to introduce favorable alleles not currently
present or present at low frequency in the adapted gene pool
Table 5
Proportion of derived lines with days to flowering or plant height falling within and o

Mating Selection Days to flowering

Less than Within

CK60 � Segeolane Unselected 35 25

Selected 59 18

CK60 � SC408 Unselected 36 24

Selected 80 18

KP9B � Segeolane Unselected 23 37

Selected 31 34

KP9B � SC408 Unselected 30 31

Selected 33 34
without reducing the frequency of existing favorable alleles or
lowering the performance of the population (Dudley, 1982;
Halward and Wynne, 1991). Though the traditional F2 or BC1-
based breeding methods are still widely used (Bernardo, 2002),
different types of modification have been examined (e.g., random
matting F2 or BC1 population before selfing and using adapted
populations rather than inbreds for introgression). However,
empirical studies in maize indicated that random mating before
selfing in F2 (Altman and Busch, 1984; Covarrubias-Prieto et al.,
1989; Lamkey et al., 1995) or BC1 (Arbelbide and Bernardo, 2004)
populations are not useful in applied breeding programs. Another
type of modification is replacing the recurrent inbred parent with
an adapted population (Menkir et al., 1994a).

In the present study, selection for adaptation traits before
backcross was compared with the regular backcross without
selection by using four matings derived from two adapted parents
and two exotic accessions. These matings were chosen to cover a
broader range of scenarios. The genetic background of an adapted
parent has previously been shown to have an influence on the
expression of introgressed genes from exotic accessions (Isleib
and Wynne, 1983; Eaton et al., 1986; Bramel-Cox and Cox, 1989;
Menkir et al., 1994a, 1994b). The two exotic parents, Segeolane
and SC408, had diverse origins. For the adapted inbred CK60, each
locus was expected to be fixed, whereas the broad-based
population KP9B was expected to contain a large number of
segregating loci.

Genetic variance is an important factor that can predict the
usefulness of adapted by exotic backcrosses for selection.
Introgressing exotic germplasm into adapted populations can
affect both the level and variability of useful traits within the
population. To improve a quantitative trait when using back-
crossing to introgress exotic germplasm into an adapted popula-
utside the range of the adapted parent.

Plant height

More than Less than Within More than

39 22 21 57

23 21 19 60

40 4 1 95

4 2 6 92

39 30 9 60

31 9 8 83

39 25 9 66

27 35 17 48
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tion, a plant breeder aims to increase the mean sufficiently without
reducing the genetic variance below the level required for selection
(Cox, 1984). Our results showed that selection during backcrossing
did not result in any significant reduction in the genetic variance
for the different traits across environments. Thus, the use of
selection would not be detrimental to genetic gain in this
population.

There are two possible explanations for the results of this
study. First, because only a restricted sample of gametes were
used to make the selected backcrosses in the F2, random changes
in gene frequencies (genetic drift) could have occurred and led to
the reduced means in grain yield in the selected backcross
populations we observed. Second, genetic architecture of plant
height in these populations may be more complex than days to
flowering and subject to epistatic and/or genotype by environ-
ment interaction that made the selection of short plant in
individual F2 plants not effective. Other reasons such as sample
size in progeny testing also may have affected the results. A larger
sample size would be desirable but would have increased the
difficulty involved in conducting the field experiment over
multiple environments. On the other hand, because we essentially
replicated the experiment over multiple populations with
different genetic backgrounds, sample size would not be a
plausible explanation for what we observed. More field testing
is desirable but would be difficult to carry out given the amount of
seeds available and would make the testing process less similar to
the actual breeding process.

Our study has implications for other breeding practices. In
wheat breeding, for example, breeders often exploit the three-way
cross besides F2 or BC1 as the segregating population (Alan Fritz,
personal communication). Instead of selfing the F1 or crossing the
F1 to the adapted parent, breeders may choose a different adapted
parent to cross with F1. This scheme was designed to combine
superior alleles from two elite parents while incorporating the
desirable biotic and abiotic stress tolerance traits from the
unadapted inbred. Although the exact breeding purposes in a
three-way cross may be different from the breeding scheme in our
current study, our findings suggested that little gain is likely to be
expected if a similar selection before backcross is conducted in the
three-way cross.

In summary, selection among F2 plants for agronomic accept-
ability before backcross to the adapted parent did not generate
more agronomically acceptable families with both higher yield and
acceptable levels of plant height and flowering time. The selection
implemented in this breeding scheme also requires an additional
season in a typical growing environment. Consequently, on the
basis of results from the current study, we do not recommend
selection before backcross in either inbred or population-based
introgression process.
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