Improved Cultivation Practices for Groundnut

International Crops Research Institute for the Semi-Arid Tropics
Department of Agriculture and Cooperation, Ministry of Agriculture, Government of India
This publication is supported by

Integrated Scheme of Oilseeds, Pulses, Oilpalm and Maize (ISOPOM)

Department of Agriculture and Cooperation
Ministry of Agriculture
Government of India

Project: Development and Popularization of ‘Model’ Seed System(s) for Quality Seed Production of Major Legumes to Ensure Seed-Sufficiency at the Village Level
Foreword

Low groundnut productivity in many developing countries remains a cause of concern to the scientific community and policy makers. Good crop agronomy is crucial in harnessing the full potential of the crop in addition to appropriate variety and quality seed, to facilitate a synergistic effect on crop productivity. This lucidly written farmer-friendly booklet is a treasure trove of information on improved cultural practices in groundnut cultivation which will empower a farmer to make his/her own decision on various components of integrated crop management technology. Although generalized agronomic recommendations are often made, they need to be customized to meet the requirements of specific fields and be compatible with the socio-economic conditions under which farmers function. Information on harvest and post-harvest operations will help ensure that farmers produce high quality groundnuts fetching them a higher price in the market. Given its utility, I am sure this booklet will be translated into several vernacular languages to benefit a wider section of the farming community.

William D Dar
Director General
ICRISAT
Cropping Season

Groundnut can be grown in both rainy (kharif) and postrainy (rabi/summer/spring) seasons in India and other south Asian countries. The optimum air temperature for growth and development of groundnut is between 25°C and 30°C. Temperatures above 35°C can be detrimental to groundnut production. Because of cloudy weather, diseases and insect pests, groundnut yield in the rainy season is lower than in the postrainy season.

Selection of Field and Land Preparation

Groundnut after groundnut in the same field is not advisable as it leads to buildup of diseases and insect pests in the soil. Groundnut should be rotated with a well-fertilized cereal crop. Ideal groundnut soil is well drained, light colored, with sand, loamy sand or sandy loam texture and pH ranging between 6.0 and 6.3. Maintaining soil pH is essential as it affects the availability of nutrients to plants. In case the pH is <5, lime (Ca CO₃) in appropriate form and quantity should be mixed thoroughly into the soil before land preparation or at the time of land preparation so as to bring it into the optimal range. The rate of application of lime depends upon the type of lime, soil type and depth of application. As a general recommendation, it would require 1.5 t ha⁻¹ of lime to raise the soil pH from 5.0 to 6.5.

The field should be cleared of all stubble and plant residues of the previous crop. Un-decomposed plant residues promote growth of disease causing soil borne fungi. For land preparation, ploughing to a depth of 15-20 cm (very deep ploughing should be avoided) and several passes of the harrow to obtain a fine tilth are required. Groundnut can be sown on flat beds or ridges or raised beds separated by furrows. Sowing on raised
beds with 0.4-0.8% slope allows easy drainage of excess water, avoids compaction of seed beds and facilitates field operations as all movements are restricted to furrows.

Selection of Variety

Improved, trade-preferred cultivar recommended for the location and cropping season should be selected for sowing. It should also have resistance/tolerance to diseases and insect pests prevailing in the locality. Some varieties may do well only in a specific growing season.

Quality of Seed

Certified seed purchased from a reliable source or owner saved seed, which is pure (true to type), graded (medium-size), undamaged, fully developed and healthy (free from discoloration and fungal infection) with germination above 90% should be used. Germination test on seeds should be carried out one week before sowing and the seed rate should be adjusted accordingly. Gap filling after 8-10 days of sowing does not help much.

Cultural Practices

Manure and fertilizers

Groundnut responds to residual soil fertility better than the direct application of fertilizers. The crop(s) preceding groundnut should be well fertilized to build up soil fertility particularly for phosphorus (P) and potassium (K). Application of fertilizers and their dose should be based on the nutrient status of the soil as determined by the soil test and the targeted yield. However, general recommendations for groundnut are as follows:

Manure

Farm yard manure (FYM) or Compost: 10-12 t ha⁻¹; 25-30 days before sowing
Introducing green manuring in crop rotation also helps to increase the organic matter content of the soil and improve its structure.

Macronutrients

Nitrogen (N), P and K: 8-20 N, 16-80 P₂O₅, 0-75 K₂O kg ha⁻¹; as basal application

Calcium (Ca): 200-400 kg ha⁻¹ of gypsum at the peak flowering stage as side placement. Calcium is essential for good seed development.

Micronutrients

Many fields are deficient in micronutrients – boron, zinc and sulphur. If soil test shows deficiency of these micronutrients, remedial measures should be taken as follows:

Boron (B): Apply 3-4 kg ha⁻¹ borax to the soil at the time of land preparation. The residual effect of borax should last several seasons. Alternately, 0.1% borax can be sprayed on the crop early in the season to ensure boron uptake before flowering.

Zinc (Zn): Apply 10-20 kg ha⁻¹ zinc sulphate to the soil once in three years at the time of land preparation.

Sulphur (S): Application of gypsum provides adequate sulphur to the crop. Sulphur deficiency is most likely on very sandy soils, which possess little anion exchange capacity.

Iron (Fe): In many calcareous soils, groundnut plants show iron deficiency symptoms.
interveinal chlorosis in young leaves followed by full chlorosis (whitish yellow) of entire leaves). Iron chlorosis can be alleviated by applying ferrous sulphate @ 10 kg ha⁻¹ to the soil or spraying the affected crop with 0.5% ferrous sulphate + 0.2% urea solution. If required, the spray treatment could be repeated at 10-14 days interval.

S-deficiency symptoms in groundnut. Fe-deficiency symptoms in groundnut.

Seed treatments

Rhizobium inoculation: Rhizobium inoculation could be beneficial in newly cleared fields, rice fallows, fields with eroded soils and low fertility. Seeds should be treated just before sowing with *Rhizobium* culture, obtained from a reliable source, following instructions of the manufacturer.

For soil borne diseases: Seeds should be treated with captan (1.5 g) + thiram (1.5 g), carbenazim (2.0 g) or mancozeb (3.0 g) kg⁻¹ of seed or other locally recommended fungicide(s). Seed treatment with *Trichoderma viride* or *T. harzianum* @ 4-5 g kg⁻¹ seed also helps in managing seed and soil borne diseases; please follow manufacturers recommendations of seed treatment.

For soil insect pests: In white grub and termite endemic areas, seed should be treated with chlorpyriphos 20 EC @ 12.5 mL kg⁻¹ seed.

For sucking insect pests: Seed treatment with imidacloprid (17.8 SC) @ 2 mL kg⁻¹ seed gives protection against sucking insect pests (thrips, jassids and aphids) and leaf miner at early stages of plant growth.
Seed dormancy: Virginia varieties have postharvest seed dormancy, which may last for 5-6 months. If such varieties are to be sown immediately after harvest, the seeds should be thinly spread over a tarpaulin or plastic sheet and sprayed thoroughly with etherel 39 EC @ 5 mL L⁻¹ water and air dried just before sowing.

Seed treatment with fungicide/insecticide gives protection up to 30 days after sowing. It should be carried out one or two days prior to sowing. Seeds should be treated first with liquid chemicals and after drying with powder/dust chemicals. If the *Rhizobium* strain is not compatible with fungicide/insecticide (please see manufacturer’s instructions), the culture can be applied in sowing rows following slurry method.

Spacing, sowing depth and seed rate

Spacing: Row to row 30–45 cm and plant to plant within a row 10–15 cm or as recommended for the location; one seed hill⁻¹

A closer spacing for Spanish/Valencia (bunch) cultivars and a wider spacing for Virginia (semi-spreading or spreading) cultivars are recommended.

Sowing depth: 5 cm

Optimum plant population: 330,000 plants ha⁻¹ for Spanish/Valencia cultivars and 1,48,000 for Virginia cultivars

Seed rate: The seed rate will vary depending on seed weight, germination% and row to row and seed to seed spacing adopted. Normally, it may range from 100 kg to 160 kg ha⁻¹.

Sowing method

For sowing, use of seed drill (bullock-drawn or tractor-mounted) is recommended as it results in faster sowing, quicker emergence and uniform plant stand. There should be enough moisture in the soil before sowing to ensure quick and uniform germination. In case of dry sowing, irrigation should be provided soon after, preferably with sprinklers. Flood irrigation should be avoided.
Intercultivation and weed management

It is essential to keep groundnut fields weed free for up to 45 days after crop emergence. Even at later stages it is desirable not to have weeds in the field as they interfere with harvesting. Application of pre-emergence herbicides such as pendimethalin @ 1.0 -1.5 kg a.i. ha$^{-1}$ as spray or fluchloralin @ 1.0 -1.5 kg a.i. ha$^{-1}$ as pre-plant soil incorporation followed by 1-2 hand weeding, as and when needed, effectively reduces weed competition. The last hand weeding can be done along with gypsum application so as to incorporate it in the soil. The plant should not be disturbed once the pegs enter the soil. Interculture in a rainfed crop helps to reduce weeds and also encourages infiltration of rainwater.

Many farmers practice earthing up (mounting soil around the plant) to allow pegs from higher nodes to enter the soil. This practice may promote growth of stem rot causing fungus (*Sclerotium rolfsii*). It also deteriorates the quality of earlier set mature pods while waiting for the later set pods to mature.

Water management

Rainfed crop: Proper arrangements for drainage should be made so that excess rain water does not stagnate in the field. If supplementary irrigation is available, it should be given at critical stages such as flowering, pegging and pod and seed development.

Irrigated crop: Except for crops grown on residual moisture, rabi/summer/spring season crops are fully irrigated. Generally, 600-650 mm water is sufficient to raise a full groundnut crop. A 2-3 week moisture stress soon after crop emergence followed by regular irrigation, often helps in inducing profuse flowering and uniform pod maturity. At pegging and pod and seed development stages, light but frequent irrigation is required. Excessive irrigation at later stages of crop growth may promote pod and seed diseases at maturity. The preferred method of irrigation is sprinkler irrigation. Flood irrigation, often practiced in flat sowing in south Asia, is not a good method of irrigation as it wastes water, results in over watering and trampling of plants in the field by workers engaged in irrigation.
Plant Protection

There are a number of disease/insect pest management measures, including use of resistant cultivars, cultural, chemical and biological. Growing resistant/tolerant cultivars is the most economic and efficient measure. In case the level of resistance in a preferred cultivar is not high enough, other approaches should be combined to obtain better protection against diseases and insect pests.

For high volume sprayers, 450-500 L and for low volume sprayers 225-250 L water is required to cover 1 ha. While using chemicals, protective clothing should be worn and proper care should be taken to dispose empty bottles/cartons of chemicals in a safe manner.

Diseases

Rust and early- and late-leaf spots

If both rust and leaf spots occur together, chlorothalonil 75 WP @ 750 g a.i. ha⁻¹ should be sprayed on the crop. If only leaf spots appear, use carbendazim 50 WP @ 250 g a.i. ha⁻¹ or mancozeb 50 WP @ 500 g a.i. ha⁻¹. If only rust is seen, use calixin 80 EC

Rust. Early leaf spot. Late leaf spot.
@ 250 ml a.i. ha⁻¹. For effective control, fungicides should be applied immediately after the appearance of symptoms. Further applications should be made at 10-15 days interval until 2-3 weeks before harvest. A close monitoring of the crop can help to reduce the number of sprays to the minimum.

Collar rot/stem rot

These diseases can be managed by treating seeds with seed dressing fungicides or *T. viride* or *T. harzianum* (Please see ‘Seed treatments’ on page 4) or soil application of *T. viride* or *T. harzianum* @ 2.5 kg (incorporated in 50 kg FYM or castor cake) ha⁻¹ at the time of sowing.

Aflatoxin

Aflatoxin, a carcigenic toxin, is produced in groundnut seed by *Aspergillus* group of fungi. The fungus can infect the pods in the field when they are developing, during harvesting and curing and in storage. End-of-season drought predisposes pods to fungal infection. It is essential to minimize aflatoxin contamination of the produce as it affects human and livestock health and restricts the international trade of the commodity. The following precautions can be taken to minimize aflatoxin contamination: growing tolerant varieties, applying *Trichoderma viride* @ 1 kg (mixed with 50 kg FYM) ha⁻¹ to the soil at the time of sowing and gypsum at peak flowering, light but frequent irrigation (if available) during pod and seed development stages, avoiding mechanical damage to pods during weeding, harvesting, curing, threshing and storage, control of soil insects, harvesting at optimum maturity (in case of severe drought, the crop should be harvested early), drying the pods to <8% moisture content, removal of immature, discolored and damaged pods from the produce, not mixing the gleanings (leftover pods collected from the soil) with main produce.
and protection from storage insect pests. Immature pods should be removed from the haulms before feeding them to livestock.

Peanut bud necrosis disease (PBND) and peanut stem necrosis disease (PSND)

Seed treatment with imidacloprid (Please see ‘Seed treatments’ on page 4) provides initial protection for 30 days after sowing through control of thrips vectors. Field sanitation, removal of weed hosts (particularly Parthenium in and around groundnut fields in case of PSND) and cultural practices such as timely sowing, optimum plant population and intercropping and border cropping with fast growing tall cereal crops offer best solution to contain these diseases.

Insect pests

Tobacco caterpillar (Spodoptera), Gram pod borer (Helicoverpa) and Red hairy caterpillar (Amsacta)

These defoliators inflict economic losses only when the foliage damage exceeds 25%.

Integrated pest management (IPM): Includes growing of resistant/tolerant cultivar, growing of trap crop such as sunflower and castor bean on borders or in groundnut field (1 plant 20 m2), destroying of egg masses on trap crops and groundnut plants by hand, encouraging larvae predation by birds by providing perches in the field (10-15 ha$^{-1}$)
and application of nuclear polyhedrosis virus (NPV) @ 250 LE ha\(^{-1}\), obtained from a reliable source and neem seed kernel extract @ extract obtained from 10 kg neem seed powder ha\(^{-1}\).

Tobacco caterpillar. **Gram pod borer.** **Red hairy caterpillar.**

Chemical control: Chemical control should be followed as a last resort when there is absolute necessity. Apply endosulfan @ 350 mL a.i. ha\(^{-1}\), or monocrotophos @ 300 mL a.i. ha\(^{-1}\) or fenvalerate @ 100 mL a.i. ha\(^{-1}\) or indoxacarb @ 70 mL a.i. ha\(^{-1}\) or spinosad @ 45 mL a.i. ha\(^{-1}\) if defoliation exceeds 25\%, or if one or more larvae per plant is observed during the first 50 days after seedling emergence (DAE).

For red hairy caterpillars, digging a 15-20 cm deep trench all around the field and placing *Ipomea* or some other plant twigs in them can restrict the migrating caterpillars to the trench, where they could be destroyed manually or by spraying fenvalerate @ 1 mL L\(^{-1}\) water. Alternately, a short barricade of polythene fence (10 cm high) across the migrating route can prevent their entry into the field and they can be collected manually and destroyed.

Groundnut leaf miner

Chemical control is recommended if 5 or more active larvae plant\(^{-1}\) are found up to 30 DAE, 10 larvae plant\(^{-1}\) between 30-50 DAE, or 15 larvae plant\(^{-1}\) at 51 DAE or later. Apply dimethoate @ 200-250 mL a.i. ha\(^{-1}\) or monocrotophos @ 150-200 mL a.i. ha\(^{-1}\) or imidacloprid @ 25 mL a.i. ha\(^{-1}\).
Aphids, Thrips and Jassids

For aphids, apply dimethoate @ 200-250 mL a.i. ha\(^{-1}\) when all the terminal buds in a young plant are infested. Only when five thrips per terminal leaf (folded) are observed before 20 DAE, apply imidacloprid @ 25 mL a.i. ha\(^{-1}\) or dimethoate @ 200-250 mL a.i. ha\(^{-1}\). If 10% of the total leaves show hopper burn (‘V’ shaped yellowing at the leaf tip), imidacloprid @ 25 mL a.i. ha\(^{-1}\) or dimethoate @ 100-200 mL a.i. ha\(^{-1}\) should be sprayed for control of jassids.

![Aphids. Thrips damage. Jassid damage.](image)

White grub

Apply thimet 10 G or carbofuran 3 G @ 1 kg a.i. ha\(^{-1}\) in seed furrows just before sowing or treat seeds with chlorpyriphos 20 EC @ 12.5 mL kg\(^{-1}\) seed.

![A white grub larva.](image)

Termites

Seed treatment with chlorpyriphos (Please see ‘Seed treatments’ on page 5) provides protection up to 30 days after sowing. Chemical control in rainfed crop at later stages is difficult and expensive. However, some cultural practices such as destroying the termite mounds in the vicinity of the field, removal of plant residues and debris from the field and timely harvest can help to minimize the damage.

Harvest and Postharvest Operations

Harvest at maturity

Optimum harvest time is determined by uprooting a few representative plants from different spots in the field around the expected time of maturity and checking the inner side of the pod shell, which shows
black color when mature. When 75-80\% pods in case of Spanish/Valencia cultivars and 70-75\% pods in case of Virginia cultivars show internal pericarp darkening, the crop is ready for harvest. If sprouting of seeds is observed in Spanish/Valencia cultivars (due to rains at harvest time in cultivars lacking fresh seed dormancy), the crop should be harvested as soon as the conditions permit without waiting for 75-80\% of pods to mature. Over maturity or delay in harvesting can result in greater pod loss in the soil and deterioration in pod quality.

Drying and curing

Lift the plants, and invert them with the pods uppermost in windrows for about 2-3 days. Pick the pods (preferably by thrasher) and spread them out in a thin layer to sun-dry for a further 3-4 days. The seeds in well-dried pods should have less than 10\% moisture content. In the postrainy season, when temperatures at the time of harvesting are high, the harvested plants should be assembled in circular heaps with pods facing inside so as to avoid their direct exposure to the sun. The pods should be shade-dried to maintain seed viability.

Storage

It is important to remove all damaged, discolored, rotted, immature and sprouted pods, other plant materials and soil from the produce before storage. Under unfavorable conditions, groundnut seed loses viability quickly.

Commercial produce

Well cleaned, dried, mature pods free from plant debris, soil and other inert materials should be stored in gunny bags in a well-
ventilated rodent free room for marketing. The bags should be placed on wooden planks and should not be stacked very high. If longer storage is needed for marketing reasons, proper care should be taken to avoid storage insect pest infestation. Only safe chemicals, if needed, should be used.

Seed purpose

Only sound, mature, clean and well filled pods from ‘true to type’ plants should be selected for seed purpose. Well-dried pods with about 5% moisture content should be stored to avoid fungal and insect pests attack in storage. The pods should be stored in polythene-lined gunny bags or in some other safe storage structure in a well-ventilated and rodent free room, which is not in general use and out of bounds to children. The bags should be placed on wooden planks (not more than five in a stack) and away from walls to avoid damage from dampness and should be protected from storage pests by dusting the bags with 5% lindane or 5% malathion dust. In case of pest outbreak in storage, the bags should be fumigated with celphos (tablets) @ 3 g bag⁻¹ (40 kg bag) and under cover with polythene sheet for 4-5 days.
(For more information, please contact SN Nigam at: Phone # (91)-(40)-30713584, E-mail s.nigam@cgiar.org and mailing address ICRISAT Center, Patancheru 502 324, AP, India.)
About ICRISAT

The International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) is a non-profit, non-political organization that does innovative agricultural research and capacity building for sustainable development with a wide array of partners across the globe. ICRISAT’s mission is to help empower 600 million poor people to overcome hunger, poverty and a degraded environment in the dry tropics through better agriculture. ICRISAT belongs to the Alliance of Centers of the Consultative Group on International Agricultural Research (CGIAR).

Contact Information

ICRISAT-Patancheru (Headquarters)
Patancheru 502 324
Andhra Pradesh, India
Tel +91 40 30713071
Fax +91 40 30713074
icrisat@cgiar.org

ICRISAT-Liaison Office
CG Centers Block
NASCo Complex
Dev Prakash Shastri Marg
New Delhi 110 012, India
Tel +91 11 32472306 to 08
Fax +91 11 25841294

ICRISAT-Nairobi (Regional hub ESA)
PO Box 39063, Nairobi, Kenya
Tel +254 20 7224550
Fax +254 20 7224001
icrisat-nairobi@cgiar.org

ICRISAT-Bamako
BP 320
Bamako, Mali
Tel +223 2223375
Fax +223 2228683
icrisat-w-mali@cgiar.org

ICRISAT-Bulawayo
Matopos Research Station
PO Box 776,
Bulawayo, Zimbabwe
Tel +263 83 8311 to 15
Fax +263 83 8253/8307
icrisatzw@cgiar.org

ICRISAT-Lilongwe
Chledezi Agricultural Research Station
PO Box 1096
Lilongwe, Malawi
Tel +265 1 707297/071/067/057
Fax +265 1 707298
icrisat-malawi@cgiar.org

ICRISAT-Niamey (Regional hub WCA)
BP 12404
Niamey, Niger (Via Paris)
Tel +227 20722529, 20722725
Fax +227 20734329
icrisatsc@cgiar.org

ICRISAT-Maputo
c/o IIAM, Av. das FPLM No 2698
Caixa Postal 1906
Maputo, Mozambique
Tel +258 21 461657
Fax +258 21 461581
icrisatmoz@panintra.com

Visit us at www.icrisat.org

368-2007