

Effects of inoculum density of *Fusarium oxysporum* f. sp. *ciceri* race 1 and 2 on chickpea wilt (*)

K.K. ZOTE, M.P. HAWARE *, S. JAYANTHI * and J. NARAYANA RAO *

Agricultural Research Station, Badnapur, Maharashtra, India * Crop Protection Division, ICRISAT, Patancheru, Andhra Pradesh, India

Summary. Studies on inoculum densities of the chickpen will pathogen *Fusarium arysporum* f. sp. *ciceri* race 1 and 2 with thre chickpen cultivars representing early wilter (highly susceptible), late wilter (moderately susceptible) and resistant were conducted in glusshouse at 25 °C. Highly susceptible v. JG 62 showed 100% mortality at 15 days for race 1 and 17 days for race 2 at higher inoculum density. At the low inoculum density, the wilting was delayed and at this inoculum level two other cultivars showed no mortality. The will resistant cultivare v. W 815 and moderately susceptible cultivar ex. K 850 remained completely free from will symptoms up to 60 days while ev. JG 62 wilted in 27 days with F.o. f. sp. ciceri population ranging 4233-4667 propagales/g soil. However, xylem browning in the root and collar region was recorded in ev. K 850. The F.o. f. sp. ciceri population of race 1 and 1 mortality. The will susceptible, moderately susceptible, and resistant chickpeas in the soil though the plant in soils with will susceptible, moderately susceptible, and resistant chickpeas in the soil though the plants were free of will symptoms up to 60 days after planting. The multiplication ratio was higher at low inoculum density of the propagules compared to the higher inoculum density for both the races of F. f. sp. ciceri. As the inoculum density increased the multiplication ratio was higher at low inoculum density for bath density increased.

Introduction

Chickpea (Cicer arietinum L.) is one of the major pulse crops grown in India. Amongst the diseases reported on chickpea, wilt caused by *Fusarium axysporum* Schl. emnd Snyd. et Hans. f. sp. ciceri (Padwick) Snyd. et Hans. F. o. f. sp. ciceri is one of the major diseases in North Africa, South Asia and Southern Europe (Haware, 1990) and causes up to 10% losses in yield. The disease is more prevalent in the lower latitudes (0-30°N), where the chickpea-growing season is relatively dry and warmer than in the higher latitudes (30-40°N). The pathogen is both seed and soilborne, survives in the soil for more than six years in the absence of susceptible host plants (Haware et al., 1986). Haware and Nene (1982a) reported that the pathogen colonizes the roots of lentil, pea, pigeonpea without producing wilt symptoms.

Considerable progress has been made in the identification of wilt resistant sources and development of wilt resistant and high-vielding cultivars. Studies on the pathogenic variability revealed that the wilt pathogen has distinct physiological races (Haware and Nene, 1982; Jimenez-Diaz et al., 1989). The severity of chickpea wilt in farmers' fields is directly related to inoculum density. The inoculum level may increase by cultivating chickpea every year thus increasing wilt severity. However, there is no information on the reaction of susceptible. moderately susceptible, and resistant chickpea cultivars to varying densities of F.o. f. sp. ciceri population and their influence on the population of the fungus in the soil. Such information would

^(*) ICRISAT Journal Article No. 1827.

TABLE 1. Relationship between initial *Pusarium axysporum* f. sp. *ciceri* (race 1) population levels and wilt incidence in susceptible, moderately resistant, and resistant chickpea cultivars at ICRISAT Asia Center, Patancheru.

	Treatments (proportion of (noculum)	opulation	% Wilt incidence			Days to complete					Rate of multiplication in soil (a)			
			JG 62	WR 315	K 850	wilt in JG 62	JG 62	K 850	WR 315	Unsown	JG 62	K 850	WR 315	Unsown
T 1	(1 g kg ¹ soil)	100	100	NW	NW	21	5933	3733	2500	2200	59.33	37.33	25.15	22.0
T2	(2 g kg ⁺ soil)	133	100	NW	NW	19	3617	2483	1200	1967	27.19	18.66	9.02	14.78
T 3	(5 g kg ⁺ soil)	200	100	NW	NW	17	2950	2883	2233	2117	14.75	18.83	11.5	10.87
T4	(10 g kg ⁺ soil)	217	100	NW	NW	16	3850	3033	2633	2367	17.74	13.97	12.13	10.94
T 5	(15 g kg ⁺ soil)	350	100	NW	NW	15	3150	2767	3200	2433	9.00	7.9 0	9.14	6.71
T6	(20 g kg ⁻¹ soil)	383	100	NW	NW	15	3583	2533	4500	1883	9.35	6.61	11.76	4.87
T7	(25 g kg ⁻¹ soil)	417	100	NW	NW	15	2183	2017	2900	2233	5.27	4.78	6.95	5.31
Т8	(50 g kg ⁺ soil)	1400	100	NW	NW	15	3250	1950	2250	2250	1.67	1.39	1.60	1.60
Т9	(75 g kg ' soil)	2567	100	NW	NW	15	3267	1983	3467	2783	1.26	0.76	1.34	1.08
TIC	(100 g kg ¹ soil)	3217	100	NW	NW	15	3800	3150	3383	3200	1.18	10.98	1.05	0.99
T11	(sterilized soil)	0	0	NW	NW									
SE		±85.0)			±0.370	±136.2	2						
cv	(%)	16.4	1			3.8	8.3	3						

(a) Rate of multiplication = Final population/initial population.
NW = No wilt.

be useful in the exploitation of host-plant resistance for management of the disease. This paper reports the results of pot culture experiments on the interaction of three chickpea cultivars with different degrees of susceptibility to wilt with a range of inoculum levels of race 1 and 2 of F.o. f. sp. ciceri.

Materials and methods

The experiments were conducted at ICRISAT Asia Center, Patancheru, in glasshouse at $25^{\circ}1^{\circ}C$. The F.o. f.s. ciceri was isolated from roots of chickpea plants collected from Hyderabad (race 1) and Kanpur (race 2). The isolates were single-spored and maintained in autoclaved dry fine sand at 5°C.

Inoculum potential of Fusarium oxysporum f. sp. ciceri. The isolates of F.o. f. sp. ciceri race 1 and 2 maintained in autoclaved dry fine sand stored at 5°C were used. Fifteen-day old inoculum, multiplied on 100 g of 9:1 sand chickpea meal medium in 250 ml conical flask for 15 days at 25°C was thoroughly mixed with autoclaved soil (Vertisol) with different proportions of the inoculum, 1, 2, 5, 10, 15, 20, 25, 50, 75, and 100 g inoculum/kg soil. Physical characteristics of the soil used in experiment were: pH 8.1, electrical conductivity (d Sm⁻¹) 0.20 S, available P (mg kg⁻¹) 3.9, NH,-N (mg kg⁻¹) 20.4, NO,-N (mg kg⁻¹) 12.2. Inoculum levels were adjusted by adding noninfested soil. The plastic pots (15 cm) were washed in running water and disinfected with alcohol. The inoculum was mixed by shaking the soil in the closed container for 2-3 min. Two kg of infected soil were added in each pot. The initial F.o. f. sp. ciceri population in the different treatments were estimated (Singh and Chaube, 1970) by taking soil samples for each treatment, sub-sampling, and sprinkling on modified Czapek dox agar medium in Petri plates (ingredients: NaNO₃ 2 g, K₂PO₄ 1 g, MgSO₄ 0.5 g, KCl 0.5 g, FeSO₄ 0.01 g, surrose 30 g, agar 20 g PCNB 0.667 g, yeast extract 2 g, dissolved in 1 l distilled water autoclaved 6.6 kg sq in' or 15 lbs sq in' pressure for 20 min, before pouring into the plate 0.750 g of dirrysticin and 0.025 g of malachite green is added). Each treatment had 3 replicates. The plates were incubated at 25°C and initial F.o. f. sp. ciceri population was counted after 5 days.

The fungus was allowed to establish itself in the infested soil for 2 days before the seeds were sown. The experiment was laid out in a randomized block design with three cultivars (JG 62, K-850, and WR 315) and 10 inoculum treatments in three replications. For all tests, seed was surface-sterilized for 5 min with a 0.5% sodium hypochlorite solution before sowing. Six seeds were sown in each pot. In addition to the 10 treatments, one treatment was unsown (fallow). The experiment was set up in glasshouse with a temperature of 251°C. After germination, thinning was carried out in each pot to maintain 5 seedlings/pot. The pots were watered on alternate days with 100 ml sterilized water/pot.

Inoculum potential: Wilt sick soil (WSS) + sterilized soil (SS). Soil from a chickpea wilt sick plot (Vertisol, pH 8.2, EC 0.20 d Sm⁺), at ICRISAT Asia Center, Patancheru was collected, and air dried. The wilt sick soil was sieved and mixed with sterilized soil in various proportions i.e., 1:1, 1:2, 1:4, 1:8, 1:16, 1:32, 1:64, 1:128 along with one treatment of wilt sick soil. The initial F.o. f. sp. ciceri population in the original wilt sick soil and in different treatments were estimated on modified Czapek dox agar medium. Seven treated seeds of vs. JG 62, K 850 and WR 315 were sown in each pot. Later the seedlings were thinned out to 5 seedlings/pot.

In all 3 experiments wilt incidence was recovered at 3 days interval from the day of first appearance of wilt symptom for a period of 60

TABLE II. - Relationship between initial *Fusarium axysporum* f. sp. *ciceri* (race 2) population levels and wilt incidence in susceptible, moderately resistant, and resistant chickpea cultivars at ICRISAT Asia Center, Patancheru.

Treatments		Initial population	% Wilt incidence			Days to complete	Fusarium propagules g $^{\circ}$ 60 days after sowing				Rate of multiplication in soil (a)			
	inoculum)	(propagules g'acil)	JG 62	WR 315	K 850	wilt in JG 62	JG 62	K 850	WR 315	Unsown	JG 62	K 850	WR 315	Unsown
T1	(1 g kg ⁻¹ soil)	83	73	NW	NW	26	2500	2389	1356	955	30.12	28.78	16.34	11.50
T2	(2 g kg ⁻¹ soil)	150	80	NW	NW	29	1855	4355	1533	955	12.36	29.03	10.22	6.36
ТЗ	(5 g kg ¹ soil)	217	53	NW	NW	27	2155	7800	811	478	7.77	28.15	5.85	3.44
T4	(10 g kg ⁻¹ soil)	217	100	NW	NW	18	2783	4172	1878	2328	12.82	19.22	8.65	10.72
T5	(15 g kg ¹ soil)	350	100	NW	NW	19	2956	5383	4111	1811	8.44	15.40	11.74	5.17
T 6	(20 g kg ⁻¹ soil)	400	100	NW	NW	18	2689	5205	2072	2944	6.72	13.01	5.18	7.76
T 7	(25 g kg ¹ soil)	450	100	NW	NW	25	3232	4511	3616	1922	7.18	10.02	8.03	4.27
T 8	(50 g kg [.]) soil)	1483	73	NW	NW	17	3567	4372	3495	3694	2.4	2.94	2.35	2.49
T9	(75 g kg ⁻¹ soil)	2417	100	NW	NW	17	4189	4244	3944	4284	1.62	1.64	1.52	1.65
T10	(100 g kg ⁻¹ soil)	3283	100	NW	NW	17	1872	3850	3100	3105	0.57	1.19	0. 95	0.96
T 11	(sterilized soil)	0	NW	NW .	NW	NW								
SE		±78.4	±7.57	7		±0.291	±404.6							
CV	(%)	15.0	14.7			2.4	22. 9							

(a) Rate of multiplication = Final population/initial population.

NW = No wilt.

TABLE III. - Relationship between initial Fusarium oxysporum f. sp. ciceri from wilt sick plot on wilt incidence in susceptible, moderately resistant, and resistant chickpea cultivars at ICRISAT Asia Center, Patancheru (a).

Treatment soil	Fusarium propagules g' soil before sowing	% Wilt incidence			Pusarium propagules g' 60 days after sowing Days to complete					Rate of multiplication			
W88:888		JG 62	K 850	WR 315	JG 62	K 850	WR 315	Unsown	wilt in JG 62	JG 62	K 850	WR 315	Jasowa
W.S.S.	4233	100	0.0	0.0	4667	3883	3617	3400	27	0.7 3	1.15	0.69	0.79
1:1	2083	100	0.0	0.0	3083	2500	2267	2500	27	0.96	1.21	0.98	1.19
1:2	1867	100	0.0	0.0	2783	2533	1833	2067	32	0.98	0.09	0.71	1.10
1:4	833	100	0.0	0.0	2417	1783	1583	1217	37	1.47	2.11	1.08	1.45
1:8	483	100	0.0	0.0	1800	1633	1200	800	44	4.70	5.61	3.19	1.62
1:16	350	80	0.0	0.0	1400	1667	1117	850	49	5.28	7.52	3.65	2.38
1:32	183	40	0.0	0.0	1517	1833	1950	850	60	13.32	11.10	12.36	4.64
1:64	117	13	0.0	0.0	1450	1167	1900	517	60	20.76	25.75	15.79	4.43
1:128	83	6	0.0	0.0	1300	1717	1100	400	60	268.93	408.78	201.96	60.60
SE	±129.6	±9.4	9			±249.	1		±2.99	7			
CV (%)	19.7	23.4				22.	7		11.5				

(a) Experiment was kept up to 80 days only: Xylem browning in cv. K 850 and slight discolouring xylem in cv. WR 315 at 60 days recorded. Ratio of multiplication = Ymal population ; W.S.S. = Wilt sick soil; S.S.S. = Sterilized soil sand mixture. Initial population

days. At 60th day, final F.a, f. pc, *ciceri* population in soil was estimated in all the treatments after removing the plants along with the roots from the pots. The rate of multiplication of the pathogen was calculated by dividing the final population by the initial population.

Results and discussion

Fuarium axysporum is a monocyclic pathogen. The increase in population of F.o. f. sp. ciceri in the soil is because of longevity of reproductive units (Haware et al., 1986). There were significant differences in the initial propagules for all the inoculum levels in all 3 experiments. Irrespective of the differences in the inoculum levels, cv. JG 62 showed 100% willing 15-21 days after sowing in the case of F.o. f. sp. ciceri race 1, 17-25 days for F.o. f. sp. ciceri race 2, 27-44 days in the case of wilt sick soil + sterilized soil (Tables I, II, and III). Under field conditions, cv. JG 62 normally takes 30 days for 100% willing but under controlled environmental condition 100% willing was noticed in 27 days (Table III). With increase in the ratio between WSS:SSS the number of days required for 100% wilting was higher (32-60 days). Among the cultivars tested, only cv. JG 62 showed wilting in all the experiments, and cvs. K 850 and WR 315 did not show any wilting at all. However, after 60 days xylem browning was observed in cv. K 850 by splitting the roots at collar region whereas cv. WR 315 showed high level of resistance in spite of the increase in the number of propagules for F.o. f. sp. ciceri (4233-4667 F.o. f. sp. ciceri propagulesg gail). Bhatti and Kraft (1992) reported that wilt or root rot of chickpea increased with increased level of inoculum in the soil.

The susceptible, moderately susceptible, and resistant cultivar supported multiplication of F.o.f. sp. ciceri, but showed significant differences in will incidence in relation to initial F.o. f. sp. ciceri population in the soil. Initial inoculum in the soil determines severity of soilborne pathogen, and it can be seen from the results in all three experiments that with high level of initial F.o. f. sp. ciceri propagules 100% wilting was noted much earlier than those treatments with low initial F.o. f. sp. ciceri propagules, hence the technique of assessing the disease potential of soils ought to be applicable for early forecast of diseases induced by soilborne pathogens (Fry, 1982). The results confirm that it is possible to forecast the severity of chickpea disease from the knowledge of the initial pathogen population. In all the experiments with F.o. f. sp. ciceri race 2 and wilt sick soil, cv. K 850 supported higher F.o. f. sp. ciceri multiplication followed by resistant (cv. WR 315) over the highly susceptible (cv. JG 62). In moderately susceptible and resistant cultivars, the fungus infects the roots and enters the xylem and takes longer to colonize than the susceptible cultivar which dies within a month after sowing. Hence the amount of diseased tissues contributed to the soil by moderately susceptible and resistant cultivar will be higher than the susceptible cultivar.

This study highlighted the level of genetic resistance to wilt available in cultivated chickpea. The cultivated WR-315 was resistant to the pathogen at approximately 100 times the population needed to kill the susceptible cultivar cv. JG 62, but in spite of this high level of resistance, it contributed to F.o. f. sp. ciceri multiplication in the soil. Therefore, it is clear that irrespective of its disease reaction, the resistant cultivar supports F.o. f. sp. ciceri multiplication in the soil. It may not be possible to eliminate wilt pathogen from infested soil by growing resistant cultivars alone. The above results confirm that there is a need for other management practices such as crop rotation to reduce the inoculum density in the soil. This study has also provided information on the F.o.f. sp. ciceri threshold levels for chickpea cultivars with different levels of susceptibility to wilt disease caused by F.o. f. sp. ciceri.

Literature cited

- BHATTI M.A. and J.M. KRAFT, 1992. Effects of inoculum density on root rot and wilt of chickpea. *Plant Disease*, 76, 50-54.
- FRY E.W., 1982. Principles of Plant Diseases Management. Academic Press, INC, London, 378 pp.
- HAWARE M.P., 1990. Fusarium wilt and other important diseases of chickpea in the mediterranean areas. Options Mediterranéennes Serie A: Seminaires Mediterranéennes, 9, 61-64.
- HAWARE M.P. and Y.L. NENE, 1982. Races of Fusarium oxysporum f. sp. ciceri. Plant Disease, 66, 809-810.
- HAWARE M.P. and Y.L. NENE, 1982a. Symptomless carriers of the chickpea wilt Fusarium. Plant Disease, 66, 250-251.
- HAWARE M.P. Y.L. NENE and M. NATABOAN, 1986. Survival of Fusarium oxysporum f. sp. cierri in soil in the absence of chickpea. In: Abstracts, Seminar on Management of Soilborne Diseases of Crop Plants, Tamil Nadu Agricultural University. Coimbatore, India, 1.
- JIMENEZ-DUZ R.M., A. TRAFERO-CASA and J. CARRERA DE LA COLINA, 1989. Races of Funarium acceptorum f. ep. ciceri infecting chickpeas in Southern Spain. In: Vascular Wilt Direases of Plants (E.C. TLAKON and C.H. BUTKMAN, eds.) NATO ASI Series, H28, Springer-Verlag, Berlin, Heidelberg, 515-520.
- SINGH R.S. and H.S. CHAUBE, 1970. A technique for estimation of hyphal and conidial propagules of Fusarium spp. in soil. Labdev Journal Science Technology, 8, 172-174.

Accepted for publication: October 7, 1995