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SUMMARY Estimation of the parameters of a non-linear model is considered when borh 
measured variables have random errors. The maximum likelihood estimates wirh the 
asymptotic variance and covariance mamx are presented. Real data are used to 
illustrate the procedure discussed. 

1 Introduction 

In field experiments, there are numerous situations where interest lies in obtaining the 
functional relationship between two variables, X and Y, of the form Y=f(X). When X 
is free from measurement error, i.e. the observations recorded on X are true values of 
X, we have the usual regression model Y=f(X) + E ,  E being sum of the random error 
unaccounted for by the model j(X) and the error of measurement of Y. When X is 
measured with errors (considered random), the linear and quadratic functional rela- 
tions between Y and X have been considered by several authors (Madansky, 1959; 
Kendall & Stuart, 1979; Causton & Venus, 1981; Wolter & Fuller, 1982). In many 
biological experiments the functional relationships are non-linear in parameters and 
variable X. For instance, Fig. 1 shows percent light interception with leaf area index 
(area of leaves per unit area of land) for a pearl millet cultivar. The records of both 
variables contain measurements errors. The functional relationship between these two 
variables conceptualised by plant physiologists, and indicated by the graph is sigmoid. 
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This relationship provides an understanding of the mechanism of the vegetative 
growth and hence the total biomass production of the crop. Another example is that 
relating drought recovery response with proline content (measurement with error) in 
plant tissues at the end of a drought period. 

Non-linear functional relationship, when both variables are subject to errors have 
received little attention in the literature. In Sections 2 and 3 of this paper we estimate 
the parameters of equation (1); its application to pearl millet data is considered in 
Sections 4 and 5. 

2 A non-linear model with errors in both variables 

Consider n pairs of random observations [(x,y;), i= 1,. . ., n] such that the measure- 
ments xi and yi are made independently on two variables, X and Y respectively, and 
follow the distributions represented by the probability density functions: 

xi-fi @I;, 0:) (2.1) 

~i-h (~2i ,  g:) (2.2) 
where f,(.), f2(.) are probability density functions; p , ,  p2; are means and o:, a: are 
variances of X and Y variables respectively at ith unit of measurements. The 
functional relationship between X and Y is given by: 

~z i=gOl~i ) ,  i=  1, n (2.3) 
When f, (.) and fi(.) are normal densities and p , ,  pli are expected values of x, and y i s  
respectively, we can write (2.1) and (2.2) as: 

~ ~ = / l , ; + & ~ ~  (2.4) 

~ i = P ~ i + & 2 i  (2.5.) 
where E ~ ; ~ N ( O ,  n:), and c2;-N(0, 03). The relations in (2.3) considered as linear, 
i.e. 

~ 2 i = a + P P l i  (2.6) 
and considered as quadratic i.e. 

P2i=(.y+P~li+~P:i (2.7) 
have been discussed by Kendall & Stuart (1979, Chapter 29), Causton & Venus (1981, 
pp. 182-209) and Wolter & Fuller (1982), among others. 

We consider the following non-linear model. Let X and Y represent the two 
variables and xi and yi be values of these variables on the ith experimental unit 
i= 1 . . . n. In this situation, we consider the non-linear relation: 

p2i=(.y(l -e-Wi) (2.8) 

although a more general relation would be 

p,,=(.y+ ye-Wi (2.9) 

We shall discuss in detail the estimation of the relation (2.8) and reparameterise it 
as below. With errors of measurements normally distributed, we have: 

%;=ti+ ~i (2.10) 

yiyi=Cif &i (2.11) 
Ci=a(l -e-&) (2.12) 

where q,, ei are independent and normally distributed with means zero and variances 

var (4) = 4 (2.13) 
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The zero value of 8 implies the constancy of variances of errors ti, but Fig. 1 indicates 
that the variance of ei is increasing with xi and hence with Ci. We have considered 8 to 
be known from an estimation point of view, however, the value of 8 has been chosen 
as the one that results in the minimum mean square for Y when fitted to the model 
without considering errors of measurements. 

3 Estimation of parameters 

To estimate a, B, t;. ( i=  1,. . ., n), of, a:, we have considered the value of 8 to be 
known. Thus, these estimates are conditional to 8. 

3.1 Choice of €3 

To choose 8, we fitted the non-linear regression model: 
y i = a ( l  -e-Di)+&, 

Var (ti) =of Xt) 

for several known values of 8 and estimated the corresponding values of nt by 
residual mean square (RMS), bf .  These values of 6: were plotted against 8. That 
value of 8 that results in the minimum bf  would be chosen for 8. We believe that 
such a value of 8 could be considered to estimate a and /I and 6 of the errors in 
variables model. 

3.2 Esrimation of a and 

The maximum likelihood method of estimation of the parameters in linear and 
quadratic functional relation (Kendall & Stuart, 1979); will be considered here. We 
assumed that the ratio A=of/o: is known. The likelihood function L of the para- 
meters a, p, &, i=  1,. . ., n, 0: based on observations (xi, y,), i=  1,. . ., n can be 
written as: 

I 

L=(27rAo:)- -'2nI-I gel2 exp(-(112) 1 (yi-a(l -e-Ki))21(loXf') 
1-1  I- I 

(27r o;)-"l2 exp( - (1/2)C(x,- (i)2/(4)) (3.2) 
Writing l=log L, we have: 

1 =constant - n log (All2 o,) - Ccyeyj/(2Aa;) - (8/2)Clog(&) 
- n log (17,) - C(xi- 5;)2/(20:) (3.3) 

where yi=yi-"(1 -e-m). 
The normal equations obtained by equating the derivatives of 1 with respect to a, P,h 
(i= 1,. . ., n), and o: to zeroes, result in the following equations that can be solved 
iteratively, for a, P, o: and ti, respectively, with suitable initial values of parameters: 

for estimating a. This requires the initial values of which may be taken as XI; 

gives solution f i  for estimating B; 
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and 

& = x i - 0 ~ '  4 1 2  + ;:{;e(0C;;'yi+2@e-PC;.)/(21) (3.7) 

for estimating cfi 

3.3 Asymptotic variance-covariance matrix 

The asymptotic variance-covariance matrix of various parameter estimates is obtained 
by computing the information matrix I. The element I (@, @') of information matrix I 
associated with parameters pair (@, 4') is expressed in terms of log likelihood function 
1 as below. 

From the expression for 1 in the present case we obtain 

The variance covariance matrix V is given by V=I-I .  One can simplify the inversion 
using the following result (Rao, 1973, p. 33) 

where E= D-B'A-'B and F=A-'B.  

3.4 Asymptotic confidence interval 

At a fixed point r, the ( could be estimcted by 

with the asymptotic variance of as 

avar(e) =(a(/aa)2 Var(d) + (a(!ap)2 v ~ @ )  + a(a[/aa)(a(/ap) C O V ( ~ ,  8) 
=(1 - e - q 2  Var(b)+(a< e-Nl2 ~ a r ( a )  

+ 2  a (1 - e - q e - N  Cov (&,/I) 

Estimate of avar(e) is obtained by substituting the estimate of a, P, their variances, 
and covariances. 

Some conditions for the asymptotic normality of the maximum likelihood estimates 
of a and parameters have been recently established by Amemiya & Fuller (1986) for 
a more general form of the non-linear relationships. 
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4 An illustration 

We present here computations for fitting the model (2.10-2.14) to pearl millet data 
(Tabk  1). The light interception values ( Y )  are plotted against leaf area index (X) 
for a set of 42 points during the growth period of a millet cultivar (Fig. 1). 

TABLE 1. Values of leaf area Index (S m m: of leaf/m2 01' land) and pcticnr I~ghr 
interccpt~on (1') measured for 4 2  plots of a mlllet cultlvar 

Serial Serial Scr~al 
no. X 1' no. S 1' no. .Y 1' 

0 1 I 
I I 1 I I 

0.0 0.5 1 .O 1.5 2.0 2.5 3.0 
Leaf area index x 

FIG. 1. Percent light interception and leaf area index; Observed value (0) fitted model (2.10-2.14) with 
I.= 1 ( A - A )  and fined model (3.1) (0-0). 

A-A: y=49.81 (1 -r-I 
0-0: y-65.13 ( I  -c-"'"') 
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The OPTIMIZE directive in the GENSTAT statistical package can provide the 
least square estimates of the parameters in the non-linear regression model with 
normal errors. Similar procedures are also available in the SAS package. The model 
(3.1) was fitted (using the OPTIMIZE directive in GENSTAT) for a range of 8 
values {8= - 1.50, - 1.00, -0.75, -0.50(0.25)2.00] and estimates of parameters a 
and and residual mean square (RMS) 6: are given in Table 2. The plotted curve of 
RMS with 8 is presented in Fig. 2. The optimum value of 8 judged by the minimum 
RMS was one. 

TABLB 2. Esl~mates of parameters a and based on model (3.1 ) 
(non-hear regression w~th  varylng 8) 

C3 cl SE(6) S E ~ )  RMS 

SE: Est~mated asymptotic standard error 

FIG. 2. Res~dual mean square (Uf) and power (8) in (2.14). 
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Thus, the value of 8 was taken as unity for fitting the model equations (2.10-2.14). 
The initial value of <, was taken as x, ( i =  1 . . .n), with initial value of a and P as the 
estimates of a and in Table 2 for 8= 1. The OPTIMIZE directive was used again 
wih  the weight option. The weight variate WT(w,) was proportional to the inverse of 
variance, i.e. w, = (;I. The new values of a and were used to compute ni from (3.6) 
and C; from (3.7). The estimates of (,Is were restricted to the feasible range of the 
positive leaf area index values. With these new values of <,'s, the above process of 
fitting was repeated until convergence of the values of a, jl, i i(i= 1,. . ., n) and a: 
occurred. In the process of computation, a set of five points lead to high residuals 
resulting in integer overflow. Accordingly the analysis was restricted to the set of 
remaining 37 points. 

This OPTIMIZATION procedure was carried out for several values of A. Table 3 
gives the estimates, their asymptotic standard errors, and RMS for a few values of I 
for which convergence was achieved. The plot for the fitted models (3.1) and 
(2.10-2.14) with A= 1 along with observed values are displayed in Fig. 1. 

TABLB 3. Estimates of a, a and thew asymptotic standard erron based on 
model In (2.10-2.14) rcs~dual mean squares for a range of values of A (the ratlo 

of variances In X and Y), 8 was taken as I 

RMS 
i & SE(&) ;I SEG)  rjf i i ( . - , i  - ' i f )  

5 Results and discussion 

We obtained estimates of the parameters in a non-linear model when the independent 
variable is measured with error. Though it is not the purpose of this paper to cause any 
effect on the conclusions derived from the example data on the subject matter, we 
found, however, that the error variation in percent light interception varied in 
proportion to the leaf area index (Fig. 2). In the set of values 0.10,0.25,. . ., 2.0,4.0 
for I ,  the estimates and their standard errors for parameters a and P showed a tapering 
off trend around A= 1 (Table 3). In the close neighbourhood of I -  1, the error does 
not increase and a closer fit was obtained at I=  1 than for any other value of I. Thus, 
under errors in both variables model, with A= 1, in the example, the estimates 
6=49.81 ( 5 5.156) and )= 1.179 ( 50.2606) can he taken for a and /? respectively. 

The OPTIMIZE directive of GENSTAT showed convergence for all the values of 
8 in its range when considered for fitting the model without errors in variable (X). 
However, in the case of error in X, remarkable closeness was found over iteration in 
the values of & in the range of its admissible values. The OPTIMIZE showed 
convergence for estimation of a and fi  for each set of {, obtained iteratively. 

We think that the method considered in Section 3 could be used for other non-linear 
forms worth examining in practice. 
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