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1. Introduction 

1.1 Importance of soil organic matter prediction 
Concern over global problems induced by rising CO2 has prompted attention on the role of 
forests and pastures as carbon ‘storage’ because forests and pastures store a large amount of 
carbon in vegetation biomass and soil. Soil organic matter (SOM) plays a critical role in soil 
quality and has the potential to cost-effectively mitigate the detrimental effects of rising 
atmospheric CO2 and other greenhouse gas emissions that cause global warming and 
climate change(Causarano-Medina, 2006). 
SOM, an important source of plant nutrients is itself influenced by land use, soil type, parent 
material, time, climate and vegetation (Loveland &Webb, 2003). Important climatic factors 
influencing SOM include rainfall and temperature. Within the same isotherm, the SOM 
content increases with increase in rainfall regime. For the same isohyet, the SOM content 
increases with decrease in average annual temperature. Within the same landscape unit, the 
SOM pool rises with increase in clay content and available water-holding capacity in the 
root zone (Lal, 2001). SOM is also one of the important factors affecting soil quality, 
sustainability of agriculture, soil aggregate stability and crop yield (Loveland &Webb, 2003).  
Dynamic soil properties such as organic carbon as well as static soil properties need to be 
monitored and managed (Sullivan et al., 2005). The application of quantitative soil–
landscape modeling (McKenzie et al., 2000), precision agriculture (Thomasson et al., 2001), 
and global soil carbon monitoring (Post et al., 2001) necessitate more affordable (Lu et al., 
1997), accurate (Blackmer &White, 1998), and simple methods to estimate SOM 
concentration. Study in environmental monitoring, modeling need good quality soil data 
generated in a cost-effective manner to develop, rapid and cost-effective methods of soil C 
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analysis. There is need to develop methods that use the minimum number of soil analysis to 
reduce and minimize cost for preparing SOM maps to support precision agriculture  
(Wetterlind et al., 2008), quantitative soil-landscape modeling (McKenzie et al., 2000) and 
global soil C monitoring (Post et al., 2001).  

1.2 SOM and remote sensing 
High resolution secondary information such as RS could be used to provide greater details 
as an alternative to less extensive soil measurements like SOM (Causarano-Medina, 2006). It 
is hypothesized that RS imagery may play a role in aiding the detection of SOM variability 
in natural landscapes through the relationship between SOM and forage growth conditions, 
since the latter has been shown to be highly correlated with RS data  
Recent research has suggested that spectral bands are correlated with soil properties and 
could minimize the cost of prediction of soil physical, chemical and biological characteristics 
(e.g. Roy et al., 2006). SOM plays a critical role in influencing chemical and physical 
processes in the soil environment; and SOM also affects the shape and nature of a soil 
reflectance spectrum. Generally, soils with higher in organic matter appear darker. It is 
proposed that correlation among reflectance in spectral bands and soil properties could 
provide cost effective prediction of SOM (Ladoni et al., 2010).  
 The wide spectral range  proposed by different workers to estimate SOM content suggests 
that SOM is an important soil component across the entire spectrum. Soil minerals, organic 
matter, and moisture are the major components of soils, with distinct spectral features in the 
visible and near-infrared regions (Henderson et al., 1992). The essential characteristics 
related to various constituents of SOM generally occur in the mid to thermal-infrared range 
(2500–25, 000nm), but their feeble overtones and combinations of these essential vibrations 
due to the curving of NH, OH and CH groups dominate the NIR (700–2500 nm) and the VIS 
(400–700 nm) portions of the electromagnetic spectrum(Shepherd &Walsh, 2002). In the VIS 
range, important bands for the prediction of SOM are around 410, 570, 660and 520, 540 and 
550 nm(Brown et al., 2006). Organic matter decreases the reflectance in the range 550–700 
nm(Galvao &Vitorello, 1998) or it results in a concave curve for larger OM contents and a 
convex one for smaller amounts of OM in the 500–1300 nm range (Huete &Escadafal, 1991). 
Henderson et al. (1992) found that reflectance of organic matter extracted from four Indiana 
agricultural soils strongly correlated with organic C content and significantly responded to 
the concentrations of Fe and Mn oxides in the visible range for soils developed  from the  
same parent material. A portable near-infrared spectrophotometer designed by Sudduth 
and Hummel (1993) was used to predict soil organic matter (R2= 0.85), moisture (R2=0.94), 
and CEC (R2= 0.85) in soils from Illinois (Sudduth &Hummel, 1993); and it concluded that 
the prediction of these soil properties became less accurate as the geographic range of 
samples increased . 
Recently, NIR  technique was developed for in-field analysis of soil properties (Christy et al., 
2003). Near-infrared spectra are produced by weak overtones and combinations of 
fundamental vibrational bands for H–C, H–N, and H–O bonds from the near- and mid-
infrared region (Christy et al., 2003; Sorenson &Dalsgaard, 2005). Since  organic matter in the 
soil mainly consists of C, H, O and N elements, the NIR measurements are greatly affected 
(Sorenson &Dalsgaard, 2005). Christy et al. (2003) showed that NIR spectra were related to 
soil carbon in agricultural fields of central Iowa and Kansas. Suchenwirth et al. (2010) 
modeled the distribution of organic carbon stocks  in floodplain soils with remote sensing 
data and additional geoinformation. 
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Chen et al. (2005) examined the relationship between SOM content in the upper 15 cm of the 
soil profile and selected parts of the spectrum from the image by two different methods. In 
the first method, an equation was used to calculate the surface SOM concentrations for each 
pixel with the resulting values grouped into one of eight classes. In the second method, the 
image was classified into 20 groups and the above equation was applied to the classified 
result. Finally, the original 20 groups were sub-grouped further into eight classes. There was 
good agreement between the measured and the predicted values for both the methods in all 
of the images (Chen et al., 2005).  

1.3 Artificial neural network modeling 
ANNs provide a method to characterize synthetic neurons to solve complex problems in the 
same manner as the human brain does. For many years, especially since the middle of the 
last century, an interest in studying the brain’s mechanism and structure has been 
increasing. This growing research interest has led to the development of new computational 
models, connectionist systems or ANNs, based on the biological background, for solving 
complex problems like pattern recognition, and fast information processing and adaptation 
(Huang, 2009).  
Neural networks use machine learning based on the concept of self-adjustment of internal 
control parameters. An artificial neural network is a non-parametric attempt to model the 
human brain. Artificial neural networks are pliable mathematical structures that are 
capable of identifying complex non-linear relationships among input and output data 
sets. The principal differences between the various types of ANNs are arrangement of 
neurons and the many ways to assess the weights and functions for inputs and neurons 
(training).  
Application of statistical methods, in SOM estimation,  has been limited, because of 
oversimplification, illiteracy of complex nonlinear interactions. Another approach in dealing 
with nonlinear systems is to use non-linear methods such as ANN. ANN has been 
successfully used in the classification and prediction (Zhang &McGrath., 2004). The 
potential benefits of this method include greater prediction credibility, cost-effective 
estimation and solving complex problems involving nonlinearity and uncertainty. 
There are a variety of ANN architectures, such as multi-layer perceptron. The multilayer 
perceptron (MLP) neural network has been designed to function well for non-linear 
phenomena. A feed forward MLP network consists of a layer of input neurons and output 
layer with selected  number of input and output neurons, respectively with one or more 
hidden layers in between the input and the output layer with some number of neurons on 
each (Melesse, 2005). 

1.4 Objective 
No investigation has been made in the semiarid regions to use non-linear and intelligent 
models to predict surface SOM using imagery data. Therefore, the objectives of this study 
were to (i) predict SOM in the hilly regions using an ANN and multiple linear regression 
(MLR) modeling, (ii) compare the efficacy of two models to predict SOM using remotely 
sensed data, and (iii) identify the most important bands and ratios for explaining the 
variability of SOM based upon the ANN modeling using sensitivity analysis  at two selected 
sites under rangeland and forested land in central and western Iran, respectively.  
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2. Methods and materials  

2.1 Description of the studied sites 
This study was conducted at two sites in the hilly region. One site was under natural 
rangeland and located in Semirom region, Isfahan province, Central Iran (site1), the second 
site was under natural forested land located in Lordegan region in the Charmahal and 
Bakhtirai province, west of Iran (site 2) (Fig.1). General description of the selected sites is 
presented in Table 1. Soil temperature and moisture regimes of the selected sites were mesic 
and xeric for site1, and thermic and xeric for site 2, respectively.  
 

 
Fig. 1. Location of the sites studied in western and central Iran 

 

Site 
Land 
use 

Long. Lat. 
Elevation 

(a.s.l) 
(m) 

Mean 
annual 

temperature 
(C) 

Mean 
annual 

precipitation 
(mm) 

Lateral 
slopes 

(%) 

Soil 
classifications 
(USAD, 2008) 

Parent 
material 

1 
Range 
land 

51˚˚ 39΄΄ E 31˚ 18΄ N 2500 10.6 350 20-30 
Typic 

Calcixerepts 
Quaternary 

deposits 

2 Forest 50˚  32΄ E 32˚ 03΄ N 1800 15 600 20-40 
Typic 

Calcixerept 
Quaternary 

deposits 

Table 1. General description of the two selected sites in central and west of Iran  
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2.2 Soil sampling and laboratory analysis 
A total of 125 soil samples were collected from the study site1 in October 2008 following 
grid sampling strategy on a regular 350× 350m grid, and a total of 108 soil samples were 
collected at site 2 in September 2009 following a randomly stratified sampling scheme (Fig. 
2). Prior to analyses for physical and chemical characteristics, the soil samples were air-dried 
for two weeks and ground to pass through a 2 mm sieve to remove stones, roots and large 
organic residues. Soil organic carbon was determined using a wet combustion method 
(Nelson & Sommers, 1982). 
 

    
Fig. 2. Spatial distribution of the sampling points within the landscapes (a): Hilly range 
lands in Semiroum region, central Iran, (b): hilly forest Querqus in Lordegan region, western 
Iran.  

2.3 Descriptive statistical analysis 
Descriptive statistics such as means, minimum, maximum, coefficient of variation (CV) and 
skewness were determined (Wilson &Gallant, 2000). The coefficient of variation was utilized 
to explain the variability in soil organic carbon. 

2.4 Remote sensing data  
The remote sensing data used to build the model in this study included the Landsat ETM 
band 1, 2, 5 and band 7 and combination of bands 3 and 4 for the calculation of NDVI, with 
spatial resolution of 30 x 30 m. The acquisition date of the image was 22 June 2001. The 
subset image covering the study area was then geometrically corrected using the landform 
map of Iran 1:25000 scale as the reference. All image processing was performed  using 
ILLWIS software. 
The spectral characteristics used in this study consisted of single band data (i.e. the digital 
number of band 1, 2, 5 and 7) and vegetation index (NDVI). These data were then used as 
inputs in ANN modeling. 
The NDVI is known to be closely related to biophysical crop characteristics, such as 
absorption of photosynthetic active radiation and productivity (Rondeaux, 1996; Pettorelli, 
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2005) and  its values range between -1 and +1. High positive values usually reveal the 
occurrence of dense green vegetation, pointing to an optimum state of water and nutrient 
supply. Low NDVI values express limited photosynthetic activity and negative ones 
correspond to sparse ground coverage (Huete, 1994). NDVI was calculated as the 
reflectance ratio from near-infrared (NIR) and red channel (R) of satellite or airborne 
sensors as follows:   
 

  

(1) 

2.5 Artificial neural network development 
In this research, MLP with back propagation learning rule was used. The MLP network  
(Fig.3) is the most commonly used network in engineering problems relative to non-linear 
mapping (Haykin, 1994). Back propagation was developed by Rumelhart et al. (1986) and is 
one of the widely implemented of all neural network paradigms. It is based on a multi-
layered feed forward topology with supervised learning. Back propagation uses a type of 
gradient descent method, following the slope of the error surface downwards toward its 
minimum (Rumelhart, 1986; Melesse, 2005). 
 

 

Fig. 3. Multilayer perceptron neural network used for the estimation of SOM  

The learning process is performed using the well known back propagation (BP) algorithm, 
which is based on the delta learning rule (Rumelhart, 1986). Two main processes are 
implemented in a BP algorithm, a forward pass and a backward pass. In the forward pass, 
an output pattern is presented to the network and its effect propagated through the 
network, layer by layer. For each neuron, the input value is calculated as follows (Haykin, 
1994): 

NIR-R
NDVI

NIR+R


X

X

X

X

Y=SOM 

Output layer Hidden layer Input layer 
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where  
n
inet  is the input value of ith neuron in nth layer;  

n
jiw  is the connection weight between ith neuron in nth layer and jth neuron in the (n-1)th 

layer;  
1n

jO   is the output of jth neuron in the (n-1)th layer;    
m   is the number of neurons in the (n-1)th layer.  
In each neuron, the value calculated from Eq. (2) is transferred by an activation function. 
The common function for this purpose is the sigmoid function,  and is given by: 

 ( ) 1 /(1 ( ))n n
j jSig net Exp net    (3) 

The output of each neuron computed and propagated through the next layer until the last 
layer. Then, the final computed output of the network is prepared to compare with the 
target output. In this regard, an appropriate objective function such as the root mean square 
error (RMSE) is calculated as follows (Degroot, 1986).   
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where 

pjT  is the jth element of the target output related to the pth pattern; 

pjO  is the computed output of jth neuron related to the pth pattern; 

pn  is the number of patterns; 

on  is the number of neurons in the output layer. 
After calculating the objective function, the second step of the BP algorithm, i.e. the 
backward process is started by back propagation of the network error to the previous layers. 
Using the gradient descent technique, the weights are adjusted to reduce the network error 
by performing the following equation (Rumelhart, 1986): 

 ( 1) ( )
( )n n

ji m ji mn
ji

E
w w

w
 


   


 (5) 

where,  

( 1)
n
ji mw   is the weight increment at the (m+1)th iteration (Epoch); 

  is the learning rate  
  is the momentum term (0 , 1)   . 
This process was continued until the allowable network error was obtained. For designing 
the artificial neural network, the measured field data were used. The data set was shuffled; 
60% of them were used for the learning process, 20% sets were used for testing, and the 
remaining 20% sets were used for verification, respectively. The data sets for learning, 
testing, and verification processes were selected randomly at different points on the 
landscape in the field to avoid bias in estimation. In this study, ANN modeling was 
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performed using MATLAB software package (MATLAB. 2008). The number of neurons in 
input and output layers depend on the independent and dependent variables, respectively. 
The network was designed with 5 parameters (i.e. the digital number of band 1, 2, 5 and 7 
and NDVI) as input pattern and SOM as the output parameters. 
The number of hidden layers, number of neurons in the hidden layers, the parameter , and 
the number of iterations were selected by calibration through several test runs and trial and 
error (Marquardt Levenberg learning rule). Various activation functions were tested for 
MLP neural networks and the tansigmoid function presented the best results. 

2.6 Sensitivity analysis 
Sensitivity analysis was performed so that a better understanding of the importance of each 
input on the output could be examined. Thus, sensitivity analysis was performed to 
investigate a behavior of input variables. In order to identify the most important band of 
ETM+ and vegetation index explaining the variability of  SOM, sensitivity analysis was 
done using the StatSoft method(StatSoft, 2004). 
A sensitivity ratio was calculated by dividing the total network error when the variable was 
treated as being not variable by the total network error when the actual values of the 
variable were used. A ratio greater than 1.0 implied that, then, the variable made an 
important contribution to the variability in soil organic matter. The higher the ratio, the 
more important the variable (StatSoft, 2004; Miao, 2006). 

2.7 Multivariate statistical regression  
Multivariate statistical regression was selected to model the relationships of selected 
variables with soil organic matter concentration. Multivariate statistical regression 
concentrated to find the combination, which is called as the linear discriminate function 
against the variables and the discriminate score. The linear expression is as follows:  

 0 1 1 2 2 ... n nD B B X B X B X      (6) 

where   D is a discriminate score 
             B0 is an estimated constant 
             Bn are the estimated coefficients 
             Xn are the variables 

2.8 Performance of the methods 
Two statistical parameters were used for performance analysis: coefficient of determination 
(R2) and root mean square error (RMSE). RMSE is one the most commonly used statistical 
parameters, which expresses the mean differences between estimated and observed values 
(Uno et al, 2005, Douaoui et al. 2006). The data set for comparison of two approaches (MLR 
and ANN) was selected similarly. In addition, the performance of each model was evaluated 
by plotting the estimated value against the actual value and by testing the statistical 
significance of regression parameters 

3. Results and discussions 

3.1 Descriptive statistics 
The descriptive statistics and variation in SOM are given in Table 2. The SOM content in site 
1 under natural range land varied from 0.33 to 2.2%, whereas in the site 2 under forest it 
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varied from 1.5 to 5.4 %. It is obvious that  significant increase in SOM  is attributed to 
greater precipitation and higher biomass production in site 2 under forest than in site1. The 
remote sensing data and SOM, were normally distributed as confirmed by the Kolmogorov-
Smirnov (K-S)) test and the values on skewness. SOM had moderate variability (CV=34% for 
site1 and CV=32% for site2) for the two sites studied. It seems that this variability in SOM 
depends on the landscape position, causing differential accumulation of water at different 
positions of landscape (over the landscape), resulting in variability in SOM content.  
 

Variable Unit No Min Max Mean CV% Skewness Range 
 SOM(Site 1) % 125 0.33 2.20 0.81 34 0.29 1.87 
SOM(Site 2) % 108 1.50 5.40 2.33 32 -0.54 3.90 

Min: Minimum; Max: maximum; CV: Coefficient of variation; SOM: soil organic matter 

Table 2. Descriptive statistics of SOM variability in the two sites studied  

The correlation coefficients among variables (Table 3) showed that the correlation 
coefficients between SOM with band 1, 2, 5 and 7 were negative, and correlation between 
SOM and NDVI was significantly positive, (α = 0.010).  
 

Site Variable Band1 Band2 Band5 Band7 NDVI 
1 SOM -0.47** -0.48** -0.28* -0.44** 0.45** 
2 SOM -0.23* -0.20* -0.21* -0.32** 0.78** 

**Significant at99% probability        *Significant at 95% probability 

Table 3. Pearson correlation coefficients  of  SOM  with remote sensing data variables at the 
two sites studied, in Iran 

The soil generally has reflectance spectra in the 1100–2500 nm range, containing three 
distinct absorption peaks around 1400, 1900 and 2200 nm with a few small absorption peaks  
between 2200 and 2500 nm (Chang &Laird, 2002). Chen et al. (2000) related surface organic 
matter content to image intensities in the red, green, and blue bands of the visible spectrum 
and discovered a good agreement between the measured and the predicted values with R2 
varying from 0.97 to 0.98 (Chen, 2000).  

3.2 Multiple linear regression analysis 
The results of the multivariate linear regression are presented in Table 4. In these data,  SOM 
denotes the soil organic matter concentration and Band 1 and 2 present digital numbers of 
ETM, NDVI present the normalized difference vegetation index. 
The results revealed a moderate relationship between the measured SOM contents and the 
predicted ones with the R2 of 0.54, implying  that we can predict the soil organic matter 
concentration at 54% confidence with  ±26% error (e.g. soil organic matter of 0.5 would be 
predicted to vary from 0.37 to 0.63). The results showed that the MLR models explained 54 
% of the total variability  in  SOM  at  the rangeland site. On the other hand, MLR model 
could explain 77% of variability in SOM  at the forested site. This means that SOM content 
can be explained through independent variables band 1, 2 and NDVI by 54 and 77 percent 
for rangeland and forested sites respectively, whereas 46 and 23% left might be explained by 
other variables not used in the model, and the results also indicated the existence of 
nonlinear interactions between variables. 
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Site Regression model R2 MAE RMSE 
1 SOM(%)=2.433-0.011(Band2)+3.872(NDVI) 0.54 0.18 0.26 
2 SOM(%)= 1.3766+4.78(NDVI) -0.012(Band1) 0.77 0.09 0.13 

SOM: Soil organic matter; . MAE: Mean absolute error, RMSE: Root mean square error. NDVI: 
Normalized difference vegetation index. 

Table 4. Stepwise linear regression parameters used to estimate SOM  at  the two selected 
sites in Iran. 

When five independent variables were used in stepwise regression analysis, the output 
showed that the frequency of band2 and NDVI for site 1 and NDVI and band1 for site 2. 
Band 2 and 1 have negative relationship and NDVI has positive relationship with soil 
organic matter content as shown by the regression model. In these formulations, the SOM 
content increases with decrease in band2 and band 1 and SOM pool rises with increase in 
NDVI. 
Multivariate statistics has widely been used to exploit the relationships between spectral 
characteristics and SOM content. For exmaple, Mc Carty and Reeves (2006) predicted  SOM 
using multivariate analysis and spectral response in the near infrared (NIR) regions of the 
electromagnetic spectrum 

3.3 ANN's structure optimization 
The data on best structure having optimum parameters (Table 5) of the final selected ANN 
model could be used to predict the SOM. Finding the optimum number of hidden neurons 
in the hidden layer is an important step in developing MLP networks. The hidden-layer 
nodes were determined to be 10 for the two sites studied . Also, the optimum iteration 
learning rates were determined as 10000 and 12000 for SOM in rangeland and forested land, 
respectively.  
 
Sites ANN structure Transfer 

function 
Iteration Number of 

hidden layers 
Number of 
hidden neurons 

1 5-10-1 Tangsigm 10000 1 10 
2 5-10-1 Tangsigm 12000 1 10 

Table 5. Optimum parameters of ANN model for predicting soil organic matter using ETM 
data  at sites 1  and 2 in Iran 

3.4 Comparison of MLR and ANN models to estimate SOM in two ecosystems  
The relationship between measured and predicted values of SOM using MLR model  are   
shown in Fig. 4a and 4b for rangeland and frosted area, respectively. As shown, MLR in 
forested land explained greater variability of SOM than in the rangeland. It seems that 
NDVI index as a indicator of vegetation cover plays a  greater role in explaining the 
variability in SOM in the hilly region than in the rangeland area with lower variation in 
NDVI .Normalized predicted data versus normalized observed data for testing data set are 
shown in Fig 4c and 4d for rangeland and forested area, respectively; and the coefficients of 
determination (R2) were determined. 
Moreover the MAE and RMSE values were calculated to be 0.18 and 0.26 for MLR model for 
SOM in rangeland and 0.09 and 0.13 for forested area using MLR. On the other hand, ANN 
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model improved the MAE and RMSE, which were 0.09 and 0.12 for rangeland and 0.01 and 
0.09 for forested land, respectively. Overall, the ANN models explained greater variability 
and had higher capacity to predict SOM because these models use the non-linear 
relationships among inputs and output variables. 
The developed ANN model for predicting the soil organic matter in the present study 
explained 84% and 91% of the total SOM variability in the rangeland and forest landscapes 
receptively. Overall, the results implied that the ANN modeling was successful in 
identifying most of the remote sensing data, which influence soil organic matter. However, 
our results also suggest that this methodology used for analyzing the data has wider 
applicability and can be applied to other sites. 
 

 
 

 
Fig. 4. Scatter plot displaying the relationships between measured and estimated value of the 
SOM in MLR and ANN models  at the two sites studied in west and central Iran. (a): MLR for 
rangeland (b): MLR for forested land (c): ANN for rangeland, (d):ANN for forested land. 

3.5 Determining the most important bands for explaining variability in SOM 
The results on the relative importance of digital numbers and vegetation index using 
sensitivity analysis based upon coefficients of sensitivity of the ANN model for soil organic 
matter are shown in Fig. 5. The variables with high values made contributions to explain the 
variability in SOM. 
Band 1 of ETM was identified as the most important band for detecting SOM variability in 
the study area of rangeland (Fig. 5a). Other important factors for predicting SOM, included 
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band 2 and 5 with relative coefficients of sensitivity ranking as 1.21 and 1.06, respectively. 
Two other selected variables included band 7, and the NDVI showed sensitivity coefficient 
of less than 1, implying that they make lower contribution in predicting SOM in the 
rangeland site.  
In the ANN analysis for SOM variability in forested land, the NDVI was identified as the 
most important and other digital numbers were also identified. NDVI, a widely used 
indicator in remote sensing showing abundance of vegetation cover. Spatial distribution of 
the NDVI was strongly influenced by the relief, which controls the movement of water and 
nutrients along the hillslopes. The distribution of vegetation could be controlled the 
variability in  SOM within the landscape, and the reflectance of soil surface in red and 
infrared spectrums can determine the presence of different amounts of SOM. (Liu et al., 
2004). The NDVI indicates the greenness cover on the land surface and shows a well 
documented relationship with crop and vegetation productivity (Pettorelli, 2005). Lozano-
Garcia et al. (1991) reported  on the correlations between NDVI and soil properties. Li et al. 
(2001) found that the NDVI between red and infrared wavelengths was cross-correlated 
with soil water content, sand, clay and elevation. However, a composed and complex index 
such as NDVI, which mostly reflects biomass status, indicates soil-dependent site quality 
(Sommer, 2003).  
 

 
Fig. 5. Histogram displaying the results on sensitivity analysis, relative sensitivity 
coefficients of remote sensing data for the SOM. NDVI: normalized difference vegetation 
index.(a): Rangeland of Semiroum; (b): Forested land of Lordegan 

Independent variable Landsat ETM digital numbers of bands 1, 2, 5 and 7, which may have 
been influenced by the presence of vegetative cover, were identified as important factors for 
the variability in SOM. Band 1 is useful for soil/vegetation differentiation and in  
distinguishing the forest types. Band 2 detects green reflectance from healthy vegetation. 
The two mid-IR red bands on TM ( bands 5 and 7) are useful for vegetation and soil 
moisture studies (Lillesand &Kieffer, 1987). 
Moreover, SOM has been related to reflectance in data collected over agricultural fields in 
several studies (Coleman et al., 1991; Henderson, 1992; Chen, 2000) and it has been reported 
that visible wave-lengths (0.425 to 0.695 mm) (Bands 1 to 3) had a strong correlation with 
SOM for soils with the same parent material. The use of middle infrared bands (Band 5 of 
ETM) improved the prediction of SOM content when the soils were from different parent 
materials (Henderson, 1992). Chen et al. (2000) were able to accurately predict SOM using 
true color imagery of a 115-ha field with the use of locally developed regression 
relationships.  
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Organic matter influences soil optical properties. Organic matter may indirectly affect the 
spectral influence, based on the soil structure and water retention capacity. High organic 
matter in soil may produce spectral interferences for band characteristics of mineral like 
manganese oxide and iron oxide (Coleman et al., 1991). The relationships of surface SOM 
concentration with the pixel intensity values, with data ranging from 0 to 255 for each band, 
were not linear (Chen, 2000). Therefore, non-linear regression analyses were developed. 
Stamatiadis et al. (2005) observed that the red and NIR regions are more sensitive to 
matterates in soils. The results of this study also showed that in samples that contain high 
amounts of matterates, the visible bands showed higher correlation (Stamatiadis et al., 2005). 
These results are similar  to those reported  by  Fox and Sabbagh (2002) who found the 
strongest correlation of SOM  with reflectance in red band, but their results did not confirm 
the result reported  by Sullivan et al. (2005) and Agbu et al. (1990), who showed that 
reflectance in green band  was more strongly correlated with SOM than the reflectance in 
red band. Krishnan et al. (1980), reported that no absorption climax was caused by organic 
matter in the NIR region (800–2400 nm), and SOM content was better measured with visible 
bands than NIR bands.  
Overall, organic matter is the factor that influences soil optical properties. Organic matter 
may indirectly affect the spectral influence, based on the soil structure and water retention 
capacity. High organic matter in soil may produce spectral interferences for band 
characteristics of minerals such as  manganese and iron oxides. 
The developed ANN models for predicting the SOM in the present study by ETM-Landsat 
explained 84% and 91% of the total SOM variability within the two selected landscapes. A 
part  of the unexplained variability is probably due to the management practices such as 
grazing and deforestation in some parts that influenced the plant density over the 
landscape. Moreover, as reported by other researchers (Kaul et al., 2005), it is important to 
compare the results of the ANN models with those obtained by other statistical approaches 
for determining the precision of the model under development. Hence the learning rate, 
number of hidden layer, number of hidden nodes and the training tolerance need to be 
determined accurately for developing models for SOM prediction. However, the 
performance of the ANN models as compared to other approaches suggest that ANN 
models have better realistic chance  to predict SOM, especially when complex non-linear 
relationships exist among factors. In such cases, the correlation study may provide 
inaccurate and even misleading results about the relationships (Liu et al., 2001). 

4. Conclusions 

In this study, the potential of remote sensing data for the estimation of within-field 
variability of SOM was explored for hillslopes in the semiarid region under rangeland and 
forested uses. Multivariate statistical techniques and ANNs were employed for model 
development to explore the potential of remote sensing data. To achieve a nonlinear 
function relating soil organic matter to remote sensing data in hilly region of the semiarid 
region of central and western Iran, the results of this study indicated that the designed ANN 
models was able to establish the relationship between the remote sensing data and SOM 
content. Some of remote sensing data such as band 1, band 2 and NDVI were identified as 
the important factors that explained the variability in SOM content  at the  sites studied both 
in in rangeland and forested areas. The results showed that the MLR and ANN models 
explained 54 and 84 % of the total variability  in  SOM, respectively, in the rangeland site. 
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On the other hand, the MLR and ANN models explained 77 and 91% of the total variability 
of SOM in forested area using remotely sensed data.  
The calculated MAE and RMSE values were 0.18 and 0.26 for the MLR model for SOM in 
rangeland and 0.09 and 0.13 for the forested area using MLR. On the other hand, ANN 
improved the MAE and RMSE to 0.09 and 0.12 for rangeland and 0.01 and 0.09 for forested 
land, respectively. Therefore, the ANN model could provide superior predictive 
performance when compared with the MLR model developed.  
Our results also suggest that the future research should consider soil properties which are 
used as factors in the equation, because soil reflectance properties depend on numerous soil 
characteristics such as mineral composition, texture, structure and moisture content in the 
use of remote sensing imagery to achieve a high accuracy in research.  
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