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SUMMARY 

'The L)NA-hd\rtl ln r~ l r iu ld r  tndrkrs\ Ih;lw \igliiflcdnt a i l i ~ n t d p c r  orcr the t i i i i rphologi~al.  

~ is i i l r in  or i\rii.ynir m,lrker\ for genotype identil ' i~at~iin. grnolnr ; i i i~ i lyr i \  ,lnd indpptng. 

D \ A  ~ i ~ n r k r r \  drr 11~1111.;11 to \;lrlc~u\ cnvison~nental fdi tor j ,  h ~ g h l y  \ r n \ ~ t i \ r  ;lnd h ~ g h l )  

reprodui~hle l ' l i r rc l i i re,  my r ~ h l c i t ~ k e  ws\ 111 funili,i l izz u t r l i  vaslnu! rnnlecul;~~ lndrkcr 

I r ih l i lqur \ .  m i l  dtrrtilpr ru i ~ p p l i  thew to jruci! cli~cklrea pc~lnliie. Dutinp [hi\ p r ( y ~ c t  

\ i ~ l r k .  I Ic;irnt r r r h ~ i t i j l ~ e \  \ u ~ l i  ,I\ Rc\tr tc l~on F r ~ g n l e n l  L r t i f th  P o I ) m ~ ~ r p h ~ \ t i ~  IKFI.PI. 

K ~ ~ i d o l l i  Al i ip l t f i r t l  Pill!~nr~rphli. D K 4  IK-\PT)I. K ; ~ ~ i t l t l ~ ~ i  A~liplit ' icd Mi~~o\: t tei l i te 

P!rIy in~ir [~hi\ tn IKAMPOI .  S~t i ip l t*  S r i l i ~ r ~ l i r  Kcpr.lr\ (SSKI ,itid [ ) \A  ;\lnpIiEi~;itlon 

F i l ip r rp r l~ i t l~ ig  lr14FI Mri\t o f  the\? r e c l i n q ~ ~ e \  wele u\ed to d r i i p h e ~  polymorph~\t i l  at 

1)4A I r \e l  111 i ~ l i ~ t h p e , ~  Su~ne d( l i I~t~ot i l i l  s c t i \ ~ t i r \  - LOITII~U~~I r lppI~ci l t~ot i \  l l lrr u\lng 21s 

Of l l i~e ,  i i i t i ~ l t i i ~ ~ t ~ [ ~ ~ ~  \ e a r ~ l i  JII~ retrlv\dl u \ ~ t i g  /III!~I,II(,I . u ? ~ ?  41\11 ~ t n i l e r t ~ k r t i  I!I l l l~ r?J \c  

111) \kill\ ,111tl k~ iou l r t lgc .  

To  \tuil! c h ~ i k p c , ~  g r ~ i i i t i i ~ ~ ,  , ~ t t < . ~ ~ i p ~ \  u c r r  t i i , t ~ I ~ ~  to c h ~ i ~ , ~ c t c t ~ z r  ,I f<.u citItik;lr\ <III(I \ i ~ l d  

\pecle\ i ~ t  C (II~OIIII~~III LI\II~: K.4t'L). SSK, dticl L),4b a~i;lI!\i\ i1N.A u,~, r\tt;icted t ~ ~ i ~ i i  

~ i i~ i t .  c h i ~ k p r a  ~L.II!II~~L.\. ,111rl thr t\+o pop,11~1111i11 \?I\ IT: pr l i r r l i t i !~n\ 111 (;I. ihY A I('('W 

JL) ;111d A l i l ~ i f e r i  x IC('W 01. KAl'I) .III~ SSK dll;lI>\e\ u e l r  dotie u l r l l  \e\?rS11 ~SIIIICI.\. 

('leal t l l r l c ~ e ~ i i r \  3 1 r  w r t l  k l w e t ~ i  I~IIIC ~CIIOI!I)CI u1l11 \t i~i ie tif the prlll ier\. l'hc jrudy 

W;I\ rxpondcd to th r  t u u  \ct\ n l  popul;:r~oll\. 



RAP11 I S  simple. h \ t ,  frcr trotn hazutdou\ ~ndtcrial\. need\ only \ln,ill dlnrlunt\ o f  DNA. 

~ ind well witcd tor I I ~ C ~  in I;lrge aulnplc\-thriiuylipi~t \y\tr l i i \  rrquirr i i  f o ~  pl:lllt h~rcdlng. 

Althouph It hd, ;ldv;ltitdge\ obcr priittitt tliarLrt\ dl111 KF1.P. the u~icrrtdinty i i t  

reproducihllity oi'KAPD  narke en. and their dotnlnunt n~iturc l imit\  i t \  u\r 

KAPC :ln;ily\i\ 01  0 i l ~ t t r r r ~ i r  grl1ritypei III chlchpra u ~ t h  1 Y ii~ffesenl pt lnirr\  r rv rd lc~ l  

Iil! I'('K unlplii~rcl pro[loct\ o f  uh i i l t  if, u r r r  p i i l y~n i i ~ph~c  Thr pol!~nrrrpiit\~n u d \  

nh\rt \ed u i t h  the fiilloulriy I 3  pri t i i r l \  4-114, !I-117. A-09. A- l ( l .  4-12, A.13. A-14. 4- 

15. 4 - l f i .  A-17. A-IX. A-IU dtal A-20. Atnong the\? pritnrrr, pnlymorphi\m u ~ \  br\t  

le\salrd i\ 11h prili?rr\ A-04. 4-(17. A I? ,  .A- I 3  dilcl - 1  4 The prmlrr\  4-11?, 4.117 dntl A- 

I 4  u c l r  \clci.trtl t i i t  KAI'LI ,i~lnIyri\ ill ~ h c  priiyrny ( i f  GL ihcJ ,~nd I K W  4') eenutypr\ 

;I\ thew rc\r; i l rd food p o l y ~ ~ i u r p h ~ t ~ ~ i  111 thu p.ltrnt\. A!nntip thc\r p r i ~ i~e r \ .  4-07, A 1 3  

~ebr ;~ l rd  Ikttrr  p01)111iisphi$11? th;111 .!-I14 a\ tll!>rr ~ i t i l y ~ ~ ~ i i r p h ~ i  ha~iil, NL.SL. liht;!ilird u ~ t l i  

A-07 ,III[I 14-14 L( I I IJ~, I~~~ tIio\r it1 .4-Il.l ('lu\trr ,III~II~\I\ h a ~ i  ot) lL4I'D ddtu of IIIIIC 

i ,hlrLpr;~ yc~~i i typzr  \cd\ r.arlicil out u\ing \t:it~\r~c,il roftw.lrr li.ii.k,~gr ( IE\STAT unii u 

dc ,~~drogr .~~ i~  u,~\ i i~ t i r t ru i tc t l  I'l lc u l l t l  rpci icr ICCWfl and IC('W 40 l l l l l t l rd il ~cpdtutc 

dl111 ~II\IIIIL~ pro l~p troll1 lither ci~lt~\; i fcd pelint).lir\ 

1)AF i\ 4 no \ r l  \rr.iteg) to t i r t r ~ t  gelletit t l t l l rrr t icr\  among iirg,tnl\m\. w e \  a 

t l i c r~~ io \ t :~h l r  L)YA polyltirrdrr t l ~ r r ~ t c d  hy i ~ \ i ~ ~ l l l y  OIIL. \hiirt (b5 hpl o l~ fo~ iu i . l ro~ i t l t  

111 111ir1 ul ;~rhir~dry \riluciice to ,~lnplit'y \ l i i i ~ t  \egnietitr 111 genolt l i~ DNA. d t i l  grnrt,ltt ,I 

rang? of DNA . ~ ~ ~ i p l i f ~ u ~ t t o n  p t [~~ iuc t \  DAF I\ rdplti ;III(I \cll\lrl\e ;111tl I\ ~n t i t ~p r~ ldz t~ t  of 



c lo~ i~ t i g  and pric~r gei~rric characterizaticin. DAF uce\ poIy;icrylatnide gel rlectrophore\i> 

for k t t r r  rt.rrrlutirin ;ilid hilhsr rtdini~ig 01 rad~n-chr~n~cal \  Tot d t t r i r ~ o ~ ~ .  It CJII hr u ~ e d  in 

laboratorie\ with 111nitsd rr\ourcr\ 

DAF a~ialy\e\ o f  4 chickps,~ genotypes ((iL 769. ICCW 40. Anniger~ anti ICCH' hi wing 

111ureahinp pri1nt.r cclnccntr;~tion\ \+a\ done t r l  ch~ in \ r  thr k t  prtlrirr crlncrntl;itio~l\. ;III~ 

aljo to cotilparz thr h:rnti pdttrrnj ~lhldlnri l  i i i th  r,rch pritnrr ~ r ~ n i r n t r ~ t ~ i i n  The nu~nhrr 

of prilytnorph~c hdnd\ i~htdinrd \;irlr:i with prltrirr c r~~ i i rn t r .~ t lo t i  1l.h pM prlfner h [nut of 

10 hdtltl! i h l i ' i  r H ~ I P  ~ ~ I ~ I I I ~ I ~ ~ I L :  ivlth 1.0 ~11. 111 out 01 15 hiltiil\ i67"; 1: wlth 2.3 pL1. 

I 3  titit o f  1'1 rhll% I: kith 3.2 pM. I h  out u f  23 170% r: anti fin;illy \virli 1.0 pM prl1nt.r 17 

out o f  14 hun[l\ i 7 I 11  1 wcrc polytiiorphiu 

111r \h( i~ t ,  IIII~~II~ \rqurIlLe\ l1~nLi11g ~ ~ ~ ~ c ~ o ~ ; i t ~ I l i t r ~  r r p r<~ t  \rque~ire il11(1 ~LIIILI~ rliteut 

t l ~ r  d ~ n p l ~ f ~ i , i t i o t ~  ot thi. 1rpr;it. S'l'klS l i l lnIy\~\ 01 '1 ~ h l i . L p r ~  gcncir!pi'\ wlrh X d i f te~rnt  

~ i ~ ~ i ~ o \ , ~ t r l l ~ t e  l i r i l i i rr  p a m  proi.ure(l fr111i1 thc L ' t ~ i \ r t \ i r )  ( i f  F1;111kturt. ( i r r ~ l ~ d l ~ y ,  Ol  the X 

prltner pair?. 5 prl l i l rr \  IT I~O,  TI 1'). l ' r?h. T~53 inr l  Ti1721 \hr!wrti fr~riil pr~lyincirphi\m 

tor thr p;irrnt\ GL 760 atid I('CW 4'1 a11r1 i an  k urrti t r i  \turiy pi~lyl l lorphi\m in tlir 

progeny ( iL 76') i: I('('W 3'1 Priliizr p i i r   TI?^) Ma\ u\rd tci \c~t 'el l  the progrll! nf tllr 

L,I~I\\ (il .  7filj ,111rl I W W  40 Tl!tcr, pr1111rr pdit\ 'I'sl'j, 1'120. T12'1 \howrcI ~ I I L ! ~  



polyniorphism for the parents Amigeri and ICCW 6 and can be used to screen for 

polymorphism in progeny Annigcri x ICCW6. Primer pair Tr26 h a s  used to screen the 

progeny of the cross Annlgeri and ICCW 6. Diversity among nlne chickpea genot)pes 

was also studied w ~ t h  STMS markers. Cluster analysis based un SThlS dava of nlne 

chickpea genotypes was carr~ed out using statistical software package GEKS'IAT and a 

dendrogram was constructed to characterize gcnetic relatedness and dissimilarity betfieen 

genotypes. From these studies. it was observed that the wild species ICCW 6 and ICCW 

49 formed a separate and distinct group fiom other cultivated genotypes. s~mi lar  to 

IKAPD cluster analysiq. 

\'it11 tlic limited experience galricd as described abobe. now I can expect to use DAF and 

STMS to de\,elop linkage niap of clilchpen and for screening gcrrnplasm. 
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1. INTRODUCTION 

1.7 Recombinant DNA-based biotechnology 

The double helix architecture of DNA was elucidated by b a t s o n  and Crick in 1953. 

Twenty years later, discovery of redriction enzymes in 1973 helped to create 

recombinant DNA molecules in virro. Several important techniques were developed 

during the last 2 decades. The implications of these powerful and novel methods of 

n~olecular biology, and their potential use in the genetic manipulation and improvement 

of microbes, plants and anirlials became increasingly evident during 1980s, and led to the 

birth of modern recombinant DNA based biotechnology. The first transgenic plant in 

which a bacterial gene had been stably integrated was produced in 1983, and by 1993 

transgenic plants had been produced in most of the major crop species including cereals 

and Iegunles. These remarkable achievements ha1.e resulted in the production of crops 

that are resistant to potent but environmentally safe herbicides, or to viral patilogens and 

insect pests. In other instances, genes have been introduced that delay fruit ripening or 

increase in starch content or cause male sterility. Most of these manipulations are based 

on the introduction of a single gene - generally of the bacterial origin that regulates an 

important nionogenic trait, into the chosen crop plant. hfany of the engineered crops are 

now under field trials, and re\\ hake been already comniercialized. hlany more are 

expected to be commercially produced within the next few years. 

The early successes in plant biotechnology led to the realization, that further 

improvement of crop plants using molecular tools would require a thorough 

understanding of the molecular basis of plant development, identification, quantitation, 



and characterization of genes that regulate agronomically important multigenic traits. 

During the past ten years there has been a resurgence of molecular and related cellular 

studies in plants, including the molecular mapping of plant genomes. Simultaneously, a 

great deal of exciting and useful information has been generated about the molecular 

basis of important plant processes. 

1.2 Genome analysis 

The concept of DYA-based markers has revolutionized our ability to follow chromosoli~e 

segments including minute regions, and has led to new opportunities such as map-based 

cloning and marker-assisted selection (MAS). Species with little genetic information 

available in past have noa8 hundreds of genetic markers. In some cases, the map from one 

specles can be rransferred almost directly to another species, such as from tomato to 

potato. Genome analysis generates information about the coding and non-coding regions 

of organisms. The evolutionary history of any set of organisms, whether they are plants, 

or animals can be traced using molecular markers not confined by functional constraints 

common to cod~ng sequences. Additional information on genoniic structure, such as 

homologous chromosome identification, is forthcoming for several species. The 

suggestion of ancient polyploidy has been made even for maize, the most intensively 

studied plant species for genetics. The ancestral relationships of species and the pedigree 

relatedness of lines ha1.e been identified in hundreds of cases. Molecular markers now are 

profiled and used as identification tags useful in Plnnt Variety Rights legislation, and in 

forensics, or parernity analysis (Nybom c t  01. 1990a). 

The increased focus on genome has also generated techniques, which permit the 

comparison of near-isogenic organisms. The application finds utility in the detection of 



molecular markers closely linked or part of hitherto undefined genes. This blossomed 

into the field of proactive diagnosis for plant and animal characteristics and has altered 

plant breeding, animal husbandry, and human genetic-counselling. Pathogen 

identification now can occur prior to the onset of disease symptoms. 

The detection of molecular markers are closely linked is a part of a general 

scheme for the isolation of genes, for which no more than the inheritance and the 

phenotype are known Many medical and pla~lt traits fall into this category. Without a 

gene product or a l~omologous probe, such genes may only be isolated and further studied 

by positional cloning. 

Plant genome analysis is a subject of significance to the basic researcher, the 

student, the legal expert, legislators, plant breeders, and applied technologists. Recent 

ad\ances in genomic anal!sis including RFLPs, DNA amplification markers, such as 

microsatellites are reviewed by their developers (Sharma et  a/. 1995). The need for 

genome analysis comes from the demands of modem plant biology in which genes for 

which no more than heritable phenotype is known. 

1.3 Chickpea 

Among legumes, chickpea (Cicer ariefi~iioii L.) ranks third in the world after dry beans 

(Phaseolus vvlgaris L.) and dry peas (Pisum soiR'u~i~ L.), and first in the Mediterranean 

basin ( F A 0  1995). The crop is grown on more than 10 million ha in 45 countries. In the 

23 most important chickpea growing countries with average annual chickpea area in each 

is more than 10,000 ha (FA0 1996). Chickpea has a deep root system, and is considered 

a hardy crop. Chickpea is the most important grain legume crop of Indian sub-continent, 

West Asia and North Africa. It is a diploid species with 2n = 2x = 16, and is self- 



pollinated. It is a food legume of the tribe Cicereae and family Leguminosac, exhibits a 

wide range of variability for morphological markers. Chickpea is an important source of 

protein in liuman diet and plays a significant role in the management of soil fertility. 

Like other legumes, chickpea produces nodules, and is efficient in fixing 

atntospheric nitrogen (N) in a plant-usable form through biological nitrogen fixation. The 

crop is highly efficient in uptake of phosphorus (P) from soils containing low amounts of 

available P. Thus, growing chickpeas instead of cereals (where only one crop is grown 

per year), or after the liarvest of cereals (e.g., rice fallows) should be encouraged to 

maintam soil fertil~ty. Desp~te its importance as a crop, the \+odd average yield of 

chickpea is only 700 metric kg ha". The principal reasons for low unstable yields are 

diseases (most importantly Fzuar iu~~~  wilt) and terminal drought. 

During a consultancy v is~t  to ICRlSAT Center in 1988, Kenneth J. Frey, Iowa 

State University, 41nes, Iowa, USA, called chickpea a 'recalcitrant' crop species, 

meaning that it was not very amenable to genetic yield improvement, in spite of the many 

efforts to breed for yield increase during the last three decades. Wide hybridization is one 

of the potential means of broadening the genetic base of a crop species, in the genus 

Cicer, annual species occur, some of which are cultivated (C. arietinum L.) and some are 

wild, While cultivated chickpea is of limited source of genetic variability, wild species of 

Ciccr have Inany intportant traits like resistance to diseases and pests; high protein and 

amino acid content and such agronomic traits as early seedling vigor, and high pod and 

seed numbers. Of ivild species, only C reiicuiofum and C, echinospermum can be easily 

crossed with chickpea. Crosses of other species with chickpea have not yet been 

successful. However, some wild species can be crossed among themselves. The species 



C. judaicum, C pinnatijidun~, C. bgugiim and C cunearum hold special significance, 

because they possess useful traits such as resistance to diseases and fast vegetative 

growth. At ICRISAT Patanclient, attempt to introgress desirable traits from these species 

into chickpea through embryo rescue and tissue culture techniques is being carried out. 

S ine  chickpea genotypes of diverse origin and the whole progeny of the cross GL 

769 and ICCW 49, Annigeri and ICCW 6 were screened for their frequency of DNA 

polymorpliism using RFLP, RAPDs and SSRs. The information on DNA polymorphism 

provides an essential basis to plan future marker facilitated breeding programs. Based on 

experience to date, the traditional breeding alone cannot effectively solve these 

constraints, and the dcveloprnent of molecular marker technology becomes a necessity 

for funher iti~provement of resistance and agronomic traits in chickpea. 



2. OBJECTIVES 

To learn DNA fingerprinting techniques such as Restriction Fragment Length 

Polymorphism (RFLP), Random Amplified Polymorphic DNA (RAPD), 

Microsatellites (SSRs), DNA a~nplification fingerprinting (DAF), use of radio-labeled 

hioniolecules for genetic analysis. 

Review DNA-based molecular markers with particular reference to WLP and PCR 

based methods, summarize the protocols used, probiding an appreciation of technical 

difficulty and cost and highlighting the advantages andlor limitations of their use and 

finally outline the theoretical and practical considerations to be made when choosing 

a molecular marker or technique. 

Study degree of polymorphism among potential mapping parents, segregation for 

markers in mapping populations and evaluate the applications of marker-assisted 

screening of germplasm in breeding programmes and construction of linkage maps. 

m Construct dendograms representing the gene distance between accessions to help 

identification of divergent pivents for future crosses. 



3. REVIEW OF LITERATURE 

Plant breeding is a process of designing and pursuing a desirable end product (e.g., 

cultivar, hybrid, and synthetic var~ety) that represents an assemblage of desirable 

agrononlic and econoniic traits. The traits may be simple (qualitative) or complex 

(quantitative) in their genetic control. Possession of adequate genetic information on 

major and minor traits and their interactions impro\,es the efficiency and probability of 

success in developing an end product w ~ t h  the des~red attributes. 

Construction of a detailed genetic linkage map for the crop of interest will make 

available a precise but vmt aniount of information that plant breeders can use to identify, 

manipulate, and complement traits to their maximum advantage in a short time. In many 

respects, plaqt genome maps might be considered analogous to a road map. Specific 

chromosomes could be thought of as numbered highways, and genes located on specific 

chromosonies comparable to cities and streets uithin cities. Larger boundaries (country, 

state, etc) containing a network of roads may be compared to multiple loci over several 

chromosomes that govern quantitathe traits (QTLs). An effective and efficient way to 

reach a desired destination is to use a \tell-developed road map. 

It ail1 require several years and a vast amount of resources to map the genomes of 

major crops. Hou,ever, already the 11nkage maps based on n~olecular markers ha\e been 

developed for several major crops; and MAS has also been initiated. 

The t h e e  major areas having impact on plant breeding are gene action, foreign or 

exotic genes, and molecular markers. 



3.1 Increased understanding and exploitation of gene action 

3.1.1 Gene action models 

The selection methods that were used by plant breeders for genetic improvement in plant 

species were developed around tlie theories and concepts of gene action models. These 

models have been developed in order to explain the phenotypic expression of traits and 

the genetic variation observed in populations. The discrete classes of gene action are 

additive, dominance (including recessiveness, partial, and overdominance), epistasis, and 

pleiotropy. 

In the additive model, the phenotype of the hybrid is intermediate between the 

t a o  parents. The epistatic gene action model is referred to as intemllelic interaction such 

that tlie value of alleles present at one locus depends on which allele(s) is (are) present at 

another locus. In cases where a single gene controls more than one trait, the gene action is 

referred to as pleiotropy. High-resolution molecular genetic maps should lead to a better 

understanding and utilization of precise types of gene action and phenomena that result 

fro111 them. 

Trailsgressive segrcgaiio~~: Segregants in a F2 population, whose phenotypic expression 

for the trait of interest goes beyond expression in one or both of the parents, are referred 

to as transgressi~e segregants (Briggs and Knowles, 1967). This is an extremely 

important phenomenon which breeders exploit for population improvement procedures in 

cross-pollinated plant species as well as procedures to develop pure-line varieties in self- 

pollinated species. It is based on additive gene action at individual loci (qualitative traits) 

and across multiple loci for quantitative traits. The strategy to take advantage of 

transgresssive segregation is to match parents which posses different "favorable" alleles 



for the trait(s) of interest so that with crossovers and recombination it is possible to 

produce progeny that possess the strcngths of both the parents with tlie least weaknesses 

of both. With a quantitative trait such as seed yield, several hundred or even thousand 

progeny have to be evaluated to ensure a reasonable probability of detecting those rare 

individuals that posses the maximum number of favorable with the minimum number of 

unfavorable alleles. This is one area where markers linked to QTLs that highly influence 

the trait would greatly enhance tlie accuracy while simultaneously reducing the number 

of evaluations required to detect progeny with superior gene combinations. 

Hybrid Vigor or heterosis, In the early part of this century, maize (Zea mays L.) breeders 

discovered that inbreeding reduced vigor and production of the inbred stocks, but when 

some combinations of inbreds were crossed the FI hybrid had vigor and yielded 

substantially higher than the average of the t u o  parents. Out of these studies the term 

"hybrid vigor" and subsequently "heterosis" \\.ere coined. 

It became apparent that there was a strong association between heterozygosity and 

heterosis. That phenomenon has led to one of the best plant breeding success stories for 

genetic improvement of crop yields (Duvick, 1984). Ilybrid varieties have revolutionized 

corn production significantly in USA and the approach has spread to other crops, 

inciud~ng some that are naturally self-pollinated like chickpea (Cicer ai.iefinunl L.) and 

alfalfa. The genetic mechanisms for heterosis are still not clear, but the two most widely 

accepted theories are dominance and over-dominance (Crow, 1964). It'hen inbred lines 

are crossed together, the Fl hybrid is heterozygous at all loci for which the genotype of 

the inbred parents differs. The dominance theory basically states that the different 

dominant alleles contributed by the inbred parents mask the detrimental effects of the 



recessive alleles, thus the hybrid has the best strengths of the parents expressed with their 

weaknesses masked. 

The theory of over-dominance is that there is an inherent superiority of the 

heterozygote (interaction between the dominant and recessive alleles at each locus) 

compared to the dominant homozygote (interaction between the dominant alleles at each 

locus; Crow, 1964). \{'it11 the devcloplnent of genetic maps and genetic markers, it should 

become easier to study the effects of individual as well as sets of genes on the expression 

of traits (Paterson et  al. 1991). In return. that information should contribute to a better 

understanding of the genetic basis of heterotic responses observed and how that can be 

used by plant breeders to "design" inbreds and inbred combinations to further improve 

performance of hybrids. 

Episiasis: As described earlier, episrasis is the interaction behveen or among alleles at 

different loci (interalleiic interaction). Because of the immediate complexity of the 

nuniber of conibinations of alleles and tlie~r effects that are possible with a small number 

of loci, it has been very difficult to assess epistatic combinations of alleles. For 

quantitative traits there are many different loci involved in the expression of the trait and 

there are many interactions taking place to give final expression Even with genetic maps, 

it will continue to be very difficult to e~aluate  large numbers of combinations and the 

differences elicited \+it11 each change. On the other hand, the task \\ill be easier to 

undertake when the location and functions of genes are better defined. This is where the 

application of computer and statistical techniques (e.g., Informatics) will greatly facilitate 

predicted outcomes through stimulating changes of interacting loci and alleles based on 

gene products and function (Casey 1992). It seems logical that epistatic gene action plays 



a larger role than we now understand in the final expression of traits, but the degree of 

complexity will mean that increased understanding will still be slow at best. 

Pleiorropy: It is very difficult to separate pleiotropy from linkage. Because of the large 

number of genes contained in crop species and the fact that some of them occur adjacent 

to each other on a chromosome results in some very tight linkages. These linkages give 

the appearance that two or more traits controlled by the same gene(s). Very tight linkages 

necessitate evaluations of a large number of progeny before a crossover type can be 

detected. With well developed genetic maps, it sliould be possible to separate some 

strong associatiolis between traits that are due to linkages of a small number of genes or 

linkages of QTLs vs, genes that are pleotropic (Paterson er ai.1991). With the information 

of gene location, function and activation it should be possible to inactivate some genes 

that are known to control one trait and determine if there is a corresponding lack of 

expression of the other trait(s). It would be particularly helpful in developing breeding 

strategies to know if strong associations between desirable and undesirable traits can be 

broken because they are linked, or cannot because they are due to pleiotropy. In cases of 

strong associat~ons between two desirable traits pleiotropic control may be better than 

tight linkage; however, the best strategies to exploit the association would differ with the 

~ A ' O  scenarios. 

3.2 Access to foreign or exotic genes 

The rapid development of molecular techniques has opened up sources of 

geneslgemplasm to plant breeding that have been unavailable previously through 

conventional techniques. This is a very exciting and potentially valuable meclianism for 

crop impro\~ement in the future. Some examples of active research for transferring genes 



from "foreign or exotic species" are: to visualize other possible important agronomic and 

economic traits such as: genes for tolerance to drought; extreme soil acidity or salinity; or 

transfer potential habit to important annual species, etc. Ideas of transferring genes 

among species, genera, kingdoms that seemed impossible or too difficult a few years ago 

are now within the realm of possibility. Once genes are transferred they become a part of 

the recipient's genome and can be subjected to funher modiiications and enhancements. 

Wild relatives of crop plants arc generally considered lo have genes that ivouid 

enhance the cultivated form. IJowever, the utiiization of that source of genetic variation is 

limited due to the difficulty in making the crosses and the sterility problems often 

encountered. Where full fertility is found between cultivated and exotic germplasm, 

transfer of desirable genes from the wild progenitor is often accompanied by closely 

linked genes with deleterious effects. Using RFLP, Tanksley et  a/. (1989) have shown 

that it is possible to select for desirable genes wliiie retaining little unwanted DNA from 

the donor species in plants e.g., Brassica. 

3.3 Molecular markers 

In 1865 Mendel determined that genetic factors behave as discrete panicles when passed 

from parent to offspring. His studies on pea plants marked the beginning of genetics, the 

discipline concerned with segregation of genes. In the early part of the twentieth century, 

scientists discovered that Mendelian 'factors' controlling inheritance, which we now call 

as genes, \'ere organized in linear order on cytologically defined structures called 

chromosomes. Shonly thereafter Sturtevant produced the first chromosome map with 

segregation data derived from studies on Drosophila (Crow and Dove 1988). The markers 



of this first genetic map were phenotypic traits scored by visual observation of 

morpholagical characteristics of the flies. 

Genetic studies undertaken so far focussed on morphological traits. Traits such as 

plant habit, leaf form and colour, flower colour, podding habit and seed coat colour were 

used for study of morphological traits. They are traditionally used in taxonomy, genetics, 

and breeding. Since most of these traits are recessive with detrimental effect 

(pleiotropic), these are not suitable as selectable genetic markers in breeding programme 

(Gaur and Slinkard 1990). Despite the n ide  variability for morphological traits, their less 

number and their expression is age and environn~ent dependent. 

Seed storage proteins Rere the first candidates as molecular markers to 

distinguish the germplasm lines, due to their ease of isolation and identification on gels. 

Kext came the isozymes, which are still popular in some cases such as for study of 

diversity, or as a marker during introgression of alien germplasm. In many cases, such 

as for drought or disease resistance, planned indirect methods of selection (markers) for 

the traits of interest may be more desirable or effective than direct selection. Indirect 

methods may take the form of morphological markers, biochemical markers (isozymes), 

or DNA markers (RFLP, R4PD, DAF, SSR, and AFLP). 

Some of the reasons for using indirect selection via associated markers may be: 

Lack of sufficient number of nlorphological markers 

* To identi@ indi\'iduals in early stages of growth for discarding, to conserve resources 

or to identify individuals for crossing prior to flowering (e.g., backcrossing or 

population improvement program). 



Inaccurate direct measures of the trait expression (phenotype data) due to many loci 

involved (such as QTLs) or due to uneven inoculations, infections or infestations in 

screening nurseries. 

Difficulties in selecting for several traits simultaneously. 

A major breakthrough occurred when it was realized that genetic maps could be 

constructed by usillg pieces of chromosomal DNA as direct markers for segregation 

pattern of chromosomal segments. 

In eukaryotes, DNA is condensed with histone and non-histone proteins into 

thread-like structures called chromosonies. The number of chromosomes varies between 

species and occasionally within species. At the sub-chromosomal level, seberal types of 

organizations are obsert ed. These can be sumniarized as follows: 

Gene-rich sectors: In large genomes, genes are found clustered in gene-rich sectors 

especially in regions close to the telomeres. 111 a number of cases, it is significant that 

the order of genes, in a sector is conserved between species ('gene synteny'). Genes 

in a gene-rich sector He interspersed with short repeat sequences, often including 

transposable elements. 

Tandem repeats: h4ultiple repeats of essentially the same sequence are found at many 

locations, especially around the centromeres, telomeres and interstitial locations. 

These arrays can consist of up to millions of repeat units. Tandem repeats vary 

according to size and sequence of the repeat unit, the number of repeats found and 

their distribution througiiout the genome. They have tlierefore received considerable 

attention as molecular markers. 



Thus, a molecular marker is a sequence of DNA or a protein which can be readily 

detected and whose inheritance can be monitored. It is the variat~on in, or polyniorphism 

of, tnolecular markers, which can be used in genetic diversity and mapping studies. 

3.3.1 Properties of molecular markers 

The following properties would be generally desirable for a molecular marker: 

Highly polymorphic behavior. 

Codominant inheritance (\+hich alloivs us to discriminate homo- and heterozygotic 

states in diploid organisms). 

Frequent occurrence in the genome. 

Even distribution throughout the genome. 

Selectively neutral behavior (i.e., no pleiotropic effect). 

Easy access (by purchasing or fast procedures) to get data. 

Easy and fast assay (e.g., by procedures amenable to automation). 

* High reproducibility. 

Easy exchange of data between laboratories. 

S o  niolecular markers are available yet that fulfills all of these criteria. However, 

according to the kind of study to be undertaken, one can already choose between a variet) 

of marker systems, as different markers explore d~fferent areas of genome, some more 

suited for specific purpose, some are species-specific and application dependent. 

3.3.2 Protein based markers 

The number of polymorphic morphological markers is limited, especially in intraspecific 

crosses, and their expression is influenced by environment. nerefore ,  more reliable 



markers such as proteins or, more specifically, allelic variants of several enzymes, so- 

called isozymes (Tanksley & Orton 1983), other biochemical characteristics, such as 

lipids or sugars, had to be considered. The multiple forms of an enzyme are of t u o  

classes: 

Allozymes: The enzyme is coded for by different alleles ai orlc gene locus. 

k e s :  The enzyme is coded for by alleles at more rllarr oilc gene locus. 

For the generation of molecular markers based on protein polymorphisms the 

most Frequently used technique is the electrophoretic separation of proteins on gels and 

staining. 

I~~ierpreiat~o~t ofbandir~gparterns: The principle considerations here are: 

Whether the organism is homozygous or heterozygous at the gene loci. 

* the quaternary structure of the enzymes (monomeric, dimeric etc). 

the number of gene loci. 

0 the number of alleles per locus. 

Allozymes are controlled by codominant alleles, which means that it is possible to 

distinguish between homozygotes and heterozygotes. For nlonomeric enzymes (i.e., 

consisting of a single polypeptide), plants homozygous for that locus will produce one 

band whereas heterozygous individuals will produce t\vo. For dimeric enzymes (i.e., 

consist~ng of two polypeptides), plants homoqgous for that locus u'ill produce one band 

whereas heterozygous individuals will produce three owing to random association of the 

polypeptides. With tetrameric enzymes, heterozygous individuals will produce five 

bands. For multimeric enzymes, where the polypetides are specified by different loci, the 

formation of isozymic heteromers can complicate the banding patterns considerably. 



Advarrtages ofisorymes 

* The low cost ofchemicals and labour 

Ease of isolation. 

the user friendliness: many individuals can be scored for several allozyme loci within a 

short time span 

Allozynie tnarkers are codominant - boll1 alleles in a diploid orpanlsm are usually clearly 

identifiable, and lheterozygotes can be discri~ninated from lhomozygotes, which is a 

prerequisite for estimation of allele frequencies in population genetic studies. 

Confirms gene expression. 

Dlsadvarirages of isuzj~mes 

A nucleotide substitution should result in amino acid substitution for detecting a 

new allele as a pol)morphisni. 

Restricts study of those parts of DNA that code far stainable enzymes. 

Analpsis of ~ l lozynid  patterns of polyploids can be extremely difficult. 

Plant tissue has to be processed shortly after harvest since proteins are quite unstable. 

Allozylnes differ in one or Inore physiological respects and therefore, may not be 

evolutionary neutral. 

* Very few markers 

Distantly related taxa difficult to study. 

Redundancy of genetic code nor accounted. 

v Cannot use old or stored tissues or fossils. 

Applications of isoqm?es 

I .  Isozyme polymorphism has been used for characterizinglidentifying genotypes, for 

studying population genetics, and for examining geographical panems of variation. 



2. Enzyme electrophoresis has also been very useful in genetic diversity studies, 

biochemistry, physiology, genetic breeding, etc, as it can directly reveal genetic 

polymorphism through demonstrating multiple forms of a specific enzyme. Over 30 

enzyme systems have been used in plants, and for some crop plants the genes 

involved have been mapped. 

3.3.3 DNA based markers 

A major breakthrough occurred when it %'as realized that genetlc maps could be 

constructed using pieces of cluon~osomal DNA as direct markers for segregation pattern 

of chromoson~al segments (Botstein et a1.1980). Because each individual's DNA 

sequence is unique, this information can be exploited for any study of genetic diversity 

and relatedness between organisms. A wide variety of techniques to visualize DNA 

sequence poi!.n~orphism have been derived from these techniques. 

The term "D24'Ajingerprb~ring" is used ro describe a method for the simultaneous 

detection of many highly polymorphic DNA loci by hybridization of specific multilocus 

"probes" to electropl~oretically separated restriction fragments. In other words, DNA 

fingerprinting refers to any multilocus approach of visualiz~ng DNA polymorphisms 

either by hybridization or Polymerase Chain Reaction (PCR). Jeffreys rl 01. 1985 

originally introduced the term. In recent )ears, several modifications of the basic 

technique have appeared and related strategies have been developed. Most importantly 

DNA polymorphisms became detectable by the PCR. Some of the new marker methods 

are still called DNA fingerprinting, but "DNA profiling", "DNA typing" or more specific 

terms have also been introduced. .4ccording to this definition, DNA fingerprints are 

mainly obtained by either of two strategies. 



"Classical" hybridizalion-based fingerprinting involves cutting of genomic DNA 

with a restriction enzyme, electrophoretic separation of resulting DNA fragments 

according to size; and detection of polymorphic multilocus banding patterns by 

hybridization with a labeled complementary DNA sequence, a so called '>ro,be." 

PCR-based fingerprinling involves the in wrro amplification of particular DNA 

sequences with the lielp of specifically or arbitrarily chosen oligonucleotides 

"primers" and a thermostable DNA polymerase; the electrophoretic separation of 

amplified fragments, and the detection of polymorphic banding patterns by such 

methods as staining. 

3.3.4 Restribion Fragment Length Polymorphism (RFLP) 

RFLP analysis rvas one of the first techniques to be used widely to detect variation at the 

sequence level (Botstein e1 ai. 1980). It examines the variation in size of specific DNA 

fragments follo\ving dhestion with restriction enzlmes. A large number of different 

restriction enzymes are comn~ercially available. Digestion of a particular DNA molecule 

with such an enzyme results in a reproducible set of fragments of well-defined lengths. 

Point mutations within the recognition sequences as well as insertions and deletions will 

result in an altered pattern of restriction fragments and may thus bring about a screenable 

polymorpllism beriveen genotypes 

RFLPs have been used for the construction of linkage maps (G111 et al.1991; Kiss 

et a1 1993; McCouch et a1 1988; Helentjaris et a1 1986) and gene tagging (Young el al. 

1988) in many crop species. RFLP analysis is used extensively in the construction of 

genetic maps and has been successfully applied to genetic diversity assessments, 

particularly in cultivated plants (Castagna et al. 1994; Jack et ai. 1995). Use of RFLP 



technique in chickpea has shown little molecular diversity (Udupa et a1 1993). In self 

pollinating legumes such as lentil, peanut and soybean, a very low level of polymorphism 

has been reponed (Havey et a1 1989; Kochert et al. 1991; Keim et a/. 1988). 

This methodology is quite similar to hybridization-based fingerprinting which 

actually reprcsents a special case of RFLP analysis. Genomic DNA is extracted, digested 

with restriction enzymes and separated by electrophoresis on a gel. The DNA from the 

gel is transferred to a nylon membrane (Southern Blotting) and species-specific 

fragments are made visible by hybridization with a labeled probe. 

Annlysis ofresu/~s:  

The result is ideally a series of bands on a gel, which can be scored for the 

presence, or absence of panicular bands. Differences between genotypes are usually 

visualized as an altered pattern of DNA restriction fragments. This may result from the 

point mutations creating new restriction sites or loss of an existing site, reorganization of 

blocks of DNA, such as deletions or insertions, between restriction sites. 

It is clear that the choice of the DNA probe-restriction enzyme combination is 

crucial in discriminating power of RFLP technology 

Traditional RFLP analysis makes use of probes obtained from the following sources: 

1. Nuclear DNA probes: These probes are obtained from 

0 genomic libraries. Total genomic DNA is digested with restriction enzymes (e.g., 

Pst I) and individual fragments are cloned into a bacterial or viral vector. Suitable 

probes are selected from this "anonymous" library for KFLP analysis. 

cDNA (complementary DNA or copied DNA libraries) probes: The mRNA is 

isolated and transcribed into DNA using the enzyme reverse uanscriptase. The 



cDNA so obtained is cloned into vectors and used as a library for probes in RFLP 

analysis. 

2. Cytoplasmic DNA: These are obtained from mitochondrial and chloroplast DNA 

libraries. 

RFLP probes are 

1 .Locus specific- give rise to easily identified co-dominant markers. 

2. Mainly species-specific. 

Adr~antages ofRFLP rechnique 

Results are highly reproducible between laboratorics. 

RFLP markers usually show co-dominant inheritance. 

Discriminating power: can be at specieslpopulation level (single locus probes) or 

individual level (multi-locus probes). 

Simpl~city of the method: given the availability of suitable probes, the technique can 

be readily be applied to any system. 

Disadi'antages o,fRFLP technique 

Tinie consuming and expensive to perform. technical expertise required. 

M e r e  no suitable single-locus probes exist, it is time consunling and expensive ro 

identify suitable marker-restriction enzyme combinations from genomic and cDNA 

libraries. 

I Most RFLP work is carried using radioactive labeled probes, and therefore requires 

expertise in autoradiography. This can be a serious drawback in some situations 

where special facilities and permits are required to carry out the work. 



3.3.5 DNA fingerprinting based on hybridization 

The technique of classical DNA tingerprinting is methodologically derived from RFLP 

analysis and is mainly distinguished from the latter technique by the kind of probe 

applied to reveal polymorphisms. TnSo main differences exist between RFLP and 

hybridization based fingerprinting. 

1. DNA fingerprinting makes use of multilocus probes, creating complex banding 

patterns, wliereas WLP probes arc usually locus specific, resulting in an easy to 

screen co-dominant marker behavior. 

2. DNA fingerprinting is nlostly perfonned with non-species specific probes that 

recognize ubiquitously occurring sequences such as minisatellites, whereas RFLP 

probes are generally species-specific. 

Two categories of such multiiocus probes are mainly used. The first category 

comprises cloned DNA fragments or oligonucleotides which are complementary to so 

called "minisatell~tes" i.e., tandem repeats of a b a s ~ c  motif of about 10 to 60 bp. The 

second category is exemplified by oligonucleotide probes which are complementary to so 

called "simple sequences" or "microsatellites" i.e., tandem repeats of very short motifs, 

mostly 2-5 bp. 

With bolh kinds of probes, a high degree of polymorphism between related 

genotypes is usually obser~ed,  \vhich has been exploited for numerous studies in diverse 

areas of genome analysis. 



3.3.6 Molecular markers based on DNA amplification 

The analysis of nucleotide sequence variability has been revolutionized by the 

development of PCR. This technique allows us to amplify any DNA sequence of interest 

to high copy numbers, thereby circumventing the need of molecular cloning. Further 

advancements in this technique has evolved PCR-based markers such as Random 

Amplified Polymorphic DNA sequences (RAPD) to Amplified Fragment Length 

Polymorphisms (AFLP) and Simple Sequence Repeat markers (SSR) or microsatellites. 

Currently their potential for use in germplasm characterization, fingerprinting and also 

increasingly mapping, and ultimately in conservation are widely studied. 

3.3 6.1 Random Amphoed Polymorphic DNA (RAPDJ 

In a large variety of plants and animals it has been shown single arbitrary primers, 8 to 10 

nucleotides in length, will produce one to few amplification products (Williams er al. 

1990). The primers are~generated with >SO% GtC content to ensure efficient annealing, 

and with sequences that are not capable of internal pairing so as to avoid PCR artifacts. 

The PCR procedure allows specific amplification of DNA fragments ranging from 200 bp 

to 3000 bp in length, which can be visualized after electrophoresis by staining with 

ethidium bromide. Because a single primer allows amplification of multiple loci 

dispersed throughout the genome, RAPDs provide a rapid assay for nucleotide sequence 

polynlorphism (Tingey el ai. 1992). 

The key point about this technique is that nothing is known about the identity of 

the amplification products. The amplification products are however extremely useful as 

markers in genetic diversity studies. Other important features of the technique are: 



The number of fragments. Many different fragments are normally amplified using 

each single primer, and the technique has therefore proved a fast method for detecting 

polymorphism. The majority of commercially produced primers result in 6 to 12 

fragments. 

Simplicity of the technique. RAPD analysis does not involve liybridization or 

autoradiography or high technical expertise. Only minute quantities of target DNA 

are required. Arbitrary primers can be purchased. Unit costs per assay are low. This 

has made RAPD analysis very popular. 

RAPD markers are dominant. Amplification either occurs at a locus or it does not, 

leading to scores presence or absence of bands. This means homozygotes and 

heterozygotes cannot be distinguished. 

Problems of reproducib~lity. RAPD does suffer from a sensiri,ity to changes in PCR 

conditions resulting in changes to some of the amplified fragments. Reproducible 

results can be obtained if care is taken to standardize the conditions used. 

The various factors, which affect the reproducibility are 

I .  Primer: Primers can be purchased from several manufacturers [e.g.,Operon 

Technologies Inc-U.S.A; University of British Colombia (UBC)-Canada, or 

Pharmacia LKB]. Primer concentrations are generally optimal between 0.01 to 2.0 

pM. In most species, the majority of RAPD primers result in fragment panems with 6 

to 12 fragments, while a few primers fail to amplify DNA. Tlie GtC content has the 

highest prediction value; a high GtC content is positively co-related with primer 

strength. 



2. Polymerase: A large number of brands and types of polymerases are available for 

PCR. Different polymerases often give to different RAPD products. Therefore, the 

initial choice of polymerase is important; switching to another type of enzyme is 

likely to render comparisons with previous experiments impossible. 

3. Template concentration: The concentration of the genomic DNA should be 

detemiined accurately and the amount of DNA used in the assay should be uniform 

and well within the experimentally determined reproducibility ranges (usually 5 to 

500 ng). 

4. MgCIl concentration: Strong and rcproduciblc bands are obtained over a wide range 

of MgC12 concentrations. A change in concentration often results in a qualitative 

change of fragment patterns. 

Ah~arirages of RAPD technique 

Fast method for detecting polymorphism. 

Simple, technically not demanding. 

r Relatively cheap to perform (low unit costs). 

Avoids the need for hybridization with radioactive probes. 

Disad1,antages ofRAPD technique 

Dominant markers. 

Problems with reproducibility - RAPD are sensitive to alterations in PCR conditions. 

Problems with interpreting band patterns e.g., problems of co-migration. 



Applications ofRAPD markers 

1. Cultivar identification. 

2. Genetic mapping. 

3. Phylogenetic pedigree and linkage analysis. 

4. Population differentiation. 

5. Estimation of out crossing rates. 
/'- 

6 ,  Identification of duplicates and the establishment of core collections within the 

germplasm. 

7. To determine the extent and role of introgression in the evolution of the species. 

8. To detect genetic variallons at the intraspecific level betwectl closely related cultivars. 

9. Recently it was reporied that RAPD primers detected polymorphism among plants 

generated from tissue culture. 

Williams et al. (1990) used a shoner primer, 9 or 10 nucleotides in length, and 

low stringency cycles to reveal fewer amplification products (about 10 products) by 

agarose gel electrophoresis and ethidium bromide staining. This method (RAPD) 

demonstrated polymorphism between two lines each of the fungus ~Veurospora crassa 

and Zea mays and also between two lines of soybean, Glycine max and G. soya. 

3.3.6.2 Other PCR techniques using single arbitrarypr~mers 

Other techniques like, Arbitrarily primed PCR (AP-PCR; Welsh and McClelland 1990), 

and DNA amplification fingerprinting (DAF; Caetano-Anolles el al.1991a) target 

multiple annealing sites without the requirement of prior knowledge of template 

sequence. Caetano-Anolles has encompassed all the analyses that use arbitrary primers 



under the heading MAAP (Multiplicity and arbitrary nature of amplicons), that 

appropriately depicts the nature of this amplification strategy. 

Welsh and McClelland (1990) used single arbitrary primers of a length 

comparable to that of PCR primers in an amplification reaction that used two cycles of 

low stringency (i.e., low annealing temperature) followed by a series of cycles of hieh 

stringency amplification. Amplification products rvere resolved by polyacrylamide gel 

electrophoresis and were detected by autoradiography. AP-PCR was used to distinguish 

various bacterial strains as well as three varieties of rice. Polyacrylamide gel 

electrophoresis and detection by autoradiography resolved between 3 and 20 products. 

3.3.6.2.1 DXA Anipiijicalion Fingerprinting 

Caetano-Anolles used one or more primers, as short as 5 nucleotides, but t)pically 7 or 8 

nucleotides in length, and either high or low stringency cycles to produce relatively 

complex DNA profiles (Caetano-Anolles et  a1.1991a) when resolved by polyacrylamide 

gel electrophoresis and a highly sensitive DNA silver stain (Bassam el al. 1991). DAF 

uses low stringency amplification conditions so that primers can anneal arbitrarily at 

multiple sites on each template D S A  strand. Although initiation of DNA synthesis occurs 

throughout the template, only those sequences in which priming sites are on opposite 

strands and in near proximity will be successfully amplified. Mismatch annealing also 

occurs to a variable extent and can produce less numerous "secondary" amplification 

products that are also characteristic of the template in study. Amplification in DAF is 

arbitrary but not random. DAF fingerprints have bands that fall into two categories, those 

that are phylogenetically consenzed, and those that are individual-specific. This suggests 

that primer sites are randomly distributed along the target genome and flank both 



conserved and highly variable regions. There is also wide variation in the degree of 

amplification between different fragments that is reproducible between experiments. 

Applica/ions of DAF: Within plants, DAF offers the possibility of identifying cuitivars and 

near-isogenic lines. DAF method amplified DNA from a wide variety of organisms, 

including the fungus Candida aibicans and several plant species as in different cultivars 

of soybean and of several turf grasses, e.g., Zoyria, m i e t i e s  of rice and inbred lines of 

maize were also identified using polyac~ylamide gel electrophoresis and autoradiography. 

DAF was used to separate cultivars of dogwood (Cornusforida) and differentiate from 

other Cornus species. Cultivars of peanut( Arachis hypogea L.) were not separated but 

wild Arachis species were readily identified when using agarose gel electrophoresis and 

ethidium bromide staining of amplified DNA. This point out both dearth of 

polymorphism between cultivated peanut accessions, and also possibly the limitation of 

using insufficiently sensitive techniques for the separation and staining of DNA 

Diferences bernleen DAF (Caetano el al. 1991) andR4PD 

a Higher primer concentrations in DAF than in RAPD 

r Shorter primers are used in DAF (5-8 nucleotides) 

Two-temperature cycle in DAF compared to three-temperature cycle in W D .  

r More complex banding patterns with DAF than with RAPD. 

3.3 62.2 Arbibarily-Prin~ed Poiynrerase Chain Reaction 

Welsh and McClelland introduced AP-PCR. Arbitrarily Primed PCR is a method of 

creating genomic iingerprints from species, in which little is known about target 

sequence to be amplified. Strain-specific arrays of DNA fragments (fingerprints) are 

generated by PCR amplification using arbitrary oligonucleotides to prime DNA synthesis 



from genomic sites, which they fortuitously match or almost match. Generally, two 

cycles of PCR are performed under conditions of low stringency with a single random 

primer, followed by PCR at high stringency with specific primers. DNA amplified is this 

manner can be used to determine the relatedness of species or for analysis of RFLP. 

OIigonucleotides of 20 or more nucleotides, were used as primers (e.g., the M I 3  

universal sequencing primer; the pBS reverse sequencing primer; and the Kpn-R, KA, 

KB, Kh4, KR, KX, and KZ primers). Two cycles with low stringency (allowing for 

mismatches) were followed by 30 to 40 cycles with high stringency. [ 3 2 ~ ]  dCTP was 

included in the last 20 to 30 cycles. Radiolabeled products were separated by 

polyacrylamide gel electroplioresis and made visible by autoradiography. The AP-PCR 

variant of the arbitrary PCR method is used the least, compared to RAPD and DAF. It is 

also the most complicated method and uses radioisotopes. However, it can be simplilied 

by separating the fragrhents on agarose gels and using ethidium bromide staining for 

visualization. 

Differetlces between AP-PCR (\lrels1i and Mc Clelland, 1990) a11d RAPD 

in AP-PCR the amplification is in three parts each with its o u n  stringency and 

concentrations of constituents. 

* high primer concentrations are used in the first PCR cycles. 

primers of variable length, and often designed for other purposes are arbitrarily 

chosen for use (e g., 14.113 universal sequencing primer). 

MAAP illustrates the importance of both amplification reaction conditions and the 

separation and detection procedure used to resolve the spectrum of amplified products 

into a characteristic and reproducible fingerprint pattern. MAAP usually relies on non- 



stringent reaction conditions (other than annealing temperature) for the amplification of 

arbitrary target sites. When compared with other PCR protocols (Williams et  al. 1990) 

over ten times more primer (3 pM) was required to reveal all amplification products. In 

the PCR, high primer concentration often results in increased primer mismatching and 

spurious annealing events. Therefore, higher concentrations favor the nonstringent 

reaction conditions typical of the amplificarion of arbitrary ampiicons. Increasing primer 

concentration can also affect the interaction of symmetrical sequences in the formation of 

hairpin structures and concatemers. Primer concentrations used in DAF tend to give 

smears in RAPD analyses, or 7-mer and 8-mer primers that render complex profiles by 

DAF appear to produce no amplification products by RAPD. MAAP encompasses all 

these closely related teciu~iques, but it is not comn~only used. 

Multiple Arbitrary Arnplicon Profiling techniques. 

3.3.6.3 DNA markers based on sequence-fagged slfes 

As more sequence information is becoming available from different sources, which can 

be located in widely available databases, it can be used for developing new strategies for 



the anslysis of genetic variation. A sequence-tagged site (STS) is a general term given to 

a marker, which is defined by its primer sequences. STSs have been used extensively for 

mapping of the human genome 

Example of STSs: 

Sequence tagged microsatellites (STMS) also known as Simple Sequence Repeat 

Polymorphisms. 

Anchored microsatellite oligonucleotides including inter-simple sequence repeat 

(ISSR) primers. 

r Sequence- characterized amplified reglons (SCARS). 

Cleaved amplified polymorphic sequence (CAPS). 

3.3.6 3 1 Sequence-Togged Microsotelliies 

Primers can be constructed which are complementary to the short, unique sequences 

flanking microsatellite repeat sequence loci and which, in the PCR reaction, direct the 

amplification of the repeat. Since the repeat length is highly variable, this is an effective 

way of detecting polymorphisms. These markers generally have the following properties, 

which make them useful for population studies: 

* usually define a single, multi-allelic locus 

* co-dominant- homozygotes and heterozygotes can be distinguished 

* highly reproducible results obtained 

For high levels of discrimination, polyacrylamide gels are used which can detect 

single copy differences. It is also possible to combine the PCR reactions with different 

STMS primers in the same reaction tube (so-called multiplexing) which saves on time but 

this is only possible where the products of the different primers donot overlap in size. 



In 1989 synthetic oligonucleotide probes that recognize simple repetitive DNA 

sequences were introduced to plant DNA fingerprinting. Weising (1992) demonstrated 

different DNA fragment patterns between three barley cultivars by hybridization to a 

(GACA)4 probe as well as between three accessions of chickpea, Cicer arierinum, by 

hybridization to a synthetic digoxygenated oligonucleotide (GATA)r probe 

complementary to a microsatellite DNA sequence.(Serret et al. 1997). Presently 

laboratories at University of Frankfurt are in the process of isolating multiallelic, singie- 

locus probes from chickpea. Such sequences \rill allow linkage analysis and genome 

mapping, both strategies aiming at the characterization and isolation of genes conferring 

tolerance (or also susceptibility ) towards Ascochyta blight disease. 

Advonioges oJSequence-logged microso~ellrics 

Since the repeat length is highly variable, this is an effective way of detecting 

polymorphisms. 

These markers generally have the following properties which make them useful for 

population studies. 

Co-dominant - homozygotes and heterozygotes can be distinguished. 

Highly reproducible results obtained. 

Usually define a single, multi-alielic locus. 

Highly abundant and polymorphic. 



3.3.6 3.2 Sequence Characterized Arnplfied Regions 

An example of STS, based on the RAPD technique is SCARs. These markers are 

generated by cloning and sequencing RAPD fragments, which are of particular interest. 

When the sequence is known, it is then possible to design primers which are longer than 

usual RAPD primers (24-mer oligonucleotides) and which are exactly complementary to 

the ends of the original RAPD fragment. When these primers are used in a PCR, single 

loci are identified which correspond to the original fragment. These loci are called 

SCARs. SCARs offer several advantages over RAPD and other arbitrarily primed 

methods, principally that the results are highly reproducible (longer primers used) and the 

markers are co-dominant. 

3 3.6.3 3 CIeavedAnlpiified Polymorphic Sequence 

In another technique called CAPS or PCR-RFLP, PCR primers are constructed for a 

particular locus. The PCR amplified product is digested with a restriction enzyme and 

visualized on an agarose gel using ethidium bromide staining. As with W L P ,  

polymorphisms are detected by differences in restriction fragment sizes. 

3.3 6 3.4 Anchored microsatellite oligonucieoiides 

Variants of STMS technique have been developed using anchored microsatellite 

oligonuleotides as primers hhich direct the amplification of genomic DSA segments 

other than the repeat region itself. These approaches use oligonucleotides based on a SSR 

anchored to their 5' or 3' ends by 2 to 4 arbitrarily chosen nucleotides which trigger site- 

specific annealing. This initiates PCR amplification of genomic segments which are 

flanked by inversely oriented, closely spaced repeat sequences. Specifically, ISSR 



primers are anchored to their 3' ends and amplify segments between ISSRs. Such 

anchored microsatellite markers are usually dominant. 

3 3.6.4 Microsaleliile DNA as a Genelic Marker 

Litt and Luty introduced the term microsatellite in 1989 to characterize the simple 

sequence stretches amplified by PCR. These are also known as short tandem repeats 

(STRs) or simple sequence repeats (SSRs) of 1-5 bp and differ from minisatellites (often 

called VNTRs), which are repeated sequences having repeat units ranging from I I to 60 

bp in length. The minisatellites were first reported by Jeffreys et  01. (1985) as tandemly 

organized repeats though their utility through PCR was suggested later. .The 

microsatellites are randomly and more evenly dispersed in the genome than 

minisatellites, which are generally confined to telomeres. The tri- and tetra-nucleotide 

repeats are also common in human genome. 

The DNA sequentes flanking SSRs are k n o w  to be conserved in the same manner 

as those flanking minisatellites. These conserved sequences have been used for designing 

suitable primers for amplification of the SSR loci using PCR. Any such primer or a pair 

of primers, when used to amplify a particular SSR locus in a number of genotypes will 

reveal SSR polymorphism in the form of differences in the length of the amplified 

product, each length representing an allele at that locus. The length differences are 

attributed to the variation in the number of repeat units at a particular SSR locus, possibly 

caused by slippage during replication, and therefore provide a valuable source of 

polymorphisms for many purposes, including linkage analysis (Lathrop er al. 1985; 

Jeffreys e t  al. 1986; Nakamura er a/ .  1987; Wells e l  a1.1989), identification of species 



and cultivars (Weising et al. 1989, 1991a, 1992) and marker-assisted selection 
\ 

(Beckmann and Soller 1990), 

Microsatellites have been found and used for genetic analysis in many a 

mammalian species and to a lesser extent in other eukaryotes, e.g., insects, birds, fish, 

mouse, cattle and plants. 3 ~ ) "  repeat is one of the most frequently occurring 

microsatellites (several tens of thousands of copies) in human and many mammals, but is 

comparatively less frequent in plants. In contrast, (AT), microsatellites are the most 

abundant dinucleotide repeats in plants. Funher, greater abundance of (GA), repeats than 

(CA), repeats appears to be a consistent feature of plant genomes. Trinucleotides and 

tetranucleotides repeats are also found in plant genomes, the most frequent of them being 

(AAG), and (AAT), . 
/ 

A comparable number of minisatellites occurs in the tomato genome and some of 

the most polymorphic810ci cloned in the tomato contain microsatellites (Brown & 

Tanksley 1993). Microsatellites with relatively low numbers are generally very abundant. 

In the rice genome (GT),repeats every 480 kb (Wu & Tanksley 1993). An example is the 

SAT1 locus found in soybean in which 25 alleles were found at this single locus. In 

humans as many as 80 alleles have been documented at one locus,>ince microsatellites 

can find more alleles at a locus than RFLP's, former is more informative. 

SSRs offer a potentially attractive combination of features that are useful as molecular 

markers: 

SSRs have been reported to be highly polymorphic in plants, and thus highly 

informative, providing many different alleles for each marker screened, even among 

closely related individuals 



SSRs can be analyzed by a rapid, technically simple, and inexpensive PCR-based 

assay that requires only small quantities of DNA. 

.:. SSRs are co-dominant, and simple Mendelian segregation has been observed. 

9 SSRs are both abundant and uniformly dispersed in both human and plant genomes. 

Basically, three different methods are applied to plant genome analysis using repeat 

sequences: 

(i) Minisatellites (repeat units of 9-20 nucleotides) can be hybridized to restricted and 

electrophoretically separated DNA blotted onto nylon membrane (Jeffreys er al. 1985). 

(ii) Microsatellites (repedr units of 1-5 nucleotides) can be hybridized to DNA in dried 

gels (Ali e l  a/. 1986; Epplen 1988).'Altematively, niicrosatellites can be cloned, 

sequenced, and a!upliRcation fragment lenpth polymorphisms detected by PCR, using 

oligonucleotides from the surrounding mononiorphic DNA sites as primers (Lin and Luty 

1989) later called as sequence-tagged microsatellite sites (STMS; Beckmann and Soller 

1990). Like RFLP, they are co-dominant markers, but are more informative. For analysis 

of STMS, tri- and tetra-nucleotide motifs gained more and more attention compared with 

mono- and di- nucleotide repeats, because the former group present a clearer banding 

panern after PCR and gel electrophoresis (Hearne er al. l99!>; 

Microsatellite DNA markers are useful in many types of studies. They can be 

used in pedigree analysis to determine kinship among individuals, fingerprinting, 

forensics, genetic mapping and phylogenetic analysis. Genetic mapping was done 

particularly in crop species with low polymorphism such as \\heat and soybean. Since 

microsatellite DNA changes rapidly during the course of evolution, and is not influenced 

by selection, phylogenetic analysis can be conducted and also can be used as an 



evolutionary timeclock by measuring the gain or loss of repeats in a genera over 

evolutionary time and can possibly detect when speciation occurs. One single 

disadvantage of microsetellites is homeoplaisy. 

Odvanragcs ofMicrosoiellices 
~ -..- 

* H i g h ! ~  variable and abundant. 

Rich source of allelic diversity. 

* A~ialysis using RFLP or PCR tecl~niqurs. 

Anchored SSR for fingerprinting. 

Dl.radi,aniuges of iMicrosaie11i~es 

* Origin of variation unknoun. 

Map location hard to define: - 
p9t 

3 3 6 5 Random Amplified Mlcrosateilile Polymorphfsm _- 
A combination of RAPD amplification of DNA and subsequent hybridisation using 

microsatellites, k n o w  as random amplified microsatellite polymorphism (RAMPO) has 

recently been reported to be efficient for detecting of more variability in plant and fungal 

DNA samples (Richardson el al. 19951 A similar technique, uhere a microsatellite - 

anchored primer was combined u i th  the random primer durlng PCR an~plification has 

helped to locate new loci in barely RFLP map (Bechrr and Heun, 1 9 9 5 u h e  repetitive 

sequences in the genome are not in~ol\.ed in gene expression and represent in most cases 

the introns. Funher, they are generally not accessible to RFLP probes generated from low 

copy DNA sequences. The use of repeat sequences (di-, tri- or tetra- nucleotides) as a 

probe that hybridizes to repetitive sequences in the genome has uncovered a great deal of 

variation. The detection of these microsatellites however, involves the intricacies of 



RFLP detection. Further, probe hybridization requires technical expertise, or detailed 

sequence information to design primers for PCR. The recent technique of R A M P 0  is 

based on RAPD amplification of genomic DNA and subsequent detection of 

microsatellites in blotted DNA using the labeled simple repeat sequences as probes/ 

The simplicity of operation of this technique allows quick detection of 

microsatellite loci in hybridization blots. No previous knowledge of sequence is required, 

and random genomic reglons can be amplified with each RAPD primer. Additionally, a 

single blot of the amplified products can be repeatedly hybridized to repeat several 

sequence probes. Thus tile application u f  DNA markers is entering into an exciting era of 

new applications in plant genetics, crop environment, and conservation of biodiversity. 

Advontogcs ofR4.1tPO 
. - 

High sensitivity and faster analysis 

r Highly variable. ' 

Prior sequence information not required to confirm use of marker. 

Uses RAPD amplified or PCR amplified DNA. 

Blot can be probed with multiple repeats. 

Disadvoniagcs %RAMP0 

Uses radiolabeled primers. 

* Detailed inheritance study required 
-. 

blicrosatellite hybridization [nay be ?!lore reliable than minisatellite. 



Comparison of RFLP and RAPD markers with microsatellites 

/ Principle involved DNA blot hybridization PCR ampiitication wllh PCR amplificatiin of  I random primers / simille sequence reoeat I 
Type of  polymorphism 

Geno~nicabundance  

Level o f  polymorphism 

inheritance 

Amount of  DNA 
required 
Sequence information 
required 
Radioactive detect~on 
required 
Deveiopmentcosts 

/3 3.6 6 Amplified Fragment Length Polymorphism 

The AFLPs were initially named to rhyme with RFLP as "Amplified Fragment Length 

Single base changes; 
insertions; deletions 
High 

S tan  up cosrs 

Detection 

Polymorphism" but subsequently it was reallzed that AFLP involves the detection of 

"presence or absence" of restriction fragments rather than differences in their lengths. 

The AFLP approach was developed by a private company Ke).ge~ie in Netherlands led by 

Medium 

Codominant 

5 - i O p g  

N o  

Ycs?lo 

M e d ~ u m  

Dr. Marc Zabeau, which holds the patent for this technology (Vos el ai. 1995).Tbe 

primary reason for the rapid acceptance of AFLP technology is due to its ability to detect 

Single base substitutions 
insertions; deletions 
Very high 

Med~um/H~gi i  

Autoradiography; blotin 
labeling 

a large number of polymorphic DNA markers rapidly and in a reproducible manner. 

loci' ' 

Variation in number of 
repeat motlfs 
Medium 

i 

Medium 

Dominant 

10.25ng 

No 

N o  

Medium 

These fingerprints may be used as a tool for determining the identity of a specific DNA 

sample or to assess the relatedness between samples. Fingerprints are also used as source 

High 

Codominant 

50-100ng 

Yes 

N o  

Hlgh 

Low 

Ethidlum bromide; 
silver s ta in~ng 

for genetic markers to generate linkage maps or to identify molecular markers linked to 

39 

High 

Ethidium bromide, 
silver staining 



phenotypic traits and/or genetic loci. Polymorphisnls detected in DNA fingerprints 

obtained by restriction cleavage can result from alterations in the DNA sequence 

including mutations abolishing or creating a restriction site, and insertions, deletions, or 

inversions between two restriction sites. The DNA polymorphisms identified using AFLP 

are typically inherited in Mendelian fashion, and may therefore be used for typing, 

identification of molecular markers, and mapping of genetic loci. , 

The AFLP approach is conceptually sinlple and comb~nes both RFLP and PCR 

techniques. The various steps involi,ed are: 

Restriciior~ Endor~ucleose Digestion. To prepare an AFLP template, genomic DNA is 

isolated digested with two restriction endonucleases simultaneously. This step generates 

the required substrate for ligarion and subsequent amplification. 

The restriction fragnlents for the amplification are generated by two restriction 

endonucleases: E;oy and h+?I. E ~ o y  has a 6-bp recognition site, .b4sel has a 4 bp 

recognition site. When used together, these enzymes generate small DNA fragments that 

will anlplify well and are in the optimal size range(< 1 kb) for separation on denaturing 

polyacryamide gels Due to primer design and an~plificat~on strategy, these EcoRI-.l4sel 

fragments are preferentially amplified (rather than EcoRl - EcoRl and h4sel-MseI). 

The success of the AFLP technique is dependent upon the complete restriction 

digestion, Therefore, much care should be taken to isolate high quality genomic DNA, 

intact without contaminating nucleases or idlibitors. 



Ligation of.adap!ecs: Following heat inactivation of the restriction endonucleases, the 

genomic DNA fragments are ligated to EcoRl and MseI adapters to generate template 

DNA for amplification. This common adapter sequences flanking variable genomic DNA 

sequences serve as primer binding sites on these restriction fragments. Using this 

strategy, it is possible to amplify many DNA fragments wlthout having prior sequence 

luiowledge. 

Aniplijicarion resul!~: PCR is performed In two consecutive reactions. In the first reaction 
- .  

called preamplification, genomic DNA are amplified with AFLP primers each having one 

selective nucleotide. The PCR products of the preamplification reaction are diluted and 

used as a template for the selective amplification using 2 AFLP primers, each containing 

3 selective nucleotides. The 5' end of the EcoRI selective primer is j2P- or j3p-labeled 

using Td Polynucleotide kinase before amplification. This two step amplification strategy 

results in consistently cleaner and more reproducible fingerprints with the added benefit 

of generating enough template DNA for thousands of AFLP reactions. 

The most important factor determining the number of restriction fragments 

amplified in a single AFLP reaction is the number of selective nucleotides in the selective 

primers. Plants having genomes ranging in size from 5x10' to 6x10' bp, including 

tomato, corn, soybean, cucumber, lettuce. barley, cotton. ollseed rape, potato, sunflower, 

pepper and brassica. The number of fragments amplified per sample1 primer pair 

averages 50, but may range from as low as 10 to -100 depending on the sequence context 

of the selective nucleotides, and the complexity of the genome. 



A second factor in determining the number of restriction fragments is the C and G 

composition of the selective nucleotides. In general, the more Cs  and Gs used as selective 

nucleotides in the amplification primers, the fewer the DNA fragments amplified. Also, 

the smaller the genome being analyzed, the fewer fragments and the simpler the 

fingerprint. 

Separation ofan~plSfiedfragnlenfs on denaturingpolyacr~amide gels: Products from the 

selective amplification are separated on a 6% denaturing polyacrylamide (sequencing) 

gel. The resultant banding pattern obtained after autoradiography can be analyzed for 

polymorphisms either manually or using analytical software. 

lnrerpretatioi? of results: Individual band intensity, size distribution of amplified 

products, and overall panern should be the same for AFLP analysis with the same primer 

pairs and the same DNA template, and will vary between different genomic DNA 

samples and different primer pairs. Fingerprints of related plants should display common 

bands, as well ad some differences in banding pattern due to DNA polymorphisms. 

The total number of bands, as well as the number of polymorphisms will depend 

on the crop variety, complexity of the genome and the primer pair used. Some primer pair 

co~ilbinations may result :n eirher too few or too many bands for a particular sample. 

The primary reason for the superiority of AFLP technique is that it detects very 

large number of DNA bands enabling sil~lultaneous identification of many po1)'morphic 

markers. Routinely about 50-100 bands are obsewed in each lane of a gel and this 

enables rapid creation of very high-density genetic maps rapidly. For instance, in 

genomes such as barley with large genome with low polymorphism rate, the use of AFLP 



approach enabled scientists to develop a more informative and enriched genetic map 

(Becker el ai. 1995). The AFLP does not necessarily offer higher rates of polymorphism 

but is more efficient than RFLP, RAPD or microsatellite approaches of detecting 

polymorphic DNA. AFLPs detect more point mutations than RFLPs, enable detection of 

very large number of polbmorphic DNA markers than RFLP or RAPDs, and are simpler 

than microsatellites as no prior sequence information is needed. 

The AFLP markers are dominant ]markers similar to RAPDs but tieygerle 

scientists are d e ~ e l o p i t ~ g  densitometric software that may discriminate between 

heterozygotes and homozygotes based on allelic density, Imaging software is also being 

developed by Kejgcne to analyze the AFLP bands which can be difficult to be done 

manually. Altliougli AFLP approach is highly informative, a few criticisms of this 

technique includes: the use of multiple procedures, expensive, cumbersome and 

laborious protocol. Although the use of radioactivity to detect DNA in AFLPs is one 

major dra\\~back that may limit its use, Guohao He at the Center for Plant Biotechnology 

Research at Tuskegee University and Dr. Susan McCouch at Cornell Uni\,ersity have 

developed non-radioactive silver staining protocols to detect AFLP markers with no 

major loss in sensitivity. 

Adva~ltngcs ofA FLP 

AFLP combines the advantages of W L P  and RAPDs. 

* It requires less amount of DNA and is faster than RFLP. 

It reveals several polymorphic fragments in a single reaction. 

s Highly sensitive. 

Highly reproducible. 

I Widely applicable. 



Discriminates heterozygote (when gel scanner is used). 

Disadvantages of AFLP 

Expensive. 

Technically demanding. 

Normally uses radio-isotopes. 

Problems in interpreting banding pattern e.g. co-migration of fragments, uncertainty 

in assigning equivalence of bands \+hen comparing individuals. 

3.4 Applications of DNA marker technologies 

It is evident that the development of DNA markers has revolutionized the construction of 

genetic maps in plants and the utilization of genetic maps in studies of plant evolution, 

systematics, and plant breeding. DNA fingerprinting can be applied in plants and fungi, 

especially in the fields of identification (e.g., genotypes, strains, and cuitivars), paternity 

analysis, estimation of genetic relatedness, and genome mapping. DNA markers allow 

direct access to any pan of a plant genome, and they liberate researchers from having to 

deal with plant genes through the fog of phenotype, many steps away from the gene 

itself. Technology for the utilization of DNA markers is evolving rapidly at the present 

time, and further advances are sure to occur soon. Some of these will invo!\,e making the 

process of developing and utilizi~ig DKA nlarkers teclmically simple, less expensi\.e, and 

more capable of automation. To be practical on a large scale for plant breeding 

applications, and particularly in developing countries, the detection procedures for DNA 

markers need to be developed which do not require the use of radio-isotopes, southern 

blots, DNA sequencing gels and the like. PCR based methods such as RAPD analysis 

seem to provide pan of the answer, but these procedures are still very expensive because 



of high reagent costs. Simplified DNA analysis seem to be possible with PCR, and even 

tissue squashes may suffice for DNA isolation (Langridge er al. 1991). 

3.4.1 Molecular markers for estimating genetic diversity 

Over the years, the methods for detecting and analyzing genetic diversity ha\.e expanded 

from Mendelian analyses of discrete morphological and cytologicai variants, to statistical 

analyses of quantitative variation, to biochemical assays, and finally, to molecular assays. 

The molecular study of genetic variation has revealed a number of previously 

unsuspected genetic phenomena and it has raised a host of questions and applications for 

population genetics (reiiewed by Clegg and Epperson, 1985). The primary focus will be 

on molecular diversity within populations or at the intraspecific level. 

hlolecular genetic techniques, both on their own and in combination with other 

biotech~~ological approaches, are beginning to have a significant impact on plant genetic 

resources conservation and use. Initially, the molecular techniques were used largely for 

the analysis of specific genes, for understanding gene action, gene mapping and the 

development of gene transfer technologies. More recently, the techniques have been 

applied to problems of direct relevance for understanding the distribution and extent of 

genetic variation within and between species. 

Genetic diversity - caused by selection and various mutational and sexual events - 

rests on genome changes ranging from a single base-pair exchange ro rearrangments of 

entire chromosomes. In closely related genomes, differences may occur once in every 

100 bp (Soller & Beckmann 1983). These DNA polymorphisms are exploited by an ever- 

increasing number of molecular marker techniques for the differentiation between 

individuals, accessions and species of plants, pathogens and pests. Their higher resolution 



compared with all other markers makes them a valuable tool for varietal and parental 

identification for the protection of breeders rights. 

DNA markers further add to the repertoire of tools for the determination of the 

evolutionary relationship between plant species and families. For example, using 

repetitive DNA (Jung el a/.  1993) was able to elucidate the evolutionary relationship 

between several species in Beta. 

DNA fingerprinting with minisatellites (Jeffreys e l  a1 1985) or simple synthetic 

oligonucleotides (Tautz & Renz 1984) has also found widespread application in the 

differentiation of species Even a niin~satellite-l~ke sequence present in the genome of the 

M I 3  phage has been found useful (Rogstadt ef ai 1988; N'eising & Kahl 1990). This 

probe was used to examine the gene flow and genetic diversity in coastal seagrass 

populations in California, revealing more sexual than clonal propagation in ecologically 

important and genetically heterogeneous species (Alberte et  al. 1994) Using human 

minisatellite probes, niolecular tahonomy has possible with crop species such as rice 

(Dallas 1988), tomato (Brown & Tanksley 1993) and grape (Thomas er ai. 1993). 

Microsatellites habe also been used in various genera (Weising el a/. 1989, 1991a), 

including Biassica (Poulsen ec ai. 19941, Beta (Schmidt el ul. 1993), Cicer (Lb'eising e l  

01. 1992; Shamia el a / .  1995). .V~~.irsa (Kaemnier el a/.  1992) and /ontaco (Kaemmer e l  al. 

1995). 

DAF studies revealed a much higher level of diversity of Douglas fir in coastal 

and interior regions of Canada than observed in earlier a l lonme studies (Carlson el 01. 

1994). 



Molecular markers allow the relationships between chromosomes of related 

species to be determined. By examining the segregation of heterologous DNA markers, 

chromosomes of different species can be ordered into synthenic groups so that the probes 

derived from one organism can be used in related organisms. For example, comparative 

genetic mapping with RFLP markers has shown that tomato and potato are nearly 

identical in the order of marker loci (Bonierbale et ai. 1988; Tanksley er al. 1992). 

Conservation of l o c ~  has also been found between maize and sorghum (Whitkus ct  a/. 

1992) and between rice, wheat and barley clironiosonies (Ahn el 01. 1993). 

3.4.2 Marker-assisted Breeding (MAS) 

The use of molecular markers enables the breeder to connect the gene action underlying a 

specific phenotype with the distinct regions of the genome in which the gene resides. 

Once markers for an interesting trait are established, these should allow the prediction of 

the yield or resistance of individual offspring deril~ed from a cross, solely by the markers 

distribution pattern in the offspring's genome. Molecular markers then would have 

considerable impact on breeding economically imporlant crops, because they provide, 

together with genetic engineering tecllniques, access to hitherto unavailable genetic 

resources for crop improvement programmes. Besides the exploitation of genomic 

polymorphisms for gerniplasm ut~lization and protection of varieties, the breeder's 

iliterest in molecular markers currently focuses on three major issues: 

I .  The acceleration of the introgression of single resistance genes for plant pathogens 

such as viruses, bacteria, fungi, nematodes or insects, from wild species or cultivated 

donor lines into otherwise superior cultivars. 



2. The accumulation (pyramiding) of major and/or minor resistance genes into cultivars 

to generate multiple and more durable (horizontal) resistances against several 

pathotypes of the same pathogen (Serret er 01. 1997). 

3. The improve~iient if the agronomic value of crops by breeding for quantitatively 

inherited traits, such as yield, fruit solids and protein content, or drought and cold 

tolerance. 

Molecular mapping and tagging of agronomically important genes using RFLP and 

RAPD markers were carried out in three different crops: rice, mustard and chickpea. In 

rice, tagging of genes ibr resistance to gall midge and blast was accomplished. Molecular 

mapping of cooking quality traits in rice is in progress. For fingerprinting rice cultivars, 

suitable probe-enzyme combinations were identified. In mustard, a partial RFLP linkage 

map was constructed and one of the yellow seed-coat colour loci mapped. Potential use 

of R4PD markers td identify heterotic groups among mustard accessions was 

demonstrated. 

3 4.2.1 Resistance breeding 

The main advantage of using molecular markers for the introgression of resistance genes 

to cultivars is a gain in time (Tanksley el 01. 1989; Melchinger 1990). Gene introgression 

is normally conducted by crossing a resistant donor line uith an agronomically superior 

culti\.ar, only retaining the desired resistance gene. The use of DNA markers could speed 

up this process by three plant generations, allowing selection of the resistant offspring 

that contain the lowest amounts of the donor genome in every generation (Tanksley el a/. 

1989). 



Quanritarive Trait Loci (QTLs) - a ciiallengefor genomic analysis: Many agronomically 

interesting traits, such as yield or tolerance to abiotic stresses, are controlled by 

polygenes, with every gene contributing only a few percent to the expression of the trait. 

Tagging of polygenes with molecular markers requires a saturated linkage map with a 

marker spacing of no more than 20 cM inten~als throughout the genome in order to tag 

any gene of interest with a selection fidelity of 99% and at least 250 F1 individuals from a 

cross between parental lines that differ markedly with respect to the trait in question 

(Paterson el a1 1988; Tanksley 1993). It is unlikely that this spacing of isozyme markers 

througliout the senome will be ach~eved in many crop plants. However, this level of 

saturation and distribution of RFLP markers is nearly attained in crops such as maize and 

tomato (Helentjaris er a1.1985, 1988; Tanksle) and Hewitt 1988). 

Attributes of populations amenable to molecular marker applications for quantitative 

traits are: 

the number of segregating marker loci available in the population or material of 

interest 

the distribution or uniformity of spacing of the marker loci 

r the level of linkage disequilibrium in the population 

If only a few marker loci are available, a population such as Fa derived from the 

cross of two homozygous lines may be preferred because linkage disequilibrium is 

maximized in this generation. Although an F, is advantageous for detecting QTLs with a 

minimum number of markers, large genomic regions would probably be represented by 

specific marker loci in this generation. Thus, there is a high probability that genotypic 

classes at an individual marker locus may be reflecting the effects of multiple QTLs. 



High-density gene maps can be used effectively to locate genes that affect 

quantitative variation (Michelmore and Shaw 1988; Lander and Botstein 1989). This 

method involves the comparison of segregating progenies with constrasting alleles at 

numerous loci. Where significant differences are detected between individuals differing 

at marker loci, conclusions can be made about the linkage between the markers and loci 

that influence the expression of the quantitative trait. It has some drawbacks when a 

single locus is used in the a~ialyses. First the offspring are tested for the trait and their 

genotype determined for every marker locus. Then the likelihood that the observed data 

rely of the presence of a QTL is calculated, against that no QTL is present, using 

specially designed computer software such as IMP.MAKER (Lander et al. 1987; Paterson 

e t a / .  1988). 

3.4.3 Map-based cioning of agronomically interesting genes 

Reverse genetics: The detection and cloning of distinct genes of unknown sequence and 

function, when only their involvement in specific traits and their chromosomal location is 

known, has been termed "reverse genetics". In, contrast to conventional approaches, 

where a gene is cloned on the basis of its knoivn product or sequence and then localized 

to a chromosonial region, this strategy starts with the local~zation of a gene on a specific 

chromosomal region by determining the I lkage  of the phenotype it speclfies to a set of 

flanking molecular markers. These linked markers are then used as starting points for 

physically mapping the gene-flanking region with pulsed field gel electrophoresis and 

rare cutting restriction enzymes. Large scale restriction site mapping is necessary because 

physical and genetic distances between markers may vary over several orders of 

magnitude (Sehgal et a/ .  1992). This could cause severe problems if the cloning of the 



region is intended. Physical maps are especially useful in polyploid crops such as 

soybean, where duplicated sequences could prevent the assignment of markers to a single 

distinct location (Funke et al.  1993). 

The utility of maps and molecular markers will continue to increase. The ability to 

rapidly COnStNCt genetic maps has made possible applications that were unimaginable 

using conventional mapping techniques. Comparative mapping of different crop plants 

(Bonierbale e t a / .  1988) will provide useful information about the location of important 

genes, because it is likely that there will be enough conservation of synthetic blocks so 

that genes located in one species u8ill have the same flanking markers in another species. 

Comparative mapping of crop plants and their wild relatives will be a valuable tool for 

phylogenetic analysis (Jung er al.1993) as well as being useful in introgression studies. 

3.4.4 Constructing a linkage map with DNA markers 

The mapping populolion: The most critical decision in constructing a linkage map with 

DNA markers is the mapping population. F2 populations or backcross populations 

derived from crosses between inbred parent lines have been used in the construction of 

molecular maps in plants. The use of inbred lines simplifies genetic analysis because the 

phase (coupling or repulsion) of the markers is completely known. Fz populations provide 

more mapping information for a given number of plants when codominant markers are 

analyzed, since two recombinant chromosomes can be scored in each plant (Allard 1956; 

Tanksley et 01. 1988b; Reiter et 01. 1992). Flpopulations provide a sex- averaged map 

because chromosomes from both the male and female parent are scored. Backcross 

populations can provide a male or female map depending on which sex u8as the recurrent 

paren?/ One of the greatest advantages of molecular markers is that a virtually unlimited 



number of markers can be mapped using a single segregating population. As long as the 

same set of FZ or backcross plants is used, the database of mapped markers accumulates. 

If the mapping population is lost, the mapping information must be transferred to a new 

population by scoring some of the same markers that have been previously mapped. 

Thus the database of mapped markers for a given segregating population becomes a 

valuable resource for mapping of new markers and the need for construction of 

permanent mapping populations. 

Backcross and Fz populations constructed from inbred lines are segregating 

populations but are not a permanent resource in most plants. However, perennial plants or 

plants ~ ' h i c h  can be reproduced asexually, such as alfaalfa (Brummer e i  a / .  1991) or a 

rice population derived from an interspeciiic cross, where one of the parents is perennial, 

constitute a pernlancnt mapping population. 

For markers, wlnich are not inherited in a dominant-recessive fashion, such as 

M P D  markers, recombinant inbred lines provide as much efficiency in mapping as do 

segregating populations. With F2 mapping populations, the results of meiosis in one 

generation are being scored. but recombinant inbred lines are the results of a series of 

meiosis, which give more opponunities for recombination. NL can be developed quickly 

in self-pollinating crops like chickpea by following the single-seed descent method from 

an F2 of a hybrid population to the Fa or F,. At the later generation, the RlLs become 

homozygous and fixed for linkage blocks within the genome. Each RIL is then fully 

characterized for molecular markers and traits of interest. Thus a map derived from 

recombinant inbreds will have higher resolution than one derived from an F2 or 

backcross population (Burr el al.  1988). 



Design of Tesf Populalions: An appropriate design of a test population is a crucial step in 

the development of markers for agronomical traits. Crosses of wild species with 

cultivated lines have generally been found useful for the generation of genetic maps, 

because of the relatively high degree of nlorphological, isozyme and DNA 

polymolphisms in the wild species. Such crosses are essential in crops, such as tomato, 

where relatively few polymorphisms are detected within cultivated lines. For example, 

crosses between cultivated tomato (Lycopcrsicon esculentu~~!) and its wild relatives L. 

penneli (Wing el ul. 1994) or L. pin!pinellfo/iu~i~ (Sarfatti et  ul. 1989) have helped in 

generation of linkage maps and the identification of an RFLP marker linked to Fusarium 

oxysporum resistance gene. 

Theoretically, a large F2 generation is most informative for genome mapping 

(Melchinger 1990), especially if the niap is at an early stage and only a few markers are 

mapped. However, an F2 has three major drawbacks as far as the development of markers 

for agronomicaily interesting traits is concerned : 

I. Same individuals tested for the trait also have to be used for linliage analysis. This 

can cause serious problems, since after extensive testing, for instance with a 

pathogenic fungus, some of the plants \vill be too afiected to provide enough DNA 

for linkage analysis. 

2. AAer completion of their life cycle, plants die and (especially the pheno- and geno- 

typically characterized individuals) will no longer be a\~ailable for backcrosses or 

fufher genetic analysis. 

3. Most multilocus markers, including RAPD and mini and microsatellites are dominant 

markers, whose homo- or hetero- zygous state cannot be determined. An F2 does not 

53 



allow these two possibilities to be distinguished and much information is therefore 

lost. 

3.4.5 Establishment of a high-density linkage map 

Plant breeders now have access to computerized data bases (genetic linkage maps, gene 

product and function data, performance data etc.) for conducting simulated niatings of 

various potential parents and only make those that give the maximum expression of 

transgressive segregation, heterosis, epistasis, and pleiotropy. 

Steps involved in establishing a high-density gene map for any crop would be as follows: 

1. Crosses between lines that differ for qualitative traits, isozyme markers and RFLP. 

2. Genetic analyses of patterns of inheritance and gene interaction of the progenies This 

is usually done in the F2 but recently the use of recombinant inbreds has received 

greater attention. 

3. Detection of abnormal joint segregation ratios among genes and calculation of 

linkage estimates. 

4.  Placement of linked segments into a linear arrangement corresponding to 

chromosomes or at ieast to linkage groups that might later be assigned to specific 

chrotnosomen 

Rlien a genome map is completed for a given crop it should be possible to determine: 

I .  The number of loci involved in the control of important agronomic traits and design 

more efficient breeding strategies in ternis of procedures, population sizes, selection 

intensities, etc., to obtain maximum genetic gain. 

2. Major loci that interact together in a synergistic fashion and use those combinations 

to assemble, or avoid, gene combinations in developing improved varieties. 



3.4.6 Advantages and Limitations of Linkage maps 

Linkage maps based on hybridization exhibit advantages as well as limitations as 

compared to maps derived from other types of markers. Advantages include the high 

level of polymorphism detected, the rapid screening of the genome with few probes, the 

availability of universally applicable probes without cloning, and the higher 

reproducibility as compared to RAPDs. H o ~ e v e r .  this approach may be limited by 

extensive clustering of simple repeats or by high mutation rates leading to unexpected 

fragments in the progeny (Jeffreys er al. 1988). Inclusion of parental and FI  DNA in the 

segregation analysis. and tile preferred use of accession rather than (presumably less 

stable) indi\'idual-specific markers will help to minimize this problem. A disadvantage 

shared with RAPDs is that the allelic state of a fingerprint band is usually unknown, and 

its occurrence has to be treated as a dominant rather than a codominant marker. 

3.4.7 Other Uses of high densiv linkage maps 

Consen,ation of linkage groups between closely related genera appears to be quite 

conlmon and has been obsen8ed in the Gramineae (maize and sorghum), Solanaccae 

(potato, tomato, and pepper), and Brossica (cabbage, turnip and rape) (Tanksley el al. 

1989). Similar consen7ation of linkage groups have been observed in Lens and Pisuni of 

the Rceae (Weeden e /  al. 1988) and in Cicer (Muehlbauer and Weeden 1989). 

Conservation of linkage groups between closely related genera facilitates 

mapping efforts and may indicate potential sites for important genes. Also, substitutions 

of entire chromosomes from one genus to another have been suggested as a possibility. 

Gene cloning for the eventual developme~lt of transgenic plants is at present a 

remote possibility for Cicer and many other crops. Prospects for transgenic plants depend 



on determinations of the gene products to enable cloning of the gene, and upon the 

presence of systems to introduce the foreign gene. Identiiication of closely linked RFLP 

markers may permit cloning; however, even small map distances translate into great 

distances at the DNA level. 

3.5 Status o f  molecular marker technology in chickpea research 

The ease with wliich a genetic map can be developed and applied to a target crop species 

depends on the genetic complexity of the species and the extent of DNA polymorphism 

present in the species. Some plant species, such as maize (Smith 1988), potato (Gebhardt 

ct 01.1989) and Bra.r5icns (Figdore el 01. 1988) exhibit a high degree of DNA 

polymorphisni even within com~nercially exploitable germplasm pools of maize (Lee et 

al, 1989; Dudley et GI. 1991; Messrner et al. 1991; Melchinger 1991). However, other 

plants such as soybean (Apuya rr a[.  1988); Keim el al. 1989) and tomato (Miller and 

Tanksley 1990) and hexaploid wheat exhibit relatively low frequencies of RFLPs. Thus, 

the first step in developing genetic maps with DNA markers has been to examine the 

frequency of DNA polymorphism within species to identify suitable parents showing 

sufficient DNA polymorphisms for efficient mapping. Genetic mapping in generally 

monomorphic species like sorghum, groundnut etc has usually been achieved by using 

wide crosses between highly divergent parental genotypes. sometimes ecen using 

different species (Paterson el 01. 1991). The low frequency of DNA polymorphism within 

a species can also limit the utilization of mapped DNA markers in crosses that are of 

agronomic importance, but involves more genetically monomorphic parents. Recently, 

SSR marker technology has been developed and used for genome mapping and DNA 

fingerprinting in different plant species, such as rice (Wu and Tanksley 1993; Yang el a/. 
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1994 Chen el al. 19971, wheat (Roder el ai. 1995), barley (Sagliai Maroof el al. 1994), 

maize (Senior el 01. 1993) Soybean (Cregan el a/ .  1994; Morgante el a/. 1994 Akkapa cr 

al. 1995) and tomato (Broun and Tanksley 1996). For these reasons, it is important to 

establish the frequency of DNA polymorphism within a species before engaging in a 

plant improvement program using n~olecular niarkers. 

The application of niolecular markers helps in breeding, particularly for traits in 

which screening is difficult. At present, there is no publislied genetic map of chickpea 

incorporating DNA markers, but mapping projects are undenvay. The future success of 

using mapped RFLP and b \ P D  markers in breeding programs will greatly depend on the 

degree of genetic \'ariation in [he germplasm under intestigation 

3.5.1 Mapping in chickpea 

The niap of a crop species can greatly increase the efficiency of genetic and breeding 

studies. A gene map is needed to accelerate the crop improvement processes in chickpea 

(Muehibauer,l989). Genetic studies undertaken so far in chickpea focussed on 

~norphological traits such as plant habit, leaf form and colour, flower colour, podding 

habit and seed coat colour a'liich resulted in the establishment of a few linkages between 

these traits as reported by Muehlbauer and Singh 1987. They are traditionally used in 

taxonomy, genetics, and breeding. Since most of these traits are recessive with 

detrimental effect (pleiotrop~c), these are not suitable as selectable genetic markers in 

breeding programl~ie (Gaur and Slildard 1990). Desplte the ~ i d e  xariability for 

morphological traits in C, arierinum, their less number and their expression is age and 

environment dependent. 



Seed storage proteins were the first candidates as molecular markers to 

distinguish the germplasm lines, due to their ease of isolation and identification on gels. 

Next came the isozymes which are still popular in some cases such as for study of 

diversity, or as a marker during introgression of alien germplasm, Studies on inheritance 

and linkage of isozynie genes in C. orietinunt and two closely related wild species, C. 

reticulaturn Lad, the proposed progenitor (Ladizinsky and Adler 1976), and C. 

cchinorperniu~!~ Davis were carricd out.(Gaur and Slinkard 1990b). Studies on 

inheritance and linkage of Isozyme genes in C. arieiinum and two closely related wild 

species, C. reticularun? Lad the proposed progenitor (Ladizinsky and Adler 1976), and C. 

cchinospern~~int Davis were carricd out.(Gaur and Slinkard 1990b). However, this map is 

still in prelimiliaiy stage, mainly due to the low level of polymorphism displayed by 

isozymes and RFLPs at lnolecular level (Van Rheenen, 1992). DNA amplification based 

markers, RAPDs (Williams et a/.  1990) or AP-PCR (Welsh e l  ai.1990) or D.4F (Caetano- 

Anolles e t a / .  1991) have also allowed construction of high-density genetic maps (Reiter 

el 01. 1992) and saturation of already existing genetic maps in a few plant species 

(Sharma ct a/.  1991). In chickpea, the occurrence of considerable interspecific DNA 

polymorphism as re\.enled by R4PD analysis has facilitated construction of a partial 

linkage map. The genetic \sariability in agronon~ically important chickpea accessions 

(Cicer arierinu~~i L )  as detected by single-locus RFLP probes, RAPD and isozyme 

markers, was found to be rather low Lack of adequate polynlorphism in cultii~ated 

chickpea was observed eLJen with powerful techniques like AFLP. RAMP0 analysis has 

also been carried out in chickpea genotypes (Banerjee el ~1.1997). 



Now onwards one can expect microsatellite markers to take over as the major 

type of DNA marker for mapping, and fingerprinting since they are PCR-based, highly 

polymorphic, and co-dominant. In chickpea genome, microsatellites are reported to be 

highly polymorphic (Weissing er a/ .  1992) and could be used effectively for linkage map 

construction.Those detected by in-gel hybridization with simple repetitive 

oligonucleotide probes such as (GATA)r probably have repeat unit numbers much greater 

than 20. They are present in at least 200 loci in the chickpea genome (Sharma er ai. 

1995). A comparable number of minisatellires occurs in the tomato genome and some of 

the most polyniorphic loci cloned in the tomato contain microsatellites (Brown & 

Tanksley 1993). 

After a long history of search for suitable markers for genome mapping in 

chickpea and its pathogen Ascochyfa rabici, STMS were identified as the only type of 

markers that \vould not only alloiv tagging of specific genes in test crosses but could also 

to be applied in routine breeding (Udupa e f  ui. 1997). These markers are robust, highly 

informative, PCR-based, can distinguish heterozygotes from homozygotes, and can be 

used for automation. These types of markers are becoming increasingly popular in plant 

genome analysis and map development, and gradually regarded as the standards for 

applications in marker- assisted breeding. The markers will also be very useful for 

genetic diversity studies (Ayad el ui. 1997). They form the backbone of the most 

advanced available genetic map of chickpea. Further, STMS may be used to exploit the 

until now inaccessible gene pool of chickpeas wild relatives. The generation of these 

markers by Winter er ai. (under publication), and their application resulted in the first 



integrated molecular marker map of the chickpea genome, which will soon be ready for 

practical applications. 

Recently, highly polymorphic microsatellites became the markers of choice for 

linkage mapping and population studies. Tliey are currently following two main strategies 

to exploit the variability of niicrosatellites and adjacent sequences for genetlc studies in 

chickpea. 

1.) In an approach referred to as oligonucleotide fingerprinting, microsatellite- 

complementary oligonucleotides \+ere employed as n~ultilocus probes for in-gel 

hybridization. A total of 38 different probes representing di-, tri- and tetranucleotide 

repeats were used to analyze variability between and within four accessio~is of C. 

aricrinuni. Hybridization signals %ere obtained with 35 probes. While the abundance 

and level of polymorphism of different target sequences varied considerably, distinct, 

intraspecifically informative banding patterns were obtained with the majority of probes 

and all restriction enzlmes tested. No obvious correlation existed between abundance, 

fingerprint qual~ty, and sequence characteristics of a particular motif. 

2.) In a recently developed strategy called nlicrosatellite-primed polyn~erase chain 

reaction (MP-PCR), microsatellite-complementarq. oligonucleotides serve as single 

PCR primers for genomic DNA templates. They tested the general applicability of MP- 

PCR by amplifying DNA samples from tomato, chickpea and two related annual Cicer 

species with a variety of di-, tri- and tetranucleotide repeat primers. Most but not all 

primers generated distinct fingerprint-like banding patterns after agarose gel 

electrophoresis and ethidium bromide staining of the amplification products. Since the 

method proved to be sensitive to reaction conditions in a way similar to RAPD analysis, 



they increased the PCR specificity by the introduction of a modified "touch-down'' 

protocol. In chickpea, touchdown MP-PCR generated highly reproducible banding 

patterns which predominantly revealed interspecific polymorphisms. 

At present, there is very little information available on genetic diversity within 

Cicer arielinuni and no conipreliensive survey has been reported. However, in recent 

years, follouing the introduction of moleculu ~ilarkers in plant genetic research, 

considerable effon has been made to gain a better understanding of chickpea genetics and 

evolution, and important data have been gathered. Annual growh habit, diploid 

cluomosome complen~ent. and the relatively small cliromosome number of 2n=l6 make 

chickpea a relatively simple genetic system that can be studied using n~olecular markers 

and classical genetic principles. An additional advantage that should and will be 

exploited for chickpea is the apparent consen'ation of certain linkage groups between the 

Cicereue and l'icreae tribes. 

Consenfed linkage groups between Pisuni, an extensively mapped genus, and 

Lens, are currently being used effectively to extend the lentil gene map. Similarly 

conserved segments of the genome ha\e been discovered between Lens and Cicer. 

3.5.2 Future prospects for chickpea improvement 

Slany laboratories have now begun investigations into the genomic organization of Cicer 

crricriniini and related species. Much of the work has been encouraged, supported, and 

coordinated by ICRISAT, ICARDA in Syria and the USA. A concerted effon is currently 

underway to map the Cicer genome at Saskatoon, Canada and at Pullman, Washington 

USA using both conventional markers, isozyme loci and W L P .  Other programs involved 

in chickpea WLP mapping and other diversity analysis are also participating in this 



informal network. Interactions between developed and developing country programs have 

been encouraged and initiated. This group plans to select a common set of well spaced 

DNA probes to be mapped in all progrants so that illlegration of separate maps will be 

facilitated. 

The beginning of linkage groups have emerged and additional loci are currently 

been added. Analysis of the inheritance of Ascochyfa blight resistance, tagging of 

important genes, identification of quantitative loci, and marker-assisted introgression 

between desi and kabuli types and wild species to the cultigen are considered to be the 

primary benefits to be derived from this mapping effort. These areas could eventually 

represent breakthroughs for chickpea crop productivity. Greatly improved genetic maps, 

particularly those derived from RFLP and RAPD programs, can contribute immensely to 

future chickpea improvement by plant breeders. These investigations, based on 

~nicrosateliite obtained through both database searches and random screening of genomic 

libraries, have demonstrated that the high level of polymorphism intrinsic to this marker 

system may improve the genetic analysis of plant species with medium or low genetic 

variability. Furthermore, the ease and speed of genetic analysis based on SSRs enhance 

the ability to niake a greater number of SSRs available to  he scientific community, at 

least for most of the species of social and economical value, such as sorghum. for which 

SSRs are not yet available. Due to the initial high cost and time required, the production 

of a suitable number of SSRs in chickpea, as well as in other species, can only be 

obtained through the effort of several laboratories. 

From the review of literature, it is evident that mapping of genomes is very 

advantageous and provides us infomiation about the various genes which are associated 



with traits of agronomic and economic importance. In view, of the advantages coiifel~ed 

by plant genome maps based on molecular markers, the objective of this present study 

was framed to familiarize myself with the various molecular marker technologies, 

especially with reference to chickpea 



4. MATERIAL AND METHODS 

4.1 Plant material 

The genotypes used for the study are listed 111 Table I .  Their description is given in Table 2. 



Table 2. Description of the nine chickpea genotypes. 

rium wilt, double-podcd, brown-coloured 

B In development of RILs. 
5 .  

6.  

7.  

8.  

Two sets of  populatiolls were also used for studying DNA polymorphis~n 

l.GL 769 x 1CC\!'S9 Ft  generation No of progeny 1-18, 

2.Anniger1 x ICCW 6 F2 generation S o  of progcny 1-68, 

Pant G 114 

GL 769 

ICCW 49 

9. 

Hlgh yield~ng, long duration, tolerant to Fusnr~utn 
nllt. cold tolerant line used in breeding & in 
development ofRILs. 
High yleiding, long duration, resistant to 
Furoriun, wilt, cold-susceptible 

Low hielding. Short duration, resistant to 
Fusoriim~ w!lt, cyst nematode, leaf miner. 
Ascoch)Ta blight, and Botrytis gray mold, cold 

Ann i~e r i  
tolerant. 
Hlgh y~elding, short duration, resistant to 
Fusaririnr nil!, cold- susceptible, hvin-poded 

ICCW 6 Low )leiding, short duration, resistant to 
Fusarium wilt, cyst nematode, leaf miner. 
Ascoch),in blight, and Borryris gray mold, cold 
tolrrlnl 



4.2 DNA isolation andpurification 

Step 1: Extraction ofgenomic D,VA 

Genomic DNA was extracted from the young leaves of greenhouse and field-grown 

chickpea plants listed in the Table 1 .  The CTAB method of DNA extraction was followed 

(Saghai-Maroof el 01. 1984). Fresh young leaves (5.5 - 6.0 g) were harvested, lyophilized 

in liquid nitrogen and stored at - 7 0 ' ~ .  The leaves were pulverized to fine powder in a 

mortar and pestle, and 10 ml of freshly prepared CTAB buffer (1.0 M Tris, pH 8.0, 5.0 M 

EDTA, 2% P-mercaptoethanol. 2% CTAB) at 6 5 ' ~  was added to freeze-dried, ground 

tissue in a 30 ml Falcon tnhe. mixed nell on a rotatilig sliaker and incubated for ? hours 

at 65' C with occasional niixing The tubes u'ere taken out from water bath, cooled to 

room temperature, and 10 ml chloroform-isoamyl alcohol (24:l) was added and mixed 

gently by inverting for 5-6 times and centrifuged using swing bucket rotors at 6000 rpm 

for 20 lnin at room temierature. The aqueous phase was transferred to a new 30 ml tube 

to which 10 ml chloroform-isoamyl alcohol was added and mixed gently 5-6 tinies, Kext. 

the extract was centrifuged at GO00 rpm for 20 min at 2 ' ~  and the aqueous phase was 

transferred to 30 ml corex tube. After chilling, 10 ml of isopropanol was added to the 

aqueous extract, and mixed gently by inversion for several times, and kept at - 2 0 ' ~  for 

15-20 minutes. DNA was spooled with glass hook. The spooled DNA was washed in a 5 

rnl corex tube containing 2 nil of 76% ethanol. 0.2 h l  NaOAc (\Vashing Buffer I) 

followed by a 100% ethanol wash. The tubes were inverted on a paper-towel and allou~ed 

for all ethanol to evaporate. The DNA was treated with 2 ml of TsoEjo containing RNase 

(0.2 ~ g l m l )  and incubated at 3 7 ' ~  for one hour. 



Step 2: Purificalion ofgenomic DNA 

After the RNase treatment, 200 p1 of 5M NaCl was added, shaked gently and incubated at 

4 . k  for 15-20 minutes. The tubes were next centrifuged at 6000 rpm at 2 ' ~  for 20 

minutes. The aqueous phase was transferred to a 5 ml corex tubes. Next, 2 ml of 

phenol:chloroform ( I : l )  was added and centrifuged at 2500 rpm for 10 minutes at 2 ' ~ .  

Equal volun~e of chloroform:isoamyl alcohol (24: 1) was added to the aqueous phase and 

centrifuged at 2500 rpnl for I0 minutes at 2 ' ~ .  For precipitation of DNA, 200 p1 of 2.5 M 

sodium acetate pH 5.2 was addcd to the aqueous phase, mixed well and 2 ml of absolute 

alcohol was addcd and ogain mixed well, incubated at - 2 0 ' ~  for 15-20 minutes. The 

precipitated DNA was spooled with a glass hook into a 1.5 ml eppendorf tube and 

washed with 76% and then 100% alcohol. TloElbuffer (IOmMTris.CI, ImM EDTA pH 

8.0; 300 pl) was added to dissolve the pellet and stored at 4 ' ~  until further use 

Slep 3.  Quanfificofiori qYD,tlA 

The quantity and purity of the DNA samples were determined spectrophotometrically by 

measuring the absorbance at 260 and 280 nm with a SHI.WDZU U V  160A 

spectropliotometer. The ratio of ODlao to OD >go provides sotile information about the 

purity of the DNA samples. DNA was quantified considering that 1.0 OD unit at 260 nm 

x\ , , 
is equivalent to 50 pg of DNA per ml (Sambrook ci 01. 1 9 8 9 1 , ~  major d~sadvanrage of 

this method of DSA estimarion is that is that RNA, oligonucleorides, proteins and other 

contaminants interfere a8ith the measurement. 

Slep 4 E~thidiun~ Bro~nide Sfainingfor D!\'A Q~iai~rificarion 

An aliquot of genomic DNA was run on 0.8% ethidium bromide stained agarose gel. The 

dye intercalates into the DNA double helix, and the intensity of florescence induced by 



UV light is proportional io the amount of DNA in the lane. Comparison with a standard h 

Hind 111 digest of h marker DNA, gives an estimate of the amount of DNA in the 

samples. 

This technique also allows ( I )  DNA quantitation 

(2) Estimation of the extent of contamination by RVA (which usually runs ahead) 

(3) Evaluation of DNA quality (the extent of degradation). 

4.3 RFLP analysis 

Step I :  Restriction digesiion ofgenoniic D.VA 

Geno~nic DNA was digested with two restriction enzymes, Eco R I and Hind Ill. 

ECORl Restriction Sites Sequence: 5' G AATTC 3' 
3' CTTAA G 5'  

HlND IlIRestriction Sites Scquence: 5'  A AGCTT 3' 
3' M C G A  A 5'  

Prorocolfor Resrricrion digestion 

Concentration of genoniic DNA: 10-15 pg 

Reagents for 10 reactions: 
Restriction buffer 50 pi 
Restriction enzyme (20 uniislpl) 30 p1 
SDW 20 pl 

Total reaction \'olume gj&l 

Master-mix was made and 10 p1 was dispensed into 9 reaction tubes IOpI each, 

and template DNA added such that the final concentration of DNA was 10-15 pg. 

Reaction tubes were briefly centrihged and incubated at 3 7 ' ~  for overnight for complete 



digestion of chickpea genomic DNA. The samples were run on the 0.8% agarose gel at 

40 V. After the run, the gel was stained with ethidium bromide and then de-stained in 

distilled water for about 30 min. The gel was then transferred on to the vacuum blot 

apparatus to transfer the DNA fragments to the nylon membrane. This was performed in 

two stages: 

S ~ e p  2: Southerrz Blorting 

The nylon membrane was cut according to the gel size (Amersham Hybond N) and it 

\%as marked. The gel \\'as carehlly transferred on to the membrane and the depurination 

using 0.25 M HCI, denaturation uslng 0.4 h' KaOH and neutralization reactions were 

carried out for 20 min each, The transfer was done in 20x SSC solution for one hour. 

After the transfer, the DNA was cross-linked to the nylon membrane, followed by baking 

at 8 0 ' ~  for one hour. The blot was wrapped in Sura~r M'rap, preserved at 4 ' ~ .  The 

preserved blots were ready for the hybridization. 

4.3.1 Labeling of probe 

Random-primer labeling of inserts was performed as described by Feinberg and 

\Togelstein (1983). A total of 20 ng purified insert DNA was used as the probe. It was 

denatured for 5 min in a boiling water bath, flash-cooled, and final volume was made 

upto 50 p1 as shown below and incubated at 3 7 ' ~  for 3 hr. The reaction \\as stopped 

using 0.5 M EDTA and the sample ivas diluted to 200 p1 nith distilled water. The 

unincorporated radioacti1.e material was removed by using spin columns packed with 

Sephadex G-50. The radioactivity of 2 PI  aliquot was monitored before and after 

purification to calculate the percent of incorporation of the label. 



Chickpea clone 33-1 was labeled with (a-j2 P) dCTP in the following way: 
DNA 5 PI 
Buffer 5 ~1 
dNTP without dCTP 6 PI 
dCTP (a-'2~) 5 PI 
Klenow 2 PI 
SDW 27pl 

Total volume 

The samples were incubated at 37' C for 1 hour before stopping the reaction by adding 

200mM EDTA (amount of EDTA to be added was adjusted according to the reaction 

volume). The samples were denatured at 95' C for 5 min and immediately transferred to 

ice and kept for 5 min; after 5 min, 1. DNA marker cut with Hind 111 was added to the 

probe. 

4.3.2 Visualization of DNA band of interest using the radioactive probe 

Step 3: Prehybridi:ation and hybridization 

Prehybridization was carried out in boxes containing prehybridization solution (200 ml 

20x SSPE, 5 gm SDS, 50 ml lOOx Denhm's  reagent, 20 ml salmon sperm DNA (10 

mglml), distilled water to make volume 1 litre at 65'~ for 4 hr. The labeled probe was 

denatured for 5 min in boiling water bath, flash-cooled and added to the same 

prehybridization solution. The hybridization was carried out in hybridization oven for 16 

hr at 6 5 9  with constant agitation (rotation). 

INaCI :::6 1210g  

Na,HP047H20 53.6 g 

EDTA O.02M 7.44 g 



Step 4: Posthybridization processing ofSo~trhcrn blots 

Affer 16 hr hybridization the excess probe was removed by a.osl:ii~g the blots in solution 

I(2x SSC, 0.5% SDS) for 15 ~ n i n  and in solution 11 (0.1X SSC, 0.1% SDS) for 15 min at 

6 5 ' ~  with constant agitation. The blots were wrapped in Saran wrap and exposed to X- 

ray film (Kodak) at - 8 0 ' ~  for 4-5 days, before developing the film 

4.4 RAPD analysis 

Table 3. Scquence of Operdn primers used for RAPD analysis. 



RAPD-PCR was performed according to the protocols of Williams ct a1 (1990). Random 

10-met primers employed in this study were purchased from Operon Technologies, USA. 

Step I :  PCR ampiificafio~~ 

PCR reaction was performed under a laminar hood with 25 pl of a total reaction mixture 

containing 25 ng of genomic DNA, 2.5 p1 lox PCR Buffer, 1.5 p! 2 5  mM MgCI2, lp l  

2 . 5  mM dNTP, I p1 10 pM RAPD primer and 0.4 jl! Taq polymerase (Gibco BRL 5 Ulpl) 

volume was made upto 25 p1 with sterile distilled water A control without template DNA 

was included in each set of reactions wirh a single primer. The amplification reaction was 

performed in a Pcrkb? Elnlcr GencAti?p 9600 thermal cycler programmed for 40 cycles 

with the following tempreature profile: 

First cycle: Denaturation at 9 1 ' ~  for 2 min. 

PA~ner annealing at 4 0 ' ~  for 1 min. 

Primer extension at 7 2 ' ~  for 2 min. 

Next 38 cycles: Denaturation at 9 4 ' ~  for I min. 

Primer annealing at 4 0 ' ~  for Imin. 

Primer extension at 7 2 ' ~  for 2 min 

Last cycle: Denarurarion at 9 4 ' ~  for 1 min. 

Prinirr annealing at 40°C for 1 min. 

Primer extension at 7 2 ' ~  for 5 min. 



Step 2: Electrophoresis 

The amplified DNA fragments were mined with 2 pl of 6x loading dye (25 mg Xylene 

cyanol and 1.5 g Ficoll type 400 for 10 ml). PCR products were electrophoresed on 1.5% 

Agarose (Sigma) gels at a voltage of 25 V overnight. The gels were stained with ethidium 

bromide (5 mglml) and photograplied under UV illumination. 

Step 3. Scoring of gels 

The presence of a DNA band was scored as 1 and absence as 0. The polymorphism in an 

accession was detected as presence of a band which is not shared with a different 

accession. 

B e p  4. Clusier unuljsis 

Siniilarity index matrices \yere generated based on the proportion of common restriction 

digestion fragments between t ~ o  genotypes (Nei 1987) using 

\%ere 'F' is the similarity index, M, is the number of bands in genotype x, My is the 

number of bands in accession y, and ZM,, is the number of bands common to both x and 

y. Cluster analysis of data for nine chickpea genotypes was carried out using the 

statistical sofiware package GENSTAT. 



4.5 RAMP0 ANALYSIS 

The RAPD amplified DNA fragments using primers A-11, A-12, A-13, A-14 were 

blotted onto Hybond N nylon membrane and preserved at 4 ' ~ .  The gel was washed with 

distilled water and the electrophoretically separated DNA samples was depurinated by 

rinsing the gel in 0.25 N HCI for 15 lnin followed by denaturation in 0.4N NaCl for 45 

min. The DNA was transferred on to nylon membrane (Zeia-Probe GT Bloriing 

h./embranc, BioRad) at 5 inches Hg Vacuum for 2 11 using 20x SSC (3M sodium chloride, 

0.3 M trisodium citrate) as transfer buffer. After completion of transfer, the blots were 

rinsed in 3x SSC and UV i r o s s i i ~ e d  using UV crosslinker (Siralagene). 

4.6 DNA Amplification Fingerprinting (DAF) 

The protocol of Caetano-Anolles el 01 (1990) was followed. RAPD primer A-06 5'-GGT 

CCC TGA C-3'that showed single band in RAPD analysis was selected for DAF analysis. 

Step 1. Primer labeling 

This was performed by phosphorylating the 5' end of the RAPD primers with [ ~ " P I A T P  

and Td polynucleotide kinase. T4 P h K  ddiiuiio. Tq PNK was diluted in 1'10 ratio in 

dilution buffer supplied in the USB kit, i.e. 0 5 11 enzyme mixed with 4.5 p1 d~lution 

buffer. 

Labeling of primer OPA-6 (concentration of each primer -IS nglpl) 3 PI of 

2.5mM RAPD primer, 1 pI lox T4 PSK buffer, I pl diluted TI PNK (].Sunits), 4 p1 

distilled water, 1 pI -P"ATP (10 pCi) were mixed to make final volume to IOpl. The 

above reaction mixture was mubated  at 3 7 ' ~  for I hour and the enzyme T4 PNK \bras 

denatured by heating at 7 0 ' ~  for 10 minutes, and the reaction mixture w'as chilled quickly 

on ice and frozen till further use. 



Step 2: PCR an~pI$catiorz 

A set of 5 master mixtures (6.7 pl) were prepared for each primer, Sufficient for all 

samples plus one negative control lo which water was added instead of DNA. Master mix 

containing 2 . 5 ~ 1  10 x PCR buffer, 2p1 25 mM MgCII, lu l  dNTP, 1 unit of Tuq 

polymerase (Gibco BRL) and l p l  each o f y - " ~  ATP labeled A-06 was prepared. Different 

volumes of unlabelled priniers 2 ,  4, 6,  8 and 10 pl were added to the above 5 master 

n~ixtures in sequence and the final volume was mede upto 23 111 with double distilled 

water and 2 p1 of DNA (5 ng) x a s  added. PCR was performed in Perkilt Elmrr 9600 

thermocycler programmed for 40 cycles with tile following same RAPD temperature 

profile.After amplification. vials were stored at -20°C. 

Step 3: EIrctroi,horesis 

The amplified samples (25 pi) were mixed with an equal ~ o l u m e  of formainide dye 

(98% deionised forn~am'ide, 10 mM EDTA pH 8.0, 0.025% broinophe~iol blue and 0.025 

% x!.lene cyanol as tracking dyes). The resulting mixtures were heated for 5 minutes at 

9 0 ' ~  and then quickly cooled on ice. Each sample (6 pl) was loaded on a 6% denaturing 

sequencing polyacrylaniide gel (19: i acrylamide: bis; 7.SM urea, 10x TBE buffer). 

6% Polyacrylamide gel composition: 15 mi of 40% acrylamide; 10 mllOx TBE and45 g 

urea. and the fitial volume was itlade upto 100 1111 with distilled \\ater.Electrophoresis 

was performed at constant power of 1500 volts for three hours. and the gels were dried 

and exposed to X-ray film. 



ThepreFence of a DNA band was scored as I and absence as (I. The polymorphism in an 

accession was detected as, presence of a band which is shared with a different accession 

analyzed. 

4.7 MICROSATELLITES 

T;rblz 4 L~al i ~ l p n ~ n c n  used for SSRq: 

T;L~ 

Tr19 

Tr21 

Tr2h 

Tr29 

RLC? 

Srcp I :  PCR cm1~~1rficotio11 

The total reaction tnixture of ?(I pl consisting of 25 tig of genotnic DNA, pruner 6 ul 

(primer concentration is 15 ptnolipl obtained fro111 Gertnany, dNTP tnix (2.5 I ~ M  each) 

2pl. I l l  x PCR buffer ?ul. 251nAI MpCI I 1.2ul. Taq polytnerase (5UIpl) 0.2 ul and the 

final volutne was made upto ?O pl with double distilled water. 

All PCR reactions were performed in a P e r k i ~ ~  E i m ~ ~ r  9000 ihermocycler. 

Progratn: Each pair of primers were initially screened for amplification of a specific 

product froin chickpea genomic DNA using the following programs: 

Not ah:red hy L:nivcrsit! ofFr;u~klurt 

N ~ i l  ikscd hy L'niversity iil Fr:mkiurl 

Nut sksed hy llniiersil! olFr;mkfurt 

F: AACAACTTCCTCTTATITTCCA 
R: CAGTAAAAATCAKCCAAAC 
F: KCCACTGAAAAATAAAAAG 
R: AmGAACCTCAAGTTCTCG 
Nor sh;ued hy Univers~tyof FrtmkEwt 

Tr56 

Tit72 

F: TTGATTCTCTCACGTGTAATTC 
R: ATITTGAnACCGTTGTGGT 
Not rh;urd hy I~n~ver?ity oiFr:mkhirl 



First cycle: 96'C 2 n ~ i n  

35 cycles : 9 6 ' ~  20 sec 
5 5 ' ~  50 sec 
6 0 ' ~  50 sec 

followed by cooling at 4 ' ~ .  

Step2: Electrophorcsisprocedure 

After amplification, 5 pl of 6x Loading buffer (0.25% xylene cyano! and 15% Ficoll400) 

was added to each sample. The samples were loaded on ethidium bromide stained 2% 

Nusieve agarose gels and run at constant boltage of40 V for 4 hours and photographed 

under UV illumination. 

Step 3. Scoring i f g e l s  

Polymorphism was recorded by scoring the presence or absence of a 

particular mobility. Segregation in the mapping popularion was recorded by scoring the 

presence or absence of the band that correspond to either of the parents. 

Step 4: Cluster analysis 

Similarity index matrices were generated based on the proportion 

of common restriction digestion fragments between two genotypes (Xei 1987) using 

&%ere 'F' is similarity index, M, is the number of bands in genotype x, My is the number 

of bands in accession y, and Mxy is the number of bands common to both x and y. Cluster 

analysis of SSR data for 9 chickpea genotypes was carried out using the statistical 

software package GENSTAT. 



5. RESULTS AND DISCUSSION 

5.1 Detection of genetic variability in chickpea using RAPDs 

RAPD analysis of seven cultivars of Cicer orierir?um L, and two wild species of Cicer 

relic~~latum L. (ICCW 49 and ICCW 6) has revealed a total of I03 DNA bands amplified 

with 19 primers tcstcd, out of these 76 a,ere polymorphic. 

Of the 19 primers.13 ahicii showed polymorphism are A-04, A-07, A-09, A-10. 

A-12, A-13, A-14, A-15, A-I f .  A-17,A-18, A-19 and A-20. Among these primers, 

polymorphism was best revealed with primers A-04, A-07, A-12, A-13 and A-14. The 

fragments obtained were in the size range of 300 bp to 3000 bp. On an average about 5-6 

fragments were obtained for each primer. Two primers A-02 and A-06 produced single 

high intensity bands and no polymorphism was observed. A-02 produced thick and A-06 

produced thin single band. Of the I 9  primers tested, primers (A-01. A-02, A-06, .4-09, A- 

11 and A-19) did not produce any polymorphism but showed amplification (Fig.1-5). 

Primer A-05 produced no amplification. 

RAPD analysis of chickpea progeny from the cross GL 769 and ICCW 49 was 

done using primers A-04, A-07 and A-14. Of the three, A-07 and A-14 Mere better than 

PI-03 as these revealed more polymorphic bands compared to those in A-04. (Fig. 6). 

Prinier A-04 was used to screen whole progeny from the cross Annigeri and 

ICCW 6 that showed most bands in progeny were inherited from Annigeri. 

A dendrogram based on degree of similarity, from the RAPDs data placed the 

genotypes into 2 distinct groups. The genotypes ICCV2, GL 769, Pant G 114, Annigeri, 



ICCV 88202, ICCV 92504, and JG 62 formed a separate group which can be further 

divided into four sub-groups. The sub-group I ICCV 88202, ICCV 92504 and JG 62; sub- 

group I1 Annigeri, sub-group I11 GL 769 and Pant G I  I4 and ICCV2 in sub-group 4. The 

wild species ICCW6 and ICCW 49 formed a separate distinct group indicating the 

diversity when compared with other groups (Fig 12) 

S l m 1 l a r ; t y  m a t r l x  b a s e d  on =VIP3 a n a l y s l s  o f  9 c 5 i c k p e a  g e n o t y p e s  s s i n g  
s l n g l e  L l n k a g e  c l u s t e r  a n a l y s i s .  

+"* S I N I L A R I T Y  MATRIX "+" 

*'-.* SINGLZ LINKAGE CLUST3R ANP.LYSIS ".** 



Table 5. RAPD data of nine chickpea accessions GI lCCV 2; G2 JG 62; G3 ICCV 88202, G4 ICCV 
92501; G5 PANT G 114: G6 GL 769; G 7  ICCW 49; G8 Annigeri; G 9 ICCW 6. 

N- Non polymorphic P*- polymorphic 







Table  6. RAPD analysis of  ch~ckpeaprogeny from the cross GL 769 x ICCW 49 with primers A-04. A-07. 
A-14. 



1 Figurcl: R4YD profile of nine cllickpea genotypes using primers A-01.4-02, 

A-03, A-04 and A-05. 

84 



Figurc 2: RAP3D prolile ui'ninr chickpea penot)pci l~sing primers A-06. "1.07. A- 

09 and A-10. M: Lambda H ~ n d  111 marker. C. Control. 



Figure 3: RAPD profile oi'ninc chickpea yenotypes ubing prlmers A-l  1 .  A-12. A- 

13 and A-14.M: Lambda Hind 111 marker. C: Cot~troi. 



Figure 4: RAI'D profile of nine chickpea genotypes using 

primcrs A- 15, A-1 6 ,  A- 17 and 11- 18. 



Figure 5: RAPD prolile of nine chickpea genotypes using primers OPA 19 .and 

20. M: Lambda Hind Ill marker. C: Control. 



Figure 6: RAPD profile of the progeny GL 769 X ICCW 49 
using the primers A-04, A-07 and A-14. M Lambda H ~ n d  Ill 
marker, PI GL 769. P2 ICCW 49. 



Figure 7: RAPD profile of the progeny Annigerl x ICCW 6 with prlmer A-04:M 
1 

Marker;P~ Annigeri, PlICCW 6. 1-68 progeny of Annigeri x lCCW 6. C-Control 





T a l  

M 2 1 2 3 4 5 6 7 8 9 C  

hll  1 2  3  4 5  6 7  X 9 C  

111 1 2 3 4 5 6 7  X Y C  

Figure 8 : SSRs (Microsatelliles) profile of n ~ n e  

and Ta72; MI Lambda Hind Ill marker, M2 I k t  

chickpea gcnot!pes w ~ t h  primers Ta7. Tr23. Tr?h. Tr29. Tr19 

8 ladder 



Figure 9: SSRs (Microsatellite) polymorpl~isin in progeny 

GL769 x ICCW 49 using priiner pair Tr29; M Lambdn 

Ilind Ill marker; P1 GI, 769: P2 lCCW 49. 

1-1 8 Progeny of the cross GL 769 x ICC W 49. 



I Figurelo: SSR polymorphism in progeny from the cross 

Annigeri x 1CCW 6 ;  M Lambda Hind I11 marker; 1-68 progeny. 

93 



i ICCW 49 

9 ICCW 6 

GL 769 

ICCV 02504 

ICCV 88202 

ANNlGERl 

I ICCV 2 

1 I I I 1 
40 30 20 10 0 

Similarity Index 

Dendrcgram based on microsatellite data of 9 chlckpea genotypes 



5.2 Detection of variability among chickpea genotypes using 

microsatellites 

For microsatellite analysis, 9 genotypes of chickpea were screened with 8 different 

~nicrosatellite primer pairs procured from University of Frankfurt, Germany. Of the 8 

primer pairs, 5 priniers (Ta29, Ta19, Tr26: Taj3 and Ta72 showed good poiylnorphism 

for the parenis GL 769 and ICCW 49 and con be used lo study polgmorpliisn~ in (he 

progeny of GL 769 x ICCW 49 1'23 produccd hint bands. Among the 5 pri~ilcr palrs, 

Tr26 and Ta29 were better than the other three In distinguishing many of tlie chickpea 

genotypes. Hcnce Ta29 a a s  uscd to screen the whole progeny of the cross GL 769 and 

ICCW 49. Of tlie 18 homazygotes, 16 were of GL 769 type and 2 \\ere of ICCW 49 type 

sliown in Table 8. 

Tlirce primers Tul'i, Tr26, Ta?9 rlio\~ec! good polymorphism for [lie parents 

Annigeri and ICCW 6 and can be uscd to screen for polymorphism in progeny of 

Annigeri s ICCW6. Tr26 was selected to screen for polymorphism in tile cross Annigeri 

and ICCW 6 , 3 3  heterozygotes and 28 honiozygotes and 7 produccd no bands. 

Sirnilant? matrix bastd on rnicrosa*,tlli~e al:,a:js,i of 9 ch,cl\>ea geno\ipcs using single hnhage c l uae~  

analysis. 

..*** 7 v - .  .,.- - -  
u....u h,.. .ri.n.X "'-' 



Cluster analysis of niicrosatellite markers placed the genotypes into 3 major 

groups. The genotypes JG 62 and ICCV 2 (group I), and the wild genotypes ICC\t' 49 

and ICCW 6 (group 111) formed distinct groups, while the genotypes GL 769, ICCV 

92504, ICCV 88202, Annigeri and Pant G 114 formed a separate group (Group 111) uhich 

can be divided into three subgroups at thc level 22. Subgroup I include ICCV 92504 and 

ICCV 88202; Subgroup I1 A ~ l i g e r i  and GL 769; and Pant GI14 was clustered into 

Subgroup Ill. Tile wild species ICCW6 and ICCW 49 formed a separate distinct group 

indicating the diversi~y ~vhcn compared with other groups. The cluster a~ialysis of IWPD 

data also indicated the diversity of \$ild species when compared with other genotypes. 



Table 7 .  SSR analysbs o f 9  chickpeagenotypes 

1 -Band present; 0 -Band abscnt. 

Table 8. SSR data of chickpea progeny from the cross G L  769x ICCW 49 wilh primer pair Tr29 

1:1 lleterozygotes 

I :O liomozygotes of the type GL 769 

0.1 homozygotes of [lie t:pe ICCW 19 



TABLE 9. SSR data of ch~ckpca progeny from the cross Annigcri and lCCW 6 with primer palr Tr26. 

I : I  heterozggotes 

1:O ho~nozygotes of tile type ICC\V 6 

5.3 Detection of variability among chickpea genotypes using DNA 

amplification fingerprinting. 

Primer giving slngle band in RAI'Ds i e., OPA6 was selected for DAF analysis. 

Increasing primer concentrations were used to choose the best primer concentrations and 

also to compare the band panerns obtained with each primer concentration. The number 

of polymorphic bands obtained varied \ ~ i t h  increasing primer concet~trations with 0.8 

pM, 6 out of 10 bands (60°h); \\mi111 1.6 p\4, 10 out of 15 bands (67%; \wth 2.4 ~ I M ,  13 

out of 19 (69%); with 3.2 phl, 16 out of 23 (70%) and finally with 4.0 pM, 17 out of 24 

(71%) bands were polymorphic. 



Tablc 10. DAF analysis o f  four chickpen genotypes 
NP Non polymorphic P* Polyniorphic 





5.4 Conclusions 

Consistent results have been obtained with different type of marker techniques used to 

investigate a set of chickpca genotypes. U P D  marker can be the marker of choice when 

screening large number of samples, but their dominant nature, problems with 

reproducibility and inteipretation of band patterns limits its use. 

DAF requires little amounts of DNA, higher primer concentration, stringent 

conditiolls in PCR and use of sequencing gels and radioactive detec~ion for higher 

resolution, sonsttivity and discritnlnation. Comparable levels of variation u a s  obser\ed 

with either R 4 P D s  and DAF. 

STMS usually define a single, multi-allelic locus, co-dominant and highly 

reproducible. Therefore, it call be concluded that STMS can be markers of interest and 

best to reveal polymorphism provided many STMS primers are available and information 

about primer sequences is easily exchanged between laboratories. Costs, time of project 

and sufficient expertise niust he taken into account before taking up new projects. 

Undoubtedly, there is still a long and winding road to be followed before the ultimate 

markers for detecting genetic diversity and relatedtless in plants are de\.eloped. 



Figure 11: L)AF prufilc i l l 4  cl i~ckprn gno t?pes  L A N E  I GL769 , L.,\NE: ? ICC\\' 

49, L A N E  3 Anr~~qer i ,  LANE 4 ICCW 6. LAGNE 0 C'onlrol 
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