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ABSTRACT

The distributional behaviour using simulation and approximations to bias, mean square error
of genotypic correlation when estimated from plant breeding data have been obtained and
illustrated with field data from a yield trial on pearl millet. Empirical results have been
discussed for the variation in several parameters.
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The large sample vanance of genetic correlation coefficient estimated from
parent offspring covariance has been discussed [1] and its sampling distributions
have been investigated (2, 3] using simulations. Similar results are not available for -
plants where the genotypic correlation between two characters is obtained from the
genotypic variances and covariance. In the case of plants, a number of genotypes
are often grown in a replicated trial and two characters are measured on each plot,
unlike the parent offspring situation in animals where two traits are measurcd on
the parents and their offspring as well. The purpose of this paper is to provide with
the large sample, bias and mean square error (MSE) and study empirically the
distribution of the estimate of genotypic correlation from plant breeding data.

MATERIALS AND METHODS

Consider the estimation of the genotypic correlation coefficient between two
characters x and y from v genotypes grown in a single environment of r randomized
blocks. The bivariate analysis of variance is presented in Table 1.

T, Tyy and T,, are the corrected sums of squares for characters x and y and
the corrected sum of products of x and y due to genotypes. Similarly, E,,, E,,, E,,
stand for error components. 0%, o2,, and o, are related to genotypic population

variances 0%, 0%, and oy, and error variances o%,, 0%, and o’,, as

3, =L+
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; Table 1. Bivariate analysis of variance

Source d.f. SSP matrix Expected value of SSP matrix
Blocks r-1
q'n Ty r"’zm Cpxy
Genotypes q=v-1 T = q =qx
[T Ty | | %o T | '
FE!I Ex.y_ r—cze: cel;-
Error v=q(r-1) E = v = vy
E, E, Ty Oy
— — e ——

SSP—sums of squares and products.

The genotypic correlation pg; between x and y is defined as

5

PG = ogxy/(ogx Ogy) (2)

The matrices T and E are distributed independently as central Wishart
distributions W>(q. 2,) and Wy(v, Z.), respectively [4]. Thus, an unbiased estimate
of £, can be written as

o = (/g T = (1) E (3)
using
E(T) = qZy E(E) = v&.c

where E(.) stands for expectation of the variables in parentheses. Using unbiased
estimate of o, 0% and o, from (3), p; is :
estimated by 16 = Opy/(Gp Gyy) (4)
where = (Ty/q — E/v)r
o,u = ((Tolq — Exx/v)n)}
= ((Ty/q — E vy}

It is easy to see that rg; is not comparable with the rg of Brown [3]. as their
expressions are different.

The estimator rg of pg is obviously not unbiased and may also lie outside the
range [—1, 1] because the inequality |oy,,| < G og, may be violated when using
data values. The probablhty of getting negative estimates of o” w has been discussed
by Gill and Jensen [5], in which case r; may take imaginary values, and of getting
nonpositive definite genetic covariance matrix by Hill and Thompson [6].

BlAS AND MEAN SQUARE ERROR ESTIMATE OF GENOTYPIC CORRELATION
We use the following results.

Lemma (7). Suppose X; has mean 6, and variances and covariance of the k
variates X,, X,,...... Xy are of order n”P(p>0), in practice taken as unity). and n
is the sample size used in constructing X; for 8,. Consider a scalar function g(X,. ... .
X,) denoted briefly by g(x). The expectation and MSE of g(x) are
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E(g(x)) = g(6) + (112) £5g; (6) Cov(x, x) + o(n™) )
MSE (g(x)) = 33g(0)g, Cov(x, x) + o(n") (6)
where g (0) = ag(x)iox;

~ gij (8) = d’g(x)ox; ox;
evaluated at 6,, 6,,..., 8, including the covariance terms between X,,..., X, in our
approximation given in (5). °

Since rg is a function of variables Ty, Ty, T,,, E,, E,. E,, the lemma is
applied to obtain bias and MSE of r; in terms of the means and, variances and
covariances of these variables. Further, we note the following [4].

T Tpe PETExThy PrOpCpy
D m, =2q Tpy Py
T,y Symmetric (1+ Pg)ﬂgxﬂﬁy@
EXX U:X . pzagxogy pc“ix“@y
D E, =2v » ol Pe (ruo:y
E,, Symmetric (1+pd)olol,/2

Cov (T,, E;’) = 0 for z, 2’ = xx, yy, Xy,

where D(.) represents the dispersion (variance-covariance) matrix of the vector
variables in parentheses. The covariances between genotype sums of squares or
product and error sums of squares or product are zero.

Treating T,,, T,,, Tyy, Ex. E,y, Ey as X;, Xp,..., X, in the lemma, we obtain
after some algebraic simplifications, the following approximations:

g(0) = p
bias (r5) = E(tc) - pe = (1/2) T2 (6) Cov (x, x)
= (1727) [(119) {(3pof2) (G*+GP)+py(pypcGiGy= 2V(G,Gy)(Gs+Gy))

+ (1) {(3pc/2) (8 + &) + Pe(PPcB:By ~2V(2:8y) (Bxt8)))}] )
E(rc - pG)’
23g;i(8) Cov (x;, x;)
(1/21’2) [(I/q) (sz(sz + Gzy) + 2((1+pzp+p2p pze)GxGy

'-2pppG VGxGy(Gx+Gy))}

+ (W {920(82x+gzx) + 2((1+pze+pze920) Ex8y

- 2pGP. \/gxgy (gx+gy))} ] (8)
where g, = 0% Jo’,

G, =g +r1r forz=x,y

Sk (rg) = (MSE (1))} 9)

where SE (.) stands for standard error.

MSE (l’g)
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_ The evaluations of g’(8) and g” (6) have been given in Appendix I for only
nonzero covariance contributing variables.

The estimates of bias and MSE can be obtained by substituting the estimates
of pg. per Pp. B and g, using the estimate for variance-covariance components given
in equation (3).

DISTRIBUTION OF r

The first approximation to the expansion of the expression for rg yields a
linear function of the above six variables which are sums (means) of some other
random quantities. Thus, using the Central Limit Theorem [8] the distribution of
r; approaches normal distribution as the number of genotypes increases [7]. In order
to obtain an idea of the number of genotypes to be considered so that the distribution
of r; approximates reasonably to normal distribution, a simulation study was carried
out involving a wide range of parameters. The comparisons between the simulated
values of bias and standard errors have also been made with those from the
approximations considered in expressions (7) and (8).

Generation of a bivariate normal pair. We carried out simulations with parametric
values estimated from the analyses of the real data for various sets of number
of genotypes, means, variances and correlations. The RANDU function available in
GENSTAT package was used to generate uniform random variables and then standard
normal deviates were generated using the relation [9]. If u, and u, are two independent
uniform random variables, then

x; = (=2 log, uy)¥ Sin(2mu,)
x, = (-2 log. u,)} Cos (27 uy)

are independently normally distributed with zero means and unit variances. In order
o generate a bivariate normal pair (Z,, Z,) with parameters (u,, p;, 0%, o’ 2 -p)
one may use

2, = + oy Z, = py + ooy,

where y; = X;; y2 = pX; + X; (1-pd)% (m, o?) and (u, o3) are means and variances
of Z, and Z,, respectively, and p is the correlation coefficient between them.

Generation of a random value of rG Let ;, Exrs o> &Y s &y = Gyis -0 L)'y
Bx = (Bxts «-s Bx)'s By = (Byis -+ Byr)'s 0%, 0%y, and p, be parameters representing,
respectively, vectors of v genotype mecans on character x and y, vectors of r block
(replications) means for x and y, error variances for x, y and error correlation
between these two characters. Several sets of these parameters were taken as
esgimated values from a real trial (described in last section) in r=3 replications and
- v=96 genotypes, and selecting for various values of v=10, 20, 30, 40, 50, 60, 70,
90. A random pair (x;, y;) of observations on two characters corresponding to i—th
genotype and j—th replication was obtained as

'-Kxi"’(ﬂxj Ex)
={u + By — By
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where B, = jﬁ?,jlr, z=x, y, i=1, 2, ..., v, j=1,2, ..., 1, =X, ¥

(€xij» €y;) is a bivariate normal pair with parameters (0, 0, 1, 1, p.) generated using
the procedure discussed above. From these (x;, y;) i=1, ..., v, j=1, ..., 1) vr pairs,
we obtained one sample value of genotypic correlation rg using equation (4). This
process was repeated to get N independent values (simulation runs) of rg. An
alternative way to generate rg values could be with the help of two independent
Wishart matrices with parameters in Table 1. -

RESULTS

We present 13 sets of values of parameters including number. of runs considered
in our simulation study (Table 2). In order to examine the normality of distribution
of rg, the simulated skewness and kurtosis of rg and also of its transformation zg
= 0.5 log ((1+rg)/(1-15)) are presented (Table 3). The cumulative probability
distribution of rg has been compared with that of normal distribution with simulated
means and standard error V(,’I".able 4) for the cases considered in Table 2.

Table 2. Sets of parameter values used for simulation with three replications

Case v N oy 02” e o’ Ps | Pe
1 10 1000 398.8 190796 84.9 287570 0.603 0.381
la 10 5000 398.8 190796 84.9 287570 0.603 0.381
2 20 1000 289.5 190552 157.4 256736 0.280 0.466
2a 20 4000 289.5 190552 157.4 256736 0.280 0.466
3 30 1000 281.0 149678 145.4 232973 0.333 0.444
3a 30 3000 281.0 149678 145.4 232973 0.333 0.444
4 40 1000 264.0 218849 138.9 25324/ 0.427 0.353
4a 40 2000 264.0 218849 138.9 253247 0.427 0.353
5 50 1000 310.7 250984 138.1 284323 0.478 0.256
5a 50 2000 310.7 250984 138.1 284323 0.478 0.256
6 60 1000 299.6 254385 131.2 282998 0.484 0.259
7 70 1000 291.9 229793 132.4 219177 0.487 0.215
8 90 1000 283.9 282323 156.1 290868 0.441 0.184

v—No. of genotypes, N—simulation runs
Formulae to estimate:

oh=d (pu -00M0-), and (= F Ly, zmny.
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The comparison of the simulation results on bias and standard error with those
computed using approximations in expressions (7) and (9) are presented in Table S.

DISCUSSION

Number of simulation runs. The number of runs were varied from N=1000 to
see whether this number is satisfactory enough to represent the underlying distributions
or any marked differences are occurring in the stimulated parameters due to changes
in runs. Other than N=1000 for each number of genotypes considered, we took
N=5000, 4000, 3000, 2000, 2000 for v = 10, 20, 30, 40 and S0, respectively, under
the consideration that for smaller sample size we need larger simulation runs for
adequate representation of the distributions.

Comparing the simulated values of mean, skewness and kurtosis of rg (Table
3) and standard error (Table 5) for the cases 1 with la, 2 with 2a, 3 and 3a, 4
with 4a, and 5 with 5a, we find a very close agreement between their values except
for case 4 with 4a on skewness and kurtosis values. Similar agreement in the
cumulative probability values (Table 4) obtained on two different simulation runs
can be observed. Thus N=1000 runs can be safely taken for valid comparison.

Normality of r;. Table 3 shows that values of skewness and kurtosis are
insignificant for more than 50 genotypes. Also from cases 4a and 5a their magnitudes
are small [10]. Except for the cases with v=10, 20 genotypes, we did not observe

Table 3. Skewness and kurtosis of r; and its inverse thnh transformation z; along with their standard errors
(SE) in parentheses*

Case SkewnesstSE ToKurtosis£SE Skewness Z.Kurtosis
No.
. =0.76x0.081 0.9610.161 0.70 0.91
la -0.78+0.036 1.15£0.072 0.69 0.90
2 ~0.51£0.077 0.95+0.155 -0.25 1.34
2a ~0.66+0.039 1.27£0.077 -0.36 1.81
3 -0.3610.077 0.70+0.155 0.05 0.63
3a -0.37£0.045 0.75+0.089 0.06 0.74
4 -0.31£0.077 0.47£0.155 0.75 5.86
4a -0.18+0.055 0.25+0.109 0.58 3.37
5 -0.23+0.077 0.01+0.155 0.23 0.23
5a -0.182+0.055 0.09£0.109 0.26 0.22
6 ~-0.09+0.077 0.05+0.155 — —
7 -0.03%0.077 0.03+0.155 — -
8 -0.06£0.077 0.070.155 — —_

*Standard error of skewness = (&/N)? and of kurtosis = (24/N)'?, same standard errors apply for
corresponding values on z;.
— Transformation not done.
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any invalid (going outside interval [—1, 1] or imaginary) value of rg. Thus, with
three or more replications, the distribution of rg approximates normal distribution
when the number of genotypes goes beyond 50 and here the significance of genotypic
correlation can be tested by comparing the estimate divided by its standard error
against the' table value of standard normal deviate. We also applied the inverse tanh
transformation but we did not get any improvement for the cases 4 and beyond.
Although there was a small reduction in skewness values but increase in kurtosis
(Table 3) was with similar trend as observed by [3].

Table 4. Probability of [rg < p] under simulation and normal approximation

Case [

-01 00 01 02 03 04 05 06 07 08 09 1.0

1* sim 000 001 003 005 009 017 029 046 066 083 095 1.00
nor 000 000 00t 003 008 0.18 033 051 069 083

092 097

la sim 001 0.01 002 004 008 0.16 028 045 064 083 095 1.00
nor 000 000 001 .003 0.08 0.17 031 050 068 083 097 097

2 sim 004 009 019 034 055 075 08 097 100 100 00 .00
nor 003 009 020 037 057 075 08 095 099 1.00 00 .00

2a sim 004 0.09 0.18 033 054 075 09 097 10 10 .00 .00
nor 003 009 020 037 057 075 08 095 099 09 00 .00

3 sim 001 003 008 021 041 069 08 097 1.00 00 .00 .00
nor 000 002 008 022 04 069 087 09 099 00 .00 .00

3a sim 001 003 007 019 040 067 087 097 1.00 00 .00 1.00
nor 000 002 007 020 043 068 087 09 09 00 .00 1.00

4 sim 0.00 001 0.03 0.15 042 073 095 1.00 00 .00 1.00
nor 000 000 003 0.4 041 074 09 09 00 .00 1.00

4a  sim 000 003 Q15 041 074 095 100 .00 100 100
nor 000 003 014 042 074 094 099 .00 100 1.00

S sim 000 004 021 059 092 099 00 .00 1.00
nor 000 003 021 061 091 099 00 .00 1.00

5a  sim 000 004 021 060 091 09 00 .00 1.00
nor 000 003 021 060 091 099 00 .00 1.00

6 sim 000 002 0.16 057 092 099 00 .00 1.00
nor 000 002 016 057 091 09 00 .00 1.00

sim 002 0.15 058 091 100 10 .00 1.00

nor 001 015 057 092 100 10 .00 1.00

sim 003 032 08 099 100 100 .00 1.00

nor 004 032 081 099 10 100 .00 1.00

* In cases 1, 1a, 2, 2a, the values of rg outside the range [~1, 1] were observed and these values were
sim—under simulation, nor—under normality.
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¢+  Distribution function values [P(rg < p); p = — 0.1, 0, (0.1) 1] (Table 4) show
a close agreement between simulated values and those on the assumption of normality
for v > 40, r > 3. The results for the cases 1, 1a, 2, 2a are based on the valid
values of rg and hence do not represent the true population of rg. From the results
of Tables 3 and 4, v < 30 seems to be a low number of genotypes and cannot be
recommended for applying the normality assumption when using up to three
replications.

Closeness of approximations. Table 5 shows that the amount of bias is small
in both simulation and approximation cases. Approximation is producing relatively
higher standard errors of rg than their simulated values. However, this difference
decreases with increase in the number of genotypes. The trend of values remains
similar under the inverse tanh transformation. The differences between simulated
and approximated values of SE of rg ranged from 0.03 to 0.05 for the number of
genotypes between 40 and 90 compared with the true and simulated differences of
0.02 to 0.04 [3] for sample size 200.

Table 5. Blas and standard error (SE) of r; and z; using simulation and approximation

Case PG 100* bias(rg) SE(rg) SE(z;)
' sim apprx sim apprx sim apprx

1 0.60 -0.69 -0.25 0.21 0.29 0.39 0.46
la* -0.05 0.21 0.39

2 0.28 -1.38 -1.79 0.20 0.28 0.23 0.30
2a -1.33 0.20 0.22

3 0.33 —085  -105 0.16 0.22 0.8 025
3a -0.32 0.15 0.18

4 0.43 -0.13 -0.54 0.12 0.17 0.15 0.21
4a -0.22 0.11 0.15

5 0.48 -0.31 -0.25 0.09 0.15 0.13 0.19
Sa -0.26 0.09 0.13

6 0.48 0.11 -0.21 0.09 0.13 0.12 0.17
7 0.49 -0.12 -0.12 0.08 0.12 0.12 0.16
8 0.4 -0.63 -0.12 0.08 0.11 0.10 0.14

+ Other values same as in preceding rows.
gm—eimulation. apprx—using approximation.

Behaviour of bias and MSE from approximations with variations in several
parameters. Bias and MSE of rg are presented (Tables 6-8) for a range of number
of genotypes, with variations in the number of replications, genotypic correlations
and error correlations. Table 6 shows a uniform decrease in the values of bias and
MSE with increase in r as well as v.
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Table 6. Bias and MSE for variable number of gemotypes (v) replications (r)

vir 100* bias™ - 100*° MSE™
3 4 s 6 3 4 5 6

10 -370 -250 -238 -231 3.8 3.53 337 326
20 -128 -118 -1L13 -1.09 1.81 1.67 1.60 155
30 -084 -078 -074 -0.72 1.19 1.10 1.0 1.01
40 -062 -058 -055 —-0.53 0.88 0.82 078  0.75
50 -049 -046 -0.44 —0.42 0.70 0.65 062  0.60
60 -041 -038 =036 -0.35 0.58 0.54 051 050
70 -035 -033 -031 -030 0.50 0.46 044 043

+ Based on approximations.
The other parameters were 0%, =0g,=2, 0’y =4, 0, =0’y =1, 0%,=2.

In the range of the parameter values considered (Table 7), bias increases
initially, but starts decreasmg after o, = 1.25. Bias (Table 8) and MSE (Tables
7, 8) shaw an increasing trend with the values of genotypic and error correlations

Table 7. Bias and MSE for variable values of genotypic covariances (correlations) and number of genotypes (v)

Tgxy PG v
10 20 30 40 50 60 70
100°bias
0.00 0.00 -2.93 -1.39 -0.91 -0.68 -0.54 -0.45 -0.38
0.25 : 0.08 -~3.15 -1.49 -0.98 -0.73 -0.58 -0.48 -0.41
0.50 0.16 -3.34 -1.58 -1.04 -0.77 -0.61 -0.51 ~-0.4
0.75 0.24 -3.48 -1.65 -1.08 -0.80 -0.64 -0.53 ~0.45
1.00 0.32 -3.56 -1.69 -1.10 -0.82 -0.65 -0.54 -0.46
1.25 0.40 -3.56 -1.68 -1.10 -0.82 -0.65 -0.54 -0.46
1.50 0.47 -3.46 -1.64 -1.07 -0.80 -0.64 -0.53 -0.45
1.75 0.55 -3.24 -1.54 -1.01 -0.75 -0.60 -0.50 -0.42
2.00 0.63 -2.90 -1.37 -1.01 -0.67 -0.53 -0.44 -0.38
2.25 0.7 -2.41 -1.14 -0.90 -0.56 -0.44 -0.37 -0.31
100°MSE

0.00 0.00 15.46 7.33 4.80 35 2.84 2.36 3.02
0.25 0.08 15.03 7.12 4.66 347 2.76 2.29 1.96
0.50 0.16 14.29 6.77 4.4 3.3 2.63 2.18 1.86
0.75 0.24 13.27 6.29 4.12 3.06 2.4 2.03 1.73
1.00 0.32 12.01 5.69 N 2.7 2.21 1.83 1.57
1.25 0.40 10.54 5.00 3.7 2.43 1.94 1.61 1.38
1.50 0.47 8.92 4.23 2.77 2.06 1.64 1.36 1.16
1.75 0.55 7.22 3.42 2.4 1.67 1.33 1.10 0.94
2.00 0.63 5.50 2.61 1.1 1.27 1.01 0.84 0.72
2.25 0.71 3.86 1.83 1.20 0.89 0.7 0.59 0.50

The other parameters were r=3, 0’p=2, o%y=5, 0’ =1, 0’ =2.5.
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and. decreasing over v. For v 240, biases are quite small and MSE shows small
variation with increase in error correlation.

Probability of invalid estimates of ps. The moment estimates of genotypic
variances and covariances may lead to invalid estimates of the genotype correlation
coefficient. lying outside the interval [—1, 1]. The Hill-Thompson [6] approach can
be used to find the probability of getting r; out of bound and/or heritabilities being
negative. For v = 10 and 20, the probability values of observing invalid estimates
of rg using simulation and normal approximations were close: P [|rg| > 1] = 0.080
(simulation) and 0.086 (approximation) for v = 10, 0.001 (simulation) and 0.004
(approximation) for v = 20, 0.000 (simulation) and 0.001 (approximation) for v =
30, and both were zero v > 40. This indicates that for genotypes v > 40 it is very
unlikely to get an invalid value. Here treatment and error degrees of freedom exceed
39 and 78, respectively.

It would be worthwhile to explain the testing and the estimation of genotypic
correlation with the help of real data on pearl millet. Table 9 presents the extracts
of multivariate analyses of variance with three characters: grain yield (kg/ha), plant

Table 8. Bias and MSE for variable values of error covariance (correlation) and number of genotypes (v)

Tyxy Pe v

10 20 30 40 50 0 70

100"bias
0.0 0.0 0.20 0.09 0.06 0.05 0.04 0.03 0.03
0.2 0.1 033  -016  -010  -008  -006  -0.05 —0.04
0.4 02 -08  -040 -026  -020 -0.16  —~0.13  —0.11
0.6 03  -136 -065 -042  —-0.31 025  -0.21 -0.18
0.8 04 -187 -089  -058  —043 -034  -029  -0.24
1.0 05 -238 -1.13 -074  -055 -044  -036  —0.3I
1.2 " 06  -28  -137 -089  -067 -053  -044  -0.38
1.4 07 -338 -1.60 -105 -078  -062 -052  -044
1.6 08 -38 -18  -120 -089  -0.71 ~0.59  —0.50
1.8 09 -436 -206 -135  -1.01 -080  -0.66  —0.51
100 MSE

0.0 0.0 7.96 3.7 2.47 1.84 1.46 1.21 1.04
0.2 0.1 7.60 3.60 2.36 1.75 1.40 1.16 0.99
0.4 0.2 7.26 3.44 2.25 1.68 1.33 111 0.95
0.6 0.3 6.94 3.29 2.15 1.60 1.27 1.06 0.91
0.8 0.4 6.64 3.15 2.06 1.53 1.22 1.01 0.87
1.0 0.5 6.37 3.02 1.98 1.47 1.17 0.97 0.83
1.2, 0.6 6.11 2.89 1.90 1.41 112 0.93 0.80
1.4 0.7 5.87 2.78 1.82 1.36 1.08 0.90 0.77
1.6 _ 0.8 5.66 2.68 1.76 1.31 1.04 0.86 0.74
1.8 0.9 5.47 2.59 1.70 126 1.00 0.83 0.71

The other parameters were r=3, o’ =2, 0y =5, ogxy=2, FPu=1, o?e=4.
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Table 9. Multivariate analysis of variance table for two groups of cultivars (A5141 and A81) and three characters

Source d.f. Character Sum of squares & products matrix
yield height  flowering
, davs
Between 47 Yield 54017236
S141A hybrids Height 509403 13983
Bloom time 29857 1169 348
Between 47 Yield SIR72256
81A hybrids Height 03221 23822
) Bloom time - 448 53s 219
Error 190 Yield 12493996
Height 363348 18791
Bloom time —434%) =200 320

Sources under use only are retained here.

height (cm), and days to bloom on two groups of pearl millet hybrids in a trial
conducted at ICRISAT (1983) (K. N. Rai, personal communication). The estimates
of parameters were computed for each of the three character pairs at a time. The
genotypic, phenotypic and ‘environmental correlations are presented in Table 10.
There are two different expressions, r, [11] and r, [6], for phenotypic correlation:

I, = Opyy/0pOpy
where Opyy = Opy + T Oy, 00 = 0% + 1075, 2 = X, y
and 1, = (O + Og)(0P + %) (0%, + Z)E

Table 10. Phenotypic, environmental and genotypic correlations, for two groups of cultivars
along with standard error

Characters Groups Correlations
phenotypic enviornmental genotypic + SE
X:Y (a) (b)
Y:H S141A 0.59*°* 0.42 0.24 0.90£0.18***
81A 0.54*°* 0.40 0.24 0.81£0.18°**
Y:B SH41A 0.22 0.03 -0.22 0.52£0.25*
81A 0.00 -0.11 -0.22 0.19£0.30
H:B 5141A 0.53*** 0.31 -0.08 0.77£0.14***
81A 0.24 0.12 -0.08 0.3620.19

Y—Grain yield, H—height, and B—days to bloom.
** **Significant at 5% and 0.1% level. respectively.

The expression ry, is correct while r, is wrong, and still widely used [12, 14] probabljr
because its significance can be tested easily using t-statistics, while that of r, is quite
complicated. Ahmad and Murthy [15] referred to a personal communication to
A. V. R. Sastri for testing the significance of genotypic correlation but the procedure
is not available. We do not recommend r, to be used, as it may imply a conclusion
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d:fferent than what we obtain from genotypic correlation. For instance, significance
¢ of genotypic correlation between yield and flowering time is detected for 5141A
group at (P=0.05) although phenotyplc correlation (a) is not significant.
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Sampling Distribution of Genotypic Correlation

APPENDIX 1
(i) Expression for g;(8) ag(x)/ox;atx =9
3g/oTy = - po/(21907,)
3gOE, = - pg/(2rva?y)forz =x,y
3g/oT,, = 1/(rqoy,oy)
9g/dE,, = 1(rvog,oy)
(ii) Expression forgj, () = a%g(x)/ax;ax,
FgoT?, = 3pg/(4q’raty)
3%g/0EY, = 3pg/(dvir’aly)forz=1x,y
gaTndT,, = pc/(d4q’r o, o?y)
a?ng,,aE,, = po/(4Vr? oty oyy)
3gaTodT,y, = —1/(2¢°r o)
gT, 0T,y = —1/(29%° 0u0o’yy)
IgOELIE,y = —1/(2vr}a'y0,,)
3’g/IE,0E,, = —1/(2v'r}a,0%y)
o, = 3’gaEL, =0

The cross derivatives between T and E variablés are not given as they will have

zero covariances as product.
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