
Journal of pplied Statistics, Vol. 14, No. 1, 1987 8 

A non-normal class of distribution function for 
dose-binary response curve* 

M. SINGH, International Crops Research Institute for the Semi-Arid Tropics, 
Patancheru 502 324, Andhra Pradesh 

SUMMARY A non-normal class of distribution (Edgeworth Series distribution) function 
in three and four parameters has been considered for dose-binary response relationship. 
This class accounts for the non-normality (expressed in terms of skewness and kurtosis) 
present in the relationship in addition to the usual location and scale parameters 
(generally considered by two parameter models). We present the maximum likelihood 
method of estimation of the parameters and test of probit (normal distribution) hypothe- 
sis. Edgeworth Series distribution when fitted to the data of Milicer Q Szczotka (1966) 
showed an excellent closeness to the observed values, significant improvement over probit 
and logit fit (Aranda-Ordaz, 1981)) and better fit compared to Prentice (1976) model. 

1 Introduction 

The binary response data reflecting the effect of an explanatory variable (dose) are 
often analysed using the relation given by a distribution function. If d is the dose 
applied on an experimental unit, the probability of response can be represented by 

where functions f(.) and F(. )  are probability density and corresponding distribution 
functions respectively. The parameters 8, (for location), O2 (for scale), d3, 04,. . . etc. 
require estimation. Two particular forms of F ( . )  representing normal probability 
density function F(d, p, a ) = @  (Z) known as probit transformation and logistic 
function F(d, p, a)=exp(Z)/(l +exp (Z)), Z=(d-p)/o, known as logit transforma 
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tion have been extensively used in explaining real data (see, Bliss, 1935; Finney, 1971; 
Cox, 1970, etc.). Prentice (1976) considered a class of distribution functions based on 
four parameters representing shapes along with location and scale. Two families of 
transformations were discussed by Aranda-Ordaz (1981). Morgan (1985) extended the 
logit model by including cubic and quartic terms in dose variate and applied on several 
data sets. Here we considered the Edgeworth Series distribution function (Kendall & 
Stuart, 1977, pp. 168-169; Subrahmaniam, 1969) which can show departure from 
probit transformation (resulting into a non-normal distribution function) and is not a 
special case or extension of Prentice (1976) and Morgan (1985). The Edgeworth 
Series Distribution (ESD) model can be used to adjust for departure (in shapes 
reflected in skewness and kurtosis) from normality. The model, maximum likelihood 
estimates of its parameters and also the estimate of effective dose (ED,) required for a 
given percentage (y) of response are in Section 2. When applied to the data of Milicer 
& Szczotka (1966) in Section 3 ESD model provided remarkably closer fit compared 
to that discussed by Aranda-Ordaz (1981) on probit and logit models and also by 
Prentice (1 976). 

2 Edgeworth series distribution (ESD) model 

2.1 Model 

We confine to the situation of only four parameters. This non-normal distribution 
function with parameters (p, o, A3, A4) is given by 

where 

f(t, 23, A4)= $(t){l +L3H3(t)/6 +A4H4(t)/24 +A$H6(t)/72) 

Also 

P(d) =@(z) - (A3H2(z)/6 +A4H3(z)/24+A$H5(z)/72)@(z) 

Jr 
Hi(t)(i=2, 3,. . ., 6) is Hermite Polynomial of order i in t. 

H2(t)=t2-1, H3(t)=t3-3t, H4(t)=t4-6tZ+3, H5(t)=t5- 10t3+15t 
H,(t)=P-15t4+45t2-15 

H,(t) can be defined in general, by 

( - 1 )'di $(t)/dt'= Hi(t)$(t) 

In above ,u, a, A3 and A4 are parameters of location, scale, skewness and kurtosis 
respectively. If A3 =A4=0, then we get normal probability distribution (probit). Thus 
ESD model allows the adjustment for departure from normality by accounting for 
shape parameters ;i3 and A4. 

2.2 Estimation of parameters 

Let m represent the number of individuals (units) out of n responded at dose d, 
(r= 1 . . . k), k is number of distinct doses considered in the experiment. The log- 
likelihood for 

6=(61, 62, 63, 64) 
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where 
(O,=,u, 02=a, 8,=A3, 04=;1, 

for convenience of notation), is except for a constant tern, (independent of 0) 

k 

I =  C (mr log(P(dr>)+(nr-mr) log (Q(d,)) 
r-1 

where Q(dr) = 1 - P(d,) 

The maximum likelihood estimates (m.1.e.) of 8 can be obtained by solving the 
following equations iteratively (see Rao, 1973, p. 366). 

k 

dl/dOi= x (mr/P(dr) - (nr- mr)/Q(dr))dP(dr)/dOi=O 
1 - 1  

for i =  1, 2, 3, 4. 

We note 

The information matrix for 8 denoted by lo has (i, j)th element 

k 

C (nr / (P(dr>Q(dr) ) ) (dP(dr) /dt ) , ) (aP(dr) /d@) 
r =  1 

for i , j = l ,  2, 3, 4 

The iterative procedure to get estimate of 8 can also be seen from Prentice (1976) 
using expressions for dl/dH,, lo and an initial solution. 

2.3 Estimation of effective dose ED (y) 

For given values of 8,, 02, 03, O4 (as their m.1.e.) ED(y) for a given percentage y of 
response can be estimated by 3, a solution of 

We used Newton-Ralphson method to get the solution Z* for above equation in Z, 
choosing the initial value of Z as @-'(y/100) and hence 3= + d2z*. 4 is the m.1.e. 
of Bi (i= 1, 2, 3, 4). 

The asymptotic variance Va(3) of 3 can be written as 

va(x) = (a~/ao~)(ax/ao,) C O V ( ~ ~ ,  hj) 
i J  

where the solution f of S(x, 8) = y/100 can be written as function x(.) 

in order to evaluate dx/dOi. 
Now partial differentiation of S(x, 0) = y/100 with respect to x and Oi gives 

We know 
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as/ao, 
and 

aslax = ( a / a ~ )  f(t)dt = ( i /a)f(x) I' 
- x 

Thus 

ax/aei = - (a/f(x>) as/aoi 
Therefore 

and a large sample confidence bound for x can be obtained using asymptotic normal 
likelihood estimates 8's. 

3 Illustration 

We fitted the three and four parameter ESD model of Section 2 using the data of 
Milicer & Szczotka (1966) on the records of 3918 Warsaw girls in 1963 giving 
individuals age and whether or not she had reached menarche. Table 1 (reproduced 
from Aranda-Ordaz 1981) gives the mean age of groups (years), number of girls, 
number menstruated and the comparison with probit, logit and Prentice (1976) models 
in terms of fitted values of proportions, maximum likelihood function 1(1,, 12, 13, 14, 15) 
and likelihood ratio chi-square values (Rao, 1973, p. 414; Kolakowski & Bock, 1981). 

The maximum likelihood function values for ESD models 1, = - 81 3.29 adjusted for 
parameter of skewness, 12= -813.10 adjusted for parameters of both skewness and 
kurtosis in addition to location and scale; for probit l3 = - 81 7.74, for logit (Aranda- 
Ordaz took A=0.325 in his transformation) 14= -817.58, and for Prentice, 
1, = - 815.77. Thus comparing 2(1, - 13) = 8.9 with chi-square table value on 1 d.f. 
shows more significant improvement over probit and logit models compared to 
Prentice (1976) model with three parameters (Table 1). 

The maximum likelihood estimation of the parameters in ESD model with only 
three parameters are ,ii= 13.008, d= 1.1022, A3 =0.3989 with variance-covariance 
matrix estimate as 

i (3 

b 1.4832 
6 [ 0.1705 1.2066 
i 3  -0.2427 0.5993 A 1.7734 " I  

The maximum likelihood estimates for four parameters ESD model are ,ii= 13.007, 
&= 1.1038, i3 =0.4135, A, =0.1987 with variance and covariance matrix 

The values of likelihood ratio chi-square for goodness of fit on 22 degrees of 
freedom is 13.98 for three parameters and 13.60 for four parameter case showing an 
excellent fit to the data. However, the four parameters fit does not show significant 
improvement over three parameters in this case, but may be of importance in those 
distributions arising in practice with non-zero coefficient of kurtosis. 
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TABLE 1. Age of menarche (in years) in 3918 Warsaw girls (Milicer & Szczotka, 1966) and fitted values 
from ESD model with three and four parameters, Probit, logit and Prentice Models 

Case Age N M OBS ESD3 ESD4 Probit Logit P3PD 

Likelihood ratio 13.98 13.60 22.92 27.25 18.98 
d.f. 2 2 21 23 2 3 22 
Log likelihood value -813.29 -813.10 -817.84 -819.92 - 815.77 

OBS stands for observed proportion; ESD3, P3PD for fitted proportion using ESD model and Prentice 
(1976) model with three parameters, ESD4 for ESD model with four parameters. 

The estimates of effective age values for given percentage (y) of response along 
with their asymptotic 95% confidence limits are given below in Table 2. 

TABLE 2. Effective age (years) and 95% asymptotic confidence limits 
- - -- - -- 

Three parameter case Four parameter case 
Effective Asymptot~c l~mit  Effective Asymptotic limit 

;I Age (years) Lower Upper Age (years) Lower Upper 

Discussion 

The procedure illustrated in the previous section shows how an Edgeworth Series 
distribution even with finite number of terms of the series can capture the departure 
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from probit upto a significant extent and outperform its several rivals. A graphical 
display is also given in Fig. 1 only for the value of observed and fitted proportions 
using three parameters ESD and Probit models for the sake of clarity. 

However, the inclusion of finite number of terms of Hermite polynomial in the 
density may lead to negative values of density function of ESD model particularly 
when the values A3 and Ag parameters are large. But for moderate (departure from) 
improvement over Probit model the ESD density can be useful. This model may also 
provide non-unique solution to effective dose values but the Newton-Ralphson 
method to find out real root yielded an acceptable solution when applied to the data 
illustrated. 

It may also be noticed that the ESD model can be used to provide a test for 
skewness (4 =0) and also for kurtosis (&=0) of the distribution under investigation. 
The present case leads to the rejection of the hypothesis A3=0 but not of &=0. 

Furthermore, with regard to the data considered in the paper one might argue for 
the over collection of the data on the tails, under the assumption or prior knowledge 
that no girl less than 10.5 years of age would have reached menarche and all girls older 
than 15.83 years would menstruate. Fitting ESD model to the reduced data ignoring 
the cases (1, 2, 3) below 10.6 years and case (25) above 17.5 years (Table I), we get 
no remarkable change in the estimates of the location and scale parameters estimates 
(b = 13.001, 6= 1.109) and log likelihood value of - 8 12.68 but approximately 12 
percent change in skewness parameter (&=0.352). However, better assessment of the 
model will require the processing of some more data sets. 
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