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ABSTRACT

Srivastava, K.L., Smith, G.D. and Jangawad, L.S., 1989. Compaction and shading effects on sur-
face cracking in a Vertisol. Soil Tillage Res., 13: 151-161.

The effects of soil compaction and shading on surface cracking were studied in miniplots on a
Vertisol at ICRISAT Center. Two distinctly different types of cracking were observed: (1) Type
1, wide and deep cracks, associated with bigger intercrack structural units (ISUs); (2) Type 2,
narrow and shallow cracks, associated with smaller ISUs. Although differences in the areal shrink-
age on the soil surface were rather small across the treatments, compaction and shading resulted
in Type-1 cracking, and uncompacted and unshaded treatments produced Type-2 cracking. The
equivalent diameter of ISUs was increased approximately twice by shading and three times by
compaction. These differences may be attributed to: (1) structural changes during compaction;
(2) structural adjustments during drying. A qualitative model of crack initiation, which explains
the observed effects, has been proposed.

These results have important applications in soil management. Type-1 cracking may improve
infiltration and internal drainage and effective storage of water in subsurface layers. But for effi-
cient seedling establishment, Type-2 cracking is preferred. Field experiments to test these con-
cepts are warranted.

INTRODUCTION

The development of cracks owing to shrinkage is a major structural feature
of many soils. Gross cracks, extending deep into the profile, define major struc-
tural units and play an important role in several processes. They can, for ex-
ample, improve infiltration and deep soil water recharge (Stirk, 1954; Swartz,
1966; Shaw and Yule, 1978; Gardner and Coughlan, 1982; Bouma, 1984 ), and
increase evaporation (Adams and Hanks, 1964; Ritchie and Adams, 1974).
Between the gross cracks, surface cracks define intercrack structural units
(ISUs). The frequency, size and rate of development of surface cracks, influ-
ences soil water, aeration and plant growth processes. The size and strength of

*Submitted as ICRISAT Journal Article No. 739.
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ISUs influence the ease and effectiveness of tillage and are often a constraint
that has to be managed in farming operations (Coughlan et al., 1989).

The shrink-swell process has been extensively studied (e.g. Haines, 1923;
Stirk, 1954; Holmes, 1955; Fox, 1964; Berndt and Coughlan, 1977; Yule and
Ritchie, 1980a, b). Differences in structure between cracking soils have also
been studied and have been attributed to soil constituents (Smith, 1984), crop
species and spatial arrangements (Johnson, 1962), rate and degree of drying
(Coughlan, 1984) and to management practices such as tillage and stubble
retention (Loch and Coughlan, 1984). In general, the effect of management
factors on the definition of surface structural units by cracks is not well under-
stood. Also, there has been little progress in the development of field tech-
niques to manage the cracking process. Coughlan et al. (1989) list it as a prior-
ity area for research. In designing tillage systems, compaction and drying rate
are two factors that can be varied. For example, compaction can be varied by
management of wheel or foot traffic, and drying rate by shading. The present
paper reports a study on the effects of differential soil compaction and shading
on surface cracking in a Vertisol and discusses implications of surface cracking
differences for moisture conservation, drainage and seedling emergence.

MATERIALS AND METHODS
Description of soil

The two experiments described in this paper were conducted on a Typic
Pellustert (Kasireddipalli series) at ICRISAT Center near Hyderabad, India.
The physical and chemical properties of this soil are presented in Table 1.

Soil preparation

The experiments were conducted in summer in an uncropped field. Steel
frames 150-cm square and 30-cm high were installed in the soil to a depth of
15 cm. The enclosed areas are henceforth referred to as miniplots. The dry
(18% w/w water) soil in each miniplot was thoroughly tilled by hand hoe to
20-cm depth to erase past soil-management effects and to create a uniform soil
structure. The soil surface was levelled by hand rake to minimize micro-relief
differences.

Experiment 1

This experiment was conducted in two miniplots (replicates). Soil within
the miniplots was wetted uniformly by quickly flooding the surface with 50
mm of water. On the following day, each miniplot was divided into three 50-
cm wide strips. The wet soil in the middle strip (Zone A in Fig. 1) was loosened
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Major characteristics ofthe Kasireddipallsol series, a Typic Pellustert, at [CRISAT Center, Hyderabed, A.P., India (Source = El-Swaify et o, 1985)

Horizon Depth  Distribution (%) of < mm partcls’ Coarse  Organic Carbonate pH (125) EC (125 H,0  Water retention
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"Values i parenthesesare particle diameters (mm). ‘Am=amphibol; KK = kaobinite; M1 = mica; SM = smectte; Q= quartz; FDM = feldspar-mirocline;
FDP=feldspar-plagioclase; FM = erromanganesium minerals FE = magnetite
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Fig. 1. Effect of differential soil manipulation on surface cracking in a Vertisol. The surface soil
in Zone A (middle) was compacted whereas in Zone B (left and right), it was not disturbed. Note
the longitudinal orientation of a crack in the middle of Zone A.

with a hand tool to a depth of 15 cm and the loose soil was taken out. This soil
was filled back in its original place and compacted in layers of 5 cm depth by a
pneumatic wheel, weighing 25 kg and having a surface contact width of 12 cm.
The soil in the remaining 2 strips (Zone B in Fig. 1) was left undisturbed.
Subsequently, 50-mm water was applied uniformly to both the miniplots and
the soil was allowed to dry. The surface soil had a mean bulk density (0-6 cm
core samples) of 1.45+0.01 g cm~3 (30.1+0.4% w/w water) in Zone A, and
1.33+0.01 g ecm~® (30.4+0.5% w/w water) in Zone B. Eight days after the
second wetting, the cracking patterns were photographed, and the depth of
major cracks (> 5-mm width ) was measured by probing with a 2-mm diameter
wire. A minimum crack width of 5 mm was chosen arbitrarily, although North-
cote (1971) uses cracks of a similar width in the surface as a diagnostic feature
for cracking clay soils. During the drying period, United States Weather Bu-
reau (USWB) open-pan evaporation was 10-12 mm day .
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Photographs of the cracking patterns were analyzed by an Area Meter (Delta-
T Devices Ltd., Cambridge, U.K.)* to determine the mean area of ISUs and
the area of cracks at the soil surface (as a percentage of the total surface). The
mean equivalent diameter of the ISUs was computed.

Experiment 2

The experiment had two treatments (each replicated twice): (1) control
(similar to the uncompacted soil in Experiment 1); (2) shading with a poly-
thene film.

The miniplots were wetted uniformly by applying 60-mm water. In the shad-
ing treatment, a white polythene sheet (milky white, 1000 gauge) was fixed
about 15 cm above the soil surface over the whole plot (supported by steel
frames). The surface soil had a bulk density of 1.30 +0.2 g cm " (30.2+0.5%
w/w water). After 8 days of drying, the cracking pattern was photographed
and the depth of major cracks measured by a 2-mm diameter wire. During the
drying period USWB open-pan evaporation was 10-13 mm day~'. The pho-
tographs were analysed and computations made as in Experiment 1.

RESULTS
Effects of soil compaction

Figure 1 and Table 2 show that soil compaction leads to the formation of
deeper and wider cracks and bigger ISUs. Although the area of cracks on the
soil surface in the compacted and uncompacted zones was only slightly differ-
ent, the size of ISUs and depth of cracks were markedly different.

TABLE 2

Effect of compaction on size of cracks and intercrack structural units (ISUs)

Treatment Crack depth Surface crack ISUs
(cm) area
(% of the total) Mean area Equiv. diam.
(cm?) (cm)
Control 2.0 18.3 23.3 5.4
(+0.10) (+15) (t15)
Compacted 5.1 16.1 199.4 15.4
(£0.27) (£1.3) (125.0)

'Figures in parentheses are standard errors.

*Mention of commercial products or companies does not imply endorsement or recommendation
by ICRISAT, nor prejudice against any other manufacturer.
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In the compacted soil (Zone A in Fig. 1) a major crack was oriented logitu-
dinally along the direction of movement of the compacting wheel. This crack

was intersected at variable intervals by transverse cracks.

Effect of shading

Data presented in Table 3, and Figs. 2 and 3 clearly demonstrate that shad-
ing resulted in formation of deeper and wider cracks and bigger ISUs.

TABLE 3

Effect of shading on size of cracks and intercrack structural units (ISUs)

Treatment Crack depth Surface crack ISUs
(cm) area
(% of the Mean area Equi
total) (cm?) diam
(cm)
Control 1.8 15.1 37.0 6.8
(+0.1)! (+1.2) (+29)
Shaded 3.1 13.0 140.1 13.4
(x0.1) (x1.7) (+9.6)

'Figures in parentheses are standard errors.

Fig. 2. Surface cracking in a shaded miniplot.
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Fig. 3. Surface cracking in an unshaded miniplot.

DISCUSSION

The miniplots used in this study were too small for a representative sampling
of gross cracks which are generally observed in the field at an interval of about
1 m or more. This paper uses the term ISU rather than ‘intercrack unit’ because
the latter term generally refers to relatively bigger units, defined by the gross
cracks. In the hierarchy of structural units, the ISU lies between the intercrack
units and the subunits defined by hairline cracks.

A qualitative model of crack initiation

The difference in cracking observed in this study can be explained in terms
of a qualitative model of adjustments to stress as the soil dries.

In the early stages of drying, water drains from relatively large pores during
the structural shrinkage phase in relatively wet soil (Yule and Ritchie, 1980a,
b). With further drying, tension in the soil water film rearranges and reorients
the internal structural units of microaggregates and agglomerates in the soil
matrix. When internal friction, owing to bonding mechanisms, is such that
stresses cannot be relieved in this way, the water film fails and 3-dimensional
shrinkage begins (Fox, 1964). This failure occurs where tensile strength is
weakest. This would be where the soil is wettest or where the homogeneity of
the cohesive forces is perturbed, e.g. by relict structural arrangements resulting
from tillage and wetting. In relatively more homogeneous soils failures will be
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less frequent and will propagate further. In these soils, cracks will be wider and
longer.

The effect of compaction

The compacted soil in experiment 1 had fewer but larger cracks than the
uncompacted soil, i.e. failures leading to crack definition were less frequent.
The fact that the proportion of the surface occupied by cracks was nearly sim-
ilar in both the treatments indicates that, overall, the degree of shrinkage in
the immediate surface was also similar. This suggests that the explanation for
the difference lies in the way tension is relieved in each soil rather than to any
change in the extent of shrinkage.

The uncompacted soil, after slaking in the initial wetting process, would
have consisted of structural units each with subunits in random array. The air-
filled porosity after wetting was 0.10 cm® cm~2 which would represent struc-
tural pores. The uncompacted soil therefore had relict structural arrange-
ments. In contrast there was no air in the compacted soil. Thus the compacted
soil would have had a drastically altered structure. Structural bonds in the
original soil would have been destroyed by the compaction treatment and units
probably tended to be arranged in parallel orientation. Microstructural units
would be free to move and reorient into an array with homogenous pore size
distribution and within which new bonding arrangements would form. Cohe-
sion would therefore be greater and failure planes less common. Water flux to
the evaporating surface may have been more rapid in compacted soil (Brown,
1970) thus slowing the onset of tension and allowing more time for particle
rearrangements. This would have led to the formation of larger ISUs. Thus we
attribute the differences to increased cohesion brought about by more uniform
void structure coupled with more rapid water flux.

The effect of shading

In the second experiment, shading would have reduced the amount of ra-
diant energy reaching the soil surface. The evaporation rate would have been
lower and the peak soil temperature would have been less (Anonymous, 1982).
However, in this experiment, the initial soil structural arrangement was iden-
tical in each treatment. Again the approximate equivalence in final crack areas
suggests the degree of overall shrinkage at the immediate surface was similar.
In contrast to the first experiment the difference seems to represent the rate
of drying (tension) as well as the soil’s ability to adjust to applied stress. When
tension is applied slowly the soil is apparently able to adjust internally to re-
lieve tension before the cohesive strength is exceeded. This adjustment may be
by rearrangement and reorientation of microstructural units. The movement
of water into the evaporating surface may be able to keep pace with evaporation
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(i.e. the first stage of drying may extend for a longer time) so that stresses are
applied uniformly throughout the soil matrix.

These results caused by shading are in agreement with those of Loch and
Coughlan (1984) who suggested that retention of stubble as a mulch increased
aggregate size. In our study, wider cracks were generally deeper cracks (Tables
2 and 3) indicating that the relationships observed on the surface extended
into the vertical dimension as well. As cracks tend to be triangular in cross
section, narrower cracks will generally be registered as shallow cracks, as the
probe diameter (2 mm) was relatively large in relation to the width of mini-
mum crack size recorded (5 mm).

Relevance to soil management

The cracking intensities observed in this study are of two different kinds:
(1) Type-1 cracking, wide and deep cracks, associated with bigger ISUs; (2)
Type-2 cracking, narrow and shallow cracks, associated with smaller ISUs.
Both compaction and shading have caused Type-1 cracking but apparently by
different mechanisms. In the compacted soil, structure modification before
drying increased cohesion. In the shaded soil, internal structural adjustments
during drying increased cohesion. The type of rearrangement is not known in
either case but the much greater input of energy in compacted soil should give
a more drastic effect. These internal structural adjustments could have impli-
cations for the subsequent wetting cycle. Rain exceeding the infiltration rate
of the ISU will cause surface ponding and runoff into the cracks. When the
water deficit is recharged and water is redistributed into the ISU the cracks
will be closed. Cracks are important pathways and if they remain open for a
longer time, they may conduct water into zones where it is more effectively
stored than in the immediate surface (Loch and Coughlan, 1984 ). This would
be desirable for self-mulching Vertisols in low and undependable rainfall re-
gions where crops are grown only in the post-rainy season. Management prac-
tices to discourage self-mulching and create large ISUs could allow water to
by-pass the surface layer, from which it is rapidly lost by evaporation. Both
compaction and shading could be used to create water-shedding ISUs and rel-
atively larger and deeper surface cracks in such regions.

In wetter regions, internal drainage is commonly a problem. Wider and deeper
cracks created by deliberately compacting a zone (e.g. the furrow in ridge-
furrow system) could prolong the useful life of cracks as large drainage voids
for the soil in the neighbouring zone. This particular mechanism may also be
responsible (at least partly) for the reduction of surface runoff in the broadbed-
and-furrow system, in comparison with the traditional flat layout on Vertisols
at ICRISAT Center in the early part of the rainy season (Miranda et al., 1983).

Many Vertisols are subject to serious compaction owing to field traffic in wet
soil conditions. Wheel and foot traffic in the seeding zone should be avoided
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as it will encourage formation of coarse clods. If the ISUs of this study are
taken to be representative of crust plates in a seedbed, it can be implied that
an emerging seedling will have only one third the chance of being near a crack
in compacted soil as compared with an uncompacted soil. Seedlings located
near a crack are more likely to emerge than those away from it (Miller and
Gifford, 1974). Thus, for efficient seedling establishment soil management
should encourage Type-2 cracking. In such soils use of presswheels may prove
harmful if they compact the soil sufficiently te influence ISU size.

CONCLUSIONS

This study shows that compaction and shading influence size of cracks and
[SUs. Deeper and wider cracks, and bigger ISUs induced by compaction or
shading may improve infiltration, internal drainage and effective moisture
storage. But for efficient seedling establishment in the crust prone Vertisols,
smaller ISUs should be preferred. Field experiments for testing these concepts
are needed.
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