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ABSTRACT 

The distributional bthaviour using simulation and approximations to bias, mean square error 
of pnotypk rorrtlatlon whea'.@imatcd from plant brttding data have been obtained and 
illustrated with fkld data from a yleld trial on pearl millet. Empirical rtsults have been 
discussed for tht variation in several pammttcrs. 
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The large sample varlance of genetic correlation coefficient estimated from 
parent offspring covariance has been discussed [I]  and its sampling distributions 
have been investigated [2, 31 using simulations. Similar results are not available for 
plants where the genotypic correlation between two characters is obtained from the 
genotypic variances and covariance. In the case of plants, a number of genotypes 
are often grown in a replicated trial and two characters are measured on each plot. 
unlike the parent offspring situation in animals where two traits are measured on 
the parents and their offspring as well. The purpose of this paper is to provide with 
the large sample, bias and mean square error (MSE) and study empirically the 
distribution of the estimate of genotypic correlation from plant breeding data. 

MATERIALS AND METHODS 

Consider the estimation of the genotypic correlation coefficient between two 
characters x and y from v genotypes grown in a single environment of r randomized 
blocks. The bivariate analysis of variance is presented in Table 1. 

T,, T, and T,, are the corrected sums of squares for characters x and y and 
the corrected sum of products of x and y due to genotypes. Similarly, Ex,, E,,, Ex, 
stand for error components. a&, a;,, and wpxy are related to genotypic population 
variances 6, d,  and trm and error variances d.,, dev and dexy. as 
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Tabk I.  B i v u b k  rarlyrls of, varl.nce 

Sourcc d.f. SSP matrix Expected value of SSP matrix 

Blocks 

Genotypes 

Error 

SSP-sums of squares and products. 

Thc genotypic correlation p,; between x and y is defined as 

PC; = ( ' g ~ y l ( u g ~  agy) ( 2 )  

Thc matrices _T and E are distributed independently as central Wishart 
distributions W2(q. gp) and Wz(v, z,), respectively 141. Thus, an unbiased estimate 
of g, can be written as 

Z' = (llq) 1 - (llv) E - P 
using 

E(X) = qZd E(E) = vg, e 

where E(.) stands for expectation of the variables in parentheses. Using unbiased 
estimate of 02,,, u2,, and ngx, from (3). p, is 
estimated by r ~ i  = bgxy/(kpx bKY) (3)  
where kgxy = (Tx Jq - Exylv)lr 

6,. = ((Txx/q - ~ ~ ~ l v ) / r ) i  
&,, = ((Tyyiq - ~ d v ) l r ) i  

I t  is easy to see that rCi is not comparable with the rg of Brown [3]. as their 
expressions are different. 

The estimator rc, of pti is obviously not unbiased and may also lie outside the 
range ( -1 ,  11 because the inequality Iup,I < e8, 6,, may be violated when using 
data values. The probability of getting negative estimates of u',, has been discussed 
by Gill and Jensen [S], in which case rti may take imaginary values. and of getting 
nonpositive definite genetic covariance matrix by Hill and Thompson 161. 

BI* AND MEAN SQUARE ERROR ESTIMATE OF GENOTYPIC COKRELATION 

We use the following results. 

Lemma [7]. Suppose X, has mean Oi and variances and covariancc o f  thc k 
variates XI ,  X2, ...... Xk are of order n-P(p>O, in practice taken as unity), and n 
is the sample size used in constructing Xi for 8,. Consider a scalar function g(XI. ... . 
Xk) denoted briefly by g(x). The expectation and MSE of g(x) arc 
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where 
B 

E(g(x)) = g(0) + (10) XZg, (0) Cov(x,, x,) + o(n-P) ( 5 )  
MSE (g(x)) = SSg;(0)g] Cov(x,, x,) + o(n-P) 

I I (6)  

evaluated at 8,, 02. ..., Ok including the covariance terms between XI, ..., Xk in our 
approximation given in (5). ' 

Since rG is a function of variables T,,, T,, T,,, Ex,, E,, Ex,, the lemma is 
applied to obtain bias and MSE of rG in terms of the means and, variances and 
covaridnces of these variables. Further, we note the following [4]. 

D T~~ = 2q 4 Y  vp"pxu;Y 

T x ~  - Symmetric ( 1 + P : ) ~ ~ ~ U : J '  - - 
Exx 4 2 2  2 ucx PcVex*ey ~cu:Xucy 

D EYY = 2v u:y PC ('CX'=,~ 

3 

Ex, Symmetric ( 1 + ~e)ucxuey/2 - 
2 2 2  

- 
COV (T,, E,!) = 0 for z, z' = xx, yy, xy; 

where D(.) represents the dispersion (variance-covariance) matrix of the vector 
variables in parentheses. The covariances between genotype sums of squares or 
product and error sums of squares or product are zero. 

Treating T,,, T,,: T,!, Ex,, E,, Ex, as X I ,  x2 ,..., x6, in the lemma, we obtain 
after some algebraic s~mpl~fications, the following approximations: 

g(O) = PG 
bias (rG) = E(rG) - PG = (112) Zzg, (0) Cov (xi, xj) 

= (ln8) I(l/q) ((3pon) ( G 2 x + ~ 2 y ) + ~ p ( ~ p ~ G G x ~ -  2v(GxGy)(Gx+Gy))} 

+ (114 { ( ~ P G J ~ )  (g: + g:) + P ~ ( P ~ P G ~ & ,  -'V(g,g,) (g,+g,))}I (7) 

MSE (rG) = E(rG - p ~ ) 2  
= ZZg;(B)Cov (xi, x,) 
= ( l a g  [(llq) {p2~(GZx + G2,) + 2 ( ( l + d p + ~ 2 p  p2o)GXGy 

-2~pPo t'GxGy(Gx+Gy))} 
+ (llv {p20(2x+ g2x) + 2((l+ p2e + p2ep20) ~ x ~ y  

- vg&, (gx+gy))) 1 (8) 

where g, = $Adpl 
G , = g , + r  f o r z = x , y  

where SE (.) stands for standard error. 
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The evaluations of g'(0) and g" (0) have been given in Appendix I for only 
nbnzero covariance contributing variables. 

The estimates of bias and MSE can be obtained by substituting the estimates 
of pcj, p,, p,, g,, and g, using the estimate for variance-covariance components given 
in equation (3). 

DISTRIBUTION OF ro 

The first approximation to the expansion of the expression for ro yields a 
linear function of the above six variables which are sums (means) of some other 
random quantities. Thus, using the Central Limit Theorem [8] the distribution of 
r,; approaches normal distribution as the number of genotypes increases [7]. In order 
to obtain an idea of the number of genotypes to be considered so that the distribution 
of rti approximates reasonably to normal distribution, a simulation study was carried 
out involving a wide range of parameters. The comparisons between the simulated 
values of bias and standard errors have also been made with those from the 
approximations considered in expressions (7) and (8). 

Generation qf a bivariate normal pair. We carried out simulations with parametric 
values estimated from the analyses of the real data for various sets of number 
of genotypes, means, variances and correlations. The RANDU function available in 
GENSTAT package was used to generate uniform random variables and then standard 
normal deviates were generated using the relation [9]. If u, and u2 are two independent 
uniform random variables, then 

x, = (-2 log, ul)a Sin(2nu2) 

X2 = (-2 lo& u,)i Cos (27r u2) 

are independently normally distributed with zero means and unit variances. In order 
to generate a bivariate normal pair (Z,, &) with parameters (p l r  p2, d l ,  uZ2, .p) 
one may use 

where y1 = xl; y2 = pxl + x2 (p1, 0:) and (p, 4) are means and variances 
of Z1 and &, respectively, and p is the correlation coefficient between them. 

Generation of a random value of r~ . Let , = (ixI,  ..., [,)', I, = ([,,, ..., 1;,)', 
P. = (B.1, . . . , 8x3'. gy = (By,, . . . , Pyr)', 4 x ,  dey, and PC be parameten representing, 
respectively, vectors of v genotype means on character x and y, vectors of r block 
(replications) means for x and y, error variances for x, y and error correlation 
between these two characters. Several sets of these parameters were taken as 
e&mated values from a real trial (described in last section) in r=3 replications and 
vq% genotypes, and selecting for various values of v=10, 20, 30, 40, 50, 60, 70, 
90. A random pair (xij, yij) of observations on two characters corresponding to i-th 
genotype &d j-th replication was obtained as - 

Xij = Li + (Pxj - _83 + %j 

Yij = I;yi + (Bfi - By) + eyij 
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where Bz = fBdr, Z=X,  y, i= l ,  2, ..., v, j=1,2, ..., r, Z=X, y 
1 = 

(eXi,, e*,) is a bivariate normal pair with parameters (0, 0, 1, 1, p,) generated using 
the proced'ure discussed above. Frbm these (xi,, yij) i= 1, ..., v, j= 1, ... , r) vr pairs, 
we obtained one sample value of genotypic correlation r~ using equation (4). This 
process was repeated to get N independent values (simulation runs) of ro. An 
alternative way to generate r~ values could be with the help of two independent 
Wishart matrices with parameters in Table 1. + 

RESULTS 

We present 13 sets of values of parameters including number. of runs considered 
in our simulation study (Table 2). In ordcr to examine the normality of distribution 
of r ~ ,  the simulated skewness and kurtosis of r~ and also of its transformation 
= 0.5 log ((l+rG)/(l-rG)) are presented (Table 3). The cumulative probability 
distribution of rG has been compared with that of normal distribution with simulated 
means and standard error  a able 4) for the cases considered in Table 2. 

Tabk 2. Seb d punmeter value used for dmulrtlon with thm npllcatlom 

Case v N dv u2u u2M u 2 t y  PI . PC 

-0. of genotypes, Naimulation rn 
Formulac to estimate: 
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The comparison of the simulation results on bias and standard error with those 
computed using approximations in expressions (7) and (9) are presented in Table 5. 

DISCUSSION 

Number of simulation runs. The number of runs were varied from N=1000 to 
see whether this number is satisfactory enough to represent the underlying distributions 
or any marked differences are occumng in the stimulated parameters due to changes 
in runs. Other than N=1000 for each number of genotypes considered, we took 
N=5000, 4000, 3000, 2000, 2000 for v = 10, 20, 30, 40 and 50, respectively, under 
the consideration that for smaller sample size we need larger simulation runs for 
adequate representation of the distributions. 

Comparing the simulated values of mean, skewness and kurtosis of r~ (Table 
3) and standard error (Table 5) for the cases 1 with la, 2 with 2a, 3 and 3a, 4 
with 4a, and 5 with 5a, we find a very close agreement between their values except 
for case 4 with 4a on skewness and kurtosis values. Similar agreement in the 
cumulative probability values (Table 4) obtained on two different simulation runs 
can be observed. Thus N=1000 runs can be safely taken for valid comparison. 

Normality of r ~ .  Table 3 shows that values of skewness and kurtosis are 
insignificant for more than 50 genotypes. Also from cases 4a and 5a their magnitudes 
are small (101. Except for the cases with v=lO, 20 genotypes, we did not observe 

Tabk 3. Skewnesnsind kurtodr ofr, and Its inverse (Inh transform8Uon 4; along with their standard errors 
(SE) in psrmtlnwr+ 

Case Skewness* SE rGKurtosisf SE Skewness Zc;Kurtosis 
No. 

+Standard error of skewness = (6/N)IR and of kurtosis 5 (24/N)lE. same standard errors apply for 
corresponding values on k. 
.- Transformation not dong. 
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any invalid (going outside interval (-1, 1) or imaginary) value of ro. Thus, with 
three or more replications, the distribution of ro approximates normal distribution 
when the number of genotypes goes beyond 50 and here the significance of genotypic 
correlation can be tested by comparing the estimate divided by its standard error 
against the' table value of standard normal deviate. We also applied the inverse tanh 
transformation but we did not get any improvement for the cases 4 and beyond. 
Although there was a small reduction in skewness values but increase in kurtosis 
(Table 3) was with similar trend as observed by [3]. 

Tabk 4. RobrMli ty d [rG s p] under simulation .ad nomul rpprorlmrtka 

Case P 

I *  sirn 0.00 0.01 0.03 0.05 0.09 0.17 0.29 
nor 0.00 0.00 0.01 0.03 0.08 0.18 0.33 

la sirn 0.01 0.01 0.02 0.04 0.08 0.16 0.28 
nor 0.00 0.00 0.01 . 0.03 0.08 0.17 0.31 

2 sirn 0.04 0.09 0.19 0.34 0.55 0.75 0.88 
nor 0.03 0.09 0.20 0.37 0.57 0.75 0.88 

2a sirn 0.04 0.09 0.18 0.33 0.54 0.75 0.90 
nor 0.03 0.09 0.20 0.37 0.57 0.75 0.88 

3 sim 0.01 0.03 0.08 0.21 0.41 0.69 0.88 
nor 0.00 0.02 0.08 0.22 0.44 0.69 0.87 

3a sim 0.01 0.03 0.07 0.19 0.40 0.67 0.87 
nor 0.00 0.02 0.07 0.20 0.43 0.68 0.87 

4 sim 0.00 0.01 0.03 0.15 0.42 0.73 
nor 0.00 0.00 0.03 0.14 0.41 0.74 

4a sim 
nor 

5 sim 
nor 

Sa sim 
nor 

6 sirn 
nor 

sim 
nor 

sirn 
nor 

' In cases 1, l a ,  2, 2a, the values of ro ouuidt (be range [- 1, 
c x d ~ h d  from ~~lnputrtioa. 
rim--undcr rimulrdon, twP+dcr norndty. 

11 wrc observed md these values were 
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t Distribution function values [P(ro < p); p = - 0.1, 0, (0.1) 11 (Table 4) show 
a closc agreement between simulated values and those on the assumption of normality 
for v > 40, r > 3. The results for the csses 1, la, 2, 2a are based on the valid 
values of ro and hence do not represent the true population of r ~ .  From the results 
of Tables 3 and 4, v < 30 seems to be a low number of genotypes and cannot be 
recommended for applying the normality assumption when using up to three 
replications. 

Closeness of approximations, Table 5 shows that the amount of bias is small 
in both simulation and approximation cases. Approximation is producing relatively 
higher standard errors of ro than their simulated values. However, this difference 
decreases with increase in the number of genotypes. The trend of values remains 
similar under the inverse tanh transformation. The differences between simulated 
and approximated values of SE of ro ranged from 0.03 to 0.05 for the number of 
genotypes between 40 and 90 compared with the true and simulated differences of 
0.02 to 0.04 [3] for sample size 200. 

Tabk 5. Blnr .ad standard error (SE) of r, and zc using simulation and approximation 

Case Po 100' bias(rG) SE(rG) sE(~cl) 
sim aPPm sirn aPPm sim apprx 

+ Other values same as in preceding rows. 
s i w i m u l a t i o n ,  apprx--using approximation. 
4 

Behavwur of bias and MSE from approximations with variations in several 
parmeters. Bias and MSE of r~ are presented (Tables 6-8) for a range of number 
of genotypes, with variations in the number of replications, genotypic correlations 
and error correlations. Table 6 shows a uniform decrease in the values of bias and 
MSE with increase in r as well as v. 



November, 19881 Sampling Dkaibution of Genotypic Correlation 283 

+ Based on approximations. 
The other parameters were dp=upy32,  dlJ=4, de,=d,,, ==I ,  deY=2.  

In the range of the parameter values considered (Table 7), bias increases 
initially, but starts decreasing after o, = 1.25. Bias (Table 8) and MSE (TaMes 
7, 8) shaw an increasing &end with the values of genotypic and error correlations 

Tabk 7. Bias and USE for variable valuer, d genotypic covul.acerr (comlrtlonr) and number of genotypcr (v) 

7 3 ~  other parameters were 1-3, dp2, d,=5, 03, -1, dq=2.5. 
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anda decreasing over v. For v 240, biases are quite small and MSE shows small 
variation with increase in error correlation. 

Probability of invalid estimates of p,. The moment estimates of genotypic 
variances and covariances may lead to invalid estimates of the genotype correlation 
coefficient. lying outside the interval (-1, 11. The Hill-Thompson [6] approach can 
be used to find the probability of getting r, out of bound and/or heritabilities being 
negative. For v = 10 and 20, the probability values of observing invalid estimates 
of r~ using simulation and normal approximations were close: P [IrG/ > 11 = 0.080 
(simulation) and 0.086 (approximation) for v = 10, 0.001 (simulation) and 0.004 
(approximation) for v = 20, 0.000 (simulation) and 0.001 (approximation) for v = 
30, and both were zero v > 40. This indicates that for genotypes v 2 40 it is very 
unlikely to get an invalid value. Here treatment and error degrees of freedom exceed 
39 and 78, respectively. 

It would be worthwhile to explain the testing. and the estimation of genotypic 
correlation with the help of real data on pearl millet. Table 9 presents the extracts 
of multivariate analyses of variance with three characters: grain yield (kgtha), plant 

Table 8. Bias and MSE for variable values of error covariance (correlation) and number of genotypes ( v )  

The other parameters were r-3, d,=2, d,=S, ugxy=2, drx=l, dq=4. 
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Table 9. Multivvirtt analysts of varianct bbk for two m p s  dcultivars (AS141 and A81 and t h m  charecters 

&~urce d.f. Character 

, 

Sum of SquilRs & products matrix 
yicld height flowering 

davs 

Between 47 Yield 5411 7236 
5141A hybrids Hcight S( MU )Z I3983 

Bloom time 20857 I I69 348 
Between 47 Yield 5 1872256 

81A hybrids Height (fib322 1 23822 
Bloom time - 44U 535 219 

Error 1()0 Yield I24VZV(X, 
He~ght 363.348 18791 
BI(nwn time - 3MW I -?(HI 320 

Sources under use only are rctaincd hcrc. 

height (cm), and days to bloom on two groups of pearl millet hybrids in a trial 
conducted at ICRISAT (1983) (K. N. Rai, personal communication). The estimates 
of parameters were computed for each of the three character pairs at a time. The 
genotypic, phenotypic and 'environmental correlations are presented in Table 10. 
There are two different expressions, r, [ l l ]  and rb (61, for phenotypic correlation: 

ra = upx Jupx~py 

where u, = uexy + r u,, 6 = d, + r &, z = x, y 

and r, = (uexy + uw)/((dex + &I (m2ey + &&is 

Table 10. Phenotypic, environmental and genotypic correlations, for two groups of cultivan 
along with standard error 

Characters Groups Correlations 
phenotypic cnviornmental genotypic f SE 

X : Y  (a) (b) 

Y--Grain yield. H-height, and W a y s  to bloom. 
*' "Significant at 5% and 0.1% level. respectively. 

The expression rb is correct while ra is wrong, and still widely used [12, 141 probably 
because its significance can be tested easily using t-statistics, while that of rb is quite 
complicated. Ahmad and Murthy [IS] referred to a personal communication to 
A. V. R. Sastri for testing the significance of genotypic correlation but the procedure 
is not available. We do not recommend r, to be used, as it may imply a conclusion 
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different than what we obtain from genotypic correlation. For instance, significance ' of genotypic correlation between yield and flowering time is detected for 5141A 
&oup at (PzO.05) although phenotypic correlation (a) is not significant. 
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APPENDIX I 

$ (i) Ex~r-ion far gl = ag(x)/& at SE ) 

ag/aT. - - pd(2rqdd 

a p k  = - pd(2rd$ for z -* x,y 

ag/aT, = ll(rq a@,) 

ag/ar;, = l/(rvo,~,) 

(ii) Expression for gj (Q) = a28(x)/axj axi 

a 'gla~~_ = 3 p d ( q V ~ b )  

a2g/a~', = 3pd(4* u4,J for z = x, y 

a2g/aTdTn = pd(49T dp 2,) 

a2@a~,a& = pd(4vT 6 d,) 
a2g/a~,aT, = - 1/(2q112 dPuW) 

a2g/aT,aT, = - 1/(2q'i' uPdm) 

a2g/a~,a~, = - 1/(2IW d..~.,.) 

a2@a&aE, = - 1/(2IW a d , )  

d2g/dT2, = d2g/a~', = 0 

The cross derivatives between T and E variables are not given as they will have 
zero covariances as product. 
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