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Groundnut (Arachis hypogaea), an annual legume crop,
is the third major oilseed of the world, and is produced in
tropical and sub-tropical regions. Asia accounts for
66.5% of the world groundnut production while Africa
produces only 24.7%. Poor yields of the groundnut crop
are often due to abiotic constraints like drought or low
soil fertility. Annual estimated losses in groundnut
production, equivalent to over US$520 million, are caused
by drought (Sharma and Lavanya 2002). Yield losses due
to drought are highly variable in nature and depend
mainly on the timing, intensity and duration of drought.
Genetic improvement for drought tolerance is crucial
in many regions where agriculture depends on scarce
water resources. The finding of the genes involved in the
tolerance to drought and their insertion in the genetic
background of agronomically preferred varieties could
enhance and/or stabilize the yields under drought-prone
situations. Therefore, a holistic approach integrating
physiological dissection and molecular marking of the
tolerance traits is needed (Subbarao et al. 1995) to
understand the mechanisms underlying tolerance, and to
insert these traits into agronomically desirable material.
Plant survival under severe drought is an important
aspect of the tolerance to drought as it contributes to
ensure a minimum yield in subsistence farming.
Research in transgenic crops may offer new means to
improve agriculture, particularly in dry areas, as genes
specifically involved in the response to drought have
been identified (Liu et al. 2000). However, a major challenge
of transgenic research, besides obtaining transgenic
material, is to understand the physiological expression at
the plant level of the inserted genes. Transgenic
groundnut lines from the parent JL 24, with enhanced
survival under moisture deficit conditions, have been
developed. The process included transformation of
drought-responsive elements and transcription factors,
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like DREBIA cDNA driven by drought-responsive
promoter rd29A, which specifically interacts with the
DRE inducing the expression of stress tolerance genes
(Shinozaki and Yamaguchi-Shinozaki 1997). Fourteen
transgenic lines of T-2 generation along with the
untransformed JL 24 were evaluated. This study was
conducted to: (i) assess the transpiration response of
transgenic groundnut to water deficit in comparison to
the control JL 24; and (ii) select a few lines with
contrasting responses for further detailed studies (leaf
gas exchange characteristics of transgenic material).

Methods

The dry-down experiment was conducted according to
previous work using FTSW (fraction of transpirable soil
water) as a covariate (Sinclair and Ludlow 1986, Ray and
Sinclair 1997) and included exposure of plants to
progressive drought by withholding water. The dry-down
plants typically go through three stages. Stage I occurs
when there is non-limiting soil water to fully supply
transpiration demand. Stage Il occurs when the roots no
longer fully supply transpiration demand and stomatal
conductance decreases to adjust transpiration to available
water. Stage Il occurs when stomatal conductance is at a
minimum and can no longer decrease.

Twelve plants per transgenic line were grown under
well-watered conditions until 19 days after sowing in
glasshouse conditions with 20/120c0C day/night temperatures.
Single plants were grown in 20-cm diameter pots, filled
with 4.5 kg Alfisol taken from a field with low nitrogen
content (8.5 mg kg') and mixed with 4 g of single super
phosphate. Seeds were inoculated with Bradyrhizobium
NC 92 (IC 7001) (1 g L) to ensure adequate nodulation
of groundnut and 2 g of carbofuran. At 19 days after
sowing, pots were saturated with water prior to exposure
to water stress. The pots were sealed with polythene bags
to prevent any water loss directly from the pots. The
pattern of the transpiration response to soil drying and
FTSW was examined on the basis of recorded daily
weights of the pots. The water loss by transpiration in
irrigated control pots was added back daily. No water
was added to drought stressed plants. Normalized
transpiration rate (NTR) was calculated to compare the
transpiration of drought stressed plants to that of control
and to minimize the effect of plant-to-plant variation
(Ray and Sinclair 1997). Drought stressed plants were
considered to have extracted all the extractable water
from the pot when NTR was less than 10% of the
transpiration of controls, defined as the end point of the
dry-down (beginning of stage III). A plateau regression
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procedure using SAS (SAS Institute 1989) and NTR as a
function of FTSW was applied to calculate the threshold
at which the stomatal closure initially occured, ie, when
transpiration began to decline. This allowed the calculation
for the number of days between initial decline of
transpiration and the end of the dry-down for each
transgenic line (stage I1).

Results

Control JL 24 started to show wilting symptoms (loss of
turgor) after 21 days of stress and thereafter, severe
symptoms were evident in this line. It took 27 days for
control JL 24 to reach stage III (NTR<O0.1). The
transgenic lines showed no wilting symptom even after
21 days. Thereafter, transgenic lines started to vary in
their wilting symptoms, with a few transgenic lines
showing no symptoms, while lines RD 14, RD 22 and RD
25 showed reduced level of symptoms (compared to JL
24). The transgenic lines differed largely in the time
(number of days) to reach the end point (Table 1). RD 14
reached the end point in 29 days, about the same time as
control JL 24, while RD 4 reached the end point at 52
days. All the lines had similar growth at the time when

Table 1. Average number of days to end point of the drying
cycle for groundnut transgenic lines along with control JL 24.

Line Number of days
number to end point'
JL 24 (control) 27 e

RD 14 29 de
RD 13 32d
RD 25 32d

RD 19 33d
RD 22 34 cd
RD 12 36¢

RD 28 36¢

RD 30 39 be
RD 20 44 b

RD 23 44 b

RD 21 45 b

RD 2 47 ab
RD 11 49 ab
RD 4 52a

1. Means followed by the same letter have overlapping 95%
confidence intervals using Duncanis multiple range tests.




drought stress was applied, so the differences in plant
responses reported here are not related to plant size.

The data of NTR, FTSW and number of days to end
point were subjected to average linkage cluster analysis
for preparing dendrogram using Euclidean distance of
NTSYSPC (Version 2.10 d). The dendrogram (Fig. 1)
showed that the lines could be broadly classified into four
groups at 0.6 SI (similarity index), which clearly
distinguished the water-use pattern among these lines,
and suggested that the transgenic lines differed in their
stomatal response to water deficit.

JL24

RD 14

RD 13

RD 19—

RD 22——

RD 25

RD 12} }_

RD 30

RD 20—

RD23|

RD 2

RD11..

RD 4

0.32 0.49 0.66
Coefficient

Figure 1. Dendrogram showing relative similarities in 15
transformed groundnut lines (including control JL 24) based on
FTSW threshold values and the number of days to end point
under water deficit conditions.

The results confirmed that drought-responsive
elements inserted in the transgenic groundnut plants are
linked to stomatal regulation. The fact that certain transgenic
genotypes withstand drought for longer periods, and how
this relates to stomatal closure needs further investigation,
as there might be a scope to use transgenic plants for
inducing drought tolerance. Here, we identified contrasting
transgenic material to assess the physiological response
of stomata under drought, with RD 4 withstanding
drought for long while RD 14 was similar to control JL
24. A selection of contrasting transgenic lines from this
study is being used in detailed experiments to confirm
present results, and further investigate the link between
the differences in stomatal closure and the transpiration
efficiency.
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