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Abstract

Zimbabwe’s poor are predominantly located in the semi-arid regions and rely on rainfed agriculture for their subsistence. Decline in
productivity, scarcity of arable land, irrigation expansion limitations, erratic rainfall and frequent dry spells, among others cause food
scarcity. The challenge faced by small-scale farmers is to enhance water productivity of rainfed agriculture by mitigating intra-seasonal
dry spells (ISDS) through the adoption of new technologies such as rainwater harvesting (RWH). The paper analyses the agro-hydro-
logical functions of RWH and assesses its impacts (at field scale) on the crop yield gap as well as the Transpirational Water Productivity
(WPT). The survey in six districts of the semi-arid Zimbabwe suggests that three parameters (water source, primary use and storage
capacity) can help differentiate storage-type-RWH systems from ‘‘conventional dams’’. The Agricultural Production Simulator Model
(APSIM) was used to simulate seven different treatments (Control, RWH, Manure, Manure + RWH, Inorganic Nitrogen and Inorganic
Nitrogen + RWH) for 30 years on alfisol deep sand, assuming no fertiliser carry over effect from season to season. The combined use of
inorganic fertiliser and RWH is the only treatment that closes the yield gap. Supplemental irrigation alone not only reduces the risks of
complete crop failure (from 20% down to 7% on average) for all the treatments but also enhances WPT (from 1.75 kg m�3 up to
2.3 kg m�3 on average) by mitigating ISDS.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The majority of the population in sub-Saharan Africa
make their living from rainfed agriculture (FAO, 1995),
and largely depend on small-scale subsistence agriculture
for their livelihood security (Rockström, 2000). In semi-
arid regions (SAR) the rainfall has extreme temporal and
spatial variability and generally occurs as storms of high
rainfall intensity, resulting in agricultural droughts and
intra-seasonal dry spells (ISDS) that reduce the yield of
rainfed agriculture. Statistically in SAR, severe crop reduc-
1474-7065/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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tions caused by an ISDS occur once to twice out of 5 years,
and total crop failure caused by annual droughts once
every 10 years (Rockström, 2000). Insufficient, erratic and
unreliable rainfall pattern makes supplementary or full irri-
gation indispensable in SAR. Worldwide, irrigated agricul-
ture is already the largest consumer of runoff water (69% of
withdrawn runoff water). Irrigation expansion limitations,
high population growth and scarcity of arable land are fac-
tors which call for more food production under rainfed
agriculture. In semi-arid Africa, average yield of rainfed
agriculture oscillates around 1 ton/ha for the major cereal
crops (maize, millets and sorghum) (Barron, 2004; Rocks-
tröm and Falkenmark, 2000), and this is below the 3 to 5
tons/ha that can be produced (Rockström et al., 2003;
Rockström, 2002).
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Fig. 1. District map of Zimbabwe.

J. Mwenge Kahinda et al. / Physics and Chemistry of the Earth 32 (2007) 1068–1073 1069
To make rainfed agriculture the main source of food
and livelihood security for rural communities, the yield
gap between the actual yield and the maximum yield must
be reduced. To close the gap, water productivity of rainfed
agriculture has to increase. An option for improving water
productivity will be the reduction of non-productive soil
evaporation (ES) in favour of productive plant transpira-
tion (T). Supplemental irrigation of rainfed crops by the
use of Rainwater harvesting (RWH) is a likely viable
option to increase water productivity at production system
level (Oweis et al., 2001; SIWI, 2001). RWH has the poten-
tial to provide enough water to supplement rainfall and
thereby increase crop yield and reduce the risk of crop fail-
ure (Oweis et al., 2001; Critchley and Siegert, 1991).
Enhancing and stabilising the crop yield of subsistence
farmer will incentivise them to invest in soil nutrient
enhancement. Generally, In-field rainwater harvesting
(IRWH) that aim at water conservation (i.e., to maximise
soil infiltration and water holding capacity) dominates,
while Ex-field rainwater harvesting (XRWH) with storage
systems are less common (SIWI, 2001). Therefore, impacts
of storage systems used for supplemental irrigation on the
water productivity as well as on the yield are not well
known. RWH is practised in semi-arid Zimbabwe but,
despite its obvious benefits, as claimed by farmers and
researchers, there is still a lack of quantitative data on
the extent of its use in the country and of scientific informa-
tion on how the various techniques are performing (FAO,
2005).

This paper, based on Mwenge Kahinda (2004), analyses
the agro-hydrological functions of RWH and its impacts
(at field scale) on the water balance as well as the Transpi-
rational Water Productivity (WPT).

2. Material and methods

2.1. The study area

About 70% of the population of Zimbabwe depends on
agriculture for food and employment but only 37% of the
country receives adequate rainfall for agriculture (FAO,
2005). Zimbabwe’s poor are predominantly located in the
semi-arid regions (Bird and Shepherd, 2003) and rely on
rainfed agriculture for their subsistence. A survey of
RWH techniques was carried out in Insiza, Gwanda,
Umzingwane, Beitbridge, Zvishavane and Chivi; six dis-
tricts (Fig. 1) of the semi-arid Zimbabwe. Insiza, Gwanda,
Umzingwane and Beitbridge are located in the Mzingwane
catchment, which is part of the Limpopo river basin.

Fig. 2. shows the five natural regions of Zimbabwe that
relates climate, soils and topography to appropriate farm-
ing systems. The six districts lie in Natural Regions IV
and V which have low erratic rainfall with high incidence
of drought and severe Intra-seasonal dry spells (ISDS),
making rainfed agriculture a risky venture. ISDS occurs
in dry years (Fig. 3) as well as in wet years (Fig. 4). July
1991 to July 1992 with an MAR of 109.7 mm is the driest
year recorded for Masvingo while July 1999 to July 2000
with an MAR of 1134.8 mm is the wettest year. In semi-arid
Zimbabwe, water is by far a greater constraint than land
(FAO, 2005).

2.2. Water productivity and yield gap

2.2.1. Water productivity
Water Productivity (WP) is a ratio which reflects the rel-

ative magnitude of an output to the input (driver). WP is
used exclusively to denote the amount or value of product
over volume or value of water depleted or diverted (Kijne,
2003). Molden et al. (2003) defines WP as the relative quan-
tity of crop yield per unit of water consumed. The value of
the product can be expressed in different terms (biomass,
grain, money, etc). In this paper WP is expressed as the
ratio between the crop yield (Y) and the water consumed.
Since the Crop growth is directly governed by transpira-
tion, it is more appropriate to consider the transpirational
WP given by:

WP T ¼
Y
T

ð1Þ

However, since it is difficult to separate Evaporation (E)
and Transpiration (T), it is common to assess Evapotran-
spirational WP.

WP ET ¼
Y

ðE þ T Þ ð2Þ

WP is a key parameter when assessing the performance of
irrigated and rainfed agriculture that can be raised by
either increasing the crop yields and/or decreasing all flows
except transpiration. At field scale, this can be done by
improving crop, soil and water management.



Fig. 2. Zimbabwe natural region map.
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Fig. 3. Rainfall and ISDS from July 91 to July 92.
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Fig. 4. Rainfall and ISDS from July 99 to July 2000.
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2.2.2. Yield gap

Yield gap (Yg) is the difference between the maximum
yield (Ym) and the actual yield (Ya).

Y g ¼ Y m � Y a ð3Þ

The actual yield (Ya) is the yield of a crop planted in a gi-
ven soil, under a given climate, with all the factors amena-
ble to management control. The maximum yield (Ym) is the
yield of a crop planted at the optimal plant density for a
given soil type and climatic conditions without nutrient
limitation, pests, diseases, weeds, soil damage or other fac-
tors amenable to management control.
2.3. Rainwater harvesting in semi-arid zimbabwe

In the past, the government invested in human and
financial resources for agricultural research. The top down
approach used did not take account of the farmers’ priority



Table 2
APSIM runs

Run
number

Name Treatment

1 Maximum yield Non limiting nitrogen
2 Control No fertiliser, no supplemental irrigation

(SI)
3 RWH SI from RWH
4 Manure 3t manure/ha each season
5 Manure + RWH 3t manure each season + SI
6 Nitrogen 10 kg/ha of inorganic nitrogen
7 Nitrogen + RWH 10 kg/ha of inorganic nitrogen + si

For more details on the different runs, refer to Mwenge Kahinda (2004).
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needs and socio-economic situation (IIRR, 1998). Tradi-
tionally, drought-tolerant crops were seen as the solution
to erratic rainfall in the drought-prone areas (Mutekwa
and Kusangaya, 2006). In recent years, to mitigate the
effects of ISDS and stabilise the crop yield, RWH tech-
niques have been introduced and promoted by non-govern-
mental organisations (NGOs). Despite the obvious benefits
of rainwater harvesting in the country, as claimed by farm-
ers and researchers, there is still a lack of quantitative data
on the extent of its use in the country and lack of scientific
information on how the various techniques are performing
(FAO, 2005).

The term ‘‘dam’’ is often preferred by the technical staff
of Zimbabwe and FAO in their documentation to signify
small water bodies or reservoirs, and in many cases the
terms ‘‘dams’’, ‘‘small water bodies’’ and ’’reservoirs’’ are
used interchangeably (Sugunan, 1997). This inconsistency
in the nomenclature makes it difficult to differentiate
between conventional dams and XRWH with Storage sys-
tem. In Zimbabwe there are quite a number of small dams
which have been constructed to store water for mitigating
local and temporary water shortages. This is illustrated in
Table 1 for the six districts of the semi-arid Zimbabwe.
Table 3
Difference between conventional storage dam and XRWH with storage
2.4. Simulations with the APSIM model

The Agricultural Production Systems SIMulator
(APSIM) is a modelling environment that uses various
component modules to simulate cropping systems (Keating
et al., 2003). Modules can be biological, environmental,
managerial or economic and are linked via the APSIM
’’engine’’, which passes information between modules
according to a standard protocol. APSIM was used to
model the RWH for a selected system owned by a pioneer
of RWH practitioner in Zimbabwe, located some 20 km
from Zvishavane. The RWH system combines a rock
catchment with dead level contours and infiltration pits.
The farmer’s cattle produce about 3 tonnes yr�1 of organic
manure. More details this farmers RWH techniques and
achievements are given in Witoshynsky (2000).

During the modelling exercise, 30 years of climatic data
from Masvingo were incorporated into the model. Mas-
vingo falls under the same natural region as Zvishavane
(Fig. 2) and data for this station was applied because Zvi-
shavane data is unreliable. SC401, a very early maturing
white dent hybrid maize cultivar was planted with at a
Table 1
Distribution of small dams in the six districts (Sugunan, 1997)

District Number Capacity (m3)

Beitridge 63 46,993
Chivi 78 135,943
Gwanda 265 77,241
Insiza 856 318,145
Umzingwane 214 210,514

Zvishavane 58 9534
density of 3 plants m�2, in an Alfisol deep sand of plant
available water content 87 mm, depth 1.8 m and organic
content 1.1. For the 7th run (Table 2), no over year carry
over effect where allowed. On the 15th of October each
year, the available soil water is fixed at 10% of the total soil
available water content.
3. Results

The survey indicated that IRWH is dominant in the six
districts. This finding is in line with those of FAO (2005)
who lists infiltration pits, tied furrows, dead level contours,
potholing and fanya juus as the most common IRWH tech-
niques. Rock Catchments, an XRWH, are also common
since, the granite areas of Zimbabwe that cover over 50%
of the country are well supplied with domes (ruware), often
of sufficient size to be utilised as water catchment areas
(Dry Land Farming, 2006).

To differentiate between a conventional storage dam
and XRWH with Storage System, one should consider
the water source and the primary intended use of the water
collected (Table 3). RWH has a positive effect on WPT.
Results indicate a significant increase in WPT for all the
treatments with supplemental irrigation (Table 4). Supple-
mental irrigation alone improved WPT (RWH treatment)
by 22% on average (from 1.75 kg m�3 to 2.13 kg m�3) com-
pared with the control (farmer practice). The highest
improvement in both yield and WPT was achieved by a
system

Rainwater
harvesting

Conventional dam

Water source Undefined
drainage network

Defined drainage
network (Rivers, etc.)

Primary use 1. Supplemental
irrigation

1. Full irrigation

2. Off season
irrigation

2. Supplemental
irrigation

Storage capacity m3

(Oweis et al., 2001)
6500,000 m3 >500,000 m3



Table 4
Average yield gap, transpirational water productivity & risks of complete crop failure

Maximum Control RWH Manure Manure + RWH Nitrogen Nitrogen + RWH

WPT (kg m�3) 1.75 1.75 2.13 1.76 2.15 1.83 2.31
Risk of crop failure (%) 20 20 7 20 7 20 7
Yield gap (kg ha�1) 907 422 887 381 651 �64
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Fig. 5. Cumulative crop yield.
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combination of supplemental irrigation and inorganic
nitrogen (Nitrogen + RWH treatment), which gives a bet-
ter synergy between soil nutrients, water and crop than the
other treatments.

Supplemental irrigation alone achieved a higher reduc-
tion of the yield gap (422 kg ha�1) than inorganic nitrogen
alone (651 kg ha�1). The yield gap is only completely
closed (�64 kg ha�1) when supplemental irrigation and
inorganic nitrogen are combined.

For seasons with intense ISDS, there was serious water
stress that resulted in a significant reduction of the crop
yield for all treatment without supplemental irrigation.
During such dry years, it was observed that inorganic
nitrogen application (without supplemental irrigation)
exacerbate water stress thereby resulting in total crop fail-
ure. The bridging of ISDS through supplemental irrigation
increases and stabilises the crop yield, assuring a minimum
reliable yield (when no fertiliser is applied). The study indi-
cates a 13% reduction of the risks of total crop failure that
occurs once out of 5 years because of ISDS (Fig. 5) when
RWH is used for supplemental irrigation. This is also valid
when there is no addition of either organic or inorganic
nitrogen, suggesting that water is a major limitation to crop
production in the area. An added advantage of XRWH
with storage system is the possibility for the farmer to grow
winter crops. Crop yield stabilisation coupled with winter
cropping should be an incentive for the farmers to invest
in fertilisers. The level of investments in fertilisers is lower
than 20 kg ha�1 year-1 in sub-saharan Africa (Rockström
et al., 2003).

It takes more than a season for manure to release nitrogen
in the soil. As a result, the cumulative crop yields of the con-
trol and RWH treatments are very similar to those of the
Manure and Manure + RWH treatments respectively
(Fig. 5). Inorganic fertiliser increases the crop yield espe-
cially when combined with RWH for supplemental
irrigation.
4. Conclusions and recommendations

The analysis conducted in this paper show the use of
RWH for supplemental irrigation increases WPT and stabi-
lises the crop yield. It can be concluded that water is not the
only limiting factor to crop growth. To close the yield gap,
small-scale farmers will have to simultaneously invest in
RWH and nutrient enhancement. For an efficient use of
the water harvested, farmers should be trained to identify
critical growing stages during which water shortages con-
siderably affect yields, and apply water with drip kits
instead of the traditional bucket.

Successful implementation of RWH in Zimbabwe
requires an integrated approach where not only the techni-
cal aspect is considered but also the socio-economic and
the institutional aspects. An involvement of the govern-
ment and the local water authorities who are the decision
makers and the implementers of the national water
resources plan is key to the widespread of RWH. The
upscaling of RWH should also consider its impacts on
the hydrological cycle.
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