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Abstract

Phosphate adsorption and desorption studies provide insight for developing P management
strategies. Very few studies have concentrated on P desorption which provides information on the
reversibility of adsorbed P. Phosphate adsorption and desorption studies were carried out on seven
rice-growing soils from three countries in West Africa, with the objective of relating these

Ž .processes to P management strategies for the soils. The standard P requirement SPR of soils,
defined as the amount of P to be added to attain an equilibrium solution concentration of 0.2 mg P
ly1, varied from 42 to 175 mg P kgy1. Out of the seven soils, four required low amounts and the
other three needed relatively higher P applications. The extractability of the adsorbed P in
different extractants was: 0.01 M KCl 32–78%, Olsen P 21–112%, and Bray 1 P 15–40%.
Differences in the amounts of P desorbed by the soils suggested that the critical P levels needed
for P management must be different. Management options to increase P availability in the soils are
suggested. q 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The rain-fed lowland and upland ecosystems in West Africa are very impor-
tant for rice production. Approximately 40% of the lowland and about 70% of
the upland rice is grown in the humid zone of West Africa. Phosphorus
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deficiency has been identified as one of the major limiting factors to crop
Žproduction in highly weathered, low-activity, Ultisols and Oxisols Sanchez and

.Salinas, 1981; Warren, 1992 . Such soils are low in P and the applied P is made
Žunavailable by reactions with iron oxides Juo and Fox, 1977; Mokwunye et al.,

.1986 .
It is important to understand the behaviour of phosphate, especially its

adsorption and desorption by soils, to supplement the information already
Ž .available on P response to direct and residual P Sahrawat et al., 1995, 1997a ,

and calibration of soil and plant tests for developing P management strategies
Ž .for rice-based production systems Sahrawat et al., 1997b, 1998 .While studies

Žhave been made on P adsorption of West African soils Juo and Fox, 1977;
.Owusu-Bennoah and Acquaye, 1989; Owusu-Bennoah et al., 1997 , little atten-

tion has been paid to desorption of the adsorbed P by acid soils used for crop
cultivation in West Africa.

This study was undertaken to evaluate the phosphate adsorption–desorption
characteristics of seven representative rice-growing soils in West Africa and to
relate these with soil properties that can serve as indices for routine characteriza-
tion of phosphate adsorption capacity of the soils.

2. Materials and methods

2.1. Soils

Ž .Surface 0–0.15 m samples of seven highly weathered soils were selected
Ž .Narteh and Sahrawat, 1999 from typical rice-growing areas in Nigeria, Ghana

Ž .and Cote d’Ivoire Table 1 . Soils 1, 2, 3, 4 and 5 were sampled from theˆ
lowlands. Soils 6 and 7 were from uplands and were included for comparison.
The soils were air-dried and ground to pass through a 2-mm screen.

Table 1
List of the soils used

Soil no. Location Classification Vegetation
Ž .FAO 1988

X XŽ .1 Edozhighi, Nigeria 9806 N, 5859 E Dystric Gleysol Derived savanna
X XŽ .2 Ifaki–Ekiti, Nigeria 7814 N, 5808 E Eutric Gleysol Secondary forest

X XŽ .3 Itokin, Nigeria 6836 N, 3832 E Dystric Gleysol Secondary forest
X XŽ .4 Fumesua, Ghana 6854 N, 1835 W Gleyic Arenosol Secondary forest

X XŽ .5 Kikam, Ghana 4853 N, 2814 W Dystric Gleysol Secondary forest
X XŽ .6 Bouake, Cote d’Ivoire 7842 N, 5800 W Eutric Leptosol Forest–Savanna´ ˆ

transition
X XŽ .7 Man, Cote d’Ivoire 7831 N, 7837 W Ferric Acrisol Secondary forestˆ



( )M.K. Abekoe, K.L. SahrawatrGeoderma 102 2001 175–187 177

2.2. Soil analysis

Ž .Soil analysis was done as described in Narteh and Sahrawat 1999 . Particle
size distribution was determined by the pipette method. Soil pH was measured

Ž . Ž . Ž . Ž .in water 1:2.5 , 1 M KCl 1:2.5 , 1 M NaF pH 8.0 1:40, Bolland et al., 1996
Ž . Ž .and 0.5 M NaHCO pH 8.5 1:2.5 . The rationale for determining soil pH in 13

M NaF and 0.5 M NaHCO is to predict phosphate sorption capacity of soils3

from the measured pH. Total P of the soils was determined by digestion with
perchloric acid. Available P was determined using 0.03 N NH Fq0.025 N HCl4
Ž . Ž .Bray 1 at 1:7 soilrsolution ratio Olsen and Sommers, 1982 . Dithionite–

Ž . Ž .citrate–bicarbonate extractable Fe Fe and Al Al were determined asd d
Ž . Ž .described by Mehra and Jackson 1960 and oxalate extractable Fe Fe and Alo

Ž . Ž .Al as described by McKeague 1978 . Iron and Al in the extracts wereo

determined by atomic absorption spectrophotometry.

2.3. Phosphorus adsorption

Phosphorus adsorption data were obtained following Fox and Kamprath
Ž . Ž .1970 . Soil samples 2 g were equilibrated in 50-ml centrifuge tubes with 20
ml of 0.01 M KCl containing 0–400 mg P kgy1 soil as KH PO . The weights2 4

for the tubes containing the 400 mg P kgy1 were recorded for subsequent
desorption studies. A few drops of toluene were added to suppress microbial
activity during incubation and the soil samples were incubated at 258C for 6
days. The suspensions were shaken for 30 min, twice daily on a mechanical
shaker. After equilibration, the samples were centrifuged for 10 min and filtered
through Whatman no. 1 filter paper. The P content in the clear solution was

Ž .determined by the molybdenum blue method Olsen and Sommers, 1982 . Since
there were no significant differences between the duplicates, the average value
of the duplicate analysis was used to calculate the amount of P in solution. The
difference in the amount of P added and that recovered in solution was
considered as P retained by the soil.

A linear form of the Langmuir equation CrXsCrbq1rkb was used to
evaluate the adsorption data. In the equation, C is equilibrium P concentration
Ž y1. Ž y1.mg P l , X is the amount of P sorbed mg P kg , b is the Langmuir
adsorption maximum, and k is a constant related to the binding energy. The b
was determined from the slope of the plot of CrX against C and k was

Ž .calculated from the intercept. Phosphate adsorption buffer capacity PBC was
estimated from the P adsorption curves as the slope of the regression equation
relating P adsorbed to log P concentration. The amount of P required by the

y1 Žsoils to attain a concentration of 0.2 mg P l after 6 days standard P
Ž ..requirement SPR was extrapolated from a graph of P adsorbed against

equilibrium P concentration.
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2.4. Phosphorus release

After separating the P in solution, samples to which 400 mg P kgy1 soil was
added were subjected to a desorption sequence to determine the P release. To
correct for the entrained solution left in the tubes after filtration, the tubes were
weighed and sufficient amount of 0.01 M KCl was added to bring the volume of
solution back to 20 ml. The suspensions were then shaken for 2 h on a

Ž .mechanical shaker Tiessen et al., 1993 , centrifuged and filtered through
Whatman no. 1 filter paper. The P desorbed was determined as previously
described. The desorption was conducted eight successive times and each time
the released P was measured.

Another set of the soils held in centrifuge tubes was incubated for 1 week
with P added at a rate of 40 mg P kgy1. Phosphate desorption cycles were
carried out successively for two times using Bray 1 and Olsen extractants. A
blank without P but only the extractants added was included in the desorption
experiment.

3. Results and discussion

3.1. Soils

The texture and some chemical characteristics of the soils are summarized in
Table 2. The data on particle size distribution, total P, Bray 1 P, organic C and

Ž .DTPA extractable iron are from Narteh and Sahrawat 1999 . Soil pH in various
solutions and extractable Fe and Al fractions were determined in this study.
Apart from soil 2, the soils are acid, low in organic C and available P. The clay
content was low to moderate. The Fe values ranged from 1.8 to 28.6 g kgy1

d

and the Fe rFe ratio was G0.39 except in two soils, indicating that most ofo d

the soils have a high percentage of low-crystalline Fe oxides capable of
immobilising P. In soil 2 situated at the bottom of a toposequence, the clay and
silt content amounted to 962 g kgy1. It is a redoximorphic soil with high pH due

Žto reduction. In addition to its high pH value, the soil had high Fe 28.6 gd
y1. Ž y1.kg and Fe 11.4 g kg values. As was expected from its high pH, the soilo

Ž Ž . y1.also had the highest Ca content 14.8 cmol q kg among the studied soils
Ž . y1 Ž .and a CEC of 30 cmol q kg Narteh and Sahrawat, 1999 .

3.2. Phosphorus adsorption

The P adsorption data for all the soils fitted well to the Langmuir equation
Ž 2 .r )0.972 . The P adsorbed against equilibrium P concentration graphs for

Ž .soils 2 and 3 failed to show a maximum equivalent to a plateau at the highest
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Table 2
Texture and chemical characteristics of the soils

Soil no. pH Sand Silt Clay Total P Bray 1 Org. C Fe–DTPA Fe Fe Fe rFed o o d
y1 y1 y1 y1 y1 y1 y1 y1 y1Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .g kg g kg g kg mg kg mg kg g kg g kg g kg g kgH O KCl NaF NaHCO2 3

1 4.3 3.6 8.8 8.8 333 504 163 162 8 7.8 0.34 4.25 3.18 0.75
2 7.7 6.9 10.0 8.6 38 452 510 1125 3 46.0 0.18 28.7 11.4 0.40
3 4.9 3.9 9.8 8.7 419 366 215 163 8 9.8 0.18 8.80 3.40 0.39
4 5.4 4.2 8.8 8.8 813 142 45 89 12 8.8 0.11 3.88 3.56 0.92
5 5.1 4.0 9.0 8.7 160 490 350 448 5 35.2 0.26 1.85 1.10 0.59
6 6.3 5.0 8.7 8.8 684 228 88 211 10 7.4 0.02 9.63 0.93 0.10
7 5.0 4.1 9.3 8.6 408 294 298 234 6 15.6 0.17 9.53 1.53 0.16

Ž .Source: Partly from Narteh and Sahrawat 1999 .
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Fig. 1. Phosphorus sorption curves showing the relationship between P adsorbed and P in solution
Ž .for seven West African soils 1 to 7 .

equilibrium P concentration and therefore the calculated Langmuir b were
y1 Ž .greater than 400 mg P kg Fig. 1 and Table 3 . The Langmuir b was highest

for soil 3 and lowest for soil 14 and was significantly related to Fe and Fe .d o

The simple linear correlation coefficients between Langmuir P sorption maxi-
mum, percentage of P recovery after eight desorptions and soil characteristics
are shown in Table 4. The Langmuir P sorption maximum was significantly
related to Fe , Fe , Al and to pH determined in 1 M NaF. According tod o d

Ž .Owusu-Bennoah and Acquaye 1989 Al is important for P sorption in many
acid soil of Ghana. There was no significant relationship between P sorption and
pH in water or KCl, clay or organic C.

Table 3
Phosphorus sorption parameters of the soils

y1Ž .Soil no. Langmuir PBC l kg Amount of P adsorbed
y1 y1Ž .mg kg at 0.2 mg P lŽ . Ž .P maximum b Affinity index k

Ž .of solution SPRy1 y1Ž . Ž .mg P kg l mg

1 296 0.97 18.5 50
2 567 1.72 114 80
3 449 4.86 85.4 175
4 277 0.56 14.7 45
5 210 0.63 7.36 44
6 207 0.67 8.10 42
7 369 1.96 54.5 115
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Table 4
Ž .Correlation coefficients r between Langmuir P sorption maximum, desorption and selected soil

characteristics of the seven soils

Ž .Soil property Langmuir P maximum Recovery % of added
P in eight desorptions

pH, H O 0.473 0.4152

pH, KCl 0.586 0.295
))pH, NaF 0.935 y0.286

pH, NaHCO 0.694 0.3493

Clay 0.640 y0.440
Organic C 0.454 y0.367

)DTPA–Fe 0.075 y0.855
)Fe 0.819 0.166d
)Fe 0.832 y0.140o
)Al 0.847 0.189d

Al 0.726 y0.147o

)Significant at 5% levels, respectively.
))Significant at 1% levels, respectively.

The following multiple regression equations are the regressions for Fe andd

Fe separately although it should be noted that Fe may contain Fe :o d o

bs221q5.68Fe q18.03Fe r 2s0.728d o

bsy102q61.4pHq1.31clayy11.3OC r 2s0.667

and indicate that iron oxides accounted for 73% of the variability in P adsorption
whereas pH, clay and organic C together accounted for only 67%. The amounts

y1 Ž .of P required to attain an equilibrium concentration of 0.2 mg l SPR varied
1 Ž .between 42 and 175 mg kgy Table 3 . The SPR of soils 2, 3 and 7 were

Žhigher than reported for some soils in West Africa Adetunji, 1997; Mokwunye
.et al., 1986 , but the second group of soils had SPR within the range for most

West African soils. As expected, the soils with relatively high SPR also had
high Langmuir k, consequently there was a close relationship between them
Ž .Fig. 2 .

Ž .The P buffering capacity, PBC Holford, 1979 , was highest for soils 2, 3 and
Ž .7 Table 3 .

3.3. Phosphorus desorption

Ž . y1 Ž . ŽThe soils retained between 206 soil 6 and 375 mg P kg soil soil 2 Fig.
.3 . The P released during eight successive 2-h extractions with 0.01 M KCl

y1 Ž . y1 Ž .varied from 68 mg kg 32% in soil 5 to 160 mg kg 78% in soil 6. This
suggests that when P is applied to soil 6, it is more easily available to the rice
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Ž .Fig. 2. Relationship between Standard Phosphorus Requirement SPR and the Langmuir affinity
Ž .index k for seven West African soils.

crop than that of soil 5. During extraction, the amount of P remaining retained at
a given equilibrium P concentration in solution was higher than during adsorp-
tion in soils 1, 4 and 5, indicating a low extractability of the bound P in these
soils. Because these soils have low PBC or are poorly buffered, hysteresis was

Ž .pronounced in them Fig. 3 and Table 3 . The opposite was true for soils 2 and
3, in which more P was in solution during desorption than during adsorption.
This is consistent with the proposition that these soils have high PBC and can
maintain solution concentration for a longer time than in the rest of the soils.
The results of the desorption study, therefore, suggest that the critical limit for P
in soil solution in the studied soils may be different and P management
strategies for rice in these West African soils will depend on the soil type.

Except for soil 2, the greatest release of P from each sample into 0.01 M KCl
was at the first step and decreased after the initial extractions, in conformity

Ž .with the results of Dev et al. 1990 . Despite low release, at the end of the eight
successive 2-h extractions with KCl, the solution P maintained by all soils
Ž y1. y10.33–1.72 mg P l was greater than the critical level of 0.2 mg P l . As
judged from its extractability in KCl, these soils can well support rice produc-
tion. For example, in a field study on P response of upland rice on soil 7, it was

y1 Žshown that soil solution P concentration of 0.05 mg l equivalent to about 60
y1. Ž .kg P ha was adequate for optimum yield Sahrawat et al., 1995 . According

to this study, the soil factor that controlled release of the added P in the seven
Ž .soils studied was DTPA-extractable Fe Table 4 , which was negatively and

Ž .significantly correlated with the percent P recovery rsy0.855 .
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After 1 week of incubation of the soils with 40 mg P kgy1, the percentage of
Ž .Olsen-P was consistently greater than Bray 1-P in all soils Table 5 and was

Ž ). Ž .positively related to soil pH rs0.766 . This was evident in soil 2 pH 7.7 ,
in which P released was )40 mg P kgy1 and thus some native P was also

Fig. 3. Phosphorus adsorption and desorption isotherms for the seven soils. The sorption curves
represent a standard sorption isotherm. The seven points along each desorption curve represent a
successive step in the repeated extraction.
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Ž .Fig. 3 continued .

extracted. The relationship between pH and percentage P extracted by the Olsen
reagent may be explained by the high HCOy concentration. The high pH of3

Olsen’s reagent increases the negative charge of the soil, thereby competing
with phosphate ions at ligand exchange sites, resulting in release of P from soils
Ž .Hingston et al., 1972 .
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Table 5
Bray 1 and Olsen extractable P in the soils after 1 week of incubation with 40 mg P kgy1 soil.
Values reported are net amounts of P extracted from soils

Soil no. Extraction 1 Extraction 2 Sum P recovery in
y1 y1 y1Ž . Ž . Ž . Ž .mg kg mg kg mg kg two extractions %

Bray 1
1 9.47 5.27 15.2 38
2 4.94 4.20 9.14 23
3 5.10 3.85 8.95 22
4 8.47 2.87 11.8 28
5 5.86 1.88 7.74 19
6 14.70 1.19 15.9 40
7 3.41 2.74 6.15 15

Olsen
1 21.00 6.10 27.1 68
2 28.80 15.8 44.6 112
3 6.43 1.79 8.22 21
4 16.80 4.98 21.8 55
5 12.60 3.54 16.1 41
6 24.30 4.60 28.9 72
7 5.86 3.56 9.42 24

In contrast, there was no relationship between percentage P extracted by Bray
Ž .1 and pH rs0.009 , indicating that pH was not the main factor controlling the

extraction by the acid reagent. Also, the Olsen reagent extracted more P
Ž . Ž .21–112% than the Bray 1 15–40% at the end of two successive extractions.

3.4. Relationship between pH in Õarious salts and phosphorus retention by soils

The pH in 1 M NaF was between 8.7 and 10.0, showing that Fy replaces
y Ž .OH from soil minerals Perrot et al., 1976a; Bolland et al., 1996 . In 0.5 M

Ž .NaHCO , soil pH was fairly constant at 8.6–8.8 Table 2 . The pH in NaF3
Ž )). Ž ).correlated positively with Langmuir b rs0.935 and Fe rs0.819d

Ž . yTable 4 indicating that both F and phosphate adsorption related to surface
OHy groups mainly of Fe oxides. Rapid laboratory and field tests of soil pH in

ŽNaF have been used to detect allophanic and aluminium-rich soils Perrot et al.,
.1976b . These results are in agreement with those reported by Bolland et al.

Ž .1996 for Australian soils and the test merits further evaluation in soils of the
humid forest zone of West Africa.

4. Conclusions

Based on the study, two categories of soils are presented: soils 1, 4, 5 and 6
are low P-adsorbing soils and require low rates of P additions whereas soils 2, 3
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and 7 will need relatively large amounts of P. In the second group of soils, the
key process in their P management is the amount of P released and made
available for plant uptake.

Soil 2 with the highest P adsorption capacity had all the adsorbed P released
within two extractions by Olsen reagent which suggests that the critical P level
of such a soil will be low despite its high P adsorption capacity. The residual P
effects may be stronger on this soil. On the other hand, our experience with soil
7 shows that residual P effects of applied P in the field decreased tremendously
after the first year of application. Hence, frequent, small rates of P may be
beneficial for rice farmers on soil 7. Addition of organic matter or leaving crop
residues in the field to decompose may reduce P adsorption and increase P

Ž .availability Easterwood and Sartain, 1990 . Breeding for rice varieties that are
adapted to low soil P conditions is currently being pursued by the West Africa

Ž .Rice Development Association WARDA . The use of such cultivars along with
P management practices is seen as promising for the sustainable increase in rice

Ž .productivity in the humid zone of West Africa Sahrawat et al., 2000 .
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