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Abstract A total of 360 bacteria, isolated from the rhizospheres of a system of rice 

intensification (SRI) fields, were characterized for the production of siderophore, 

fluorescence, indole acetic acid (IAA), hydrocyanic acid (HCN) and solubilization of 

phosphorus.  Of them, seven most promising isolates (SRI-156, -158, -178, -211, -229, -305 

and -360) were screened for their antagonistic potential against Macrophomina phaseolina 

(causes charcoal rot in sorghum) by dual culture assay, blotter paper assay and in greenhouse. 

All the seven isolates inhibited M. phaseolina in dual culture assay, whereas six isolates 

solubilized phosphorous (except SRI-360), all seven produced siderophore, four produced 

fluorescence (except SRI-178, -229 and -305), six produced IAA (except SRI-305) and five 

produced HCN (except SRI-158 and -305). In the blotter paper assay, no charcoal rot 

infection was observed in SRI-156-treated sorghum roots, indicating complete inhibition of 

the pathogen, while the roots treated with the other isolates showed 49−76% lesser charcoal 

rot infection compared to the control. In the antifungal activity test (in green house on 

sorghum), all the isolates increased shoot dry mass by 15−23% and root dry mass by 

15−20% (except SRI-158 and -360), over the control. In order to confirm the plant growth-

promoting (PGP) traits of the isolates, the green house experiment was repeated but, in the 

absence of M. phaseolina. The results further confirmed the PGP traits of the isolates as 

evidenced by increases in shoot and root dry mass, 22−100% and 5−20%, respectively, over 

the control. The sequences of 16S rDNA gene of the isolates SRI-156, -158, -178, -211, -229, 

-305 and -360 were matched with Pseudomonas plecoglossicida, Brevibacterium antiquum, 

Bacillus altitudinis, Enterobacter ludwigii, E. ludwigii, Acinetobacter tandoii and P. 

monteilii, respectively in BLAST analysis. This study indicates that the selected bacterial 

isolates have the potential for PGP and control of charcoal rot disease in sorghum.  



 3

 

Keywords: Biocontrol · Antagonistic bacteria · Charcoal rot · Macrophomina phaseolina · 

Sorghum · PGPR 

 

Abbreviations 

ANOVA  Analysis of variance 

CFU   Colony forming unit 

HCN   Hydrocyanic acid 

IAA   Indole acetic acid 

M. phaseolina  Macrophomina phaseolina  

PDA   Potato dextrose agar 

PDB   Potato dextrose broth 

PGP   Plant growth promoting 

PGPR   Plant growth-promoting rhizobacteria 

SRI   System of rice intensification 

 

Introduction 

Charcoal rot of sorghum caused by Macrophomina phaseolina (Tassi) Goid., soil-and seed-

borne disease of sorghum, is endemic to tropical and temperate regions of the world (Wyllie 

1998). Significant losses of yield (up to 64%) have been observed in India under conditions 

favoring the incidence of the disease in post-rainy sorghum (Sorghum bicolor) occupying 

more than 5 million ha in Maharashtra, Karnataka and Andhra Pradesh (Das et al. 2008).  In 

addition to severely damaging the crop, the pathogen also produces a toxin called 
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“phaseolinone” in the diseased stalk that causes anemia in mice (Bhattacharya et al. 1994). 

M. phaseolina can be effectively controlled by fumigating the soil with methyl bromide; 

however, with the ever increasing cost and concern over environmental pollution, major 

efforts are being taken to develop environment-friendly methods of control (Duniway 2002). 

These include use of pathogen, antagonist or competitor populations of a third organism and 

botanicals to suppress the pathogen population, making it less abundant and thus less 

damaging than it would be otherwise.  

Plant growth-promoting rhizobacteria (PGPR) has been reported not only to improve 

plant growth but also to suppress the plant pathogens, of which Pseudomonas spp. and 

Bacillus spp. are important as these are aggressive colonizers of the rhizosphere of various 

crops and have broad spectrum of antagonistic activity against many pathogens (Weller et al. 

2002). Biocontrol bacterial species generally employ an array of mechanisms such as 

antibiosis, competition, production of hydrocyanic acid, siderophore, fluorescent pigments 

and antifungal compounds to antagonize pathogens (Singh et al. 2006). It is a well-known 

fact that actively growing microbes are greater in number in the rhizosphere as crop plants 

release root exudates that contribute, in addition, to simple and complex sugars and growth 

regulators, contain different classes of primary and secondary compounds including amino 

acids, organic acids, phenolic acids, flavonoids, enzymes, fatty acids, nucleotides, tannins, 

steroids, terpenoids, alkaloids and vitamins (Uren 2000). Researchers around the world 

attempted to isolate PGPR organisms from the rhizospheres of crop plants and the compost 

(Khalid et al. 2004). An unpublished study suggested that microbial strains isolated from the 

rhizospheres of upland rice and system of rice intensification (SRI) fields were antagonistic 

to plant pathogenic fungi. This study was therefore undertaken to know if it was true for M. 
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phaseolina that causes charcoal rot of sorghum. In the SRI method of rice cultivation a set of 

agronomic practices are followed such as transplanting young seedlings, wider spacing, less 

synthetic fertilizer and growing plants in no standing water except transplanting (Kumar et al. 

2010; Uphoff 2001). The objective of this study was to evaluate bacterial isolates, from the 

rice-rhizosphere, for their ability to suppress M. phaseolina, which causes charcoal rot in 

sorghum and to improve the growth of sorghum with and without the disease-causing agent. 

 

Materials and methods 

Collection of rhizosphere soil samples 

 Samples were randomly collected from the SRI field trial at ICRISAT, Patancheru, 

during the post-rainy season of 2008. The field trial was laid out in a split-plot design with 

cultivar “Krishna Hamsa”, a long duration (135 days) variety of paddy. The top 0−15cm soils 

contained high organic carbon (0.76−1.27%) and were neutral to alkaline in pH (7.5−8.3). 

One whole paddy plant, after chopping off the shoots, was carefully uprooted (along with the 

adhering soil; without breaking the secondary and tertiary roots), placed in a polythene bag, 

labeled and tied (in order to minimize the evaporation loss), and further placed in a box 

containing ice. The ice box was transported to a lab where the roots were shaken to dislodge 

and separate loosely adhering soil aggregates around primary, secondary and tertiary roots, 

and the adhering soils were collected and stored in a refrigerator at 4
o
C for further studies. 

  

Isolation of bacterial strains 

Ten grams of soil from each sample were separately suspended in 90 ml of physiological 

saline (0.85% of NaCl) in a flask and placed on an orbital shaker (at 100 rpm) at room 
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temperature (28±2
o
C) for 1 h. At the end of shaking, the soil samples were serially diluted up 

to 10
6
 dilutions with physiological saline. Dilutions 10

4
−10

6
 were plated on potato dextrose 

agar (PDA) by spread plate technique and incubated at 28
o
C for 48 h. The most prominent 

colonies were isolated and maintained on PDA slants at 4
o
C for further studies.  

 

In vitro plant growth-promoting attributes of the bacterial isolates  

Siderophore production:  

It was determined according to the methodology described by Schwyn and Neilands (1987). 

Bacteria were streaked on chrome azurol S (CAS) agar media and incubated at 28±2oC for 48 

h. When the bacteria consume iron, present in the blue-colored CAS media, orange halos are 

produced around the colonies, which indicate the presence of siderophores.  

 

Fluorescence production:  

The protocol of King et al. (1954) was used for fluorescence production. Bacteria were 

streaked on King’s B agar and incubated at 28±2oC for 48 h. At the end of the incubation, the 

plates were observed under UV light for production of fluorescence.  

 

Indole acetic acid (IAA) production:  

It was done as per the protocols of Patten and Glick (1996). The bacteria were grown in Luria 

broth supplemented with L-tryptophan (1 µg ml
-1

) for 72 h. At the end of the incubation, 

cultures were centrifuged at 10,000g for 10 min and the supernatants collected. One ml of 

this culture filtrate was allowed to react with 2 ml of Salkowsky reagent (1 ml of 0.5 M FeCl3 

in 50 ml of 35% HCIO4) at 28±2oC for 30 min. At the end of the incubation, pink color 
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developed which indicates the presence of IAA. Quantification of IAA was done by 

measuring the absorbance in a spectrophotometer at 530 nm. A standard curve was plotted to 

quantify the IAA (µg ml
-1

) present in the culture filtrate.  

 

Hydrocyanic acid (HCN) production:  

HCN was estimated qualitatively by sulfocyanate colorimetric method (Lorck, 1948). The 

bacteria were grown in Kings B agar amended with glycine (4.4 g L-1). One sheet of 

Whatman filter paper no. 1 (8 cm diameter) was soaked in 1% picric acid (in 10% sodium 

carbonate; filter paper and picric acid were sterilized separately) for a minute and struck 

underneath the Petri dish lids. The plates were sealed with Parafilm and incubated at 28±2°C 

for 48 h.  Development of reddish brown color on the filter paper indicated positive for HCN 

production. 

 

Phosphorus (P) solubilization:  

All the isolates were screened for their phosphate-solubilizing ability on Pikovskaya agar 

(Pikovskaya 1948). The bacteria were streaked on Pikovskaya agar and incubated for 72 h. at 

28±2°C.  The presence of halo zone around the bacterial colony indicated positive. 

 

In vitro antifungal activity  

Bacterial isolates were evaluated for their antifungal activity against M. phaseolina by dual 

culture assay. For this, a fungal disk of 6 mm diameter was placed on one edge of the PDA 

plate (1 cm from the corner) and bacterial isolate was streaked on the other edge of the plate 

(1 cm from the corner), followed by incubation at 28±2oC for 96 h or till the pathogen 
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covered the entire plate in control. Inhibition of fungal mycelium (halo zone) around the 

bacterial colony was scored positive and inhibition zone measured. 

 

In vivo antifungal activity  

Determination of in vivo antifungal activity of the seven most potential bacterial isolates 

against M. phaseolina was done by blotter paper assay technique (Nene et al. 1981). 

Inoculum of M. phaseolina was prepared by homogenizing (with a tissuemizer; Techmar 

type T 25, Japan) a 5-day-old M. phaseolina culture grown in potato dextrose broth (PDB) at 

28±2°C. Two-week-old seedlings of sorghum (raised in sterilized vermiculite in 12 cm pots; 

variety R16- susceptible to charcoal rot) were dipped in the inoculum of M. phaseolina for 30 

min and placed side by side on a blotter paper (45 X 25 cm with one fold) so that only the 

roots were covered. Bacterial isolates (SRI-156, -158, -178, -211, -229, -305 and -360) and 

their consortium were inoculated (5 ml plant
-1

) separately into plants. The consortium was 

prepared by mixing all the seven isolates in equal proposition (all the seven isolates were 

compatible to each other, data not shown). Fifteen plants per replicate and three replications 

were made for each bacterial isolate. Positive and negative controls were made by 

inoculating the plants only with M. phaseolina and sterile water respectively. The blotter 

paper was kept moist all the time with sterilized water and incubated at 28±2°C for 8 days 

with a 12-h day length provided by fluorescent lights (120 µ mol m−2 s−1). At the end of the 

incubation, the disease symptoms of charcoal rot (black-colored microselerotia infection on 

the root surface) in the 0−4 rating scale was noted (0 represents no visible charcoal rot 

symptom, while 4 represents maximum disease symptoms), and the percentage of infected 

roots in bacteria inoculated treatments compared with control was calculated.  
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In vivo antifungal activity in a greenhouse  

Seven potential antagonistic bacterial isolates (SRI-156, -158, -178, -211, -229, -305 and -

360) and their consortium (mixture of all the seven isolates in equal proposition, all the seven 

isolates were compatible to each other, data not shown) were evaluated in greenhouse for 

their antagonistic potential against M. phaseolina. A total of 10 treatments (seven bacteria + 

one consortium + M. phaseolina inoculated- positive control + water inoculated- negative 

control) were made with six replications. M. phaseolina inoculum was mass multiplied in 

sorghum grains (variety R16) as per the protocols of Gupta et al. (2002). Pot mixture (800 g) 

was prepared by mixing red soil, sand and farm yard manure at 3:2:2 and filled in 8″ plastic 

pots followed by inoculation with M. phaseolina inoculum (20% of pot weight, 200 g pot-1). 

Inoculum was mixed thoroughly with the pot mixture. Water (100 ml) was added to each pot 

to wet the potting mixture and the pots were covered with polythene sheets. The whole set-up 

was incubated at 32±2oC for 15 days for charcoal rot sick conditions to be developed. Two 

weeks later, sorghum seeds (variety R16) were surface sterilized with sodium hypochlorite 

(2.5% for 5 min) and rinsed with sterilized water (8 times) before being allowing it to sprout 

in a Petri plate overnight. The sprouted seeds were transferred into test bacterial isolates 

(grown in PDB separately) for an hour before being sown in the pots (six seeds/pot but 

thinned to three after one week). Booster doses of bacterial isolates (five ml per seedling, 10
8 

CFU ml
-1

) were applied twice (at 15 and 30 days after sowing) by soil drench method. 

Growth parameters including root length, root dry weight, shoot dry weight, shoot root ratio, 

percentage of root and shoot dry weight increase over the control and the disease incidence 

were determined at day 60 after sowing.  
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In vivo PGPR activity in a greenhouse  

For evaluating the PGPR potential of the seven biocontrol potential (against M. phaseolina) 

bacterial isolates, the above-explained greenhouse experiment was done once again but 

without adding M. phaseolina. However, one new treatment was included in which 

Azotobacter chroococcum HT-54 (phosphate solubilizing and phyto-hormone producing 

strain known for its PGP attributes; Kumar et al. 2001), was inoculated and positive control 

(only M. phaseolina inoculated) was removed. A total of 10 treatments (seven antagonistic 

bacteria + one consortium + A. chroococcum HT-54 + negative [water] control) were made 

with six replications. Growth parameters including root length, root volume, root dry weight, 

shoot dry weight, shoot root ratio and % root and shoot dry weight increase over the control 

were determined at day 60, after sowing. 

 

Molecular identification of the isolates 

Pure cultures of potential M. phaseolina antagonistic bacteria were grown until log phase and 

genomic DNA were isolated essentially according to Bazzicalupo and Fani (1995). The 

amplification of 16S rDNA gene was done by using universal bacterial primer 1492R (5'-

TACGGYTACCTTGTTACGACTT-3') and 27F (5'-AGAGTTTGATCMTGGCTC AG-3') 

as per the conditions described by Pandey et al. (2005). The PCR product was sequenced at 

Macrogen Inc. Seoul, Korea. The sequences obtained were compared with those from the 

GenBank using the BLAST program (Alschul et al. 1990), aligned with using the Clustal W 

software (Thompson et al. 1997) and phylogenetic trees inferred using the neighbor-joining 

method (Saitou and Nei, 1987). 
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Statistical analysis 

All the green house experiments were arranged in randomized block design with six 

replications in each treatment and repeated twice. The data were analyzed statistically by 

ANOVA (Genstat 10.1 version) to evaluate the efficiency of biocontrol agent’s application in 

all the green house studies. Mean values were compared at significant levels of 1% and 5%.   

 

Results 

A total of 360 bacteria, the most prominent ones in the PDA plate, were isolated from the 

rhizosphere soil samples of SRI field trials. When the bacterial isolates were evaluated for 

their plant growth-promoting traits, 57, 19, six and five isolates produced siderophore, 

fluorescence, IAA and HCN, respectively, whereas 51 isolates solubilized phosphorous. 

Seven most positive isolates (SRI-156, -158, -178, -211, -229, -305 and -360; selected on the 

basis of having multiple PGP traits) were further screened for their antagonistic potential 

against M. phaseolina by in vitro dual culture assay. All the seven bacterial isolates inhibited 

the pathogen in the dual culture assay, whereas isolates SRI-156, -158 and -178 showed the 

maximum inhibition with inhibition zones of 13 mm, 14 mm and 9 mm, respectively (Table 

1; Fig. 1). Of the seven bacterial isolates, 7/7, 4/7 (except SRI-178, -229 and -305) and 5/7 

(except SRI-158 and -305) were positive for siderophore, fluorescence and HCN production, 

respectively, and 6/7 (except SRI-360) solubilized phosphorous (Table 1). Isolates SRI-211 

and -229 produced higher IAA (8.06 and 8.86 µg ml
-1

, respectively), whereas all the other 

isolates (except SRI-305) produced IAA between 2 and 4 µg ml-1 (Table 1). When all the 

seven bacterial isolates were evaluated for their in vivo antifungal potential against M. 
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phaseolina by blotter paper assay, neither charcoal rot disease symptoms (rating 0 in 0−4 

visual rating scale) nor root infections (0%) were observed in the SRI-156-treated sorghum 

roots, whereas very little disease symptoms (rating 1−2) and lesser root infection (49−76% 

lesser than control) were observed in the other SRI isolates and consortium-treated sorghum 

roots (Fig. 2).  

The isolates were further evaluated for their in vivo antagonistic potential against M. 

phaseolina in green house on sorghum crop. Root length was found greater in 6/7 isolates 

(except SRI-158), the maximum being found in two isolates viz. 413 cm in SRI-156 and 414 

cm in SRI-178, compared to 250 cm in control plant roots (Table 2). All the seven isolates 

increased (15−23%) sorghum shoot biomass over control whereas 5/7 isolates (except SRI-

158 and -360) increased (15−20%) sorghum root biomass over the control (Table 2). The 

highest increase of both shoot and root biomass (23% and 20%, respectively) was found in 

SRI-178 (Table 2). No negative effect of isolates was found even when their consortium 

(mixture of all the seven isolates) was used, where an increase of 18% shoot and 14% root 

biomass was found (Table 2). Shoot root ratio was found higher in SRI-158, -211, -229, -305, 

and -360 and lower in two isolates viz. SRI-156 and -178 (Table 2). 

In order to confirm the PGP traits, all the isolates were further evaluated in green 

house but without inoculating M. phaseolina on sorghum crop. All the isolates increased 

sorghum shoot biomass between 22% and 100%, of which SRI-211 increased 100% (Table 

3) followed by SRI-178 (96%), -156 (68%), -229 (32%), -305 (29%), -360 (28%) and -158 

(22%). Root biomass was increased between 5% and 20% for all the isolates; however, 5/7 

isolates (SRI-156, -178, -211, -229 and -305) increased more than 17% (Table 3). The 

consortium and A. chroococcum HT-54 increased 18% and 45%, respectively, for shoot 
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biomass, and 11% and 5%, respectively, for root biomass (Table 3). Root length, root volume 

and shoot root ratios were also found greater in all the isolates in comparison to the control 

(Table 3).  

In order to determine the identity of the seven potential PGP and antagonistic (against 

M. phaseolina) bacteria, its 16S rDNA was sequenced and analyzed.  A neighbor-joining 

dendrogram was generated using the sequence from the seven SRI isolates (1400 bp) and 

representative sequences from the databases. Phylogenetic analysis of 16S rDNA sequences 

of the seven SRI isolates showed that SRI-156 and -360 had maximum sequence similarities 

with Pseudomonas but different spp. (P. plecoglossicida and P. monteilii, respectively) 

whereas two other isolates (SRI-211 and -229) showed maximum sequence similarities with 

Enterobacter ludwigii (Fig. 3). The sequences of the other three isolates SRI-158, -178 and -

305 were found similar to Brevibacterium antiquum, Bacillus altitudinis and Acinetobacter 

tandoii, respectively (Fig. 3).   

 

 

Discussion 

Microorganisms isolated from the rhizosphere soil may be better adapted to crop plants and 

provide better disease control than organisms isolated from the other sources such as 

composts, harsh environments, etc. as these are already closely associated with the plant 

system as well as adapted to the local environment (Cook 1993). The beneficial effects of 

rhizobacteria on plant health management have been demonstrated for several host pathogen 

systems (Rosales et al. 1986; Weller and Cook 1986; Sakthivel et al. 1986). Hence, in the 

present study, it was decided to isolate plant growth-promoting antagonistic bacteria from the 
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rhizosphere soils of SRI fields that have the potential to inhibit M. phaseolina which causes 

charcoal rot in sorghum.  

Plant growth-promoting bacteria, isolated from rhizosphere soils, stimulate growth 

directly by nitrogen fixation (Han et al. 2005), solubilization of nutrients (Rodriguez and 

Fraga 1999), production of growth hormones, 1-amino-cyclopropane-1-carboxylate (ACC) 

deaminase (Correa et al. 2004) and indirectly by antagonizing pathogenic fungi by the 

production of siderophores, chitinase, β-1,3-glucanase, antibiotics, fluorescent pigments and 

cyanide (Pal et al. 2001). Significant population of siderophore and HCN producers present 

in this study (57 out of 360 SRI isolates including all the seven promising SRI isolates 

produced siderophore while five out of seven [except SRI-158 and-305] produced HCN) 

reveals that rhizospheres of SRI soils provides a conducive environment for proliferation of 

antagonistic bacteria that promote plant growth. In the present study, 4/7 promising SRI 

isolates (SRI-156, -158, -211 and -360) produced fluorescent pigments (Table 1). Fluorescent 

pigments producing Pseudomonads are known to have a significant role in the suppression of 

fungal pathogens, apparently via the production of antifungal metabolites such as phenazine-

1-carboxylate (Pierson and Thomashow 1992), 2, 4-diacteylphloroglucinol (Keel et al. 1992), 

siderophore (Hamdram et al. 1991) and HCN (Defago and Haas 1990). Siderophores 

produced by a number of Pseudomonas spp. are attracted for their possible role in the 

biological control of number of plant pathogens (Mishaghi et al. 1988; Budzikiewicz 1988). 

Hence, siderophores can act as antimicrobial compounds by increasing the competition for 

available iron in the rhizosphere.  

IAA-producing bacteria are known to promote root elongation and plant growth 

(Patten and Glick 2002). In the present investigation, 6/7 SRI isolates (except SRI-305) 
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produced IAA suggesting that these isolates could be used for plant growth promotion.  The 

entire promising SRI isolates, san SRI-360, showed good solubilization zone on Pikovskaya 

medium supplemented with insoluble tricalcium phosphate, indicating its potential role as a 

P-solubilizer. Phosphate-solubilizing microorganisms convert insoluble phosphates into 

soluble forms through the process of acidification, chelation, exchange reactions and 

production of gluconic acid (Chung et al. 2005). Artursson et al. (2006) reported that free-

living P-solubilizing bacteria release phosphate irons from sparing soluble inorganic and 

organic P compounds in soil and thereby contribute to an increased soil phosphate pool 

available for the plants.  

In the dual culture assay, all the seven most positive and promising SRI isolates 

(based on their in vitro PGP and biocontrol traits) inhibited M. phaseolina, of which SRI-156 

and -158 inhibited the pathogen the most. This inhibition could be due to the production of 

hydrolytic enzymes or antibiotics by the SRI isolates which were disseminated through the 

media. Similar results were obtained when the isolates were evaluated by blotter paper assay 

on sorghum plants where SRI-156 completely inhibited M. phaseolina (no infection and 

charcoal rot disease symptom was found in the sorghum roots), while all the other isolates 

also inhibited the fungus greatly (49−76% lesser infection compared to control; Fig. 2).  

When the isolates were evaluated in the green house for their antagonistic and PGP 

potential on sorghum plants, shoot dry mass (18−100% increase), root dry mass (5−20% 

increase), root length (up to 13% increase), root volume (5−18% increase) and shoot root 

ratio (14−87% increase) were found higher in comparison with the control and the reference 

strain A. chroococcum HT-54. The mechanism by which the SRI isolates enhanced sorghum 

seedlings vigour possibly could be its PGP attributes (phosphate solubilization, IAA and 
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siderophore production), as in the present study, all the seven SRI isolates produced 

siderophores and IAA (except SRI-305) and solubilized phosphorous (except SRI-360; Table 

1). Similar results were reported by Hameeda et al. (2006) in maize under greenhouse 

conditions where two P-solubilizing bacteria (Serratia marcescens EB-67 and Pseudomonas 

spp. CDB-35) increased the biomass of maize by 99% and 96%, respectively. SRI-305 was 

effective in the promotion of both shoot (29%) as well as roots (18%) dry mass though it did 

not produce IAA. Hence it can be concluded that there was no correlation between IAA 

production and plant growth; similar results were found by Kishore et al. (2005). Root 

colonization is very much essential to deliver the beneficial bacteria at the right place and 

time on the root, as poor root colonization may result in decreased biocontrol activity 

(Schippers et al. 1987). Observation on root colonization was not done in this study, 

however, upon looking at the data on biomass of plants (22−100% increase in shoot mass 

and 5−20% increase in root mass in SRI isolates inoculated treatments) it can be 

hypothesized that SRI isolates might have multiplied and colonized on sorghum roots, a 

property desirable for survival and functioning of a biocontrol agent. 

The seven isolates used in this study were apparently well adapted to the sorghum 

rhizosphere environment as it not only controlled the charcoal rot disease in sorghum but also 

enhanced the plant growth. Adhikari et al. (2001) reported that bacterial strains isolated from 

rice rhizosphere have the potential to control of the seedling disease of rice (caused by 

Achlya klebsiana and Pythium spinosum) and for plant growth promotion. Similar results 

were obtained with plant growth-promoting Bacillus subtilis BN1 from the rhizospheres of 

chir pine (Pinus roxburghii; Singh et al. 2008), fluorescent Pseudomonas GRC2 from potato 

rhizosphere (Gupta et al. 2002) and Pseudomonas chlororaphis SRB 127 from sorghum 
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rhizosphere (Das et al. 2008) that showed strong antagonistic effect against M. phaseolina, a 

charcoal rot pathogen of peanut and sorghum. Bacteria belonging to genera Bacillus, 

Pseudomonas, Serratia and Enterobacter are reported to solubilize the insoluble phosphatic 

compounds and aid in plant growth (Rodriguez and Fraga 1999), but in the present study 

bacteria belonging to two other genera Acinetobacter and Brevibacterium were also reported 

to solubilize phosphorous. Pseudomonas and Bacillus species generally employ an array of 

mechanisms like antibiosis, site competition, HCN production, siderophore production, 

fluorescent pigments and antifungal compounds to antagonize pathogens (Singh et al. 2006; 

Validov et al. 2005). The two Pseudomonas spp. (SRI-156 and -360) and one Bacillus spp. 

(SRI-178) isolated in this study were positive for siderophore, HCN and IAA production and 

P-solubilization (except SRI-360), and hence it can be concluded that one of these 

mechanisms could be the reason for their antagonistic and PGP potential.  

The present study was successful in selecting effective isolates of bacteria, from rice 

rhizosphere, that can be a useful component of integrated disease management. All the seven 

SRI isolates could be used as biocontrol agents for the control of charcoal rot of sorghum. In 

the absence of high level of genetic resistance in high-yielding varieties, these bio-agents 

could be effective in controlling charcoal rot disease and related loss in grain and stover 

quality of sorghum. Further experiments are needed to determine the effectiveness of these 

isolates under different field conditions and to understand the nature of interaction with the 

pathogen and the host plant. 
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Table and Figure Legends 

Table 1 The seven most potential SRI isolates based on their plant growth promotion 

and biocontrol traits 

Table 2 Evaluation of the seven most potential SRI isolates for their antagonistic 

potential against M. phaseolina, in sorghum under green house conditions 

Values are means of six replications and data calculated per plant after 60 DAS 

* = Statistically significant at 0.05 (P values), *** = statistically significant at 0.001 (P 

values), NS = not significant, LSD = least significant difference, SE = standard error, CV = 

coefficient of variance, CT = consortium 

Table 3 Evaluation of the seven most potential SRI isolates for their plant growth-

promoting potential, in sorghum under green house conditions 

Values are means of six replications and data calculated per plant after 60 DAS 

*** = Statistically significant at 0.001 (P values), NS= not significant, CT = consortium, @= 

Azotobacter chroococcum HT-54, cont. = control, LSD = least significant difference, SE = 

standard error, CV = coefficient of variance.  

Fig. 1  Influence of SRI 158 isolate on M. phaseolina by dual culture assay 

Fig. 2 Influence of the seven most potential SRI isolates on M. phaseolina by blotting 

paper assay 

Fig. 3 Phylogenetic relationship between SRI bacterial isolates and representative 

species based on full length 16S rDNA sequences constructed using the neighbor-joining 

method 
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Isolate Phosphorous 

solubilization 

Siderophore 

production 

Fluorescence 

Production 

IAA 

Production 

(µg ml
-1

) 

HCN 

production 

Antagonistic to  

M. phaseolina 

 (inhibition zone) 

SRI 156 + + + 3.69 + + (13mm) 

SRI 158 + + + 2.79 − + (14mm) 

SRI 178 + + − 1.98 + + (9mm) 

SRI 211 + + + 8.06 + + 

SRI 229 + + − 8.86 + + 

SRI 305 + + − 0 − + 

SRI 360 − + + 2.75 + + 

 

Table 1 Gopalakrishnan et al. 2010 
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  Root   Root  Shoot  Shoot %Root weight %Shoot weight 

 length weight  weight  root     increase      increase 

Treatment  (cm)   (g)   (g) ratio over control   over control 

Control 250 1.05 5.00 4.60 − − 
SRI 156 413 1.22 5.93 4.37 15.9 18.6 

SRI 158 218 1.11 5.77 4.70 5.5 15.4 
SRI 178 414 1.26 6.13 4.41 19.8 22.6 

SRI 211 331 1.24 5.98 4.90 17.6 19.6 
SRI 229 308 1.20 5.87 4.83 14.5 17.4 

SRI 305 350 1.23 5.77 5.00 17.1 15.4 
SRI 360 260 1.11 5.82 5.65 5.8 16.4 

CT 289 1.20 5.89 5.03 13.9 17.8 
 

Mean 315 1.18 5.80 4.83 13.8 17.9 
 

LSD (5%) 147.8 0.169 0.639 0.507 

SE±     51.5NS  0.059*  0.223*    1.761*** 

CV% 40 12 9 9 

 

Table 2 Gopalakrishnan et al. 2010
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  Root   Root   Root  Shoot  Shoot %Root %Shoot 

 length volume  weight  weight  root weight  weight 

Treatment  (cm) (cm
-3

)   (g)   (g) ratio increase increase 

      over cont. over cont. 

Control 406 4.28 3.51 13.8 3.82 − − 

HT 54
@

 457 4.70 3.67 20.0 5.29 4.5 44.6 
SRI 156 410 4.51 4.12 23.2 6.22 17.4 68.0 

SRI 158 457 5.02 3.74 16.8 4.36 6.5 21.7 
SRI 178 409 4.72 4.26 27.1 7.17 21.3 96.4 

SRI 211 437 4.86 4.22 27.6 7.12 20.1 99.6 
SRI 229 444 5.08 4.13 18.2 4.90 17.8 31.9 

SRI 305 445 4.94 4.16 17.8 4.77 18.4 28.8 
SRI 360 457 4.91 3.69 17.6 4.64 5.1 27.7 

CT 411 4.18 3.91 16.3 5.12 11.4 18.1 
 

Mean 436 4.77 3.94 19.8 5.34 13.6 48.5 

 

LSD (5%) 100.6   1.055   0.304 6.04  1.581 

SE±      35.2
NS

       0.370
NS

       0.107
NS

    2.19
***

    0.555
*** 

CV% 20 19 7 25 25 

 

Table 3 Gopalakrishnan et al. 2010 
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Fig. 1 Gopalakrishnan et al. 2010 
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Fig. 3 Gopalakrishnan et al. 2010 
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