Sowing seeds of success

ICRISAT
Annual Report
2004
Contents

2 Message from the Chairman and the Director General

Sowing the seeds of success

4 Rebuilding the pyramids
6 Protecting crops, eco-friendly way
8 Forewarned is forearmed
10 No more Irish potato famines!
12 Managing watersheds in Southeast Asia
16 Making markets work for farmers in eastern Africa
18 Sorghum, a crop of substance
21 VASAT: Sharing the right information with the right people at the right time!

Partnerships

23 Development Investor Partnerships Initiated in 2003
28 Research Scholars
31 Workshops, Conferences and Training Courses

About ICRISAT

36 ICRISAT in the News
38 Governing Board
40 Senior Staff

42 Financial Summary

44 Publications
Message from the Chairman and the Director General

It is a novelty and a pleasure to be writing a joint message for ICRISAT’s Annual Report this year, reflecting in no small measure the strong and extremely productive bond between Team ICRISAT and its Governing Board – entities that complement each other so well, that it is difficult to find a definite dividing line.

The time between the last Annual Report and this one has been profusely encouraging. The Institute has leap-frogged into prominence due to its unique achievements, and has bravely and proudly declared a turnaround for the better.

You will have seen the following in other documents, but the Governing Board and management recently strengthened it, and it is worth mentioning ICRISAT’s noble guideposts – our vision, mission and mandate.

Vision – The improved well-being of the poor of the semi-arid tropics through agricultural research for impact.

This has given us the determination to substantially contribute to the attainment by our primary clientele, of the Millennium Development Goals (MDGs), specifically those that tackle poverty, hunger, gender and health issues.

Mission – To help the poor of the SAT through science with a human face and partnership-based research for development to increase agricultural productivity and food security, reduce poverty, and protect the environment in SAT production systems.

Mandate – To improve the livelihoods of the poor in semi-arid crop-livestock-tree production systems through integrated genetic and natural resource management strategies. ICRISAT will make major food crops more productive, reliable, nutritious, and affordable to the poor; diversify utilization options for staple food crops; develop tools and techniques to manage risk and utilize the natural resource base of SAT production systems in a more sustained fashion; develop options to diversify income generation; and strengthen delivery systems to key clients. Partnership-based research for impact, gender sensitivity, capacity building and enhanced knowledge and technology flows are integral to this mandate.

In keeping with challenges in the SAT areas of the developing world, ICRISAT focuses on research through **four global research themes**, namely:

1. **Markets, Policies and Impacts** to inform and provide strategic direction and prioritization of research issues. It also responds to market chain analyses including seed policy issues and on more effective impact generation. The poor face a wide range of social and economic constraints, so we maintain constant communication with them to understand their needs and seek solutions.
2. **Harnessing Biotechnology for the Poor** to augment and enhance gains from plant breeding by applying biotechnology, and by developing accurate and cost-effective tools to diagnose pathogens and toxins.

3. **Crop Improvement, Management and Utilization for Food Security and Health** to improve and sustain crop productivity, farm income, food security and protect the environment of the semi-arid tropics. We develop improved and diversified cultivars, eco-friendly and cost-effective pest management practices, and aim to commercialize alternative uses of our crops including utilization and commercialization of new cultivars.

4. **Agroecosystems** aims to improve rural livelihoods and increase food security through sustainable integrated natural resource management. Water is always in short supply in the dry tropics, so we place special importance on watershed management (including water harvesting techniques in the SAT of sub-Saharan Africa) and increasing farmers’ incomes through more intensive cropping including introduction of livestock into the production system.

The theme of this report is “Sowing Seeds of Success”. We have included some of our success stories – each one demonstrating how ICRISAT is contributing to improved livelihoods in the semi-arid tropics of Africa and Asia. We are grateful to our partners and development investors for the trust they place in our efforts and for the superb support extended to us. In addition to the reports documented here we must record other encouraging aspects of our research and endeavors towards our mission.

ICRISAT is continuing to make big strides in the field of biotechnology. Not only did ICRISAT win the prize in February this year for the best stall to exhibit its results at the BioAsia 2004 convention, but more importantly, the results of our work in genetic transformation is producing very promising results – to wit, the world’s first transgenic groundnut against the dreaded peanut clump virus (currently in the third year of contained field trial), and the world’s first transgenic pigeonpea, with resistance to pod borer (in the second year of field trial). ICRISAT has also succeeded in developing a sorghum cultivar resistant to stem borer.

The technologies we developed in watershed management are increasingly sought after as they are adapted in more and more locations in the dry areas of Asia. In Africa our natural resource management scientists have contributed by skillful crop diversification – introducing new crops and techniques to old lands, which ironically exploit the goodness of the land while enriching it at the same time. The agroecosystems team is also forging ahead with promotion of plantations that will produce bio-diesel, aromatic and medicinal plants.

The sugar content of sweet sorghum developed by our scientists is up to 23% and is a good source of ethanol that can be blended with petrol and diesel. ICRISAT’s sweet sorghum has caught the attention of leaders in the state of Andhra Pradesh and other states of India. They have requested ICRISAT to help promote this crop throughout the state on a large scale.

Our efforts with the Virtual Academy of the Semi-Arid Tropics (VASAT), have progressed to a new level. Many more partners have joined the coalition, and learning modules that help rural communities to cope with drought and other issues, have been loaded into the system.

Although we can look back on our accomplishments with great satisfaction, knowing fully well that these couldn’t have been achieved without hard work and dedication to our duties, we have to remember to keep going, to keep running, to continue in our noble purpose, to strive towards the vision we have set for ourselves – only then can we hope to reap a bountiful harvest of success from the seeds we have sown.

Uzo Mokwunye
Chairman, Governing Board

William D Dar
Director General
Rebuilding the pyramids

Everybody knows that groundnuts (or peanuts, as they are known in many countries) provide a tasty snack. But few people in the developed world are aware that groundnuts are also an essential part of the diets of millions of poor people. In West Africa, groundnut, which is rich in protein, oil, amino acids and vitamins, is both an important food and a cash crop.

Nowhere is groundnut more important than in Senegal, where groundnut occupies 40% of all cultivated land, and where half the country’s population is engaged in one way or another in its production. Senegal remains the only country in West Africa that largely depends on the external groundnut market. The crop is also hugely important in Nigeria, which produces a third of Africa’s total and 6% of global production. Nigeria and Senegal are the largest groundnut producers in Africa, and rank amongst the top five in the world. Traditionally, in both countries, groundnuts are piled into enormous pyramids while awaiting export to foreign markets.

The bad news

But serious problems have plagued both countries. In Senegal, the land area sown to groundnut decreased by 20% during the 1980s. In Nigeria, production plummeted during the same period. The main reason for the decline was a nasty virus disease called groundnut rosette. Rosette, which is endemic to Africa, retards plant growth and prevents pods from maturing. The disease wreaks havoc throughout sub-Saharan Africa. In Nigeria alone, more than 700,000 hectares of groundnut worth US$250 million were destroyed by rosette in the pandemic year of 1975. Things got worse before they got better – additional epidemics affected the region in 1983, 1985 and 1988. These persistent onslaughts forced millions of farmers to switch to cereal crops and cowpea. For farming families whose lives had depended on groundnut production for generations, the situation was so bleak that they simply gave up trying, and the great groundnut pyramids of Kano and Dakar disappeared.

Of all plant diseases, viruses are the most difficult to control because few chemical substances are available for eradicating them from the plants they attack. Chemicals are available for controlling their vectors – the mites and insects that carry them – but these are unreliable, unavailable and unhealthy. Cultural practices can reduce disease incidence, but cannot eliminate them. The most effective control measure is the use of resistant cultivars.

This is where ICRISAT, the world’s premier center for groundnut improvement, came into the picture. The introduction of elite lines of groundnut developed in collaboration
with partners from the national research programs of various African countries, notably Nigeria, Senegal and Malawi, have worked wonders for groundnut farmers.

The good news

The success of these collaborators has been spectacular. Since 1986, groundnut has made an astonishing comeback. From a pitiful total of only 0.7 million tons in 1986, for example, Nigeria’s groundnut production totaled nearly 3 million tons in 1997 (Figure 1).

The virus that causes groundnut rosette has been given more attention than other disease because of its unusual virulence. Although rosette has been around for a long time, it was little understood until recently. First observed in 1907, the causal organisms were only reported half a century later in 1966. It was not until 1990 that resistance to initial infection was reported by Dr PE Olorunju, a plant breeder with Nigeria’s Institute for Agricultural Research (IAR), and a long-time ICRISAT partner.

Once the disease had been identified, the research focus was on selecting breeding materials for disease resistance. But when it became clear that all available resistant varieties were long-duration, the focus was widened to incorporate early maturity into the breeding material. This research was a resounding success. Armed with new resistant products, farmers were able to sow groundnut once again.

The use of resistant varieties has also had a positive impact on the environment because the use of resistant lines, together with timely planting and right spacing, reduces the use of insecticide sprays.

Back to business

Small-scale industries, which were forced to close by rosette, have revived. According to Dr Olorunju, West African oil mills that lay idle for nearly a decade are now making profits from both edible oil and groundnut cake, which is used for poultry feeds.

The new products brought about through the energetic partnership between ICRISAT and West African national research programs has resulted in increased production and reduced losses to disease. Most importantly, it has dramatically improved the morale of farmers, who have been empowered to once again cultivate their favorite crop.

![Transporting the produce.](Figure 1. Groundnut production in Nigeria, 1986-97.)
Protecting crops, eco-friendly way

Money spent on chemical pesticides for protecting some crops from insect-pests and diseases can generally be about 50% of the total input costs of raising the crop. Cotton is one such crop. Cotton-boll-worm (*Helicoverpa armigera*) is the major insect-pest of cotton. The same insect is also called legume pod-borer and bores into the pods of several other crops, including pigeonpea, and eventually into the lives of poor farmers in the semi-arid tropics. Over the years, this insect has developed resistance to several different chemical pesticides.

Published scientific literature and documented (both formal and informal) knowledge of farmers suggested that it should be possible to protect crops by using low-cost eco-friendly alternatives. Based on the research done and understanding of the insect, we developed a protocol for protecting crops from insect-pests. This protocol was evaluated at ICRISAT-Patancheru for four years on different crops, including pigeonpea and cotton. In addition to using items traditionally known to farmers, it involved wash of composts prepared from foliage and twigs of two herbs, Neem (*Azadirachta indica*) and *Gliricidia sepium* (a leguminous tree) using a method modified at ICRISAT. The two microorganisms involved were, a bacterium (*Bacillus megaterium* strain BCB19) and a fungus (*Metarrhizium anisopliae*).

Multiplication of the two microorganisms on a large scale is being fine-tuned so as to attract private sector manufacturers of biopesticides. Liberal doses of fertilizer nitrogen are known to encourage proliferation of insect-pests and are therefore avoided. Instead, compost application was encouraged. A bacterial strain CDB35 (*Pseudomonas fluorescens*) which promotes plant growth and solubilizes insoluble-P was applied to the soil at sowing time. Trap crops, which attract insect-pests and result in reduced damage to the main crop, was an important feature.

Encouraged by the success at ICRISAT-Patancheru in managing *Helicoverpa* in an on-going long-term experiment initiated in 1999, it was decided in 2003/04, to evaluate the protocol on-farm, in the village Kothapally in a farmer participatory mode. The farmers wanted to evaluate the protocol on cotton. The Acharya NG Ranga Agricultural University (ANGRAU), Hyderabad, partnered us in this evaluation. Seventeen farmers agreed to take up the experiment on a 4000 m² area divided into two equal parts. One
part used chemical pesticides, called Farmers’ Practice (FP) and the other used the low-cost materials, indicated above and provided by us (we called it Biopesticides – BIO). Biopesticides were applied as a prophylactic.

Fifteen to 17 sprays of BIO were made to cotton in most fields. Harvesting commenced in Nov/ Dec 2003 and finished in Feb 2004. BIO plots remained productive for about 3 weeks longer than the FP plots that senesced suddenly. Yield data was analysed statistically considering each farmer as a replication. On mean basis, BIO plots yielded 30% more cotton than the FP plots (1.87 t ha\(^{-1}\)) that received chemical pesticides and was statistically significant at 5% probability level (LSD = 0.238).

Eleven of the 17 farmers harvested at least 30% more cotton in the BIO plots than in the relevant FP plots. The other farmers benefited marginally from yield. In addition, all the participating farmers saved at least Rs. 4800/- ha\(^{-1}\) (approximately US$106) in the BIO plots (even considering the cost of materials) because, on an average, the 17 farmers spent Rs. 14250/- ha\(^{-1}\) (range Rs. 8500 to Rs. 19850 ha\(^{-1}\)) on the FP plots.

Biopesticides

kill the pests
the eco-friendly way.

Cotton in the BIO plots was protected using a protocol of biopesticides.
Forewarned is forearmed

Insect pests cause major crop losses all over the world. One of the main reasons researchers have not been effective while addressing pest problems is insufficient information about pest population dynamics.

One of the chief insect pests is the pod borer (*Helicoverpa armigera*), which infects several crops such as cereals, pulses, cotton, vegetables and fruit crops. The incidence of *Helicoverpa* shows a certain pattern in terms of population dynamics, but the pattern of peaks can change abruptly from week to week. Overlapping generations of the pest lead to unpredictable biological events. This makes it difficult to predict population densities using traditional forecasting methods.

Research efforts are underway to understand the pest dynamics by applying analytical and other techniques on pest surveillance data sets and the influence of climatic factors. Correlations between some of these factors and pest incidence, based on statistical models were developed to predict the outbreaks. Once the prediction process becomes reliable, plant protection measures can be initiated. However, the aim is to develop a functionally viable model that can be used by farmers.

A partnership research involving ICRISAT and the International Institute of Information Technology (IIIT), Hyderabad, has developed a forecasting model by employing modern information and communication technologies such as neural networks and available surveillance data on the pod borer.

Neural Network

A neural network is an interconnected set of input/output units where each connection is given an associated weight. During the “training” phase the network “learns” by adjusting the weights so as to be able to predict the labels of input samples. These networks are highly tolerant of “noisy” data, and can identify patterns even for which they are not “trained”.

Data crunching

The pest surveillance data set used was collected over a period of 11 years and contains 2372 daily recordings of weather information and pest incidence. Data from the first eight years (1991 to 1998) was used for “training”, and data from the following three years was used for testing. The data was boiled down into that for standard weeks, and were further transformed into a complex domain using Discrete Fourier Transform (DFT), which converts time domain periodic data into the frequency domain.

Two models were run simultaneously for the training – one for predicting a real value, and another for predicting the imaginary value. Later the predicted values are remapped to corresponding values in time domain through inverse DFT. The experiment was conducted fifteen times for each data set.
In Figure 1 the threshold line indicates the threshold larvae/plant value for the pest emergence (1.2 in this case). Whenever the actual value is greater than or equal to 1.2 we call it a “real peak”. Whenever the predicted value is greater than or equal to 1.2 we call it a “predicted peak”. The number of real peaks it predicts measures the performance of the neural network.

Given the weather parameters of a particular week, this model can predict the larvae for the following week. It means the weather of the current week influences the larvae of the next week more than the larvae of the current week. This is because an egg period of four to five days is required in a normal situation. This study predicted 27 correct peaks out of 30 peaks indicating that the neural network can reliably predict pest outbreaks in chickpea.

Conclusions

Using this model, one can fairly accurately predict pod borer incidence in chickpea one week in advance. These predictions can help the farmers to efficiently manage pests – they can minimize the misuse of hazardous chemical pesticides which might have been used prematurely or in quantities more than necessary. This forecast model is currently under validation during the present cropping season at ICRISAT’s Patancheru site. The success of this model could also mean that the surveillance data on other pests could be used for similar predictions. Data on the groundnut leaf miner *Spodoptera* and other significant pests of groundnut has been shared with the IIIT group, and we look forward to developing forecast models for these pests too.
No more Irish potato famines!

Pearl millet is a cereal grown for food grain and straw in the hottest, driest areas of Africa and Asia, almost always in rainfed conditions. When the crop is cultivated as open-pollinated varieties (OPVs), as has been the case for generations among the poorest farmers in the world, it is by definition continuously changing.

Until now, the commercial hybrid seed industry in some regions has enabled farmers to grow genetically identical pearl millets several years in succession – provided they purchase fresh seed prior to each sowing. In India, on the 9 million hectares annually sown to pearl millet, more than 60% of the crop consists of such hybrids. Although these genetically uniform hybrids are potentially higher-yielding than traditional OPVs, they are more vulnerable to a plant disease called downy mildew, which is caused by a fungus-like alga related to the one responsible for the Irish potato famine. That tragic episode resulted in complete devastation of the staple food of Ireland and resulted in mass starvation. That sad state of affairs is obviously something to avoid at all costs.

Since pearl millet hybrids first reached farmers’ fields in India in the late 1960s, every single hybrid that has won popularity with farmers has ultimately succumbed to a downy mildew epidemic. Thus, the adoption of popular hybrids leads to short-term gains, but also to long-term risks.

Unfortunately, by the time the poorer farmers in a given region decide to adopt a particular hybrid, its days are usually numbered. This phenomenon is known as the ‘boom-bust cycle’.

To reduce the risks associated with adopting hybrids, and to extend the useful economic lifespan of these hybrids, especially with the poorer producer in mind, ICRISAT and the UK’s Department for International Development (DFID) have been working together to develop and apply molecular genetic tools. Using molecular markers developed at the John Innes Centre near Norwich, UK, and with support from DFID’s Plant Sciences Programme, maps were made of the genomic regions controlling downy mildew resistance, straw yield potential, and grain yield under drought stress conditions. Using conventional sexual crosses and marker-assisted selection, ICRISAT breeders were able to transfer several genomic regions conferring improved downy mildew resistance to backgrounds of the two elite inbred parental lines of a very popular hybrid known as HHB 67.

And a true hybrid it was – the female parent came from Kansas State University via ICRISAT, while the male parent hailed from Haryana Agricultural University (where hybrid HHB 67 itself was developed). The performance of these ‘improved parents’ were compared with those of their original versions in both greenhouse and field disease screens, and in multi-locational yield trials that were conducted under rainfed
conditions during the rainy seasons of 2001, 2002 and 2003. During the latter two years irrigated drought nursery trials were also conducted during the hot dry seasons at ICRISAT-Patancheru.

Two derivatives of the elite male (pollinator) parent H 77/833-2 (ICMR 01004 and ICMR 01007) exhibited excellent resistance to downy mildew. What’s more, their hybrids performed as well or better than those of the original pollinator for grain and stover yield. This success was accompanied by favorable linkage drag for several traits, including 1000-grain mass, panicle length, plant height and rust resistance.

Hybrids based on crosses involving the two new derivatives of H 77/833-2 have entered their third and final year of trials under the auspices of the All India Coordinated Pearl Millet Improvement Project in the main pearl millet areas of India, where mean annual rainfall is less than 400 mm. The derivatives were compared with the original HHB 67, and to each other, in about 100 farmer-managed on-farm trials in Haryana during the 2003 rainy season. This followed their successful evaluation in on-station trials in 2002, when they exhibited marginal grain yield superiority and substantially better downy mildew resistance than HHB 67 without sacrificing the early maturity that led to this hybrid’s popularity. In the on-farm trials conducted in Haryana during the 2003 rainy season, the new versions of HHB 67 demonstrated clear grain yield advantages over the original.

It is anticipated that at least one of these two hybrid derivatives (most likely the higher-yielding, rust-resistant version based on pollinator ICMR 01007) could be released in early 2005 as a replacement for HHB 67 – hopefully before it succumbs to a downy mildew epidemic, just like the blight that wiped out potatoes in Ireland nearly 160 years ago.

Considering that HHB 67 is grown so widely by poor farmers in India, its timely replacement could prevent an epidemic. The grain yield losses so avoided, in even a single year, would exceed the total value of research funding by DFID to date (£3.2 million) for development and application of tools for pearl millet marker-assisted breeding. All future benefits from this research by ICRISAT, its DFID-supported partners in the UK, and collaborating national program partners in India could then be considered profits to society as a whole.

What is linkage drag?

This term is used by scientists to refer to the situation that occurs when the main ingredient is affected – either positively or negatively – by another ingredient that comes along with it. The taste of whisky, for example, can be enhanced by adding a little soda, whereas the addition of lemonade masks its flavor. Both the soda and the lemonade could be thought of as ‘linkage drags’, with the first being favorable and the second not (at least for the whisky connoisseur). In plant breeding, the trick is to find and exploit favorable linkage drag while minimizing any potential negative effects.
Managing watersheds in Southeast Asia

ICRISAT’s unqualified success with watershed management in India is well known. Research conducted with an array of partners from various governmental and nongovernmental organizations has had resounding results that have benefited thousands of Indian farmers.

What is less known is that these successful technologies have been shared with national program partners in Southeast Asia; specifically, in Thailand and Vietnam.

Thailand

Tad Fa is a village 156 km west of Khon Kaen, in northeastern Thailand. Traditionally a forest area, the area is typified by hills, many of them quite steep. Uns suited to rice cultivation because of the lack of flat land, farmers have had to make do with marginal crops. The topsoil, which is nutrient poor, erodes quickly during the monsoon when the jungle cover is cut down to make room for an expanding population. This combination of problems was exactly what ICRISAT was looking for, once it became clear that Thailand’s Department of Agriculture (DOA) was interested in adopting the watershed technologies that had proved so successful in India. Besides DOA, another Thai government agency, the Land Development Department (LDD), is actively involved in the watershed project. The work receives solid support from the Asian Development Bank (ADB).

ICRISAT began working in the area in 1998 – initially in Tad Fa and later in other villages. Mr Nuek Sangchan, who lives near Tad Fa, is a progressive farmer who has been working with the project since its inception. Energetic at 60, he is an inspiration to far younger farmers. One such protégé is Mr Veera Yandee, whose interest in land development and fruit trees has inspired him to take the lead in technology transfer to other farmers. Together, Nuek and Veera have been able to convince many of their neighbors to adopt the new technologies.

What improved technologies have Mr Sangchan and his neighbors adopted? The list is an interesting mixture of agronomic practices and technology adoption.
• **Contour cultivation.** All things being equal, a farmer who has to do his own tilling on a sloping field will take advantage of gravity by plowing downhill. Except that all things are **not** equal. Downhill plowing leads directly to erosion because there is nothing to prevent soil run-off. Contour cultivation – plowing perpendicular to the slope – is harder work, but the proof of the pie is in the eating. And when vegetative barriers like vetiver grass and fruit trees are part of the package, precious soil is retained, and the slope becomes a series of terraces, with each terrace supporting a robust crop. During 2003, 197 hectares in Tad Fa (68% of the total area) were planted with improved practices, resulting in higher productivity and less soil loss.

• **No tillage system on high slopes.** During 2003, 5–6 hectares were planted with no-till technology by eight farmers, including Mr Sangchan. This resulted in lower land degradation.

• **Improved crops and cropping systems.** Seven farmers adopted rice bean (**Vigna umbellata**), a locally popular legume, as a relay crop with maize. Another 17 farmers sowed rice bean and 35 farmers cowpea as sequential systems after maize.

• **New crops.** Confectionery sunflower was introduced during 2003 to improve farmers’ income. Expansion of fruit tree cultivation, including lychee and jackfruit, in and around Tad Fa, has also become important. DOA donated 1500 fruit trees to Tad Fa farmers to arrest soil run-off and enhance incomes.

• **Intercropping.** Intercropping fruit trees with bananas has resulted in better income and better survival of fruit trees. Bananas grow quickly, giving farmers an interim cash crop while their slower-growing fruit trees mature. Growing fruit trees with various annual crops gives farmers more options.

• **Home-made inputs.** Local water harvesting and mulching provide farmers with key inputs without significant cost.
Says Dr Thawilkal Wangrahart, DOA’s Coordinator of the ADB-ICRISAT Project, ‘The interventions introduced by ICRISAT have made a real difference in the project villages. Our partnership with ICRISAT and the support of the ADB have made it possible for farmers to improve their lives.’

Vietnam

The situation in Vietnam, an agrarian country where rice is by far the most important crop, is similar. Most of the population lives in the vast river deltas of the lowlands where rice farming is the predominant occupation. But as the population expands, more people are moving into the midlands and highlands, where, as in Thailand, rice farming is not practical.

Poverty, exacerbated by population pressure, is a serious problem in Vietnam. The average land holding in the delta is only 600 square meters, obliging the government to devise schemes to relocate farmers to the midlands, where the average altitude is 1500 meters. Before 1965, few people lived in the midlands, but after decades of out-migration from the delta, about 33% of the country’s population now lives in the midlands and highlands. Unfortunately, a suitable policy was not put into place, and this led to many problems. Population growth, a robust 2.5% in the lowlands, was 3.5% in the uplands.

Landholdings are relatively large in Vietnam’s midlands, averaging about 3000 square meters (six times the average in the delta). But along with larger holdings come larger problems.

Vietnam’s rainfall is abundant, averaging 2500 mm, about triple the norm for the semi-arid tropics, where most of ICRISAT’s work is conducted. But the rain can be intense, leading to severe soil erosion. Deforestation compounded...
this problem. Also, as in other countries within the humid tropics, between monsoons conditions become drought-like. Carrying water long distances and using it sparingly has been a part of life for dwellers of the midlands for generations. Clearly, improved technologies were badly needed. The Vietnam Agricultural Science Institute (VASI), which has enjoyed a long and productive relationship with ICRISAT’s crop improvement scientists, decided to tap the center’s expertise in natural resource management.

VASI and ICRISAT knew that their goal would not be simple to achieve. Production needed to be stabilized at a higher level, and traditional farming systems would need to diversify. Studies of land use capability, and decisions about new crops to be introduced – including fruit trees and other agroforestry initiatives – needed to be made. The project experimented with intensified production through techniques like intercropping and promoted such micro enterprises as duck and pig husbandry to foster increased employment.

Mr Nguyen Van Vinh lives in Huong Dao commune, Tam Duong District, Vinh Phuc Province, about 50 km northeast of Hanoi. Like Mr Sangchan in Thailand, Mr Vinh has embraced the new technologies with enthusiasm. His farm, like those of his neighbors, is characterized by red soils with low pH (4 to 4.5), acidity and aluminum toxicity. These problems, added to those of erosion and long dry summers, made life exceedingly difficult for him. But with the introduction of Technologies like the ones in Thailand, prosperity no longer seems to be a distant dream. Indeed, he feels that it is just around the corner.

Le Quoc Doanh, Deputy Director General of VASI and Director, Northern Mountainous Agricultural Research Center is extremely pleased with the project’s denouement. He and his team, like their peers in Thailand, have developed an extremely close rapport with ICRISAT’s natural resource management scientists.

Thailand and Vietnam may not be semi-arid, but the watershed management technologies refined in drier areas are clearly applicable in niche situations, and ICRISAT’s partnerships with these rapidly developing Southeast Asian nations, aided by the ADB’s ongoing support, has enriched the lives of hundreds of farming families.
Making markets work for farmers in eastern Africa

Poverty is rife in eastern Africa, where over half the rural population is extremely poor. Addressing this state of affairs, ICRISAT has allied itself with an array of partners to reduce poverty through a market-driven strategy. The strategy is based on intensified cultivation of ICRISAT’s legume crops – chickpea, pigeonpea and groundnut – and linking farmers to markets where these commodities are sold.

The process involves producing seed on research fields provided by national partners, then handing the seed over to farmer organizations. These groups distribute seeds to selected farmers for multiplication, who then sell the seed back to the farmer groups, who in turn sell it to a wide array of farmers. Finally, the farmers pool their produce and sell it to traders in regional and international markets. The strategy is working, and some of the poorest farmers in the region are finally seeing light at the end of the tunnel.

Getting the right product

The first step was to find products that satisfied consumer taste but also yielded more than the local landraces. Chickpea was a particularly attractive possibility because it commands high prices – especially the kabuli types which sell for two to three times the price of desi types. The approach was to move quickly from on-station to on-farm trials and subsequent release.

Chickpeas were grown in both mid altitude areas in black soils and in cool areas. Over 500 short- and medium-duration varieties were introduced from India. Once the most suitable varieties were identified, they were constituted into nurseries and planted at Kabete, Kenya. Chickpea seed was also provided to national programs in Tanzania and evaluated in Arusha and Mwanza.

The results were superb. Grain yields of the highest-yielding varieties were over 4 tons per hectare and more than 80% of the entries out-yielded the local checks in both countries.

Finding the right place

In Kenya, trials were conducted in the hot eastern part of the country and in the cooler Rift Valley. In Tanzania, trials were conducted in Mwanza and Shinyanga provinces. In both countries, farmers liked the improved varieties because of their earliness, large pods and seeds, and uniformity.

It was agreed that four varieties would be grown in both Kenya and Tanzania. Only one of these varieties, ICCV 97105, is a desi type. The other three are kabulis: ICCV 92318, ICCV 96329 and ICCV 95423.
Making it happen

The process by which farmers are linked directly to markets consists of six steps.

1. Foundation seed is produced by ICRISAT on research fields provided by KARI and the University of Nairobi.
2. The seeds are handed over to farmer organizations called Producer Marketing Groups (PMGs).
3. PMGs distribute seed to a few dozen farmers for multiplication.
4. These farmers produce high quality seed (3 tons in the first year) and sell it back to the PMGs.
5. PMGs sell seed to farmers.
6. Farmers pool their produce and market it to traders.

The example cited deals with chickpea in Kenya and Tanzania, but the other two legumes are also important to farmers, NGOs, national program partners and donors – not only in eastern Africa but in southern and western Africa too. Similar projects are under way with groundnut and pigeonpea in Mozambique, Malawi and Mali.

Measurable impact

In the first year in Kenya, farmers were able to double their prices for desi and to increase prices for kabuli chickpeas by 60%. Higher productivity linked with higher prices brings significantly higher profits, an encouraging situation for farmers seeking new income sources. The enthusiasm displayed by farmers when they shipped 120 tons of chickpeas to market, and were paid cash on the spot by equally delighted traders, was heartening. As more and more farmers realize how much money can be made, more and larger such scenarios can be expected.

Linking technology development to the market is clearly the road ahead. As long as the right varieties are made available, sustainable systems of seed supply are established, and links with traders are strengthened, there is no reason the farmers of eastern Africa cannot reach hitherto unthinkable levels of prosperity.

Planned obsolescence

After providing the initial foundation seed, ICRISAT’s involvement is no longer needed. ICRISAT’s role at this point is simply to monitor the scenario, introducing new varieties as and when required, and providing technical and marketing information on demand. The farmers themselves are in control.
Sorghum, a crop of substance

Sorghum [Sorghum bicolor (L.) Moench] is the world’s fifth most important cereal crop by area after rice, wheat, maize and barley. A staple food crop in the semi-arid tropics of Africa, Asia and Latin America, its importance as a fodder and feed crop for livestock has steadily increased over the last two decades. Low productivity of sorghum in the 1970s was the result of management practices and traditional cultivars, exacerbated by biotic and abiotic stresses. Improving the crop’s productivity was clearly necessary.

ICRISAT, in collaboration with national agricultural research systems (NARS), advanced research institutes and sister CGIAR centers, has successfully improved sorghum through both traditional genetic improvement, and through integrated genetic and natural resource management practices. To date, a total of 194 improved cultivars have been released and adopted worldwide.

More land for other crops

In India, because of increases in sorghum productivity, nearly 6 million ha (35% of the 1972 sorghum area) has been made available to farmers to diversify into high-income cash crops. In Africa, the sorghum area has increased by 9 million ha, and coupled with increased productivity, total production has increased by 10 million tons (3.4% annually). This is an incalculably important contribution to food security.

Macia—An early-maturing, high-yielding and highly popular variety in Eastern and Southern Africa.

S 35 — making friends in Chad

“When rains do not come on time or when they stop too soon, our own varieties give us nothing, so we sow this one”, says farmer Toralet of Niergui village in Chad, displaying a few panicles of S 35. “This is the sorghum that never fails” he adds.

S 35, a high yielding sorghum cultivar widely cultivated in several African countries.

Says Issaka, another farmer from the same village “I used to sow two hectares of my own variety each year in order to feed my family. Now I sow only one hectare with S 35, and I grow vegetables on half of the other hectare.”

For Bouda, a farmer from the village of Tchigali II, S 35’s early maturity is a real advantage, not just because it helps escape terminal drought, but because it reduces the hunger period before the next harvest. “Ever since I first tried S 35 variety in 1992, I sow half a hectare of it each year. This way I can feed my family even as I wait for the sorghum of our ancestors to mature”, he explains.
Economic returns

The cost-benefit production ratios of improved sorghum cultivars are 1:1.25 in West and Central Africa and 1:1.4 in India. The net present value (NPV) from a single ICRISAT-derived cultivar, S 35, was estimated at US$ 15 million in Chad and US$ 4.6 million in Cameroon, with internal rates of return (IRR) of 95% for Chad and 75% for Cameroon. Improved cultivars in Mali generate an NPV of US$ 16 million with an IRR of 69%. The adoption of improved cultivars in eight SADC countries contributes an additional US$ 19 million annually to the incomes of smallholders. In Zambia, the IRR from the adoption of a single cultivar, ICSV 88060, is estimated at 15%, and a whopping 22% in Zimbabwe.

Sharing the benefits

International agricultural research often produces spillover benefits for developed countries. For example, the gains in productivity in midge-endemic areas of Australia through the adoption and use of three midge-resistant cultivars introduced from ICRISAT-Patancheru are estimated at 2.5% annually. This translates into a cost reduction of US$ 4 per ton and a cost savings of US$ 4.7 million at current average production levels. These benefits are well in excess of Australia’s financial contribution to ICRISAT.

Spillover impacts from one region to another are also significant. Macia, for example, a variety developed at ICRISAT-Bulawayo in Zimbabwe in 1989, was released in Mozambique that same year, in Botswana in 1994 (as Phofu), in Namibia in 1998 and in Tanzania in 1999. Similarly, several ICRISAT varieties developed in India were released in other Asian countries.

ICRISAT was obliged to shut down its operations in Latin America during the early 1990s. However, ICRISAT-derived varieties and hybrids have continued to be released by Central American governments, and occupy one fifth of the sorghum area in four Central American countries.

Pulling out the stops

Resource-poor farmers potentially gain an estimated US$ 736 million by adopting cultivars that resist biotic and abiotic stresses. Many released cultivars are also nutritionally rich in crop residues for livestock. The increased grain productivity of tall,
dual-purpose cultivars, together with nutrient-rich crop residue, ensures food and feed availability.

Advances made in identifying quantitative trait loci (QTLs) for resistance to shoot fly, Striga, and drought (the ‘stay-green’ trait) are positioning ICRISAT and partners to bring about rapid advances in breeding.

ICRISAT is the first research institute in the world to develop stem borer-resistant transgenic sorghums. This work is already in an advanced stage and will soon be ready for greenhouse testing.

ICRISAT’s role in leveraging the partnerships in research on alternative uses of sorghum, such as poultry feed, syrup and ethanol production, is paving the way for utilization of the marketable surplus of high-yielding cultivars.

New partners, new money

ICRISAT is the first CGIAR center to significantly tap the resources of private seed companies for public research on hybrid parents development. The ICRISAT-led Sorghum Consortium netted US$ 0.2 million during the 2000-03 period. Also, tie-ups are worked out with two private parties to incubate ethanol production technology from sweet sorghum cultivars developed by ICRISAT.

The popularity of private sector hybrids, most of which are based on ICRISAT-developed parental lines or their derivatives, has engendered significant seed production activities. An annual income worth over US$ 300,000 was obtained by villages in Andhra Pradesh and Karnataka states in India from seed production of JKSH-22 hybrid alone during the past seven years. In the last three years, a total of 29,800 tons of certified hybrid seed of ICRISAT-private sector partnership hybrids has been produced, resulting in a total income of US$18.8 million to Indian farmers.

Another novel development on the sorghum front has been the utilization of sorghum attacked by grain mold. Because mold-affected sorghum is not safe for human consumption, it fetches a very low price in the market. But help has come from a surprising source. The Seagram’s company has found that mold-infected sorghum is perfectly fine for distilling as whisky. In fact, specialists reported that diseased sorghum actually yields a superior product! Now farmers are able to sell a product that previously spelled economic ruin for them.

Sorghum has indeed been transformed from a subsistence crop to one of substance.
VASAT: Sharing the right information with the right people at the right time!

When it comes to coping with drought, sharing the right information and knowledge at the right time can mean the difference between life and death for more than 800 million people of the dry tropics.

Rural communities are better able to cope with drought if they have access to timely information and knowledge. This enables them to see the warning signs and effectively coordinate with local administration and development agencies to handle the situation.

Nature and concept

The Virtual Academy for the Semi-Arid Tropics (VASAT) is a strategic information, communication and non-formal distance education coalition led by ICRISAT to help vulnerable rural communities and their intermediaries cope better with drought and desertification. It explores the interface of information and communication technologies (ICTs) with open and distance learning (ODL) for innovative information and knowledge sharing.

VASAT’s main focus is to collect and process location-specific, demand-driven content, balancing generic and location-specific information, which can be utilized by rural communities.

The MS Swaminathan Research Foundation in India has tested a ‘hub-and-spokes’ model to implement this concept. The hub is located in a large village with access to good communication infrastructure. Local professionals, working through the hub, link surrounding villages with sources of information and knowledge using the Internet or telephone. The hub connects to the Internet, while the villages connect using terrestrial wireless technologies. This model is being adopted by VASAT for South Asia, particularly India.

In Africa, the interface of low-frequency and solar powered FM community radio stations with new digital radio satellite technologies has been established by RANET (a RAdio and InterNet international collaboration). These community radio stations serve as VASAT’s hubs. They are complemented by trained community broadcasters and multidisciplinary experts from the VASAT coalition.

By building on these models, VASAT generates International Public Goods on innovative information and knowledge sharing.

Content is being uploaded in a global learning objects repository maintained by ICRISAT and the VASAT coalition at www.vasat.org. This is accessed by national and local partners, and adapted for rural communities and intermediaries throughout the dry tropics.
VASAT's coalition

In February and August 2003, two roundtable consultations were held in South Asia, and in West and Central Africa respectively to establish VASAT. In India, ICRISAT, MSSRF and the Indira Gandhi National Open University (IGNOU) comprise VASAT’s anchors. The principal partners are major open universities and agricultural research agencies like the Central Research Institute for Dryland Agriculture (CRIDA) of the Indian Council for Agricultural Research (ICAR). A number of leading national organizations are also involved such as the ICAR system, National Institute of Agricultural Extension Management, National Institute of Rural Development and Council for Advancement of People’s Action and Rural Technology.

In West and Central Africa, a group of inter-continental, regional, national and local organizations comprise the VASAT coalition among which are: Africare, African Centre of Meteorological Applications for Development (ACMAD), African Virtual University-Université Abdou Moumouni (AVU-UAM), Comité Permanent Inter-états de lutte Contre la Sécheresse dans le Sahel Centre Régional (AGRHYMET), Conseil Supérieur de la Communication (CSC), Echos du Sahel, First Voice International, Freeplay Foundation, Helen Keller International (HKI), Institut National de Recherches Agronomiques du Niger (INRAN), National Oceanic and Atmospheric Administration (NOAA), International Research Institute for Climate Prediction (IRI), Oxfam-Québec (OXFAM), Radio Communautaire Marhabe de Kahe, and United Nations Fund for Population Activities (UNFPA).

The Commonwealth of Learning (COL), an inter-governmental organization promoting open and distance learning, provides technical advice.

VASAT’s organization

Based on the model of the Internet Engineering Task Force, (and partly based on voluntary adherence), VASAT created a faculty of experts by inviting corporations in India and abroad as technology resource groups. Further, by invoking successful models of open learning and blending them with virtual groups, rural youth and women of SAT will acquire the capacity for knowledge needed to overcome the effects of drought in the long term.

First steps

Pilot rural hubs have been established in Andhra Pradesh, India and regional meetings are in progress to establish more hubs. Each is hosted by an NGO already engaged in the area.

In West and Central Africa, an Internet-supported community radio station located about 20 km from ICRISAT’s regional hub in Niamey, Niger has been identified as the pilot site and social laboratory. Two others will also be established in Niger in 2004. Community information needs analysis in the social laboratory has just been completed. VASAT is thus a new and useful tool in the arena of rural development.
Development Investor Partnerships Initiated in 2003
Supplementing the CGIAR’s core support to carry out new targeted projects

<table>
<thead>
<tr>
<th>Donor</th>
<th>Project</th>
<th>Collaborators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asian Development Bank</td>
<td>Participatory watershed management for reducing poverty and land degradation in the semi-arid tropics</td>
<td>Central Research Institute for Dryland Agriculture (CRIDA), BAIF Research and Development Foundation, Jawaharlal Nehru Krishi Vishwa Vidyalaya (JNKVV), Indian Institute of Soil Science (IISS), M. Venkataramana Foundation (MVF), Drought Prone Area Programme (DPAP), Andhra Pradesh Rural Livelihood Project (APRLP), India Vietnam Agricultural Sciences Institute (VASI), Vietnam International Water Management Institute (IWMI), Sri Lanka Department of Agriculture (DOA), Khon Kaen University (KKU), Thailand Chinese Academy of Agricultural Sciences (CASS), Yunnan Academy of Agricultural Sciences (YASS), Hainan Academy of Agricultural Sciences (HAAS), People’s Republic of China University of Georgia, USA</td>
</tr>
<tr>
<td>Australia</td>
<td>Genetic strategies for improving chickpea yields in South-Western and Central Queensland Improved fertilizer recommendations and policy for dry regions of Southern Africa</td>
<td>Grains Research and Development Corporation, Australia CSIRO, Australia; Department of Agricultural Research, South Africa; Progress Mills, South Africa</td>
</tr>
<tr>
<td>Canada</td>
<td>Situational analysis and strengthening of ICT capacity in Afghanistan Seed Support for VASAT International Symposium for Sustainable Dryland Agriculture Systems</td>
<td>International Development Research Centre, Canada Commonwealth of Learning, Canada International Development Research Centre, Canada</td>
</tr>
<tr>
<td>CFC</td>
<td>Expert meeting on uses of sorghum and pearl millet in Asia Development of sustainable groundnut seed systems in West Africa</td>
<td>Asian NARS NARS of Niger, Mali, Nigeria, Senegal</td>
</tr>
<tr>
<td>European Commission</td>
<td>Regional Programme to Support Agricultural Research in East Africa — the Soil and Water Management Research Network (SWMnet) Regional Programme to Support Agricultural Research in East Africa — the East and Central Africa Regional Sorghum and Millet Network (ECARSAM)</td>
<td>ASARECA, Uganda ASARECA, Uganda</td>
</tr>
<tr>
<td>Donor</td>
<td>Project</td>
<td>Collaborators</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>FAO</td>
<td>Empowerment through Technology - Synthesis of Lessons Learned about Gender Dimensions in Adoption of Groundnut Production Technology, Poverty Reduction and Build-up of Social Capital Monitoring and assessment of agricultural relief programs in Zimbabwe Impact of HIV/AIDS on gendered information flows related to seeds among rural producers Establishment and implementation of Junior Farmer Field Schools in Zimbabwe Grant in support of growing fodder crops in Midlands, Matabeleland North and South provinces</td>
<td>NARS, NGOs in India University of Zimbabwe, NARS and NGOs in Zimbabwe NARS, NGOs in Mozambique Farming communities in Zimbabwe, Catholic Relief Services, Zimbabwe Farming communities in Zimbabwe</td>
</tr>
<tr>
<td>Germany</td>
<td>Enhancing access to genetic diversity through scaling up participatory plant breeding: Roles of different types of farmer and development organizations in Mali.</td>
<td>University of Hohenheim, Germany; Institut d’économie rurale (IER), Point Sud, Centre for Research on Local Knowledge, University of Bayreuth, Association des Organisations Professionelles des Paysans (AOPP), Farmers and Farmer Organizations, Mali.</td>
</tr>
<tr>
<td>IFAD</td>
<td>Semi-Arid Tropics and Rural Poverty: the Case of India</td>
<td>NARS, NGOs in India</td>
</tr>
<tr>
<td>India</td>
<td>Support for establishment of Technology Business Incubator</td>
<td>Department of Science & Technology, India</td>
</tr>
<tr>
<td>Italy</td>
<td>Technical support and monitoring of seeds relief in Hwange district</td>
<td>Coordination of Organizations for Voluntary Service (COSV), Italy</td>
</tr>
<tr>
<td>Mozambique</td>
<td>a) Disseminate methodology for assessing seed requirement in districts susceptible to natural disasters; b) Increase the adoption of new varieties through links with the seed market</td>
<td>Ministry of Agriculture and Rural Development, Republic of Mozambique.</td>
</tr>
<tr>
<td>Netherlands</td>
<td>Development of mycopesticide formulations of Beauveria bassiana and Nomuraea rileyi for insect pests of vegetable crops</td>
<td>Andhra University, India; Institute of Public Enterprises, India</td>
</tr>
<tr>
<td>OPEC</td>
<td>Development of salinity-tolerant sorghum and pearl millet cultivars for enhanced productivity on saline lands Harnessing Technology for Sustainable Development: Economic Empowerment of Poor Groundnut Farmers in Asia</td>
<td>International Centre for Biosaline Agriculture, UAE Asian NARS</td>
</tr>
<tr>
<td>Donor</td>
<td>Project</td>
<td>Collaborators</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>--</td>
</tr>
</tbody>
</table>
| Rockefeller Foundation | Support to international colloquium “Bridging the technology divide — Biotechnology alliances and new architecture of innovation”
Guinea sorghum hybrids: Bringing the benefits of hybrid technology to a staple crop of Sub-Saharan Africa | CGIAR, USA; Sun Micro Systems, USA; Applied Biosystems, UK; Avestha Gengraine Technologies Pvt Ltd, India.
Institut D’Economie Rurale (IER), Mali; Institut de l’Environnement et de Recherches Agricoles (INERA), Burkina Faso |
| UK | Enhancing chickpea establishment and productivity through seed priming
Enabling rural poor for better livelihoods through improved natural resources management in SAT India
Support for emergency agricultural recovery program for vulnerable households
Exploring market opportunities through a research, industry and user coalition: sorghum poultry feed
Participatory multiplication of two dual purpose groundnut varieties
Aflatoxin contamination in groundnut in Southern India: Raising awareness and transferring and disseminating technologies to reduce aflatoxin
Evaluation of the effects of plant diseases on the yield and nutritive value of crop residues used for peri-urban dairy production on the Deccan Plateau in India | NARS in Kenya
Central Research Institute for Dryland Agriculture (CRIDA), India
World Vision International, Zimbabwe, CARE International, Zimbabwe, NGOs, Zimbabwe
Acharya NG Ranga Agricultural University, Federation of Andhra Pradesh Farmers’ Association, Andhra Pradesh Poultry Federation, Janaki Feeds, India
NARS in India
University of Reading, UK; Acharya NG Ranga Agricultural University, India; NGOs in India
Natural Resources Institute, UK; International Livestock Research Institute, Kenya; Acharya NG Ranga Agricultural University, India; University of Greenwich, UK |
| USA | Comparative legume genomics: Translating progress in model systems for impacts in staple crops of the semi-arid tropics
Comparative analysis of functional and anonymous diversity in pearl millet and sorghum: A foundation for accelerated direct (gene-based) and indirect (marker-based) selection
Support to Household Nutrition Garden program
Developing community-based water-energy services and markets: a pilot project
Developing the gum arabic sector in Niger | University of California-Davis, USA
University of Georgia, USA
Development Alternatives Inc., Zimbabwe; NGOs and Farmer Communities in Zimbabwe
US Department of Agriculture, USA; IWMI, Sri Lanka; NARS and NGOs in India
USAID; Farmer Communities, Private Exporters in Niger |
<table>
<thead>
<tr>
<th>Donor</th>
<th>Project</th>
<th>Collaborators</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Introduction of the African market garden to the semi-arid tropics of</td>
<td>USAID; NARS in West and Central Africa</td>
</tr>
<tr>
<td></td>
<td>West and Central Africa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sahelian eco-farm</td>
<td>USAID; NARS in West and Central Africa</td>
</tr>
<tr>
<td></td>
<td>Carbon from communities: A satellite view Measuring and assessing soil</td>
<td>Soil Management CRSP, USA</td>
</tr>
<tr>
<td></td>
<td>carbon sequestration by agricultural systems in developing countries</td>
<td></td>
</tr>
<tr>
<td>Consortia of donors (via</td>
<td>Soil fertility in the communal farming lands of Zimbabwe</td>
<td>TSBF, Kenya</td>
</tr>
<tr>
<td>CGIAR Systemwide Programs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIAT</td>
<td>Validation of Drivers for Bright Spots in the Area of Watershed</td>
<td>NARS in India</td>
</tr>
<tr>
<td></td>
<td>Management and Joint Forest management in India</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Comprehensive Assessment [CA] of Water Management in Agriculture)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water scarcity and food security in tropical rainfed water scarcity</td>
<td>The International Water Management Institute (IWMI), Sri Lanka</td>
</tr>
<tr>
<td></td>
<td>systems: a multi-level assessment of existing conditions, response</td>
<td>The International Institute for Applied Systems Analysis (IIASA), Austria</td>
</tr>
<tr>
<td></td>
<td>options and future potentials</td>
<td>UNESCO-IHE Institute for Water Education (UNESCO-IHE), the Netherlands</td>
</tr>
<tr>
<td></td>
<td></td>
<td>National Bureau of Soil Survey and Land Use Planning (NBSS&LUP), India</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Central Research Institute for Dryland Agriculture (CRIDA), ICAR, India</td>
</tr>
<tr>
<td></td>
<td></td>
<td>National Center for Agricultural Economics Policy Research Institute (NCAP),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>India</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vietnam Agricultural Sciences Institute (VASI), Vietnam</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disaster Management Training and Education Center (DMTEC), South Africa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Centro Internacional de Mejoramiento de Maiz y Trigo (CIMMYT), Mexico</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sokoine University of Agriculture, Tanzania University of Makelle;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>University of East Anglia</td>
</tr>
<tr>
<td>World Bank</td>
<td>Rehabilitation of CGIAR Global Public Goods Assets</td>
<td>NARS</td>
</tr>
<tr>
<td></td>
<td>Support for partnership in rural development</td>
<td>NARS</td>
</tr>
<tr>
<td></td>
<td>Information and Communication Technology (ICT)/Global Public Goods (GPG)</td>
<td>NARS</td>
</tr>
<tr>
<td></td>
<td>Program: Applying ICT and KM for Excellence in Science – a Virtual</td>
<td></td>
</tr>
<tr>
<td></td>
<td>University for the Semi-Arid Tropics.</td>
<td></td>
</tr>
<tr>
<td>Donor</td>
<td>Project</td>
<td>Collaborators</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>---------------</td>
</tr>
<tr>
<td>CP HarvestPlus – IFPRI/CIAT</td>
<td>Information and Communication Technology (ICT)/Global Public Goods (GPG) Program: Video Conferencing Systems for Project Collaborators.</td>
<td>NARS and CG Centers</td>
</tr>
<tr>
<td>CP HarvestPlus – IFPRI/CIAT</td>
<td>Genetic engineering of groundnut for enhanced β-carotene production to combat vitamin A deficiency in the semi-arid tropics</td>
<td>National Institute of Nutrition, India; Center for Economic and Social Studies, India; National Center for Agricultural Economic Policy Research (NCAP), India; Helen Keller International, Mali</td>
</tr>
<tr>
<td>CP HarvestPlus – IFPRI/CIAT</td>
<td>Genetically enhanced micronutrient-dense pearl millet grains for improved human nutrition in the Western Africa region and India</td>
<td>National Institute of Nutrition, India; Center for Economic and Social Studies, India; National Center for Agricultural Economic Policy Research, India; Wageningen Agricultural University, The Netherlands.</td>
</tr>
<tr>
<td>CP HarvestPlus – IFPRI/CIAT</td>
<td>Identification of Micronutrients and Vitamin A Precursor (β-Carotene) Dense-Sorghums for Better Health in Western and Central Africa and Central India</td>
<td>National Institute of Nutrition, India; Center for Economics and Social Studies, India; National Center for Agricultural Economics Policy Research, India; Wageningen Agricultural University, The Netherlands.</td>
</tr>
<tr>
<td>CP HarvestPlus – IFPRI/CIAT</td>
<td>Enhancement of essential amino acids methionine and threonine by metabolic engineering for improved nutritional value of pigeonpea (Cajanus cajan L.Millsp.)</td>
<td>National Institute of Nutrition, India; Center for Economic and Social Studies, India; National Center for Agricultural Economic Policy Research, India; Wageningen Agricultural University, The Netherlands.</td>
</tr>
<tr>
<td>Others</td>
<td>Community seed production and soil fertility management through FFS</td>
<td>Farming Communities in Zimbabwe; NARS in Zimbabwe</td>
</tr>
<tr>
<td>Others</td>
<td>Increasing returns to relief distributions through soil fertility management and FFS</td>
<td>Farming Communities in Zimbabwe; NARS in Zimbabwe</td>
</tr>
<tr>
<td>Others</td>
<td>Development of high yielding widely adopted disease resistant pigeonpea hybrids and their seed production technology</td>
<td>NARS in India</td>
</tr>
<tr>
<td>Others</td>
<td>Workshop on “Millet and sorghum-based systems in West Africa: Current knowledge and enhancing linkages to improve food security”</td>
<td>NARS in West Africa</td>
</tr>
<tr>
<td>Others</td>
<td>Collaborative project on groundnuts and pigeonpeas</td>
<td>NARS and NGOs of Malawi</td>
</tr>
</tbody>
</table>

Attributed support for core programs from Canada, Commission of the European Communities (CEC), Iran, Japan, France, South Africa and UK is not listed but is included in the Financial Summary.
Research Scholars

<table>
<thead>
<tr>
<th>Names</th>
<th>Country</th>
<th>Degree</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed during 2003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R Aruna</td>
<td>India</td>
<td>PhD</td>
<td>Morphological and molecular diversity analysis, and genetic enhancement of pigeonpea (Cajanus cajan L.) for pod borer resistance through wide hybridization</td>
</tr>
<tr>
<td>Ylva Bessmer</td>
<td>USA</td>
<td>Phd</td>
<td>Arbuscular Mycorrhizal Fungi in smallholder systems</td>
</tr>
<tr>
<td>Rumbidzai Chitombi</td>
<td>Zimbabwe</td>
<td>MSc</td>
<td>Social Sciences</td>
</tr>
<tr>
<td>G Sunita Dayal</td>
<td>India</td>
<td>PhD</td>
<td>Genetic Transformation Studies In Pigeonpea</td>
</tr>
<tr>
<td>Mildred Murandu</td>
<td>Zimbabwe</td>
<td>BSc</td>
<td>Biochemistry</td>
</tr>
<tr>
<td>Ronica Muyambo</td>
<td>Zimbabwe</td>
<td>BSc</td>
<td>Biological Sciences</td>
</tr>
<tr>
<td>Joice Ndlovu</td>
<td>Zimbabwe</td>
<td>BSc</td>
<td>Genetics Biological Sciences</td>
</tr>
<tr>
<td>Helen Ncube</td>
<td>Zimbabwe</td>
<td>BSc</td>
<td>Interactions between animal manure and soil texture</td>
</tr>
<tr>
<td>L Sivarama Prasad</td>
<td>India</td>
<td>PhD</td>
<td>Synteny analysis of rice and sorghum</td>
</tr>
<tr>
<td>E Sreelatha</td>
<td>India</td>
<td>PhD</td>
<td>Stability, Inheritance and Mechanisms of Resistance to Helicoverpa armigera (Hub.) in Chickpea</td>
</tr>
<tr>
<td>Gertrude Tawodzera</td>
<td>Zimbabwe</td>
<td>BSc</td>
<td>Applied Biology</td>
</tr>
<tr>
<td>Martine Van Wolfsinkle</td>
<td>Netherlands</td>
<td>MSc</td>
<td>Soil water and legumes</td>
</tr>
<tr>
<td>Continuing during 2003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch Anuradha</td>
<td>India</td>
<td>PhD</td>
<td>Genetics and Molecular Marker Studies in Chickpea (Cicer arietinum L.)</td>
</tr>
<tr>
<td>Hameeda Bee</td>
<td>India</td>
<td>PhD</td>
<td>Studies on agriculturally beneficial microorganisms: Diversity and dynamics in cropping systems contrasting for crop residues and pest management</td>
</tr>
<tr>
<td>Surinder Kumar Gulia</td>
<td>India</td>
<td>PhD</td>
<td>QTL mapping and marker assisted improvement of downy mildew resistance in ICMB 89111</td>
</tr>
<tr>
<td>D Anitha Kumari</td>
<td>India</td>
<td>PhD</td>
<td>Mechanisms and diversity of resistance to Helicoverpa in pigeonpea</td>
</tr>
<tr>
<td>Mukesh Kumar</td>
<td>India</td>
<td>PhD</td>
<td>Effects of cytoplasmic male - sterility on expression of resistance to Sorghum shoot fly</td>
</tr>
<tr>
<td>P Sri Lakshmi</td>
<td>India</td>
<td>PhD</td>
<td>Characterization of isolates of Trichoderma spp. for their biocontrol ability against Aspergillus flavus in groundnut</td>
</tr>
<tr>
<td>G Manisha</td>
<td>India</td>
<td>PhD</td>
<td>Development of new PCR-based sequence specific co-dominant markers for groundnut and molecular genetic characterization of ICRISAT groundnut germplasm</td>
</tr>
<tr>
<td>H Abdullahi Nur</td>
<td>Somalia</td>
<td>PhD</td>
<td>Variability in Aspergillus flavus and biocontrol of aflatoxin contamination in groundnut</td>
</tr>
<tr>
<td>T Nepolean</td>
<td>India</td>
<td>PhD</td>
<td>QTL mapping of grain and stover yield in pearl millet</td>
</tr>
<tr>
<td>Latha Nagarajan</td>
<td>India</td>
<td>PhD</td>
<td>Millet Biodiversity and seed systems study</td>
</tr>
<tr>
<td>P Satish Kumar</td>
<td>India</td>
<td>PhD</td>
<td>Marker-assisted back cross transfer of QTLs for terminal drought tolerance between elite pearl millet maintainer lines</td>
</tr>
<tr>
<td>B Padmaja</td>
<td>India</td>
<td>PhD</td>
<td>Identifying effective cropping systems for carbon sequestration and their effect on soil organic matter in semi-arid tropics</td>
</tr>
<tr>
<td>B Pushpavathi</td>
<td>India</td>
<td>PhD</td>
<td>Variability of Sclerospora graminicola</td>
</tr>
<tr>
<td>Names</td>
<td>Country</td>
<td>Degree</td>
<td>Topic</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>D Prabhakar Reddy</td>
<td>India</td>
<td>PhD</td>
<td>Introgression of pod borer resistance in to pigeonpea (Cajanus cajan) using incompatible wild relatives</td>
</tr>
<tr>
<td>D Ramgopal</td>
<td>India</td>
<td>PhD</td>
<td>Studies on phenotypic and molecular characterization and evaluation in Cicer wild species and their interspecific populations</td>
</tr>
<tr>
<td>D Guruva reddy</td>
<td>India</td>
<td>MSc</td>
<td>Research on validation of available IPM components against groundnut pest complex in Andhra Pradesh</td>
</tr>
<tr>
<td>B Santha</td>
<td>India</td>
<td>PhD</td>
<td>Tissue culture and genetic transformation of dryland cereals with emphasis on pearl millet</td>
</tr>
<tr>
<td>G Sujana</td>
<td>India</td>
<td>PhD</td>
<td>Studies on mechanisms of resistance to pod borer in wild relatives of pigeonpea (Cajanus cajan (L))</td>
</tr>
<tr>
<td>J Sailasree</td>
<td>India</td>
<td>PhD</td>
<td>Microbiological and molecular characterization of microorganisms for the management of Helicoverpa armigera</td>
</tr>
<tr>
<td>SV Siva Gopala Swamy</td>
<td>India</td>
<td>PhD</td>
<td>Pigeonpea transgenics for resistance to Helicoverpa armigera</td>
</tr>
<tr>
<td>V Girija Shankar</td>
<td>India</td>
<td>PhD</td>
<td>Bioinformation of sorghum explants using Bt and other gene constructs</td>
</tr>
<tr>
<td>Dev Vart</td>
<td>India</td>
<td>PhD</td>
<td>Genetics of cytoplasmic - nuclear male sterility and molecular markers of their restorer genes in pearl millet</td>
</tr>
<tr>
<td>Y Venkanna</td>
<td>India</td>
<td>MSc</td>
<td>Bioefficacy of certain new insecticides against pest complex of groundnut</td>
</tr>
<tr>
<td>P Varalakshmi</td>
<td>India</td>
<td>PhD</td>
<td>Construction of integrated genetic maps in pearl millet</td>
</tr>
<tr>
<td>Joined during 2003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A Ramakrishna Babu</td>
<td>India</td>
<td>PhD</td>
<td>Evaluation of transgenic chickpea for resistance to pod borer Helicoverpa armigera Hubner</td>
</tr>
<tr>
<td>Mohan Prakash Bhagwat</td>
<td>India</td>
<td>PhD</td>
<td>Inhibition of Helicoverpa gut proteases by trypsin inhibitors from wild relatives of pigeonpea and chickpea</td>
</tr>
<tr>
<td>Georgina Chauke</td>
<td>Zimbabwe</td>
<td>BSc</td>
<td>Crop Production and Horticulture</td>
</tr>
<tr>
<td>Jonathan Chifamba</td>
<td>Zimbabwe</td>
<td>BSc</td>
<td>Land and Water Resource Management</td>
</tr>
<tr>
<td>Kupe Chiedza</td>
<td>Zimbabwe</td>
<td>BSc</td>
<td>Crop Science</td>
</tr>
<tr>
<td>Luu Minh Cuc</td>
<td>Vietnam</td>
<td>PhD</td>
<td>Molecular tagging of a resistance gene to groundnut bacterial wilt/late leaf spot/rust pot rot</td>
</tr>
<tr>
<td>M Jyostna Devi</td>
<td>India</td>
<td>PhD</td>
<td>Identification of mechanisms for drought response in groundnut (Arachis hypogaea L.)</td>
</tr>
<tr>
<td>Oscar Dlodlo</td>
<td>Zimbabwe</td>
<td>BSc</td>
<td>Crop Production and Horticulture</td>
</tr>
<tr>
<td>Santhosh P Deshpande</td>
<td>India</td>
<td>PhD</td>
<td>QTL analysis for shoot fly resistance in sorghum (Sorghum bicolor L.Monech.)</td>
</tr>
<tr>
<td>Jiang Huifang</td>
<td>China</td>
<td>PhD</td>
<td>Genetic diversity and molecular markers of resistance to bacterial wilt in groundnut</td>
</tr>
<tr>
<td>Robby Jaya</td>
<td>Zimbabwe</td>
<td>BSc</td>
<td>Biochemistry</td>
</tr>
<tr>
<td>T Jyothi</td>
<td>India</td>
<td>PhD</td>
<td>SSR-marker assisted backcross introgression of QTL’s for host plant resistance to Shoot fly in sorghum</td>
</tr>
<tr>
<td>Ch Ashok Kumar</td>
<td>India</td>
<td>MSc</td>
<td>Improved early maturity in groundnut</td>
</tr>
<tr>
<td>Albert Murehwa</td>
<td>Zimbabwe</td>
<td>BSc</td>
<td>Biochemistry</td>
</tr>
<tr>
<td>Lindani Mkandla</td>
<td>Zimbabwe</td>
<td>BSc</td>
<td>Crop Science</td>
</tr>
<tr>
<td>M Pooja Bhatnagar</td>
<td>India</td>
<td>PhD</td>
<td>Studies on the development of abiotic stress tolerance in groundnut Arachis hypogaea by genetic transformation</td>
</tr>
<tr>
<td>Names</td>
<td>Country</td>
<td>Degree</td>
<td>Topic</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>R Chandra Mouli</td>
<td>India</td>
<td>MSc</td>
<td>Assessing opportunities for marker-assisted backcrossing of stay-green QTLs from sorghum donor E36-1</td>
</tr>
<tr>
<td>Douglas Moyo</td>
<td>Zimbabwe</td>
<td>BSc</td>
<td>Biochemistry</td>
</tr>
<tr>
<td>Albert Nikiema</td>
<td>Burkina Faso</td>
<td>PhD</td>
<td>Fruticulture, Sahelian Eco-Farm</td>
</tr>
<tr>
<td>S Nedumaran</td>
<td>India</td>
<td>PhD</td>
<td>Assessing the impacts of policy and technological interventions in micro-watersheds - A bio-economic modeling approach</td>
</tr>
<tr>
<td>Scott Ryan Nelson</td>
<td>USA</td>
<td>PhD</td>
<td>Emerging partnerships in biotechnology—the remaking of Indian agriculture in the twenty-first century</td>
</tr>
<tr>
<td>V Lakshmi Narayanamma</td>
<td>India</td>
<td>PhD</td>
<td>Genetics of resistance to pod borer Helicoverpa armigera in chickpea</td>
</tr>
<tr>
<td>D Srinivasa Reddy</td>
<td>India</td>
<td>PhD</td>
<td>Gene expression in groundnut transgenics under abiotic stress conditions</td>
</tr>
<tr>
<td>P Ramu</td>
<td>India</td>
<td>MSc</td>
<td>Marker assisted back crossing of stay green QTL into elite sorghum lines</td>
</tr>
<tr>
<td>P Vasudeva Reddy</td>
<td>India</td>
<td>MSc</td>
<td>Effect of eco-friendly insecticides on Helicoverpa armigera (Hubner) and its natural enemies in chickpea ecosystem</td>
</tr>
<tr>
<td>Kaisu-Leena Rajala</td>
<td>Finland</td>
<td>MSc</td>
<td>The adjustment of 10 corn varieties from desert American Indians to the Sahelian conditions</td>
</tr>
<tr>
<td>K Sireesha</td>
<td>India</td>
<td>PhD</td>
<td>Determination of efficacy of different HaNPV strains and standardization of production procedures</td>
</tr>
<tr>
<td>S Chander Rao</td>
<td>India</td>
<td>PhD</td>
<td>Studies on transgenic resistance to viral diseases in groundnut</td>
</tr>
<tr>
<td>G Sreelatha</td>
<td>India</td>
<td>PhD</td>
<td>Genetic transformation for pod borer resistance through Agrobacterium in pigeonpea [Cajanus cajan (L.)*]</td>
</tr>
<tr>
<td>M Swathi Sree</td>
<td>India</td>
<td>PhD</td>
<td>Analysis of biochemical and physiological response of legumes to drought</td>
</tr>
<tr>
<td>N Sridevi</td>
<td>India</td>
<td>MSc</td>
<td>Marker-assisted backcrossing of a stover quality QTL in pearl millet</td>
</tr>
<tr>
<td>Makanyadza Takaendesa</td>
<td>Zimbabwe</td>
<td>BSc</td>
<td>Soil Science</td>
</tr>
</tbody>
</table>
Workshops, Conferences, Meetings during 2003

<table>
<thead>
<tr>
<th>Event/Topic/Date</th>
<th>Location</th>
<th>Participants</th>
<th>Participating countries/Institutes</th>
<th>Resources and collaborative support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chickpea Scientists’ Meeting, 16-17 January</td>
<td>ICRISAT, Patancheru</td>
<td>40</td>
<td>Australia, Bangladesh, Canada, Ethiopia, India, and Nepal</td>
<td>ICRISAT</td>
</tr>
<tr>
<td>ICRISAT Watershed Team Building Workshop, 28-29 January</td>
<td>ICRISAT-Patancheru</td>
<td>26</td>
<td>India and ICRISAT scientists</td>
<td>ICRISAT</td>
</tr>
<tr>
<td>Roundtable discussion on the establishment of a Virtual University for the semi-arid tropics, 27 February</td>
<td>ICRISAT-Patancheru</td>
<td>35</td>
<td>India, Sri Lanka, Thailand</td>
<td>ICRISAT and MSSRF</td>
</tr>
<tr>
<td>A workshop on Heterosis in Guinea-race Sorghums, 10-12 March</td>
<td>ICRISAT, Mali</td>
<td>30</td>
<td>IER (Mali), INERA (Burkina Faso), INRAN (Niger), CIRAD (France), University of Hohenheim (Germany), Cornell University (USA), and University of Mali</td>
<td>ICRISAT and IER</td>
</tr>
<tr>
<td>The International Biotechnology Colloquium – Bridging the Technology Divide: Agri-science alliances and the new architecture of innovation, 17-20 March</td>
<td>ICRISAT, Patancheru</td>
<td>100</td>
<td>Ten CGIAR centers, Donors, ARIs, NGOs, NARS, Private Sector participants from North and South America, Europe, Asia (20 participating countries)</td>
<td>ICRISAT, ILRI, ISNAR, CIAT, Applied Biosystems, Rockefeller Foundation, Sygenta, Sun Micro Systems and Avestha Gengraine</td>
</tr>
<tr>
<td>Workshop on Village Level Studies, 27-28 March</td>
<td>ICRISAT, Patancheru</td>
<td>31</td>
<td>China, India, Thailand, Vietnam, FAO, ADB</td>
<td>ADB and ICRISAT</td>
</tr>
<tr>
<td>Project workshop on Participatory watershed management for reducing poverty and land degradation in the semi-arid tropics, 7-9 April</td>
<td>ICRISAT, Patancheru</td>
<td>40</td>
<td>India-NGOs, NDDB, IGFRI, ICRISAT, IWMI Nigeria-IITA Ethiopia-ILRI</td>
<td>DFID and ILRI</td>
</tr>
<tr>
<td>ILRI Workshop on Enhancing livelihoods of poor livestock keepers through increasing use of fodder in Andhra Pradesh, Karnataka, Maharashtra and Orissa, 14-16 April</td>
<td>ICRISAT, Patancheru</td>
<td>40</td>
<td>India-NGOs, NDDB, IGFRI, ICRISAT, IWMI Nigeria-IITA Ethiopia-ILRI</td>
<td>DFID and ILRI</td>
</tr>
<tr>
<td>Event/Topic/Date</td>
<td>Location</td>
<td>Participants</td>
<td>Participating countries/Institutes</td>
<td>Resources and collaborative support</td>
</tr>
<tr>
<td>--</td>
<td>-------------------</td>
<td>--------------</td>
<td>---</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>A media workshop called Jal Swaraj: Facing the water emergency, 16 April.</td>
<td>Chennai</td>
<td>India</td>
<td>MSSRF and ICRISAT</td>
<td></td>
</tr>
<tr>
<td>CPHP partners Post harvest innovation, 15-16 April</td>
<td>Parwanoo, Himachal Pradesh, India</td>
<td>DFID, CPHP, SA</td>
<td>CPHP, SA and ICRISAT</td>
<td></td>
</tr>
<tr>
<td>Workshop on Fertilizer micro-dosing for small farmer prosperity in the Sahel, 15-16 April</td>
<td>Sadoré, Niger</td>
<td>30</td>
<td>Burkina Faso, Mali and Niger</td>
<td>ICRISAT and USAID</td>
</tr>
<tr>
<td>Workshop on Combating land degradation and increasing productivity in Madhya Pradesh and eastern Rajasthan, 29-30 April.</td>
<td>ICRISAT-Patancheru</td>
<td>35</td>
<td>India and ICRISAT Scientists</td>
<td>TATA, ICRISAT and ICRISAT</td>
</tr>
<tr>
<td>Workshop on Building Effective and Synergistic GT1-GT2 Linkages: Using Product Centric Teams and Multidisciplinary Project Management, 12-13 May</td>
<td>ICRISAT-Patancheru</td>
<td>40</td>
<td>ICRISAT</td>
<td>ICRISAT</td>
</tr>
<tr>
<td>Workshop on Identifying systems for carbon sequestration and increased productivity in the semi-arid tropical environments, 13-14 May</td>
<td>ICRISAT-Patancheru</td>
<td>19</td>
<td>India and ICRISAT Scientists</td>
<td>NATP (ICAR) and ICRISAT</td>
</tr>
<tr>
<td>Regional Launching workshop on Improved Livelihoods in the Sahel through the Development and Implementation of Household level Bio-Economic Decision Support Systems funded by the DGIC, the Government of Belgium, 18-20 May</td>
<td>Dantiandou</td>
<td>10</td>
<td>Niger</td>
<td>ICRISAT, MOORIBEN and Project Intrants FAO</td>
</tr>
<tr>
<td>Spatial Analysis using ASReML, 4-6 June</td>
<td>ICRISAT-Patancheru</td>
<td>20</td>
<td>ICRISAT</td>
<td>ICRISAT</td>
</tr>
<tr>
<td>Workshop on Logical Framework, 9-11 June</td>
<td>ICRISAT-Patancheru</td>
<td>45</td>
<td>ICRISAT Scientists</td>
<td>ICRISAT</td>
</tr>
<tr>
<td>Launching workshop on Impacts of Climatic Changes in the Fakara Area, 9 and 16 June</td>
<td>AGRHYMET and ICRISAT (TVC)</td>
<td>10</td>
<td>Niger</td>
<td>ICRISAT, ILRI, INRAN, MOORIBEN and AGRHYMET</td>
</tr>
<tr>
<td>Regional Launching workshop on Improved Livelihoods in the Sahel through the Development and Implementation of Household level Bio-Economic Decision Support Systems funded by the DGIC, the Government of Belgium, 24-25 June</td>
<td>Zinder</td>
<td>8</td>
<td>Niger</td>
<td>ICRISAT, AQUADEV and INRAN</td>
</tr>
<tr>
<td>Event/Topic/Date</td>
<td>Location</td>
<td>Participants</td>
<td>Participating countries/Institutes</td>
<td>Resources and collaborative support</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>--------------</td>
<td>--</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Regional Launching workshop on Improved Livelihoods in the Sahel through the Development and Implementation of Household level Bio-Economic Decision Support Systems funded by the DGIC, the Government of Belgium, 27-28 June</td>
<td>Maradi</td>
<td>12</td>
<td>Niger</td>
<td>ICRISAT, INRAN, Project Intrans FAO and AQUADEV</td>
</tr>
<tr>
<td>Media workshop on water and sanitation 30 June-2 July</td>
<td>ICRISAT, Patancheru</td>
<td>35</td>
<td>India, Sri Lanka, Bangladesh and Nepal</td>
<td>WSSCC of UN, FEII, IDFC and ICRISAT</td>
</tr>
<tr>
<td>Expert meeting on Alternative uses of sorghum and pearl millet in Asia, 1-4 July</td>
<td>ICRISAT, Patancheru</td>
<td>60</td>
<td>China, Kenya, India, Indonesia, Pakistan, Thailand, and USA</td>
<td>Common Fund for Commodities (CFC) and Effem India Private Ltd.</td>
</tr>
<tr>
<td>Review and Planning Workshop, ADB funded project: Rapid Crop Improvement for Poor Farmers in SAT, 14-18 July</td>
<td>ICRISAT, Patancheru</td>
<td>40</td>
<td>ADB Bangladesh (BARI) Brazil China (CAASSRI) India (NARS) Pakistan (PARC) Vietnam (LRDC/OPI) Kenya</td>
<td>Asian Development Bank (ADB) and ICRISAT</td>
</tr>
<tr>
<td>One day Brainstorming session on Molecular Breeding Community of Practice with Private Sector Seed Companies, 15 July</td>
<td>ICRISAT</td>
<td>50</td>
<td>Private/Public Sector Seed companies, NARS, Venture Capitalists, and from several Asian countries</td>
<td>ICRISAT</td>
</tr>
<tr>
<td>Workshop on Social analysis in assessing gender-related impacts of NRM options focusing on build-up of social capital, 17-18 July</td>
<td>ICRISAT, Patancheru</td>
<td>20</td>
<td>ICRISAT, FAO, RAP, ODI, Disha Foundation, UNDP, AP Mahila Samatha, HCU</td>
<td>FAO-RAP, Bangkok and ICRISAT</td>
</tr>
<tr>
<td>Training workshop on Participatory Watershed Management, 1-20 September</td>
<td>ICRISAT</td>
<td>10</td>
<td>China, India, Thailand, Vietnam and ICRISAT Scientists</td>
<td>ADB and ICRISAT</td>
</tr>
<tr>
<td>Planning Workshop on Water scarcity and food security in tropical rain-fed water scarcity systems for multi-level assessment of existing conditions, response options and future potentials, 11-12 September.</td>
<td>ICRISAT, Patancheru</td>
<td>26</td>
<td>India, Austria, Mexico, Syria, Sri Lanka, South Africa, West Africa, and ICRISAT/ IWMI Scientists</td>
<td>IWMI and ICRISAT</td>
</tr>
<tr>
<td>Final project workshop of the BMZ-funded SADC/ICRISAT Groundnut Improvement Project, 15-16 September</td>
<td>Lilongwe, Malawi</td>
<td>20</td>
<td>Malawi, Mozambique, Zambia, and Zimbabwe</td>
<td>ICRISAT, Patancheru</td>
</tr>
<tr>
<td>Workshop on Exploring Marketing Opportunities Through a Research, Industry, and Uses Coalition: Sorghum Poultry Feed, 7 October</td>
<td>ICRISAT, Patancheru</td>
<td>19</td>
<td>India</td>
<td>DFID</td>
</tr>
<tr>
<td>Event/Topic/Date</td>
<td>Location</td>
<td>Participants</td>
<td>Participating countries/Institutes</td>
<td>Resources and collaborative support</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------</td>
<td>--------------</td>
<td>---</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Workshop on Genetic and climate analysis for more efficient breeding of drought resistant peanuts, 15 October</td>
<td>ICRISAT, Patancheru</td>
<td>32</td>
<td>India</td>
<td>ACIAR, ICRISAT and ICAR</td>
</tr>
<tr>
<td>Workshop on Selection for peanut varieties with low aflatoxin risk, 16 October</td>
<td>ICRISAT, Patancheru</td>
<td>20</td>
<td>India</td>
<td>ACIAR, ICRISAT and ICAR</td>
</tr>
<tr>
<td>A workshop on the logframe development for the collaborative project between the Japan International Research Center for Agricultural Sciences (JIRCAS) and ICRISAT, 30 October</td>
<td>Niamey, Niger</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Workshop on Agricultural Diversification and Vertical integration in South Asia, 5-6 November</td>
<td>New Delhi, India</td>
<td>80</td>
<td>South Asian countries, donor organizations, NGOs, private sector and advanced research institutions</td>
<td>FICCI, ICRISAT and IFPRI</td>
</tr>
<tr>
<td>Seventh CLAN Steering Committee Meeting, 10-12 November</td>
<td>ICRISAT, Patancheru</td>
<td>45</td>
<td>Bangladesh, China, India, Indonesia, Iran, Myanmar, Nepal, Philippines, Sri Lanka, Thailand, and Vietnam</td>
<td>APAARI, AVRDC, ICARDA and ICRISAT</td>
</tr>
<tr>
<td>SWMnet’s (Soil and Water Management Research Network) first stakeholder workshop, 10-12 November</td>
<td>Nairobi, Kenya</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFID-ICRISAT International meeting on Combating Biotic Stresses in Pigeonpea, 13-14 November</td>
<td>ICRISAT, Patancheru</td>
<td>38</td>
<td>China, India, Myanmar, Nepal, Sri Lanka, UK, USA,</td>
<td>DFID and ICRISAT</td>
</tr>
<tr>
<td>Review CPHP, 26-27 November</td>
<td>ICRISAT</td>
<td></td>
<td>DFID CPHP partners</td>
<td>CPHP, SA, and ICRISAT</td>
</tr>
<tr>
<td>Final review meeting on stylosanthes for agricultural systems, 26-28 November</td>
<td>Dharwad, India</td>
<td>30</td>
<td>CISRO, Australia, IGFRI, ANGARU, ILRI, ICRISAT, TNAU, UAS-Dharwad</td>
<td>ACIAR, IGFRI and ICRISAT</td>
</tr>
<tr>
<td>International Symposium for Sustainable Dryland Agriculture Systems (ISSDAS), 2-5 December</td>
<td>Palaisdes Congrès, Niamey</td>
<td>92</td>
<td>Botswana, Burkina Faso, Canada, Finland, Germany, India, Israel, Kenya, UN Agency, Mali, Malawi, Namibia, Niger, Norway, Senegal, South Africa, Sudan, Tanzania, United Kingdom, Zimbabwe</td>
<td>ICRISAT, IPALAC, INRAN, Gov. of Finland and IDRC</td>
</tr>
<tr>
<td>ICRISAT-Private Sector Ad-hoc Committee Meeting, 18 December</td>
<td>ICRISAT- Patancheru</td>
<td>10</td>
<td>India</td>
<td>ICRISAT-PS Hybrid Parents Research Consortia</td>
</tr>
</tbody>
</table>
Chief Minister asks ICRISAT to help farmers

HYDERABAD, JULY 29. Taking a cue from India’s successful use of information technology for telemedicine, the Philippines spices up its agricultural research body has decided to adopt the technology in an innovative way to provide experts’ advice from Manila to farmers spread across 7,000 islands of the nation on a variety of crop management aspects, which include tackling pests and diseases, experts sitting in Manila could advise farmers in remote islands via video calls at a cost of less than a rupee a call.

I have already decided to use this concept for agriculture. We will call tele-agriculture and invite your experts to help us set it up under the aegis of Philippines Open Academy,” he said. Stating that dissemination of farmer-related information through ICT would be given thrust under the proposed project, he said that apart from advising how to tackle pests and diseases, experts sitting in Manila could advise farmers in remote islands over video calls at a cost of less than a rupee a call.

He said that 70 per cent of the people in the southern part of the country need to be reached in this way.

“Once the technology is developed, we may extend it to other sectors.”

Better marketing of sorghum, pearl millet stressed

HYDERABAD, JULY 4. How can value be added to staple crops like sorghum and pearl millet to make them more market-friendly? This was the theme of a meeting of experts organised at ICRISAT last week in the first four days of this month. The main ideas, which emerged, were to market these crops better in niche areas and position them as better alternatives to existing options.

Even though sorghum and pearl millet were considered “poor man’s food”, they had many dietary advantages over wheat and rice, which could be exploited in the health food market. Similarly, these crops were ideal for adoption in the poultry industry, for producing alcohol and biogas, said C.L. Gowda, scientist at ICRISAT.

By Our Staff Reporter

Atelier de consultation sur les systèmes de production mil et sorgho en Afrique de l’Ouest

L’amélioration des systèmes de production au centre des préoccupations

Le point des réunions de consultation

Le temps de l’atelier de consultation dédié au niébé et au sorgho en Afrique de l’Ouest est arrivé.

Le point des réunions de consultation dédié au niébé et au sorgho en Afrique de l’Ouest est arrivé.

Le point des réunions de consultation dédié au niébé et au sorgho en Afrique de l’Ouest est arrivé.
In the News

Pour une agriculture

Le Secrétaire Général du Ministère du Développement Agricole, M. Adama Chabat, a inauguré hier, dans un hôtel de la rue du Sénégal, le premier système commercial d'insecticide pour le service de protection des cultures de la région de Dakar. Ce système est destiné à la filière de production des programmes du Ministère des Cultures et du Développement. Il permettra aux agriculteurs de contrôler les pesticides et d'optimiser la production des cultures. Ce nouveau système est une réponse à la problématique de l'utilisation excessive et non régulée des pesticides dans la région. Il permettra d'optimiser la production et de répondre aux besoins des agriculteurs.

ICRISAT for private partner

ICRISAT, an international research institute for crop improvement, recently launched a new initiative aimed at fostering private-public partnerships. The initiative is focused on accelerating the adoption of innovative agricultural technologies and on improving the livelihoods of smallholder farmers in Africa and Asia. The initiative aims to leverage private sector investments in research and development, and to support the development of new technologies that can help farmers to adapt to climate change and to improve their productivity.

Trade/Commodities

ICRISAT agri-biz incubator launched

Our Hyderabad Bureau

The launch of the ICRISAT agri-biz incubator is a significant milestone in the institute’s efforts to foster innovation and entrepreneurship in the agricultural sector. The incubator aims to provide a platform for entrepreneurs to develop and scale their agri-biz ideas, and to connect them with potential investors and partners. The incubator will also offer training and mentorship to help entrepreneurs to develop their businesses.

Int'l research center springs back to life, thanks to Pinoy scientist

Former Agriculture Secretary William Dar was reappointed as director-general of the International Rice Research Institute (IRRI) based in Los Banos, Laguna, Philippines, in February 2022. Dar will serve a second term as the institute's chief executive. IRRI was founded in 1960 by a group of international experts to address the global food crisis. Under Dar's leadership, the institute has made significant contributions to rice research and development, and has played a key role in increasing rice productivity, especially in Asia.
ICRISAT Governing Board

Augustine Uzo Mokwunye, Nigeria
Chairman of the Board (From Apr 2003)
Director, The United Nations University
Institute for Natural Resources in Africa
Isser Bldg Complex, Nasia Road
Legon/Accra, Ghana
Tel: 233-21-500-396
Fax: 233-21-500-792
Email: mokwunye@ghana.com
mokwunye@inra.unu.edu.gh

Mangala Rai, India
Vice-Chairman (From Mar 2003)
Secretary, Government of India
Department of Agricultural Research and Education, and Director General, Indian Council of Agricultural Research (ICAR)
Krishi Bhavan, New Delhi 110 001, India
Tel: 91-11-23382629
Fax: 91-11-23384773
Email: mrai@icar.delhi.nic.in

William D Dar, Philippines
Director General
International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)
Patancheru 502 324
Andhra Pradesh, India
Tel: 91-40-23296361
Fax: 91-40-23296180
Email: w.dar@cgiar.org

Gladys MN Mutukwa, Zambia
Gladys Mutukwa & Associates
PO Box 33717
Lusaka, Zambia
Tel: 260-97-786642
Fax: 260-1-293009
Email: msodzi@hotmail.com
Simon G Best, UK
Chief Executive Officer
Ardana Bioscience Limited
58 Queen Street, Edinburgh
EH2 3NS, Scotland, UK
Tel: 44-131-226-8550
Fax: 44-131-226-8551
Email: simon@ardana.co.uk

Roger N Beachy, USA
President
Donald Danforth Plant Science Center
975 N Warson Road
St. Louis, MO 63132, USA
Tel: 1-314-587-1201
Fax: 1-314-587-1301
Email: mbeachy@danforthcenter.org

Norah K Olembo, Kenya
Biotechnology Trust Africa
Family Health Plaza
PO Box 1285, 00100
Nairobi
Kenya
Phone: 254-20-603-983
254-20-600-040
Email: bta@swiftkenya.com

Osamu Ito, Japan
Director (From Oct 2002)
Crop Production and Environment Division
Japan International Research Center for Agricultural Sciences
1-1 Ohwashi, Tsukuba
Ibaraki, 305-8686 Japan
Phone: 81-29-838-6306
Fax: 81-29-838-6651
Email: osamuito@jircas.affrc.go.jp

Radha Singh, India
Secretary, Government of India
Department of Agriculture and Cooperation
Ministry of Agriculture
Krishi Bhavan
New Delhi 110 001, India
Tel: 91-11-23382651/8444
Fax: 91-11-23386004
Email: secyagri@krishi.delhi.nic.in

Joao Ambrosio de Araujo Filho, Brazil
(From Apr 2002)
Empresa Brasileira de Pesquisa Agropecuaria
Centro Nacional de Pesquisa de Caprinos
Fazenda Tres Lagoas
Estrada Sobral-Groaíras, Km 4
Caixa Postal D-10, Sobral, Ceara
Brazil, CEP 62011-970
Tel: 88-6777033
Fax: 88-6777055
Email: ambrosio@cnpc.embrapa.br

Mohan Kanda, IAS, India
Chief Secretary, Government of Andhra Pradesh
Secretariat, Hyderabad 500 022
Andhra Pradesh, India
Tel: 91-40-23452620
Fax: 91-40-23453700
Email: csap@ap.nic.in

Stein W Bie, Norway
Imsroa
N-2480 Koppang, Norway
Tel: 47-901-23532
Email: steinwbie@online.no

Caroline Pestieau, Canada
Bruyère Street
Ottawa, Ontario
K1N 5E6, Canada
Tel: 1-613-241-5259
Fax: 1-613-241-5259
Email: cpestieau@rogers.com
ICRISAT Senior Staff
(Name, Designation, Nationality, (Location), Global Theme/Division)

Director General’s Office
William D Dar, Director General, Philippines, (Patancheru), DG’s Office
Eric M McGaw, Communications Specialist, USA, (Patancheru), DG’s Office
Stuart McLay, Special Assistant to DG for Educational Affairs, UK, (Hyderabad)
C Geetha, Senior Manager, DG’s Office, India, (Patancheru), DG’s Office

Communication Office
Rex L Navarro, Head, Communication Office and Special Asst to the DG, Philippines, (Patancheru), Communication Office
Lydia Flynn, Editor-in-Chief, India, (Patancheru), Communication Office

Project Development and Marketing Office
Barry I Shapiro, Head - Project Development and Marketing, USA, (Patancheru), PDMO

Internal Audit
TN Menon, Head - Internal Audit, India, (Patancheru), DG’s Office

Human Resources and Operations
IR Nagaraj, Director, Human Resources and Operations, India, (Patancheru), HR&O
AJ Rama Rao, Senior Manager, Human Resources Services, India, (Patancheru), HR&O
C Narasimha Reddy, Senior Manager - Medical Services, India, (Patancheru), HR&O

Transport Services
K Jagannadh, Senior Manager - Transport, India, (Patancheru), HR&O

Security Office
TD Peter, Chief Security Officer, India, (Patancheru), HR&O

Housing and Food Services
K Ravi Shankar, Head, Housing and Food Services, India, (Patancheru), HR&O

Purchase, Supplies and Disposal Services
T Kulashekar, Manager, Purchase, Supplies, and Disposal, India, (Patancheru), HR&O

Financial Services
Rajesh Agrawal, Director - Finance, India, (Patancheru), Financial Services
S Sethuraman, Head, Financial Services, India, (Patancheru), Financial Services

Deputy Director General’s Office
JDH Keatinge, Deputy Director General - Research, Ireland, (Patancheru), DDG-R

Global Theme Leaders
Jonathan H Crouch, Principal Scientist - Applied Genomics, UK, (Patancheru), GT-Biotechnology
CLL Gowda, Global Theme Leader - Crop Management, India, (Patancheru), GT-Crop Improvement
SJ Twomlow, Global Theme Leader - Agroecosystems, UK, (Bulawayo), GT-Agroecosystems
MCS Bantilan, Global Theme Leader - SAT Futures, Philippines, (Patancheru), GT-SAT Futures
RB Jones, Global Theme Leader-Seed Systems, UK, (Nairobi), GT-Seed Systems
Farid Waliyar, Global Theme Leader - Biotechnology, France, GT-Crop Improvement

Information Resource Management Office
V Balaji, Head, Information Resource Management Office, India, (Patancheru), IRMO
S Srinivas, Head-Library & Docn. Services, India, (Patancheru), IRMO
B Ram Kumar, Senior Manager, Information Systems Unit, India, (Patancheru), IRMO

Farm and Engineering Services
NSS Prasad, Head, Farm and Engineering Services, India, (Patancheru), DDG-R
K Ravindranath, Senior Manager - Farm Machinery and Mech Engg Services, India, (Patancheru), FES
M Prabhakar Reddy, Head-Irrigation, Labor and Station Management, India, (Patancheru), FES

Patancheru
Subhash Chandra, Principal Scientist (Statistics) and Head-bioinformatics, India, GT-Biotechnology
PM Gaur, Senior Scientist (Breeding), India, GT-Crop Improvement
CT Hash, Principal Scientist (Breeding), USA, GT-Biotechnology
Junichi Kashihwagi, Associate Scientist, Japan, GT-Biotechnology
Jagdish Kumar, Principal Scientist (Breeding), India, GT-Biotechnology
JVDK Kumar Rao, Special Project Scientist, India, GT-Agroecosystems
Lava Kumar, Special Project Scientist, India, GT-Crop Improvement
Nalini Mallikarjuna, Senior Scientist (Cell Biology), India, GT-Biotechnology
SN Nigam, Principal Scientist (Pathology), India, GT-Crop Improvement
Suresh Pande, Principal Scientist (Applied Genomics), India, GT-Agroecosystems
KN Rai, Principal Scientist (Biodiversity), India, GT-Crop Improvement
A Ramakrishna, Senior Scientist (Agronomy), India, GT-Agroecosystems
P Parthasarathy, Senior Scientist - Economics, India, GT-SAT Futures
K Purnachandra Rao, Principal Scientist (Village Level Studies), India, GT-SAT Futures
GV Ranga Rao, Special Project Scientist-IPM, India, GT-Crop Improvement
Belum VS Reddy, Principal Scientist (Biodiversity), India, GT-Crop Improvement
TJ Rego, Principal Scientist (Soil Science), India, GT-Agroecosystems
OP Rupela, Senior Scientist (Microbiology), India, GT-Crop Improvement
KB Saxena, Principal Scientist (Biodiversity), India, GT-Crop Improvement
N Seetharama, Senior Scientist (Physiology), India, GT-Biotechnology
S Senhilvel, Special Project Scientist, India, GT-Biotechnology
Rachid Serraj, Principal Scientist-Plant Physiology, Morocco, GT-Biotechnology
HC Sharma, Principal Scientist (Entomology), India, GT-Crop Improvement
Kiran K Sharma, Principal Scientist (Cell Biology), India, GT-Biotechnology
Bekele Shiferaw, Senior Scientist - Resource and Development Economics, Ethiopia, GT-SAT Futures
Piara Singh, Principal Scientist (Soil Science), India, GT-Agroecosystems

TK Sreedevi, Scientist-Watershed Development, India, GT-Agroecosystems

RP Thakur, Senior Scientist (Pathology), India, GT-Crop Improvement

HD Upadhyaya, Special Project Scientist, India, GT-Crop Improvement

Suhas P Wani, Principal Scientist-Watersheds, India, GT-Agroecosystems

West and Central Africa

Niameny, Niger

Saidou Koala, Coordinator (DMI) and Reg Representative, Burkina Faso, Reg Rep-WCA

P Delbosse, Special Project Scientist, Belgium, GT-Crop Improvement

MS Diolombi, Regional Finance Officer and Administrator, Nigeria, Financial Services

Bruno Gerard, Senior Scientist, Belgium, GT-Agroecosystems

Jupiter Ndjeunga, Senior Scientist-Economics, Cameroon, GT-SAT Futures

Gospel O Omanyia, Special Project Scientist, Kenya, GT-Crop Improvement

Dov Pasternak, Principal Scientist-Desert Margin Issues, Israel, GT-Agroecosystems

Ramadjita Tabo, Principal Scientist (Agronomy), Chad, GT-Agroecosystems

Bamako, Mali

BR Ntare, Principal Scientist (Breeding) and Country Representative, Uganda, GT-Crop Improvement

Eva W Rattunde, Principal Scientist (Sorghum Breeding & Genetic Resources), Germany, GT-Crop Improvement

HFW Rattunde, Principal Scientist (Sorghum Breeding & Genetic Resources), USA, GT-Crop Improvement

PCS Traore, Manager, GIS, Mali, GT-Agroecosystems

Southern Africa

Bulawayo, Zimbabwe

David D Rohrbach, Principal Scientist (Economics) and Country Representative, USA, GT-Crop Improvement

Jane Alumira, Associate Scientist-Impact Assessment, Kenya, GT-SAT Futures

John P Dines, Senior Scientist (Farming Systems Modeling), Australia, GT-Agroecosystems

GM Heinrich, Project Leader (SMIP) and Regional Rep, USA, GT-Agroecosystems

Mary A Mgonja, Principal Scientist (Breeding), Tanzania, GT-Crop Improvement

ES Monyo, Principal Scientist (Breeding), Tanzania, GT-Seed Systems

CN Orare, Administrator, Kenya, Financial Services

André F van Rooyen, Regional Coordinator (Desert Margins), Africa, GT-Agroecosystems

Joseph Rusike, Special Project Scientist, Zimbabwe, GT-Agroecosystems

Ajay Varadacharya, Regional Information Officer, India, Communication Office

Lilongwe, Malawi

Moses Siambi, Senior Scientist-Agronomy and Country Representative, Kenya, GT-Seed Systems

Juan Estrada-Valle, Senior Scientist-Economics, Guatemala, GT-Seed Systems

Maputo, Mozambique

Carlos E Dominguez Otero, Seed Systems Specialist and Country Representative, Colombia, GT-Seed Systems

Joel I Cossa, Project Manager, Mozambique, GT-Seed Systems

Eastern Africa

Nairobi, Kenya

SN Silim, Principal Scientist (Agronomy) and Regional Representative, Uganda, GT-Crop Improvement

Youssouf Camara, Post Doctoral Fellow, Ivory Coast, GT-SAT Futures

A Debelo, Regional Network Coordinator - ECARSAM, Ethiopia, Reg Rep-ESA

R Folkertsma, Project Coordinator-Striga Project, Netherlands, GT-Biotechnology

Eastonce Gwata, Post Doctoral Fellow, Zimbabwe, Reg Rep-ESA

N Hatibu, Regional Network Coordinator-SCRMNET, Tanzania, Reg Rep-ESA

KPC Rao, Special Project Scientist, India, GT-Agroecosystems

Collaborative staff

CIRAD

Benoit Clerget, Echo-Physiologist-CIRAD, France, (Bamako)

Fabrice Sagna, Scientist - Population Genetics-CIRAD, France, (Bamako)

ILRI

Augustine Ayantunde, Team Leader-ILRI, Nigeria, (Niameny)

Michael Blummel, Team Leader (Ruminant Nutrition)-ILRI, Germany, (Patancheru)

Peter G Bezkorowajnyj, Project Manager - Fodder Innovations, Canada, (Patancheru)

Oumar Diall, Veterinary Scientist-ILRI, Mali, (Bamako)

IPGRI

PN Mathur, Principal Scientist-IPGRI, India, New Delhi, Collab Staff

JIRCAS

Ryoichi Matsunaga, Team Leader and Soil Scientist-JIRCAS, Japan, Niameny

Keiichi Hayashi, Soils Scientist-JIRCAS, Japan, Niameny

IWMI

Christopher A Scott, Director, South Asia Regional Office-IWMI, USA, (Patancheru)

Trent Wade Biggs, Post Doctoral Scientist-IWMI, USA, (Patancheru)

Jetske A Bouma, Associate Expert-Resource Economist, Netherlands, (Patancheru)

Jeroen H J Ensink, Special Project Associate-IWMI, Netherlands, (Patancheru)

Stephanie Buechler, Post Doctoral Fellow-IWMI, USA, (Patancheru)

KARI

Wilson Ronnoh, Adjunct Scientist-KARI, Kenya (Nairobi)

ODI

Catherine Longley, Special Project Scientist-ODA, UK, (Nairobi)

Technoserve

Harrigan Mukhongo, Target Project Manager-Technoserve, Kenya, (Nairobi)
Financial Summary

Balance sheet

<table>
<thead>
<tr>
<th>Assets</th>
<th>2003</th>
<th>2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash and cash equivalents</td>
<td>5,389</td>
<td>3,992</td>
</tr>
<tr>
<td>Investments</td>
<td>10,283</td>
<td>8,670</td>
</tr>
<tr>
<td>Accounts receivable</td>
<td>6,484</td>
<td>5,778</td>
</tr>
<tr>
<td>Inventories</td>
<td>618</td>
<td>711</td>
</tr>
<tr>
<td>Prepaid expenses</td>
<td>313</td>
<td>328</td>
</tr>
<tr>
<td>Property and equipment - net</td>
<td>5,900</td>
<td>6,584</td>
</tr>
<tr>
<td>Other assets</td>
<td>6,927</td>
<td>5,188</td>
</tr>
<tr>
<td>Total Assets</td>
<td>35,914</td>
<td>31,251</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Liabilities</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounts payable</td>
<td>4,317</td>
<td>3,120</td>
</tr>
<tr>
<td>Accruals and provisions</td>
<td>990</td>
<td>979</td>
</tr>
<tr>
<td>Payments in advance from donors</td>
<td>6,951</td>
<td>5,598</td>
</tr>
<tr>
<td>In-trust funds</td>
<td>140</td>
<td>117</td>
</tr>
<tr>
<td>Long-term liabilities</td>
<td>7,212</td>
<td>6,907</td>
</tr>
<tr>
<td>Total Liabilities</td>
<td>19,610</td>
<td>16,721</td>
</tr>
</tbody>
</table>

Net Assets

<table>
<thead>
<tr>
<th>Unrestricted</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unappropriated</td>
<td>4,117</td>
<td>3,021</td>
</tr>
<tr>
<td>Appropriated</td>
<td>9,133</td>
<td>9,477</td>
</tr>
<tr>
<td>Permanently restricted</td>
<td>3,054</td>
<td>2,032</td>
</tr>
<tr>
<td>Total Net Assets</td>
<td>16,304</td>
<td>14,530</td>
</tr>
</tbody>
</table>

| **Total Liabilities and Net Assets** | **35,914** | **31,251** |

Expenditure by CGIAR Activity

Operating results and movements in net assets

<table>
<thead>
<tr>
<th>(US$ '000)</th>
<th>2003</th>
<th>2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating results</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revenue</td>
<td>24,204</td>
<td>20,894</td>
</tr>
<tr>
<td>Expenditure</td>
<td>23,654</td>
<td>21,358</td>
</tr>
<tr>
<td>Change in net assets, operational</td>
<td>550</td>
<td>(464)</td>
</tr>
<tr>
<td>Extraordinary items</td>
<td>-</td>
<td>(3,538)</td>
</tr>
<tr>
<td>Change in net assets, operational (net)</td>
<td>550</td>
<td>(4,002)</td>
</tr>
</tbody>
</table>

Net assets - unrestricted

<table>
<thead>
<tr>
<th>Unappropriated</th>
<th>3,021</th>
<th>3,485</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balance, beginning of the year</td>
<td>3,021</td>
<td>3,485</td>
</tr>
<tr>
<td>Operating (deficit)/surplus for the year</td>
<td>550</td>
<td>(4,002)</td>
</tr>
<tr>
<td>Improvements to physical facilities</td>
<td>(63)</td>
<td>(66)</td>
</tr>
<tr>
<td>Transfer from appropriated net assets</td>
<td>63</td>
<td>66</td>
</tr>
<tr>
<td>Early retirement scheme</td>
<td>-</td>
<td>3,538</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Changes in accounting policies</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Special Purpose housing loan fund</td>
<td>281</td>
<td>-</td>
</tr>
<tr>
<td>Reclassification of loans granted from erstwhile housing loan fund</td>
<td>203</td>
<td>-</td>
</tr>
<tr>
<td>Additions to special purpose housing loan fund</td>
<td>62</td>
<td>-</td>
</tr>
<tr>
<td>Balance, end of the year</td>
<td>4,117</td>
<td>3,021</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Appropriated</th>
<th>9,477</th>
<th>14,054</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balance, beginning of the year</td>
<td>9,477</td>
<td>14,054</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Changes in accounting policies</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquisition of Physical facilities</td>
<td>(63)</td>
<td>(66)</td>
</tr>
<tr>
<td>Housing Loans, net of interest</td>
<td>-</td>
<td>27</td>
</tr>
<tr>
<td>Special purpose housing fund</td>
<td>(281)</td>
<td>-</td>
</tr>
<tr>
<td>Early Retirement Scheme</td>
<td>-</td>
<td>(3,538)</td>
</tr>
<tr>
<td>Transfer to net assets - Permanently Restricted</td>
<td>-</td>
<td>(1,000)</td>
</tr>
<tr>
<td>Total Net Assets - Unrestricted</td>
<td>9,133</td>
<td>9,477</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Net Assets - Permanently Restricted</th>
<th>3,054</th>
<th>2,032</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Net Assets</td>
<td>16,304</td>
<td>14,530</td>
</tr>
</tbody>
</table>
Grant income from donors for 2003

In 2003, the Sehgal family foundation contributed an additional $1 million to the "ICRISAT - Sehgal Family Foundation Endowment" set up in 2002. The corpus stood at $3.026 million as on 31 December 2003.

The income generated by this fund will be used to conduct research on pearl millet (downy mildew resistance) and sorghum (shoot fly and grain mold resistance).
ICRISAT Publications in 2003

Published Books:

Chapters Published in Books:

Chapters in Books (Unpublished):

Published Conference Proceedings:

Waliyar F, Colette L and **Kenmore PE (eds.).** 2003. Beyond the gene horizon: sustaining agricultural productivity and enhancing livelihoods through optimization of crop and crop-associated biodiversity with emphasis on semi-arid...

Papers Published in Conference Proceedings:

Pathak P, Wani SP, Ramakrishna A and Sahrawat KL. 2003. Biophysical indicators for assessing the impact of...

Waliyar FW and Sharma HC. 2003. Pest and disease biodiversity and their management. Pages 66-88 in Beyond the gene horizon: sustaining agricultural productivity and enhancing livelihoods through optimization of crop and crop-associated biodiversity with emphasis on semi-arid tropical agroecosystems:

William TO and J Ndjeunga. 2003. Constraints and opportunities for increasing agricultural productivity in the Sahelian production systems in West Africa. Paper presented at the CORAF/IAC workshop on Science and
technology strategies for improved agricultural productivity and food security in West and Central Africa, Dakar, Senegal, 10-12 February 2003.

A Document in Preparation:

Journal Articles

Sharma HC, Pampapathy G and Reddy LJ. 2003. Wild relatives of pigeonpea as a source of resistance to the pod fly (Melanagromyza obtusa Malloch) and pod wasp (Tanaostigmodes cajani (La Salle)). (In En.) Genetic Resources and Crop Evolution 50(8):817-824.

Articles in Newsletters

Journal Articles in Press/ Accepted/Submitted

About ICRISAT
The International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) is a non-profit, non-political, international organization for science-based agricultural development. ICRISAT conducts research on sorghum, pearl millet, chickpea, pigeonpea and groundnut – crops that support the livelihoods of the poorest of the poor in the semi-arid tropics encompassing 46 countries. ICRISAT also shares information and knowledge through capacity building, publications and ICTs. Established in 1972, it is one of 15 Centers supported by the Consultative Group on International Agricultural Research (CGIAR).

Contact information:

ICRISAT-Patancheru
Headquarters
Patancheru 502 324
Andhra Pradesh, India
Tel: +91 40 22904111
Fax: +91 40 22901231
info@icrisat.org

ICRISAT-Bonnito
BP 720
Barakpo, Mali
Tel: +223 22203705
Fax: 223 2220378
info@icrisat.org

ICRISAT-Bulawayo
Malapane Research Station
PO Box 756
Bulawayo, Zimbabwe
Tel: +263 81 68211-15
Fax: +263 81 6820638
info@icrisat.org

ICRISAT-Lisbon
Central Agricultural Research Station
PO Box 958
Lisbon, Portugal
Tel: +351 217329751
Fax: 7329754
Email: lisbon@icrisat.org

www.icrisat.org