
ORIGINAL PAPER

Morphological and chemical components of resistance to pod
borer, Helicoverpa armigera in wild relatives of pigeonpea

H. C. Sharma Æ G. Sujana Æ D. Manohar Rao

Received: 25 September 2008 / Accepted: 5 June 2009 / Published online: 19 June 2009

� Springer Science+Business Media B.V. 2009

Abstract Host plant resistance is an important compo-

nent for minimizing the losses due to the pod borer,

Helicoverpa armigera, which is the most devastating pest

of pigeonpea. An understanding of different morphological

and biochemical components of resistance is essential for

developing strategies to breed for resistance to insect pests.

Therefore, we studied the morphological and biochemical

components associated with expression of resistance to

H. armigera in wild relatives of pigeonpea to identify

accessions with a diverse combination of characteristics

associated with resistance to this pest. Among the wild

relatives, oviposition non-preference was an important

component of resistance in Cajanus scarabaeoides, while

heavy egg-laying was recorded on C. cajanifolius (ICPW

28) and Rhynchosia bracteata (ICPW 214). Accessions

belonging to R. aurea, C. scarabaeoides, C. sericeus,

C. acutifolius, and Flemingia bracteata showed high levels

of resistance to H. armigera, while C. cajanifolius was as

susceptible as the susceptible check, ICPL 87. Glandular

trichomes (type A) on the calyxes and pods were associated

with susceptibility to H. armigera, while the non-glandular

trichomes (trichome type C and D) were associated with

resistance to this insect. Expression of resistance to

H. armigera was also associated with low amounts of

sugars and high amounts of tannins and polyphenols.

Accessions of wild relatives of pigeonpea with non-glan-

dular trichomes (type C and D) or low densities of glan-

dular trichomes (type A), and high amounts of polyphenols

and tannins may be used in wide hybridization to develop

pigeonpea cultivars with resistance to H. armigera.

Keywords Host plant resistance � Wild pigeonpea �
Helicoverpa armigera � Morphological and biochemical

components of resistance

Introduction

More than 200 species of insects feed on pigeonpea, of

which the pod borer, Helicoverpa armigera (Hubner)

(Lepidoptera: Noctuidae), is the most damaging pest. Since

H. armigera has developed high levels of resistance to

insecticides, it has become difficult to control this pest on

pigeonpea and several other crops with conventional

insecticides (Kranthi et al. 2002; Sharma 2005). Losses due

to this pest in pigeonpea have been estimated at

US$317 million in the semi-arid tropics (ICRISAT 1992).

Farmers often resort to heavy use of insecticides to control

this pest, and therefore, there is a need to develop alter-

native methods to minimize the extent of losses. Devel-

opment of insect-resistant cultivars has a considerable

potential for use in integrated pest management, particu-

larly under subsistence farming conditions in developing

countries (Sharma 2005). However, screening of more than

14,000 accessions of pigeonpea for resistance to H. armi-

gera has revealed low to moderate levels of resistance in

the cultivated genotypes (Reed and Lateef 1990). However,

a few accessions of the wild relatives of pigeonpea have

shown high levels of resistance to H. armigera (Sharma

et al. 2001; Green et al. 2006).
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Several morphological traits such as pod toughness,

structure of pod wall, and trichomes on the pod surface

have been reported to be associated with resistance to

H. armigera (Shanower et al. 1997). The nature and density

of trichomes on the pods of different accessions of wild

relatives of pigeonpea and their association with insect

resistance are yet to be investigated, although some infor-

mation has been generated on pigeonpea and the closely

related wild species, Cajanus scarabaeoides. Besides the

morphological traits, chemical compounds in trichome

exudates and on pod wall surface also influence the host

plant selection and colonization by H. armigera (Hartlieb

and Rembold 1996; Green et al. 2002, 2003). Dense non-

glandular trichomes (type C) on pods of wild pigeonpea

possibly act as a physical barrier to the feeding by the

young H. armigera larvae (Romeis et al. 1999), while the

glandular trichomes (type A) in C. cajan act as attractants

(Hartlieb and Rembold 1996) or phagostimulants for

H. armigera (Green et al. 2003). Chemicals extracted in

acetone from C. scarabaeoides pod surface result in feeding

inhibition, whereas compounds extracted in methanol from

the pod surface of cultivated pigeonpea act as phagostim-

ulants (Romeis et al. 1999; Green et al. 2003). In addition,

pigeonpea also contains anti-nutritional factors such as

proteinase inhibitors, oligosaccharides, phenols, tannins,

and phytic acid (Singh 1988), which may influence the host

plant suitability to H. armigera. Therefore, the present

studies were undertaken to ascertain the role of trichomes,

and the amounts of soluble sugars, proteins, polyphenols,

and tannins in the pods of wild relatives of pigeonpea in

relation to expression of resistance to H. armigera.

Materials and methods

Plant material

Twenty-nine accessions belonging to 12 species of wild

relatives of pigeonpea were evaluated for resistance to

H. armigera along with cultivated pigeonpea (ICPL 87—

susceptible check and ICPL 332—resistant check). The

wild species included 12 accessions of Cajanus scarab-

aeoides (ICPW 83, ICPW 90, ICPW 94, ICPW 116, ICPW

125, ICPW 130, ICPW 137, ICPW 141, ICPW 152, ICPW

278, ICPW 280, and ICPW 281), 2 accessions each of

C. cajanifolius (ICPW 28 and ICPW 29), C. sericeus

(ICPW 159 and ICPW 160), C. albicans (ICPW 13 and

ICPW 14), C. acutifolius (ICPW 1 and ICPW 2), and

C. lineatus (ICPW 40 and ICPW 41), and one accession each

of C. platycarpus (ICPW 68), Rhynchosia bracteata (ICPW

214), R. aurea (ICPW 210), Dunbaria ferruginea

(ICPW 178), Flemingia bracteata (ICPW 192), F. stricta

(ICPW 202), and Paracalyx scariosa (ICPW 207). The

seeds of these accessions, along with those of cultivated

pigeonpea genotypes were sown on deep black soils

(Vertisols) during the rainy season. To improve seed ger-

mination, the seed testa was cut at one end with a sharp

knife, soaked in water overnight, and treated with thiram

(1 g per 100 seeds). The test genotypes were grouped into

three sets based on maturity (early = B60 days, med-

ium = 60–120 days, and late = C120 days to flowering).

There were three replications for each genotype, and the

genotypes in each maturity were planted in a randomized

complete block design. The seeds were sown on ridges

75 cm apart, and there were four rows in each plot, 2 m

long. The plants were thinned to a spacing of 30 cm

between the plants 30 days after seedling emergence. The

experiments were repeated during the 2001–2003 rainy

seasons. The experiments were planted so that the test

genotypes were exposed to the peak abundance of H. ar-

migera during November–December (Srivastava and Pim-

bert 1990). The annual species with short maturity cycle,

including the cultivated pigeonpea, were planted twice at

monthly intervals during June–July, while the perennial

ones were planted only once in June with the onset of

monsoon season so as to have the leaves, flowers, and the

pods from all the accessions during the same period in

December. Standard agronomic practices were followed for

raising the crop, including application of basal fertilizer

[N:P:K::100:60:40 kg ha-1] and top dressing (urea

50 ha-1). A fungicide (metalaxyl) spray (1.0 kg active

ingredient (ai) ha-1) was applied to control Fusarium wilt.

The crop was raised between June and mid-October under

rainfed conditions, and irrigated at monthly intervals

between November and February. Wooden pegs (1.5 m

high) were used to provide support for C. scarabaeoides

and C. platycarpus accessions, which have a creeping habit.

Oviposition, larval density, and pod damage

by H. armigera under natural infestation in the field

The test material was evaluated for oviposition, larval

density, and pod damage under natural infestation in the

field. Data were recorded on the numbers of eggs, larvae,

and pod damage on inflorescences from five plants (that

were at the flowering stage during the same period). For

this purpose, five inflorescences (20 cm long) from five

plants were tagged with a ribbon at the pre-flowering stage

in each plot. Numbers of eggs and larvae were recorded on

the tagged portion (20 cm) of the inflorescences at 5, 7, 9,

20, and 30 days after tagging the inflorescences. The

numbers of eggs and larvae recorded in each plot across

observation dates were pooled (as the numbers of eggs and

larvae on some of the test entries were quite low), and then

subjected to analysis of variance. The total number of pods

and the pods damaged by H. armigera were recorded at
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maturity in pods harvested from tagged inflorescences in

each plot.

Trichome types and their density on calyxes and pods

Trichome types and their density on different accessions of

wild relatives of pigeonpea were recorded on the pods and

calyxes of different accessions of wild relatives of pigeon-

pea (Shanower et al. 1997; Romeis et al. 1999). For this

purpose, 5 flowers or pods were collected from five plants in

each plot, and preserved in acetic acid:ethanol (1:3). To

record the trichome types and their density, the calyxes and

the pods were examined at a magnification of 329 under a

stereomicroscope (Carl Zeiss, Inc., Thornwood, New

York), with an ocular measuring grid. Data were recorded

on the numbers of different types of trichomes (type A, B,

C, and D) and their density within the microscopic field.

Type A trichomes are glandular and secrete a liquid, which

is present in the form of droplets at the tips of these tric-

homes (Fig. 1). Type B trichomes contain an oily substance,

and are globular in structure. Type C and D trichomes are

non-glandular, but the type D trichomes are much longer

than the type C trichomes. Type E trichomes are multi-

lobed and glandular, but their numbers were too low and

were not counted in the present studies.

Biochemical composition of leaves and pods

To determine the amounts of total soluble sugars, soluble

proteins, condensed tannins, and polyphenols, the leaves

and pods of each accession were collected from the five

plants tagged at random in the field, and oven dried at 55�C

for 3 days. The oven-dried material was powdered in a

Willey mill and defatted by using hexane solution

(100 ml g-1). The amounts of sugars, proteins, condensed

tannins, and polyphenols were determined for each acces-

sion. There were three replicates for each estimation in a

completely randomized design.

For estimating total soluble sugars, 100 mg of defatted

leaf or pod powder was used. The material was extracted

with hot aqueous-ethyl alcohol. On treatment with phenol–

sulfuric acid, the sugars produced a stable golden yellow

color (Dubois et al. 1956). Absorbance of the golden yel-

low color was measured at 490 nm. Glucose standards with

concentrations of 25, 50, 75, 100, and 125 mg ml-1 were

used to prepare the standard curve for estimating the sugar

content in the test material. Protein content in the pods was

estimated by using Lowry’s method (Lowry et al. 1951). A

total of 300 ll of sample was prepared, and 20 ll of the

supernatant was taken for estimating the proteins. The

absorbance was recorded at 600 nm. Bovine serum albu-

min (BSA) was used as a standard at a concentration of

2 mg ml-1.

The amounts of polyphenols (which included tannins

and low molecular weight phenolics) present in the leaves

and pods of pigeonpea and its wild relatives were estimated

by Folin Denis method (AOAC 1984). For this purpose,

100 ml of methanol–HCl (1 ml HCl in 99 ml of methanol)

was added to 200 mg of defatted material. The absorbance

was read at 760 nm using a spectrophotometer (Spectronic

21, Bausch and Lomb). A standard curve was prepared by

adding 0–1 ml aliquots of standard tannic acid in HCl (with

increments of 0.2 ml). Total phenolics were expressed as

mg tannic acid equivalent g-1 dry matter of leaves or pods.

The amounts of condensed tannins present in the leaves

and pods of wild relatives of pigeonpea were estimated by

vanillin–hydrochloric acid method (Price et al. 1978).

Fig. 1 Trichome types (A, B, C, and D) on the pod and leaf surfaces

of pigeonpea and its wild relatives. Type A Long tubular glandular

trichomes which secrete a liquid present in the form of droplets at the

tips. Type B Globular in structure and contain an oily substance. Type
C Short and non-glandular trichomes. Type D Longer than the type C

trichomes, and are non-glandular
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From the defatted material (leaf or pod), 100 mg sample

was transferred to a centrifuge tube containing 2 ml of 1%

acidic-methanol. Individual blanks were prepared for each

extract by adding 5 ml of 4% HCl in methanol to 1 ml

aliquot. The absorbance was recorded at 500 nm against

the reagent blank in a spectrophotometer (Spectronic 21,

Bausch and Lomb). Standard curve was prepared by plot-

ting the average absorbance readings of the duplicate

determinations of catechin concentrations, and expressed

as mg tannic acid equivalents g-1 of dry matter.

Statistical analysis

The data for the two seasons were subjected to homoge-

neity test, and it was observed that there were no significant

genotype 9 season interaction, and hence, pooled data

across seasons was subjected to analysis of variance

(ANOVA). The ANOVA was carried out by using Genstat

Release 8.2. The significance of differences between the

accessions was tested by F-test, and the treatment means

were compared by least significant difference (LSD) at

P B 0.05. Association of different morphological and

chemical factors with the egg and larval numbers, and pod

damage was determined by correlation analysis.

Results

Oviposition, larval density, and pod damage

by H. armigera under natural infestation in the field

There was no egg laying on ICPW 137, ICPW 152

(C. scarabaeoides), and ICPW 210 (R. aurea), while a few

eggs (0.1 eggs per 5 inflorescences) were recorded on

ICPW 94 and ICPW 130 (C. scarabaeoides) compared to

6.4 eggs per 5 inflorescences of the pigeonpea variety,

ICPL 87 (Table 1). There were no H. armigera larvae on

C. scarabaeoides accessions ICPW 94, ICPW 137, and

ICPW 152; while less than one larva per 5 inflorescences

was recorded on R. aurea (ICPW 210) and C. platycarpus

(ICPW 68) compared to 8.40 larvae on ICPL 87. Heli-

coverpa armigera damage in the pods of early duration

accessions of the wild relatives ranged from 0.0% in

C. scarabaeoides (ICPW 137) to 4.12% in C. platycarpus

(ICPW 68) compared to 83.8% damage in the pods of

cultivated pigeonpea cultivar, ICPL 87.

In the medium-duration group, there was no egg laying

on C. scarabaeoides accessions ICPW 83, ICPW 90, ICPW

116, ICPW 125, ICPW 141, ICPW 278, ICPW 280, and

ICPW 281. Egg-laying was quite high on C. cajanifolius

[ICPW 28 (10.6 eggs per 5 inflorescences)] and the culti-

vated pigeonpea variety, ICPL 87 (4.5 eggs) (Table 2).

There were no larvae on ICPW 90, ICPW 125, ICPW 278,

ICPW 280, and ICPW 281; while 0.1 larvae per 5 inflo-

rescences were recorded on ICPW 83 and ICPW 141

(C. scarabaeoides) compared to 4.7 larvae on ICPL 87. Pod

damage was quite high in the cultivated pigeonpea, ICPL 87

(83.0%) and ICPW 28 (93.3%) of C. cajanifolius; while no

damage was observed on ICPW 83 (C. scarabaeoides).

In the long-duration group, no egg-laying was observed

on C. acutifolius (ICPW 2), while low egg-laying (\0.5

eggs per 5 inflorescences) was recorded on C. acutifolius

(ICPW 1), C. albicans (ICPW 14), C. lineatus (ICPW 40

and ICPW 41), F. bracteata (ICPW 192), and P. scariosa

(ICPW 207) as compared to that on ICPL 87 (1.8 eggs;

Table 3). Less than one larva was recorded on C. acutifo-

lius, C. albicans, C. lineatus, F. bracteata, F. stricta, and

P. scariosa accessions compared to 1.9 larvae on ICPL 87.

Table 1 Oviposition, larval numbers, and pod damage by H. armigera in short-duration wild relatives of pigeonpea under natural infestation

(ICRISAT, Patancheru, India)

Species Accession No. of eggs* No. of larvae* Pod damage (%)

Cajanus platycarpus ICPW 68 1.00b 0.87b 4.12a

C. scarabaeoides ICPW 94 0.07a 0.00a 0.43a

C. scarabaeoides ICPW 130 0.07a 0.20a 0.91a

C. scarabaeoides ICPW 137 0.00a 0.00a 0.00a

C. scarabaeoides ICPW 152 0.00a 0.00a 0.60a

Rhynchosia aurea ICPW 210 0.00a 0.34ab 1.07a

C. cajan (S) ICPL 87 6.38c 8.40c 83.83b

F-test (df 6, 12) 10.22** 7.14** 47.53**

LSD at P 0.05 0.48 0.59 31.36

S Susceptible check

* Number of eggs or larvae per five inflorescences across five observation dates. Figures followed by the same letter within a column are not

significantly different at P B 0.05

** F-test significant at P \ 0.01
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Pod damage was quite low (0–7.1%) in the wild relatives

compared to 80.0% pod damage in the pigeonpea cultivar,

ICPL 87.

Trichome types and their density on calyxes and pods

The density and distribution of trichomes (type A, B, C,

and D) varied significantly on the calyxes among the spe-

cies, but there was little variation within the species

(Table 4). There was no significant variation in the density

of type A trichomes between C. acutifolius (ICPW 1 and

ICPW 2), C. cajanifolius (ICPW 29), C. lineatus (ICPW

41), and the cultivated pigeonpea, ICPL 87. Very high

trichome density of type A trichomes was observed in

cultivated pigeonpea variety, ICPL 332. The density of

type A trichomes was very low on C. albicans (ICPW 14),

C. scarabaeoides (ICPW 116, ICPW 141, ICPW 152,

ICPW 280, and ICPW 281), R. aurea (ICPW 210),

C. albicans (ICPW 13), and C. sericeus (ICPW 159). The

density of type B trichomes was lower compared to other

types of trichomes in all the species, except in C. albicans

and R. bracteata. The highest numbers of type B trichomes

were recorded on ICPL 332, but were absent in D. fer-

ruginea and C. scarabaeoides (except ICPW 152). Density

of type C type trichomes was high in C. scarabaeoides

(ICPW 281), followed by C. albicans (ICPW 13 and ICPW

14). The density of type C trichomes was lowest in the

cultivated pigeonpea varieties ICPL 87 and ICPL 332.

Density of type D trichomes was lowest in R. aurea (ICPW

210), followed by C. platycarpus (ICPW 68), and P. scar-

iosa (ICPW 207). The type D trichome density was high in

C. sericeus (ICPW 159), and C. scarabaeoides (ICPW 94,

ICPW 116, and ICPW 137) as compared to that on the

cultivated pigeonpea. Type D trichomes were absent in

C. acutifolius and R. bracteata.

Four types of trichomes (A, B, C, and D) were recorded

on the pods of wild species of pigeonpea. Type A tric-

homes were absent in C. sericeus and C. scarabaeoides

(Table 4). Density of type A trichome was significantly

greater on the pods of R. bracteata (ICPW 214) and

C. platycarpus (ICPW 68) compared to that on the pods of

P. scariosa (ICPW 207), F. stricta (ICPW 202), and the

cultivated pigeonpea varieties ICPL 332 and ICPL 87.

Significantly lower numbers of type B trichome were

observed on the pods of C. platycarpus (ICPW 68) and

F. bracteata (ICPW 192) as compared to that on the pods

of C. lineatus (ICPW 40 and ICPW 41), C. albicans (ICPW

13, and ICPW 14), C. cajanifolius (ICPW 28 and ICPW

29), and the cultivated pigeonpea variety, ICPL 87. The

density of type C trichomes was quite low on the pods of

C. albicans (ICPW 13) and C. acutifolius (ICPW 1) as

compared to that on the pigeonpea variety, ICPL 87. The

Table 2 Oviposition, larval numbers, and pod damage by H. armigera in medium-duration wild relatives of pigeonpea (ICRISAT, Patancheru,

India)

Species Accession No. of eggs* No. of larvae* Pod damage (%)

C. cajanifolius ICPW 28 10.60c 4.33b 93.33e

C. cajanifolius ICPW 29 5.47b 1.67a 65.83d

C. sericeus ICPW 159 0.93a 0.80a 0.27a

C. sericeus ICPW 160 0.20a 0.27a 0.16a

C. scarabaeoides ICPW 83 0.00a 0.07a 0.00a

C. scarabaeoides ICPW 90 0.00a 0.00a 0.34a

C. scarabaeoides ICPW 116 0.00a 0.13a 0.24

C. scarabaeoides ICPW 125 0.00a 0.00a 0.57a

C. scarabaeoides ICPW 141 0.00a 0.07a 0.13a

C. scarabaeoides ICPW 278 0.00a 0.00a 0.58a

C. scarabaeoides ICPW 280 0.00a 0.00a 0.17a

C. scarabaeoides ICPW 281 0.00a 0.00a 0.26a

Dunbaria ferruginea ICPW 178 0.07a 0.20a 27.47b

C. cajan (S) ICPL 87 4.53b 4.73b 83.02e

C. cajan (R) ICPL 332 0.40a 0.93a 49.00c

F-test (df 14,28) 3.00** 4.36** 18.24**

LSD at P 0.05 1.82 2.13 10.0

S Susceptible check, R Resistant check

* Number of eggs or larvae per five inflorescences across five observation dates. Figures followed by the same letter within a column are not

significantly different at P B 0.05

** F-test significant at P \ 0.01
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density of type C trichomes on accessions of C. scarab-

aeoides was very high ([100 in all the accessions). Density

of type D trichome was high on the pods of C. sericeus,

followed by R. aurea, C. lineatus, and C. scarabaeoides.

Density of type D trichomes was very low on the pods of

C. acutifolius, C. albicans, C. cajanifolius, F. bracteata,

F. stricta, P. scariosa, and R. bracteata.

Biochemical composition of leaves and pods

Total soluble sugars

The amounts of total soluble sugars were less than 5% on

dry weight basis in accessions of C. acutifolius (ICPW 1

and ICPW 2), C. albicans (ICPW 13), C. scarabaeoides

(ICPW 130, ICPW 137, ICPW 280, and ICPW 281),

C. cajanifolius (ICPW 28), and P. scariosa (ICPW 207)

compared to 5.62% in the leaves of ICPL 87 (Table 5). In

case of pods, the sugar content was more than 5% in C.

albicans (ICPW 13 and ICPW 14), and R. bracteata (ICPW

214), and less than 2.5% in C. cajanifolius (ICPW 28 and

ICPW 29), C. lineatus (ICPW 40), C. sericeus (ICPW 159),

C. scarabaeoides (except ICPW 125, ICPW 130, ICPW

278), R. aurea (ICPW 210), and C. platycarpus (ICPW 68).

Sugar content in pods of all the accessions of wild relatives

was significantly lower than that in the cultivated pigeon-

pea variety, ICPL 87 (7.1%). Sugar content in the leaves

and pods of the H. armigera resistant cultivar, ICPL 332

was also significantly lower than that in the susceptible

check, in ICPL 87.

Soluble proteins

Soluble protein content was lower (\2.0%) in the leaves of

C. lineatus, C. scarabaeoides (except ICPW 83, ICPW 90,

and ICPW 116), F. bractaeta, and P. scariosa than in the

susceptible check, ICPL 87 (3.7%; Table 5). The acces-

sions of C. cajanifolius, and C. scarabaeoides (except

ICPW 125, ICPW 141, and ICPW 158) had more proteins

([2.95%) in the pods compared to that of the cultivated

pigeonpea cultivar, ICPL 87 (1.94%). Protein content was

low in the pods of C. albicans [ICPW 13 (0.8%) and ICPW

14 (0.9%)], and R. aurea [ICPW 210 (1.14%)]; while high

amounts of proteins were recorded in the pods of C. sca-

rabaeoides [ICPW 83 (4.2%) and ICPW 281 (4.2%)]

compared to that in ICPL 87 (1.9%) and ICPL 332 (2.0%).

Total polyphenols

The concentrations of polyphenols were 83.7–177.4 mg g-1

(on dry weight basis) in the leaves of wild relatives of

pigeonpea compared to 82.5 mg g-1 in ICPL 87 and

115 mg g-1 in ICPL 332. High amounts ([150 mg g-1) of

polyphenols were observed in the leaves of C. scarabaeoides

(ICPW 94, ICPW 125, ICPW 137, and ICPW 281), and

F. stricta (ICPW 202; Table 5). Amounts of polyphenols

were greater ([100 mg g-1) in the pods of C. acutifolius,

C. albicans, C. cajanifolius, C. lineatus (ICPL 41),

C. sericeus, C. scarabaeoides (ICPW 83, ICPW 90, ICPW

94, and ICPW 137), D. ferruginea, and F. stricta as com-

pared to the cultivated pigeonpea (43.0 and 56.0 mg g-1 in

ICPL 87 and ICPL 332, respectively).

Table 3 Oviposition, larval numbers, and pod damage by H. armigera in long-duration wild relatives of pigeonpea (ICRISAT, Patancheru,

India)

Species Accession number No. of eggs* No. of larvae* Pod damage (%)

C. acutifolius ICPW 1 0.13a 0.07ab 1.32a

C. acutifolius ICPW 2 0.00a 0.00a 0.45a

C. albicans ICPW 13 0.68a 0.33d 0.30a

C. albicans ICPW 14 0.14a 0.14b 0.00a

C. lineatus ICPW 40 0.47a 0.40d 3.90a

C. lineatus ICPW 41 0.27a 0.14b 3.27a

Flemingia bracteata ICPW 192 0.13a 0.20c 0.38a

F. stricta ICPW 202 0.54a 0.20c 0.64a

Paracalyx scariosa ICPW 207 0.07a 0.13bc 3.61a

R. bracteata ICPW 214 0.97a 1.06e 7.14a

C. cajan (S) ICPL 87 1.81b 1.87f 80.00b

F-test (df 10, 20) 3.20** 6.55** 13.98**

LSD at P 0.05 0.78 0.09 11.04

S Susceptible check

* Number of eggs or larvae per five inflorescences across five observation dates. Figures followed by the same letter within a column are not

significantly different at P B 0.05

** F-test significant at P \ 0.01
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Condensed tannins

The levels of condensed tannins in the leaves were greater

than those in the pods (Table 5). Amount of condensed

tannins on dry weight basis in the leaves of ICPL 332 (0.1%),

ICPL 87 (0.9%), and C. cajanifolius (ICPW 29) were quite

low (0.32%), while high amounts of condensed tannins were

observed in the leaves of ICPW 40 (18.4%) and ICPW 41

(13.2%) of C. lineatus. Higher amounts ([5%) of condensed

tannins were recorded in the leaves of C. acutifolius,

C. lineatus, C. platycarpus, C. scarabaeoides (except ICPW

83, and ICPW 152), D. ferruginea, F. bracteata, F. stricta,

P. scariosa, and P. aurea as compared to that in the culti-

vated pigeonpea (0.88% in ICPL 87 and 0.08% in ICPL

332). Amounts of condensed tannins in the pods were high

([4%) in C. acutifolius, C. albicans, C. cajanifolius,

C. lineatus (ICPW 41), S. sericeus, C. scarabaeoides (ICPW

83, ICPW 90, ICPW 94), D. ferruiginea, F. stricta,

P. scariosa, R. bracteata and the cultivated pigeonpea.

The amounts of condensed tannins were greater in the

Table 4 Density of different types of trichomes on calyxes and pods of wild relatives of pigeonpea (ICRISAT, Patancheru, India)

Accession Calyxes Pods

A B C D A B C D

ICPW 1 27.70c 7.33g 47.33ab 0.00a 21.33de 5.00bc 21.00a 1.33a

ICPW 2 27.30c 5.00f 42.00ab 0.00a 14.33cd 5.33bc 31.33bc 1.00a

ICPW 13 0.70a 2.67e 61.67b 25.33abc 4.33a 36.67h 18.67a 2.33ab

ICPW 14 0.30a 1.67d 67.67b 32.00abcd 2.67a 25.67g 27.67ab 1.00a

ICPW 28 29.30c 1.33bc 32.67ab 16.33ab 23.00def 23.67g 28.33ab 0.22a

ICPW 29 27.00c 1.00bc 27.67a 25.33abc 20.33de 23.33g 36.00bcd 0.33a

ICPW 40 34.00c 1.33bcd 59.33b 16.00ab 23.33def 61.33k 52.67e 26.67gh

ICPW 41 29.70c 4.33f 50.67ab 22.33a 20.67de 48.33j 42.33cde 29.00h

ICPW 159 0.70a 0.67abc 26.67a 86.00ef 0.00a 17.67f 26.67ab 141.67k

ICPW 160 1.00a 0.33ab 32.67ab 66.00def 0.00a 13.33e 28.00ab 122.33j

ICPW 68 5.00ab 0.67abc 33.67ab 0.67a 26.33f 0.33a 31.67bc 7.67bc

ICPW 83 0.00a 0.00a 46.00ab 71.00ef 0.00a 5.67bcd 141.67ij 22.30efg

ICPW 90 0.00a 0.00a 35.33ab 76.33ef 0.00a 4.67bcd 138.33ij 25.00fgh

ICPW 94 0.00a 0.00a 52.67b 99.33f 0.00a 2.67ab 117.00gh 20.26ef

ICPW 116 0.70a 0.00a 46.67a 84.00ef 0.00a 7.33d 148.67j 22.42efg

ICPW 125 1.00a 0.00a 42.00ab 49.00bcd 0.00a 5.00bcd 134.67i 15.63de

ICPW 130 0.00a 0.00a 56.67b 63.67cdef 0.00a 2.00ab 150.00j 28.26gh

ICPW 137 0.00a 0.00a 33.00ab 82.00ef 0.00a 1.33ab 102.00f 15.52de

ICPW 141 0.70a 0.00a 31.33ab 66.00def 0.00a 4.00abcd 156.33j 16.85de

ICPW 152 0.30a 0.67abc 55.33b 36.00abcd 0.00a 4.67bcd 152.00j 18.53e

ICPW 278 2.30ab 0.00a 32.67ab 53.33bcde 0.00a 3.00abc 118.33gh 17.53e

ICPW 280 0.30a 0.00a 52.00b 72.33g 0.00a 7.00cd 140.33i 15.63e

ICPW 281 0.70a 0.00a 70.33b 48.67bcde 0.00a 5.33bcd 133.33i 22.15ef

ICPW 178 5.00b 0.00a 31.33ab 3.33a 11.67bc 41.00i 52.00e 22.33efg

ICPW 192 12.00c 2.67e 40.33ab 1.33a 8.67b 0.33a 53.67e 0.33a

ICPW 202 2.30ab 4.33f 34.67ab 2.33a 1.00a 22.33g 123.67g 0.00a

ICPW 207 2.00a 1.67d 41.33ab 0.67a 0.67a 3.33abc 108.00fg 1.00a

ICPW 210 0.30a 5.00f 40.67ab 0.33a 4.33a 9.33de 37.00bcd 49.67i

ICPW 214 5.00ab 4.67f 40.67ab 0.00a 53.33g 11.33e 51.00de 1.33a

ICPL 87 27.33c 1.00bc 10.00a 30.67abcd 21.67def 5.33bcd 40.33cd 8.00bc

ICPL 332 47.00d 15.00h 12.33a 56.67cde 18.67de 26.67g 135.67i 10.50cd

F-test (df 30, 60) 210.71** 20.49** 70.32** 91.78** 119.64** 124.95** 199.30** 245.58**

LSD at P 0.05 10.13 1.98 41.53 38.29 4.81 4.11 10.21 6.49

S Susceptible check, R Resistant check

* Trichome density in the microscopic field at 329. Figures followed by the same letter within a column are not significantly different at

P B 0.05. For description of trichomes types, see Fig. 1

** F-test significant at P \ 0.01
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H. armigera resistant pigeonpea cultivar, ICPL 332 (17.9%)

than in the susceptible cultivar (ICPL 87 (4.9%).

Correlation of morphological and biochemical traits

with expression of resistance to Helicoverpa armigera

A significant and positive correlation was observed

between the numbers of eggs and larvae of H. armigera

and pod damage with the density of glandular (type A)

trichomes on the calyxes and pods of wild relatives of

pigeonpea (Table 6). Numbers of eggs and larvae and pod

damage were significantly and negatively correlated with

density of non-glandular (type C) trichomes. There was no

association between type B trichomes and egg laying,

larval abundance, and pod damage; while the density of

type D trichomes on the pods was negatively correlated

with pod damage. Concentration of polyphenols in the

leaves was negatively correlated with egg and larval

Table 5 Amounts of soluble sugars and proteins, polyphenols, and condensed tannins in the leaves and pods of wild relatives of pigeonpea

(ICRISAT, Patancheru, India)

Accession Soluble sugars (% of dry

matter)

Soluble proteins (% of dry

matter)

Polyphenols (mg g-1 dry

matter)

Condensed tannins (tannic acid

equivalent g-1 dry matter)

Leaves Pods Leaves Pods Leaves Pods Leaves Pods

ICPW 1 5.25h 1.68fg 3.44jk 2.19bcde 115.0d 236.7l 8.60def 26.9e

ICPW 2 5.12gh 2.62j 2.28f 2.47cde 130.0fg 270.0m 5.79abcde 22.5cd

ICPW 13 5.12gh 5.25n 3.51jk 0.78a 101.7c 135.0hi 3.24abdc 61.0e

ICPW 14 4.25def 5.12n 2.81hi 0.95ab 127.9ef 173.3k 1.21ab 77.1f

ICPW 28 5.37h 2.14h 2.19e 3.31ef 83.7a 100.0g 1.37ab 5.8a

ICPW 29 2.22a 1.20cde 3.62jk 3.20ef 103.3d 110.0g 0.32a 7.9a

ICPW 40 4.12de 1.50ef 2.00ef 1.81abcd 133.8g 80.0ef 18.36g 3.2a

ICPW 41 3.44bc 3.37k 2.01ef 1.93abcde 145.3h 110.0g 13.15i 4.6a

ICPW 159 4.68fg 2.32n 3.90kl 1.62abcd 104.2c 145.0j 3.27abc 14.6bc

ICPW 160 4.87gh 4.50l 3.68jk 1.56abcd 147.5h 173.3k 2.93abcd 19.9bcd

ICPW 68 3.87cd 0.71ab 2.41fgh 1.65abcd 105.0c 55.3b 7.57cdef 3.7a

ICPW 83 2.25a 1.83g 2.59gh 4.17f 123.0ef 118.3g 3.36abcd 4.3a

ICPW 90 3.12b 1.15cd 2.35f 2.95def 144.3h 110.0g 7.71cdef 4.2a

ICPW 94 3.87c 1.05bc 0.81ab 3.08ef 156.7i 110.0g 12.42fg 4.3a

ICPW 116 4.50e 1.34de 2.64gh 3.69f 113.3d 80.0ef 5.34abcd 1.4a

ICPW 125 4.62ef 4.00m 1.64cde 2.67de 177.4k 52.7bc 12.62fg 1.9a

ICPW 130 5.25h 3.31k 0.62a 3.60f 143.3h 80.0ef 11.53ef 1.9a

ICPW 137 5.25h 1.99h 1.89def 2.97de 175.0k 100.0g 10.47eff 3.0a

ICPW 141 3.35b 0.86b 1.89def 2.82de 127.5ef 65.0cd 7.13bcde 2.7a

ICPW 152 4.12d 1.81gh 1.67cde 2.80de 130.0fg 46.7ab 3.50abcd 3.8a

ICPW 278 4.50ef 3.87 1.69cde 3.49f 127.5ef 66.7cde 11.23ef 3.7a

ICPW 280 5.37h 1.91gh 0.79a 2.97def 142.5h 35.0a 10.21ef 2.7a

ICPW 281 5.25h 0.45a 1.12abc 4.17f 162.5j 67.0cde 12.8f 2.7a

ICPW 178 4.00d 4.87m 2.22efg 1.65abcd 129.2efg 110.0g 5.99abcde 4.6a

ICPW 192 2.21a 3.50kl 1.39bcd 1.87abcd 92.5b 35.0a 6.50bcdef 2.3a

ICPW 202 2.28a 4.50m 3.23ij 2.09bcd 160.0j 123.0gh 6.52bcdef 26.0d

ICPW 207 5.12g 3.68l 1.67cd 1.82abcd 141.3h 82.0f 10.92ef 12.8b

ICPW 210 2.12a 1.47ef 2.68gh 1.14abcd 112.5d 44.3ab 6.79bcdef 1.2a

ICPW 214 3.25b 5.62o 4.41l 2.25bcd 110.0d 73.7def 2.15abc 4.9a

ICPL 87 5.62h 7.12p 3.66jk 1.94abcd 82.5a 43.0ab 0.88ab 4.9a

ICPL 332 4.87g 3.00j 2.86h 1.98abcd 115.0d 56.0bc 0.08a 17.9bcd

F-test (df 30, 60) 17.35** 229.22** 22.61** 428.52** 134.88** 214.32** 99.38** 210.00**

LSD at P 0.05 0.52 0.28 0.58 1.40 4.93 13.99 6.27 3.40

S Susceptible check, R Resistant check

Figures followed by the same letter within a column are not significantly different at P B 0.05

** F-test significant at P \ 0.01
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numbers, and pod damage under field conditions (Table 7).

Protein content of leaves and pods was positively corre-

lated with egg and larval numbers, and pod damage, but the

correlation coefficients were non-significant (except with

eggs). Soluble sugars showed no association with expres-

sion of resistance to H. armigera. The condensed tannins in

the leaves also showed a significant and negative associa-

tion with H. armigera damage under field conditions.

Discussion

Wild relatives of pigeonpea are useful sources of resistance

to H. armigera (Romeis et al. 1999; Sharma et al. 2001).

The present study showed that there was a significant

variation in egg-laying, numbers of larvae, and pod damage

among the wild relatives of pigeonpea under field condi-

tions. Among the short-duration accessions, oviposition

non-preference and antibiosis were important components

of resistance to H. armigera as evidenced by low egg and

larval numbers. Egg-laying was quite high on C cajanifo-

lius (ICPW 28), which is the progenitor of cultivated pi-

geonpea, and it was as susceptible to H. armigera damage

as the cultivated pigeonpea cultivar, ICPL 87. There was

considerable variation in pod damage among different

accessions of C. scarabaeoides, suggesting that it is

important to evaluate the available accessions for resis-

tance to insect pests before selecting a particular accession

for use in breeding for resistance to insect pests. In several

accessions, the numbers of eggs or larvae recorded on the

marked portion of the inflorescences were nil (zero),

although some amount of pod damage was recorded in

most of the accessions tested. The H. armigera moths have

the choice to lay the eggs on other inflorescences at the

flowering stage in the same plant, the larvae from the

neighboring branches migrate to others and cause the pod

damage, resulting in differences in egg laying, larval

numbers, and pod damage. Accessions belonging to

R. aurea, C. scarabaeoides, C. sericeus, C. acutifolius, and

F. bracteata showed high levels of resistance to H. armi-

gera, while the accessions belonging to C. cajanifolius

were as susceptible to H. armigera as the cultivated

pigeonpea. Among the cultivated pigeonpea genotypes,

ICPL 332 (the resistant check) was consistently less dam-

aged than the susceptible check, ICPL 87.

Trichome types, their orientation, density, and length

influence host plant resistance/susceptibility to insect pests

(Jeffree 1986; David and Easwaramoorthy 1988; Peter

et al. 1995; Valverde et al. 2001; Gurr and McGrath 2001).

However, trichomes at times also impart susceptibility to

insects, e.g., to whitefly, Bemisia tabaci (Gen.) in cotton

(Chu et al. 2000). Specifically, glandular trichomes and

their exudates act as an important resistance mechanism to

insects owing to the compounds exuded by them (Peter

et al. 1995; Ranger and Hower 2001; Frelichowski and

Juvik 2001). Density of glandular trichomes (type A) was

high on the pods of C. cajan, R. bracteata, and C. platy-

carpus, and a significant and positive correlation was

observed between the number of eggs laid and the density

of type A trichomes. Hartlieb and Rembold (1996) sug-

gested that glandular-secretions from trichomes in

pigeonpea act as attractants to the adults of H. armigera.

Table 6 Correlation coefficients between densities of different trichome types on calyxes and pods and densities of H. armigera eggs and larvae,

and pod damage in wild relatives of pigeonpea (ICRISAT, Patancheru, India)

Parameter Trichomes on calyxes Trichomes on pods

A B C D A B C D

No. of eggs 0.45** -0.06 -0.39* -0.18 0.36* 0.13 -0.36* -0.16

No. of larvae 0.42** 0.00 -0.51** -0.15 0.40* 0.02 -0.32* -0.11

Pod damage 0.61** 0.17 -0.56** -0.18 0.43* 0.20 -0.27* -0.22*

*, ** Correlation coefficients significant at P B 0.05 and 0.01, respectively

Table 7 Correlation coefficients between biochemical components of leaves and pods and numbers of eggs, larvae, and pod damage in wild

relatives of pigeonpea (ICRISAT, Patancheru, India)

Parameter Polyphenols Soluble proteins Soluble sugars Condensed tannins

Leaves Pods Leaves Pods Leaves Pods Leaves Pods

Eggs -0.56** -0.12 0.45** -0.04 -0.11 0.04 -0.44* -0.05

Larvae -0.51** -0.19 0.34 -0.06 -0.34 0.12 -0.42* -0.09

Pod damage -0.29 -0.15 0.27 0.05 -0.21 0.04 -0.50** -0.10

*, ** Correlation coefficients significant at P B 0.05 and 0.01, respectively
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Exudates from glandular trichomes (type A) in pigeonpea

contain factors that also are phagostimulants towards the

H. armigera larvae (Green et al. 2002, 2003). Significantly

higher numbers of type B trichomes were observed on the

pods of C. lineatus, C. albicans, and C. cajanifolius as

compared to those on the pigeonpea cultivar, ICPL 87. The

function of type B trichomes is not well known. However,

Bisen and Sheldrake (1981) suggested that they are a

source of the characteristic fragrance of pigeonpea. The

fragrance of the pods of C. lineatus might also be due to the

presence of high density of type B trichomes. The contents

of type B trichomes are liberated only when the cell wall is

ruptured. This could be caused by chewing by the insects

such as H. armigera or by abiotic factors such as high

temperatures or low air humidity (Ascensao et al. 1995).

Density of non-glandular trichomes (type C and type D)

was greater on the calyxes and pods of C. scarabaeoides

than that on the pods of other species. The non-glandular

trichomes, which were present at much higher densities on

wild relatives of pigeonpea than on the cultivated pigeon-

pea, may also act as a physical barrier to feeding by the

H. armigera larvae. The results suggest that non-glandular

trichomes (type C and D) have a significant influence on

genotypic susceptibility to H. armigera in wild relatives of

pigeonpea, and these can be used as marker traits to breed

for resistance to H. armigera in pigeonpea.

In addition to morphological traits, biochemical con-

stituents present in the cells and tissues of the host plant

exert a profound influence on biology of insect pests (Beck

1965; Smith 1989; Sharma 2009). Total soluble sugars

were higher in the pods of cultivated pigeonpea than in the

wild relatives, and this may be one of the factors leading to

greater feeding by H. armigera larvae on the pods of cul-

tivated pigeonpea compared to that on the accessions of

wild pigeonpeas. MacFoy et al. (1983) recorded high

concentrations of sugars and amino acids in the cowpea

cultivar Vita-1, which is susceptible to spotted pod borer,

Maruca testulalis (Geyer).

Low amounts of polyphenols in the cultivated pigeonpea

might be another reason for their high susceptibility to

H. armigera. Low amounts of phenols in pigeonpea flowers

are also associated with susceptibility to spotted pod borer,

M. testulalis (Ganapathy 1996). Soluble protein content

was significantly higher in the pods of C. scarabaeoides

compared to those of ICPL 87. High amounts of poly-

phenols were recorded in resistant (late-maturing) wild

relatives of pigeonpea as compared to the cultivated pi-

geonpea. Similar observations have earlier been reported

by Mukerji et al. (1993) and Sahoo and Patnaik (2003).

Condensed tannins in plants often act as insect growth

inhibitors owing to their presumed binding to the proteins

(Smith 1989). However, Martin et al. (1987) indicated that

there is little evidence to suggest that condensed tannins

inhibit digestion in insects, but the adverse effects of

condensed tannins might be due to their role as feeding

deterrents. Wild pigeonpea accessions exhibiting high

levels of resistance to H. armigera had low densities of

glandular trichomes and high density of non-glandular

trichomes and high amounts of condensed tannins and

polyphenols, and these can be used in wide hybridization to

increase the levels and diversify the bases of resistance to

H. armigera.
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