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2.1
Introduction

The wheats (Triticum spp.) belong to the Poaceae, the
largest family within the monocotyledonous plants.
Bread wheat (Triticum aestivum L. em. Thell) is one
of the most important cereal grain crops of the
world and is cultivated over a wide range of cli-
matic conditions. Global production of bread wheat
in 2003 was 557 Mt, with an average yield of 2.68 t/ha
(http://apps.fao.org/). The world’s major bread wheat-
producing areas are in northern China, northern In-
dia, northern USA and adjoining areas in Canada,
northern and central Europe, western Russia, south-
ern Australia, southern Latin America and South
Africa. Worldwide, wheat provides nearly 55% of the
carbohydrate and 20% of the food calories consumed
globally (Breiman and Graur 1995).

Wheat is one of the most extensively studied crop
species, particularly in the area of cytogenetics. An
extensive catalogue of genetic and cytogenetic stocks
was developed in the years following the ground-
breaking isolation of aneuploid lines by Sears (1954).
This work led to the concept of chromosome engi-
neering, which takes advantage of the effect of the Ph
genes. These genes restrict pairing and recombina-
tion to homologous chromosomes (Riley and Chap-
man 1958). Wheat provides a model system for the
study of polyploid cytogenetics because of the ease of
chromosome manipulation. The pioneering cytoge-
netic work by Kihara, Sakamura, Sax, Sears, Riley and
others (Riley and Chapman 1958; Riley 1965) showed
that the species of the genus Triticum form a polyploid
series, with a basic number of x = 7. Thus there are
the diploid (2n = 2x = 14), tetraploid (2n = 4x = 28)
and hexaploid (2n = 6x = 42) species. Most modern

cultivated wheat varieties are hexaploid (T. aestivum),
described as ‘common’ or ‘bread’ wheat and valued for
bread making. Bread wheat is a segmental allopoly-
ploid containing the three distinct but genetically re-
lated (homoeologous) genomes A, B and D. It also has
a very large genome (1.8 × 1010 bp), making an aver-
age wheat chromosome about 25-fold larger in terms
of DNA content than the average rice chromosome
(Moore et al. 1995b). Thus three wheat chromosomes
carry the same DNA content of the entire haploid
maize genome, and half of an average wheat chromo-
some is equivalent to the haploid rice genome (Gill
and Gill 1994). The large genome size of bread wheat
is due to extensive regions of retrotransposon-type
elements such that over 80% of the genome consists
of repetitive DNA sequence (Schulman et al. 2004).
In contrast to the suitability of bread wheat for cy-
togenetic studies, the application of molecular tech-
niques has been slow (Lagudah et al. 2001; Langridge
et al. 2001). Many molecular markers are unable to
detect an adequate and useful polymorphism for the
construction of molecular maps, and consequently
applications of marker-assisted selection (MAS) ap-
plications have been limited. However, despite these
problems, some success has been achieved in recent
years, and molecular genetic as well as physical maps
have become available for the chromosomes of all
homoeologous groups (Gupta et al. 1999; Varshney
et al. 2004a). Molecular markers are increasingly be-
ing used to tag genes or QTLs (quantitative trait loci)
of agronomic importance, offering the possibility of
their use in marker-assisted selection (MAS) for wheat
breeding (Gupta et al. 1999; Jahoor et al. 2004). In ad-
dition to their use in MAS, molecular markers have be-
gun to be used to isolate genes via map-based cloning
(Stein and Graner 2004). Some molecular markers de-
tect homoeoloci; that is, the same sequence is present
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on all three members of a homoeologous group. Such
homoeoloci have helped in the construction of com-
parative maps in different cereals, and these some-
times demonstrate the presence of major transloca-
tions thought to have occurred during speciation. In
this article, we review recent progress related to the
generation of genetic and physical maps in wheat and
their applications for a variety of purposes includ-
ing gene tagging for MAS, map-based cloning, diver-
sity studies and comparative mapping in cereals. The
impact of functional genomics and other recent ap-
proaches such as association mapping and genetical
genomics on wheat breeding in the near future is also
discussed.

2.2
Molecular Markers –
Types and Availability

Recent advances in molecular techniques have led
to the development of assays based on variation
in DNA sequence, broadly referred to as DNA (or
molecular) markers (Langridge and Chalmers 2004).
DNA markers provide good resolutio because, unlike
most non-DNA-based markers (morphological,
biochemical or physiological), they are (1) unlimited
in number, (2) independent of environment, devel-
opmental stage and complex genetic interactions,
(3) frequently free of dominant and recessive effects
and (4) easy to score, analyse and interpret. The
DNA markers that have been used for the con-
struction of molecular maps are broadly classified
into three groups: the first-generation markers,
RFLPs (restriction fragment length polymorphisms)
and RAPDs (randomly amplified polymorphic
DNAs); the second-generation markers, SSRs (simple
sequence repeats or microsatellites) and AFLPs
(amplified fragment length polymorphisms); and the
third-generation markers, SNPs (single nucleotide
polymorphisms) and InDels (insertion-deletions)
(for details see Gupta et al. 2002b; Varshney et al.
2004a; Mohler and Schwarz 2004). In addition, an
array of marker types have been developed amongst
which are STSs (sequence tagged sites), SCARs
(sequence characterized amplified regions), ISSRs
(intersimple sequence repeats), and SAMPL (selective
amplification of microsatellite polymorphic loci).
More recently, EST (expressed sequence tag)-
based markers (EST-SSRs and EST-SNPs) have
been developed in wheat (Varshney et al. 2004a).

Retrotransposon sequences (which are present in
high-copy numbers), both alone or in combination
with microsatellites or AFLPs, have been exploited
to generate IRAPs (interretrotransposon amplified
polymorphisms), REMAPs (retrotransposon-
microsatellite amplified polymorphisms) and SSAPs
(sequence-specific amplified polymorphisms)
(Schulman et al. 2004). Each marker system has
particular advantages and disadvantages (Gupta et al.
2002b) and user choice is best based on objective,
convenience and cost. All these marker types, except
the SNPs, have been incorporated into current
molecular maps, and efforts are currently under way
to construct SNP maps of wheat (Varshney et al.
2004a).

The accepted nomenclature for DNA marker loci
and alleles in wheat and related species is published
every 4 years in the Proceedings of the Interna-
tional Wheat Genetics Symposium (for the most re-
cent edition see Proc of the 10th Int Wheat Genet
Symp, Paestum, Italy, 2003), and an annual supple-
ment is published in the Annual Wheat Newsletter
(http://wheat.pw.usda.gov/ggpages/awn/). The cata-
logue lists all Triticum genes, RFLPs, SSRs, STSs,
AFLPs, etc. that have been localized to a chromosome
or chromosome arm, all known alleles of Triticum
genes and prototype strains for each allele, the chro-
mosomal locations of genetic markers, the linkage po-
sition of mapped genes, literature citations and other
relevant information.

2.3
Construction of Molecular Maps

Early genetic maps were based entirely on morpholog-
ical and biochemical markers. However, these maps
had poor resolution, as marker number was limited
and allelic variants were frequently restricted to ex-
otic germplasm, precluding their usefulness in breed-
ing programmes. Molecular markers detect both se-
quence (for example SNPs, resulting in RFLPs, RAPDs,
AFLPs, etc.) and length polymorphisms (polymor-
phisms due to length variation of a sequence, as in
SSRs and sometimes also in RFLPs). These loci usu-
ally segregate in a Mendelian manner, so that the con-
ventional basis of linkage and recombination can be
used for constructing these maps. A major advantage
of molecular mapping is the possibility of analysing
a large number of markers in a single mapping popu-
lation. Therefore, DNA-based markers have been used
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for the construction of maps with a high marker
density in almost all major crops including cereals
(Varshney et al. 2004a). These maps have found ap-
plication for gene tagging, QTL identification, and for
the characterization of germplasm collections (Gupta
et al. 1999; Langridge and Chalmers 2004). The aneu-
ploid and deletion stocks in the type variety Chinese
Spring have allowed the alignment of physical and
genetic maps, and this has provided an insight into
the physical and genetic organization of the wheat
genome.

2.3.1
Genetic Maps

RFLPs were developed for mapping in the human
genome (Botstein et al. 1980). Subsequently, they
were adapted for use in mapping plant genomes
(Bernatzky and Tanksley 1986; Weber and Helentjaris
1989) including bread wheat (Chao et al. 1989; Liu and
Tsunewaki 1991). Disappointingly, RFLPs have only
been able to detect a low level of polymorphism in
wheat. This has been attributed variously to its poly-
ploid nature, its high proportion of repetitive DNA,
its large genome size and its recent origin (ca. 10,000
years ago). Thus in an effort to maximize the diversity
between the parents of mapping populations, a stan-
dard hexaploid variety was crossed with a synthe-
sized hexaploid (a chromosome-doubled hybrid of the
wide cross tetraploid T. turgidum x diploid Aegilops
tauschii) to produce a reference mapping popula-
tion known as the ITMI population (Langridge et al.
2001). Alternatively, the three constituent genomes
have been analysed at the diploid level. This involves
generation of populations from specimen diploids Ae.
tauschii (D genome) (Boyko et al. 1999, 2002) and
T. monococcum (A genome) (Dubcovsky et al. 1996).
Mapping populations have included F2 populations,
F3 families, bulked F4 families and recombinant in-
bred line (RIL) populations, and, in some cases, dou-
bled haploids (DHs) and recombinant substitution
lines (RSLs). RSLs, DHs and RILs have the particular
advantage of being immortal, while F2 populations, F3

families and bulked F4 families are easier to produce.
Using various mapping populations, a number

of RFLP-based maps have been constructed both for
individual chromosomes and for the entire wheat
genome (Table 1). RFLP genotyping is time consum-
ing and labour intensive and is therefore unsuitable
for the rapid evaluation of large segregating popula-
tions typically encountered in commercial breeding

programmes (Gale et al. 1995). The first replacement
PCR-based technology was RAPDs, and these have
been used for mapping many species including Ara-
bidopsis (Reiter et al. 1992), barley (Giese et al. 1994)
and rye (Masojć et al. 2001). In wheat, RAPDs have
been of limited use, partly because of the low level
of polymorphism that they uncover, but also because
of poor reproducibility. Critically, RAPD alleles are
usually dominant, and therefore a heterozygous
genotype cannot be distinguished from one of the
related homozygotes. A more profound disadvantage
of the system is that a given pair of similarly sized
RAPD products amplified from two genotypes may
not represent homologous sequences (Devos and
Gale 1992). As with RAPDs, AFLPs are commonly
dominant markers. However, AFLP is a superior
platform, due both to its greater robustness, and
to its delivery of a far higher multiplex ratio (the
number of distinct loci analysed per primer pair
and per gel lane) (Ma and Lapitan 1998). AFLP
has found its greatest application in fingerprinting
studies (see later), but also to some extent in map-
ping. A number of genetic maps have incorporated
AFLP loci, but usually associated with an RFLP
and/or SSR backbone (Table 1). More recently,
microsatellites (SSRs) have become the favoured
markers. Their advantages include multi-allelism,
codominant inheritance, relative abundance and
extensive genome coverage (Gupta and Varshney
2000). Microsatellite markers for wheat have been
generated from a number of sources, including the
John Innes Centre (JIC), Norwich, UK (Stephenson
et al. 1998), IPK, Gatersleben, Germany (Röder
et al. 1998b), the Wheat Microsatellite Consortium
(WMC; Varshney et al. 2000a; Gupta et al. 2002a),
Beltsville Agricultural Research Centre (BARC; Song
et al. 2002a,b) and the Genoplante/INRA Wheat SSR
Club (http://wheat.pw.usda.gov/ggpages/SSRclub/;
Guyomarc’h et al. 2002; Nicot et al. 2004). To date the
densest microsatellite-based map of wheat contains
1,238 loci covering 2,569 cM with an average interval
distance of 2.2 cM (Somers et al. 2004). In addition,
wheat ESTs have also been exploited to generate the
microsatellite (EST-SSR) markers in wheat (see later).
A detailed account on development and application
of microsatellite markers in wheat is available in
a recent review by Röder et al. (2004).

Emphasis in marker research is now beginning
to shift to the development of SNP markers, which
are biallelic and are extremely abundant. SNPs have
the potential to deliver very high throughput and
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Table 1. A list of some important genetic maps constructed in wheatsa

Map type Population used for mapping Number of Genetic map Reference
loci mapped length (cM)

RFLP maps
Wheat (Group 1) ITMI RILs (W7984 × Opata85) 98 146 to 344 Van Deynze et al. (1995a)
Wheat (Group 2) F2/F3s (Chinese Spring × 114 – Devos et al. (1993b)

SyntheticTimgalen)
Wheat (Group 2) ITMI RILs (W7984 × Opata85) 173 ∼ 600 Nelson et al. (1995b)
Wheat (Group 3) F2/F3s (Chinese Spring × ∼ 60 – Devos et al. (1992)

SyntheticTimgalen) Devos and Gale (1993)
Wheat (Group 3) ITMI RILs (W7984 × Opata85) 160 ∼ 660 Nelson et al. (1995c)
Wheat (Group 4) ITMI RILs (W7984 × Opata85) 98 – Nelson et al. (1995a)
Wheat (Group 5) F2/F3s (Chinese Spring × ∼ 50 – Xie et al. (1993)

SyntheticTimgalen)
Wheat (Group 5) ITMI RILs (W7984 × Opata85) 118 – Nelson et al. (1995a)
Wheat (Group 6) ITMI RILs (W7984 × Opata85) 154 516 Marino et al. (1996)
Wheat (Group 6) F2/F3s (Chinese Spring × Synthetic) 62 317 Jia et al. (1996)
Wheat (Group 7) ITMI RILs (W7984 × Opata85) 109 – Nelson et al. (1995a)
Wheat F2s (T. aestivum var. Chinese Spring × 197 – Liu and Tsunewaki (1991)

T. spelta var. Duha)
Wheat DHs (Chinese Spring × Courtot) 264 1,772 Cadalen et al. (1997)
Wheat RILs (T. aestivum cv. Chinese Spring × 320 3,451 Sasakuma and Shindo

T. spelta var. duhamelianum K19-1) (2003)
Wheat-durum RILs (T. durum var. Messapia × 245 – Blanco et al. (1998)

T. turgidium var. MG4343)
Wheat-diploid F2s (T.monococcum KT3-5 × 115 1,250 Sasakuma and Shindo

T. Boeoticum KT1-1) (2003)

SSR maps
Wheat ITMI RILs (W7984 × Opata85) 279 – Roder et al. (1998b)
Wheat F2s (Chinese Spring × Synthetic) 53 Stephenson et al. (1998)
Wheat ITMI RILs (W7984 × Opata85) 65 Pestsova et al. (2000)
Wheat DHs 172 – Harker et al. (2001)
Wheat ITMI RILs (W7984 × Opata85) 65 – Gupta et al. (2002a)
Wheat 4 mapping populations (W7984 × 533 – Gandon et al. (2002)

Opata85, Courtot × Chinese Spring,
Eureka × Renan; Arche × Recital)

Wheat RIL (Courtot × Chinese Spring) 84 – Guyomarc’h et al. (2002)
Wheat ITMI RILs (W7984 × Opata85) 168 – Song et al. (2002a,b)
Wheat F2:3s (ND3338 x F390) 247 3,067 Liu et al. (2003)
Wheat 3 DHs (RL4452 × AC Domain, Wuhan × 1,235 2,569 Somers et al. (2004)

Maringa, Superb × BW278) and ITMI
RILs (W7984 × Opata85)

Wheat ITMI RILs (W7984 × Opata85) 825 – Nicot et al. (2003a)
Wheat ITMI RILs (W7984 × Opata85) 61 (eSSRs) – Nicot et al. (2003b)
Wheat ITMI RILs (W7984 × Opata85) 126 (eSSRs) – Nicot et al. (2004)
Wheat ITMI RILs (W7984 × Opata85) 101 (eSSRs) – Gao et al. (2004)
Wheat ITMI RILs (W7984 × Opata85) 149 (eSSRs) – Yu et al. (2004b)
Wheat ITMI RILs (W7984 × Opata85) 876 (eSSRs) – Peng et al. (2004a)
Wheat ITMI RILs (W7984 × Opata85) 638 – Röder et al. (2004b)
Wheat-durum RILs (T. Durum var. Messapia × 79 – Korzun et al. (1999)

T. Turgidium var. MG4343)
Wheat-durum RILs (T.turgidum subsp. Durum) 112 – Jurman et al. (2003)
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Table 1. (continued)

Map type Population used for mapping Number of Genetic map Reference
loci mapped length (cM)

AFLP maps
Wheat DHs (Garnet × Saunders) 426 – Penner et al. (1998)
Wheat ITMI RILs (W7984 × Opata85) 140 – Hazen et al. (2002)
Composite maps
Aegilops tauschii F2s [Ae. tauschii var meyeri (TA1691) × 732 – Boyko et al. 2002

Ae. tauschii var typical (TA1704)]
Wheat-einkorn F2s (T. monococcum × T. boeoticum 81 – Kojima et al. (1998)

ssp. boeoticum) (RFLPs, RAPDs,
ISSRs)

Wheat-einkorn F2s/ F3s (T. monococcum ssp. 335 714 Dubcovsky et al. (1996)
monococcum DV92 × T. monococcum ssp. (mainly RFLPs)
Aegilopoides C3116)

Wheat-durum RILs [T. durum (Messapia) × 88 2,063 (total) Lotti et al. (2000)
T. turgidium (MG4343)] (AFLPs, RFLPs)

Wheat-durum F2s (T. dicoccoides acc. Hermon H52 × 545 3,169–3,180 Peng et al. (2000b)
T. durum cultivar Langdon (Ldn) (AFLPs, RAPDs,

SSRs)
Wheat-durum RILs (Jennah Khetifa × Cham1) 306 3,598 Nachit et al. (2001)

(RFLPs, SSRs
, AFLPs)

Wheat-durum RILs (Omrabi5 × T.dioccoides 600545 × 279 2,289 Elouafi and Nachit (2004)
Ombrabi 5) (RFLP, SSR, SSP)

Wheat-emmer RILs 549 Nevo (2001)
(SSRs, AFLPs,

RAPDs)
Wheat DHs (Schomburgk × Yarralinka) 147 – Parker et al. (1998)

(RFLPs, SSRs,
AFLPs)

Wheat RILs (T. aestivum L. var. Forno × 230 2,469 Messmer et al. (1999)
T. spelta L. var. Oberkulmer) (RFLPs, SSRs)

Wheat DHs (Cranbook × Halbred, CD87 × 355 to 902 – Chalmers et al. (2001)
Katepwa, Sunco × Tasman ) (RFLPs, SSRs,

AFLPs)
Wheat DHs (Courtot × Chinese Spring) 380 2,900 Sourdille et al. (2000b)

(RFLP, SSRs,
AFLPs)

Wheat DHs (Courtot × Chinese Spring) 659 3,685 Sourdille et al. (2003)
(RFLP, SSRs,

AFLPs)
Wheat F5s (Arina × Forno) 396 3,086 Paillard et al. (2003)

(RFLPs, SSRs)
Wheat DHs (Beaver x Soissons) 241 2,290 Verma et al. (2004)

(AFLPs, SSRs)

aDetails and updated version of these maps are available at GrainGenes (http://wheat.pw.usda.gov/GG2/maps.shtml)
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automation. In the human genome, 1.8 million
SNPs have been documented (http://snp.cshl.org/).
In an international consortium, an attempt has
been made to mine for SNPs from the mas-
sive amounts of wheat EST sequence available
on public databases (http://wheat.pw.usda.gov/
ITMI/2002/WheatSNP.html). Using this approach,
Somers et al. (2003b) estimated SNP frequency as 1
every 540 bp, and efforts are under way to develop
SNP markers in wheat (Mochida et al. 2003; Ogihara
2003).

Integrated (or ‘composite’) maps including more
than one type of molecular marker (particularly
RFLPs, SSRs and AFLPs) have also been prepared
(Table 1). These maps typically have higher resolution
than those based on a single marker type because they
exploit a larger number of loci.

Comparisons between specific chromosomal re-
gions across related species usually show that locus
order (but not map distance) is highly conserved.
Consequently, the construction of ‘consensus maps’
has become possible, where common markers are
used as anchors and the position of other loci map-
ping in interstitial positions is extrapolated (for ex-
ample, in barley, see Varshney et al. 2004b). In this
way, 4,000 loci from 16 independent maps have been
integrated into a single map (Appels 2003). This con-
sensus map has been aligned with physical maps (see
later) and has recently been put forward as the back-
bone for a long-range wheat genomic sequencing pro-
posal. More rigorous consensus maps that use the
linkage data from multiple populations can also be
constructed using computer packages such as Join-
Map (Stam and Van Ooijen 1995), but this method
has not yet been used to develop a consensus map of
wheat.

2.3.2
Transcript Genetic Maps or Functional Maps

A large amount of EST data has been generated in
wheat, and 587,088 sequences are currently available
in the public domain (http://www.ncbi.nlm.nih.gov/
dbEST/dbEST_summary.html; 12 November 2004).
From these, 44,630 TCs (tentative consensi) and 79,008
EST singletons have been identified (Sect. 3.5.1 TS

1 ).
The integration of these loci into genetic maps would
generate a “stranscript map”/‘gene map’ or ‘func-
tional map’ (Schuler et al. 1996). To achieve this, each
EST has to be converted into an effective marker as-

say. This could be in the form of RFLP, STS, CAPS
(cleaved amplified polymorphic sequences), SSR or
SNP. For instance, a given EST could be amplified
from genomic DNA and the PCR product obtained
used as an RFLP probe in a Southern hybridization
(Smilde et al. 2001); or it could be tested directly for
length or sequence polymorphism between the par-
ents of a mapping population (Gilpin et al. 1997). Se-
quence variation between homologous PCR products
can be detected directly by sequencing, indirectly by
digestion with restriction enzymes (CAPS), or by het-
eroduplex analysis. Many ESTs contain microsatel-
lites, which can be targeted by conventional SSR tech-
nology (Kantety et al. 2002; Varshney et al. 2002,
2004c, 2005a). Software search programmes have been
developed to identify such situations, for example
MISA (Thiel et al. 2003; available at http://pgrc.ipk-
gatersleben.de/misa). The frequency of SSRs in wheat
ESTs has been variously reported to be as high as 1 in
1.33 kb (Morgante et al. 2002) to as low as 1 in 17.42 kb
(Gao et al. 2003). Discrepancies in the estimates of
frequency and distribution of SSRs across different
studies are probably an artefact of varying identifica-
tion criteria and data quantity (Varshney et al. 2005a).
Some ESTs via SSR assay (EST-SSRs) have been placed
in genetic maps (Gao et al. 2004; Nicot et al. 2004; Peng
et al. 2004a; Yu et al. 2004b), but they have not been
integrated, to any great extent, in wheat in the way
that has been done in rice (Harushima et al. 1998)
and maize (Davis et al. 1999). An important feature of
EST-SSR markers is their applicability across species
(Holton et al. 2002; Gupta et al. 2003; Yu et al. 2004a;
Varshney et al. 2005b), which makes them valuable for
comparative mapping.

2.3.3
Physical Maps

Physical maps are based on the actual separation be-
tween markers, in terms of base pairs (or linear length,
measured cytologically on metaphase mitotic chro-
mosomes). This is in contrast with genetic distances,
which are based on recombintaional frequencies. At
the chromosome level, a physical map can be gener-
ated by hybridizing a labelled DNA in situ to a cy-
tological preparation. Sites of hybridization can then
be directly visualized microscopically (Schwarzacher
2003; Jiang and Gill 1994). A comparison has been
made between physical and genetic distances between
adjacent markers in hexaploid wheat using in situ

TS
1 There is no section 5.1 in chapter 3. Please check.
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hybridization (ISH) with 21 RFLP probes from link-
age groups 5 and 6 (Zhang et al. 2000). Although the
linear order and linkage relationships between DNA
probes on these physical maps were generally con-
served, a significant difference between the genetic
and the physical distances was observed. However,
this technique is laborious and not practicable on
a genome-wide scale (Varshney et al. 2004a). An al-
ternative strategy to physically mapping single and
low-copy sequences is to generate and characterize
chromosomal deletion stocks (Endo and Gill 1996).
Chromosomal segments defined by these deletions
have been labeled ‘bins’, and a large number of molec-
ular markers including functional markers have been
assigned to these bins (Table 2). In the USA a National
Science Foundation-funded consortium has assigned
16,099 EST loci to 159 bins (http://wheat.pw.usda.gov/
NSF/progress_mapping.html, Qi et al. 2003, 2004).
This ‘transcriptome map’ has an average of 766 loci
per chromosome and an expected average of 95 loci
per chromosome bin or 1 EST locus per 1 Mb of wheat
DNA (Gill et al. 2003; Qi et al. 2004).

Comparing across wheat homoeologues, synteny
appeared to decrease with the distance of a chromo-
some region from the centromere and with an in-
crease in recombination rates along the average chro-
mosome arm (Akhunov et al. 2003a). Furthermore, 31
paralogous sets of loci were observed with perturbed
synteny. In a separate study, the physical mapping
data were also used to assess organizational and evo-
lutionary aspects of the wheat genome. It was found
that recombination has played a central role in the
evolution of wheat genome structure. The gradients
of recombination rates along chromosome arms pro-
moted more rapid rates of genome evolution in distal,
high-recombination regions (hot spots of recombina-
tion) than in the low recombination proximal regions
(Akhunov et al. 2003b; Dvorák et al. 2003).

In another project in France, a total of 725 mi-
crosatellite loci were assigned to 94 breakpoints in
a homozygous (88 terminal deletions, 6 interstitial)
and 5 in a heterozygous state representing 159 dele-
tion bins with an average of 4.97 SSR/bin (Sourdille et
al. 2004). Assignment of ESTs and genetically mapped
SSRs to deletion bins in the above studies will be use-
ful not only for verification of deletion stocks but also
for allocating associated QTLs to deletion bins.

Physical mapping of wheat genomes using dele-
tion lines suggests a non-random distribution of
cDNA markers and ESTs (Gill et al. 1996a,b; Faris et al.
2000; Qi et al. 2003, 2004). The lower number or com-

plete absence of cDNA markers in the centromeric re-
gion parallels the absence of recombination in these
regions and suggests the presence of 85% of wheat
genes in less than 10% of the genome. The small gene-
rich regions are thought to be interspersed by large
blocks of repetitive DNA (Gill et al. 1996a,b; Sandhu
and Gill 2002a; Sandhu et al. 2003; Sidhu et al. 2003). It
is believed that about three to four major and four to
five minor gene-rich regions are present in each wheat
chromosome (Sandhu and Gill 2002b). The gene-poor
regions, in contrast, mainly contain retrotransposon-
like repetitive sequences (Feuillet and Keller 1999;
Schulman et al. 2004). Interestingly, physical location,
structural organization and gene densities of the gene-
rich regions are similar across the three genomes of
hexaploid wheat (Gill et al. 1996a; for a review see Gill
2004). The resolution of this physical localization was,
however, low due to a limited number of deletion lines
and should improve in future with the availability of
more deletion lines.

The availability of genome-wide BAC-contigs
has been a prerequisite for sequencing the model
genomes of Arabidopsis and rice (TAGI 2000, Sasaki
and Burr 2000). Similar efforts are currently under
way to prepare contig maps of the genomes of
sorghum (Klein et al. 2000) and maize (Gardiner
et al. 2004; http://www.maizemap.org/iMapDB/
iMap.html). As a resource for contig construction,
several large insert DNA libraries have been con-
structed for wheat (Stein and Graner 2004). However,
the large size of the wheat genome presents serious
problems for the development of a full genome contig
map. Nevertheless, efforts are under way to prepare
a contig map of the D genome of wheat to produce
a detailed picture of gene distribution in the wheat D
genome and enhance our understanding of the evo-
lution of large genomes (http://wheat.pw.usda.gov/
PhysicalMapping/). To date a total of 215,645 genomic
fragments, cloned in BAC and BiBAC vectors, of an
Ae. tauschii line (the D-genome progenitor of wheat)
have been fingerprinted (Luo et al. 2003). As a result,
10,035 contigs were obtained at a Sulston score of
1 × 10−30 and a tolerance of 0.4 bp, corresponding
to about 3,200 Mb (http://wheatdb.ucdavis.edu:8080/
wheatdb/). Recent developments on construction of
chromosome specific BAC library would facilitate
preparation of individual physical maps of wheat in
the near future (Safar et al. 2004).

As an alternative to the resource-intense develop-
ment of contig maps, subgenomic physical maps of
wheat can also be developed using radiation hybrid

TS
2 There is no value given for column 3 in this row. Please check.



86 R.K. Varshney, H.S. Balyan, P. Langridge

Table 2. Some physical maps of wheat prepared after using the deletion lines

Genome Marker loci mapped Cytogenetic Reference
stocks used

Wheat (homoeologous group 1) 19 RFLP 18 DLsa Kota et al. (1993)
Wheat (homoeologous group 1) 50 RFLPs 56 DLs Gill et al. (1996a)
Wheat (homoeologous group 1) 2,212 loci (944 ESTs) 101 DLs Peng et al. (2003, 2004a)
Wheat (homoeologous group 2) 30 RFLPs 21 DLs Delaney et al. (1995a)
Wheat (homoeologous group 2) 43 SSRs 25 DLs Röder et al. (1998a)
Wheat (homoeologous group 2) 2,600 loci (1,110 ESTs) 101 DLs Conley et al. (2004)
Wheat (homoeologous group 3) 29 RFLPs 25 DLs Delaney et al. (1995b)
Wheat (homoeologous group 3) 2,266 loci (996 ESTs) 101 DLs Munkvold et al. (2004)
Wheat (homoeologous group 4) 40 RFLPs 39 DLs Mickelson-Young et al. (1995)
Wheat (homoeologous group 4) 1,918 loci (938 ESTs) 101 DLs Miftahudin et al. (2004)
Wheat (homoeologous group 5) 155 RFLPs 65 DLs Gill et al. (1996b)
Wheat (homoeologous group 5) 245 RFLPs, 3 SSRs 36 DLs Faris et al. (2000)
Wheat (homoeologous group 5) 2,338 loci (1,052 ESTs) 102 DLs Linkiewicz et al. (2003, 2004)
Wheat (homoeologous group 5S) 100 RFLPs 17 DLs Qi and Gill (2001)
Wheat (chromosome 5A) 22 RFLPs 19 DLs Ogihara et al. (1994)
Wheat (homoeologous group 6) 24 RFLPs 26 DLs Gill et al. (1993)
Wheat (homoeologous group 6) 210 RFLPs 45 DLs Weng et al. (2000)
Wheat (homoeologous group 6) 5,154 loci (7,965 ESTs) 101 DLs Randhawa et al. (2004)
Wheat (homoeologous group 6S) 82 RFLPs 14 DLs Weng and Lazar (2002a)
Wheat (homoeologous group 7) 16 RFLPs 41 DLs Werner et al. (1992)
Wheat (homoeologous group 7) 91 RFLPs, 6 RAPDs 54 DLs Hohmann et al. (1995)
Wheat (homoeologous group 7) 2,148 loci (919 ESTs) 101 DLs Hossain et al. (2004a)
Wheat (chromosomes 6B, 2D and 7D) 16 SSRs 13 DLs Varshney et al. (2001)
Wheat (chromosome 1D) 32 SSRs 11 DLs Huang and Röder (2003)
Wheat (chromosome arm 1BS) 24 AFLPs 8 DLs Zhang et al. (2000)
Wheat (chromosome arm 4DL) 61 AFLPs, 2 SSRs, 2 RFLPs 8 DLs Milla and Gustafson (2001)
Wheat (chromosome arm 1BS) 22 expressed sequences DLs Sandhu et al. (2002) TS

2

Wheat (chromosome arm 6BL) 32 AFLPs – Dieguez et al. (2003)
Wheat (whole genome) 121 expresses candidate 339 DLs Dilbirligi and Gill (2003)

resistance genes
Wheat (whole genome) 94 loci for genes involved 97 DLs Benard et al. (2003)

in N-uptake, bread making
quality or disease
resistance

Wheat (whole genome) 59 loci for 14 candidate 91 DLs Han et al. (2003)
ESTs for FHB

Wheat (whole genome) 16,099 loci (7,104 ESTs) 101 DLs Gill et al. (2003)
Qi et al. (2003, 2004)

Wheat (whole genome) 725 SSRs 159 DLs Sourdille et al. (2004)

a DLs = deletion lines

(RH) populations (Cox et al. 1990) or by the so-called
HAPPY (haploid genome; polymerase chain reaction)
mapping procedure (Dear and Cook 1989). Neither
method relies on the availability of BAC-contigs or
cloned DNA fragments and may be suitable for the
high-throughput mapping of PCR-based markers

independent of the presence of polymorphism
(Waugh et al. 2002; Thangavelu et al. 2003; Wardrop
et al. 2002). RH mapping of one scsae (species
cytoplasm specific) gene in durum wheat is already
in progress (http://cropandsoil.oregonstate.edu/
cgb/projects.html). RH mapping permitted the
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localization of the scsae gene on the long arm of
chromosome 1D along with eight linked markers
(Kianian et al. 2003; Hossain et al. 2004b).

2.4
Application of Molecular Markers
in Wheat Genetics and Breeding

In the last decade the generation of molecular markers
and their mapping has offered new opportunities for
plant breeding and has become a key component of
what is now popularly termed molecular breeding.
These resources allow the tracking of specific loci and
alleles through the identification of markers linked to
major genes, analysis of quantitative trait loci (QTLs),
positional cloning of genes and characterization of
genetic variation in germplasm. In addition, mapped
markers can often be used in related species to analyse
syntenic relationships.

2.4.1
Gene Tagging and QTL Analysis for MAS

The potential value of genetic markers, linkage groups
and their association with agronomic traits has been
known for more than 80 years. The usefulness of
marker-assisted selection (MAS) was recognized as
early as 1923 when Sax demonstrated in beans an
association between seed size and seed coat pigmen-
tation. The first molecular-marker based (RFLP) map
in plants was made in tomato and consisted of 57 loci
(Bernatzky and Tanksley 1986). Since then, maps have
been constructed for nearly all crop plants (summa-
rized by Philips and Vasil 2001), allowing, in principle,
the application of MAS in plant breeding, as originally
proposed by Sax (1923) and Thoday (1961). The con-
cept of selection based on genotype rather than phe-
notype created strong interest among plant breeders
(Tanksley et al. 1989; Paterson et al. 1994). The ratio-
nale relies on the discovery of phenotype/genotype
associations between genome regions (as assayed by
molecular markers) and traits in segregating popula-
tions (such as F2s, RILs, DHs, etc.). These are derived
by analysis of segregation of simply inherited traits
and by QTL analysis for complex traits (Lee 1995). The
identification of markers sufficiently tightly linked to
target genes/QTLs and their conversion, if necessary,
to a PCR platform has made MAS feasible in some

plant breeding programmes (Langridge and Chalmers
2004). MAS can increase the efficiency and accuracy
of selection, especially for traits that are difficult to
phenotype or are recessive. The time-lag between the
advent of DNA-marker technologies and their prac-
tical application for MAS has been, and remains, at-
tributable to the high unit cost in the context of a rel-
atively low value end product (Koebner et al. 2001).

In wheat, a significant number of major genes and
QTLs for different traits have been tagged. Markers
for more than 36 traits were already developed by
1999 (Gupta et al. 1999). Recent progress and signif-
icant achievements in the area of mapping disease
resistance genes and the identification of QTLs and
major genes for some agronomically important traits
are summarized in Tables 3 and 4, respectively. A va-
riety of molecular markers (RFLP, RAPD, AFLP, SSR)
have been used for gene tagging and QTL analysis,
but the consensus is that SSRs are best suited for
this purpose (Gupta et al. 2002b). RFLP is not readily
adapted to high sample throughput and RAPD as-
says are not sufficiently reproducible or transferable
between laboratories. While both SSRs and AFLPs
are efficient in identifying polymorphisms, SSRs are
more readily automated (Shariflou et al. 2003). While
RFLPs and AFLPs can in principle be converted into
a simple PCR assay (STS), AFLP conversion is com-
plicated by the observation that in large genome tem-
plates, individual bands are generally composed of
multiple fragments (Shan et al. 1999; Carter et al.
2003). The inclusion of many microsatellite markers
on genetic maps (Röder et al. 1998b; Gandon et al.
2002; Somers et al. 2004; Peng et al. 2004a) will ease
their use for tagging for marker-assisted wheat breed-
ing.

Status of MAS in Wheat Breeding
Prior to their use in plant breeding, the markers
need to be validated, a process where functionality is
tested in a range of genetic backgrounds (Langridge
and Chalmers 1998; Gupta et al. 1999). For instance,
marker validation studies were conduced for QTL for
grain protein content by using NILs (Singh et al. 2001),
for Lr10 by using 16 wheat cultivars (Blazkova et al.
2002), for QTL for Fusarium head blight (FHB) re-
sistance by using the progeny of crosses between the
FHB-resistant spring wheat line and five European
wheat varieties (Angerer et al. 2003; Liu and Anderson
2003a) or NILs from existing breeding populations
(Pumphrey and Anderson 2003) and in germplam
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Table 3. Some examples of gene tagging or QTL identification for resisiatnce to important diseases of wheat

Disease Gene/QTLs Chromosome Marker type Reference

I. Fungal resistances
Black (stem) rust/ Stb1 5BL AFLP, RAPD Adhikari et al. (2004b)
Septoria trici bloch (STB) Stb2 3BS SSR Adhikari et al. (2004c)

Stb3 6DS SSR Adhikari et al. (2004c)
Stb4 7DS AFLP, SSR Adhikari et al. (2004a)
Stb5 7DS SSR Arraiano et al. (2001)
Stb6 3AS SSR Brading et al. (2002)
Stb7 4AL SSR McCartney et al. (2003)
Stb8 7BL SSR Adhikari et al. (2003)
QStb.risø–2B 2BL SSR Eriksen et al. (2003a)
QStb.risø–3A.1, 3AS SSR Eriksen et al. (2003a)
QStb.risø–3A.2
QStb.risø–3B 3BL AFLP Eriksen et al. (2003a)
QStb.risø–6B.1, 6B AFLP Eriksen et al. (2003a)
QStb.risø–6B.2
QStb.risø–7B 7B AFLP Eriksen et al. (2003a)
QStb 1DS RFLP/SSR Börner et al. (2003)
QStb 6BS RFLP/SSR Börner et al. (2003)
QStb 7BL RFLP/SSR Börner et al. (2003)

Powdery mildew Pm1 7AL RFLP Ma et al. (1994)
Hartl et al. (1995)

7AL STS Hu et al. (1997)
Pm1c 7AL AFLP Hartl et al. (1999)
Pm1e 7AL SSR Singrün et al. (2003)
(formerly Pm22)
Pm2 5DS RFLP Ma et al. (1994),

Hartl et al. (1995)
Pm3a, b, c 1AS RFLP Hartl et al. (1993)
Pm3b 1AS RFLP Ma et al. (1994)
Pm3g (Mlar) 1AS Gliadin Sourdille et al. (1999)
Pm3 1AS SSR Bougot et al. (2002)
Pm4a 2AL RFLP Ma et al. (1994)

2AL AFLP Hartl et al. (1999)
2AL STS Ma et al. (2003)

Pm5e 7BL SSR Huang et al. (2003c)
Pm6 2BL RFLP Tao et al. (2000)
Pm8/Pm17 1BL/1RS; STS Mohler et al. (2001)
(allelic) 1AL/1RS
Pm13 3DS STS Cenci et al. (1999)
Pm18 7A RFLP Hartl et al. (1995)
Pm21 6AL/6VS RAPD Qi et al. (1996)

6AL/6VS SCAR Liu et al. (1999a)
Pm24 1DS SSR, AFLP Huang et al. (2000)
Pm25 1A RAPD Shi et al. (1998)
Pm26 2BS RFLP Rong et al. (2000)
Pm27 6B-6G SSR Järve et al. (2000)
Pm29 7DL RFLP Zeller et al. (2002)
Pm30 5BS SSR Liu et al. (2002b)
Qpm.vt–1B 1B SSR, RFLP Liu et al. (2001a)
Qpm.vt–2A 2A SSR Liu et al. (2001a)
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Table 3. (continued)

Disease Gene/QTLs Chromosome Marker type Reference

Qpm.vt–2B 2B RFLP, SSR Liu et al. (2001a)
QTL 5A RFLP Keller et al. (1999b)
QTL 7B RFLP Keller et al. (1999b)

Yellow (stripe) rust Yr5 2BL RGAP/CAPS Yan et al. (2003a),
Chen et al. (2003)

Yr7 2BL AFLP Bariana et al. (2001)
Yr9 1BL/1RS RGAP Shi et al. (2001)

1BL/1RS SCAR Mago et al. (2002)
Yr10/ Yr10vav 1BS SSR Wang et al. (2002),

Bariana et al. (2002)
Yr10 1BS SCAR Shao et al. (2001)
Yr15 1BS RFLP Sun et al. (1997, 2002)

1BS SSR Chagué et al. (1999),
Peng et al. (2000a)

Yr17 2AS SCAR Robert et al. (1999)
2AS STS Seah et al. (2001)
2AS CAPS Helguera et al. (2003)

Yr18 7DS RFLP Singh et al. (2000)
7DS SSR, AFLP Bariana et al. (2001)
7DS SSR Suenaga et al. (2003)

Yr26 1BS SSR Ma et al. (2001)
Yr28 4DS RFLP Singh et al. (2000)
Yr29 1BL RFLP, AFLP Bariana et al. (2001)

1BL AFLP William et al. (2003c)
Yr30 3BS SSR Suenaga et al. (2003)
Yr32 2AL AFLP, SSR Eriksen et al. (2003b)
YrKat 2DS SSR Bariana et al. (2001)
Yrns–B1 3BS SSR Börner et al. (2000)
YrH52 1BS SSR Peng et al. (2000a)
YrMoro Group 1 STS Smith et al. (2002)
YrQz 2B AFLP, SSR Deng et al. (2004)
QTL 3BS RFLP Singh et al. (2000)
QTL 3DS RFLP Singh et al. (2000)
QTL 5DS RFLP Singh et al. (2000)
QYR1 2BL SSR Boukhatem et al. (2002)
QYR2 2AL SSR Boukhatem et al. (2002)
QYR3 2BS RFLP Boukhatem et al. (2002)
QYR4 7DS RFLP Boukhatem et al. (2002)

Brown (leaf) rust Lr1 5DL RFLP, SSR Ling et al. (2003)
Lr3 6BL AFLP Dieguez et al. (2003)
Lr9 6B RFLP Autrique et al. (1995)
Lr10 1AS RFLP Nelson et al. (1997)

1AS STS Schachermayr et al. (1997)
Lr19 7DL RFLP Autrique et al. (1995)

7DL STS Prins et al. (2001)
7DL SCAR Cherukuri et al. (2003)

Lr21/Lr40 1DS STS Huang and Gill (2001)
Lr23 2BS RFLP Nelson et al. (1997)
Lr24 3DL RFLP Autrique et al. (1995)
Lr25 4A/2R SCAR Procunier et al. (1995)
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Table 3. (continued)

Disease Gene/QTLs Chromosome Marker type Reference

Lr26 1BL/1RS SCAR Mago et al. (2002)
Lr27 3BS RFLP Nelson et al. (1997)
Lr28 4AL STS Naik et al. (1998)

4AL SSR Vikal et al. (2004)
Lr29 7DS SCAR Procunier et al. (1995)
Lr31 4BL RFLP Nelson et al. (1997)
Lr32 3DS RFLP Autrique et al. (1995)
Lr34 7DS RFLP Nelson et al. (1997)

7DS SSR Suenaga et al. (2003)
7DS SSR Schnurbusch et al. (2003b)

Lr35 2B STS Seyfarth et al. (1999)
2B SCAR Gold et al. (1999)

Lr37 2AS SCAR Robert et al. (1999)
2AS STS Seah et al. (2001)
2AS CAPS Helguera et al. (2003)

Lr39 2DS SSR Raupp et al. (2001)
Lr41 2D SSR Singh et al. (2004b)
Lr46 1BL SSR Suenaga et al. (2003)

1BL AFLP William et al. (2003c)
Lr47 7AS STS, CAPS Helguera et al. (2000)
Lr50 2BL SSR Brown–Guedira et al. (2003)
Lr-undesignated BSAa AFLP Craven et al. (2003)
QTLs 7BL RAPD Nelson et al. (1997)

Durable broad Sr2 3BS SSR Spielmeyer et al. (2003)
spectrum stem rust Sr2 3BS ESTs Spielmeyer and Lagudah (2003)

Fusarium head blight/ QTL 1B Glutenin Buerstmayr et al. (2002)
Scab QTL 1B SSR Shen et al. (2003a)

QFhs.ndsu–2A 2AL RFLP Waldron et al. (1999)
QFhs.inra–2A 2A SSR Gervais et al. (2003)
QTL 2BL SSR Zhou et al. (2002)
QFhs.inra–2B 2B SSR Gervais et al. (2003)
QTL 2DS SSR Shen et al. (2003b)
QTL 2DL SSR Somers et al. (2003a)
QTL 3AL RFLP Anderson et al. (2001)
QTL 3AS SSR Bourdoncle and Ohm (2003),

Shen et al. (2003a)
QFhs.ndsu–3AS 3AS SSR Otto et al. (2002)
QFhs.inra–3A 3A RFLP Gervais et al. (2003)
QTL 3A SSR Steiner et al. (2003)
QFhs.ndsu–3B 3BS RFLP Waldron et al. (1999),

Liu and Anderson (2003b)
QTLs 3BS SSR Anderson et al. (2001),

Liu and Anderson (2003b),
Buerstmayr et al. (2002, 2003),
Zhou et al. (2002),
Bourdoncle and Ohm (2003),
Shen et al. (2003b),
Somers et al. (2003a)

QTL 3BS STS Guo et al. (2003)
QTL 3BL SSR Bourdoncle and Ohm (2003)
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Table 3. (continued)

Disease Gene/QTLs Chromosome Marker type Reference

QFhs.inra–3B 3B SSR Gervais et al. (2003)
QTL 4BS RFLP Anderson et al. (2001)
QTL 4BS SSR Somers et al. (2003a)
QFhs.ifa–5A 5A SSR Buerstmayr et al. (2002, 2003)
QFhs.inra–5A.1, 5A SSR Gervais et al. (2003)
QFhs.inra–5A.2
QFhs.inra–5A.3 5A Awns Gervais et al. (2003)
QTL 5A SSR Ma et al. (2003)
QTL 5AS SSR Somers et al. (2003a)
QTL 5BL SSR Bourdoncle and Ohm (2003)
QFhs.inra–5D 5D Gervais et al. (2003)
QTL 6AS RFLP Anderson et al. (2001)
QTL 6BS RFLP Waldron et al. (1999),

Anderson et al. (2001)
QTL 6BS SSR Anderson et al. (2001),

Shen et al. (2003b)
QFhs.inra–6D 6D Gervais et al. (2003)
QTLs (2) 3B SSR del Blanco et al. (2003)
QTLS 11 AFLP Bai et al. (1999)
QTLs(3) BSA RAPD Sun et al. (2003)
QTLs(3) 3 AFLP Schmolke et al. (2003)

Eyespot Pch1 7D SSR Groenewald et al. (2003)
Pch2 7A RFLP de la Pena et al. (1996, 1997)

Karnal bunt Unspecified 4B SSR, AFLP Singh et al. (1999, 2003)

Loose smut Major gene STS from AFLP Knox et al. (2002)

Bunt Bt10 BSA SCAR (RAPD) Laroche et al. (2000)

Septoria nodorum snbTM BSA SCAR (RAPD) Cao et al. (2001)

Leaf or glume blotch QSng.sfr-3BS 3B SSR Schnurbusch et al. (2003a)
(Stagonospora nodorum) QSng.sfr-34BL 4B SSR Schnurbusch et al. (2003a)

QTLs (2) 5A SSR Toubia-Rahme et al. (2003)
QTLs (1) 3B SSR Toubia-Rahme et al. (2003)

Pyrenophora tritici Pti2 1A/4A RFLP Faris et al. (1997)
repentis Pti2 1AS RFLP Effertz et al. (2002)
II. Viral resistances
Barley yellow dwarf virus Bdv2 STS (RAPD) Stoutjesdijk et al. (2001)

BYDV 7DL SSR Ayala et al. (2001)
Wheat streak mosaic Wsm1 Group 4 STS (RAPD) Talbert et al. (1996)
virus

Wheat spindle streak WSSMV 2D RFLP Khanet al. (2000a)
mosaic virus 2DL SSR Wang et al. (2003)

III. Nematode resistances
Cereal cyst nematode Cre1 – STS Ogbonnaya et al. (2001)

Cre3 – STS Ogbonnaya et al. (2001)
Cre6 – STS Ogbonnaya et al. (2001)

Root lesion nematode Rlnn1 7A RFLP Williams et al. (2002)

Root knot nematode Rkn-mn1 TLsb RAPD Barloy et al. (2000)
TLs SCAR (RAPD) Yu et al. (2003)
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Table 3. (continued)

Disease Gene/QTLs Chromosome Marker type Reference

IV. Insect resistances
Russian wheat aphid Dn1 7D SSR Liu et al. (2001b)

7DS RGA Swanepoel et al. (2003)
Dn2 NILs SCAR (RAPD) Myburg et al. (1998)

7D STS (RFLP) Ma et al. (1998)
7D SSR Liu et al. (2001b),

Miller et al. (2001)
Dn4 1D RFLP Ma et al. (1998)

1D SSR, Liu et al. (2002a),
Arzani et al. (2003)

Dn5 7D SSR Liu et al. (2001b)
Dn6 7D SSR Liu et al. (2002a)
Dn8 7D SSR Liu et al. (2001b)
Dn9 7D SSR Liu et al. (2001b)
Dnx 7D SSR Liu et al. (2001b)
Unspecified NILs SCAR (RAPD) Venter and Botha (2000)

Hessian fly 11 loci 1A, 5A RAPD Dweikat et al. (1997)
H31 5BS AFLP/STS Williams et al. (2003)

Wheat curl mite Cmc3 T1AL.1RS SSR, RFLP Malik et al. (2003)
Cmc4 6D SSR, RFLP Malik et al. (2003)

Greenbug Gb3 7DL SSR, AFLP Weng and Lazar (2002a)

Sawfly cutting Sc 3B SSR Houshmand et al. (2003)

aBSA = bulked segregant analysis
bTLs = translocation lines

collections (Zhou et al. 2003). Similarly, markers as-
sociated with preharvest sprouting (Kato et al. 2001;
Mares and Mrva 2001), plant height (Ellis et al. 2002),
and barley yellow dwarf virus (Ayala et al. 2001) were
validated and used for enriching favourable allele fre-
quency in early generation segregating populations
and tracking donor parent alleles during backcrossing
(Cakir et al. 2003). Microsatellite markers were linked
to two major QTLs for FHB and were subsequently
used in a marker-assisted backcross scheme to trans-
fer these QTLs from bread wheat to durum wheat
(Gladysz et al. 2003). Similarly, STS markers were
used in the marker-assisted introgression of Pm13
into 18 bread wheat cultivars, where BC5 lines had
already been developed (Reffo et al. 2003). Two effec-
tive leaf rust resistance genes Lr29+ Lr24 were also
successfully transferred into registered wheat culti-
vars with the assistance of molecular markers (Kraic
et al. 2003). Molecular markers have also facilitated
the pyramiding of multiple disease resistance genes in
wheat as demonstrated by Liu et al. (2000), who inte-

grated three powdery mildew resistance gene combi-
nations (Pm2+Pm4a, Pm2+Pm21, Pm4a+Pm21) into
an elite wheat cultivar ‘Yang158’.

The use of MAS in wheat has a history of
about 20 years and also involves the exploitation of
non-DNA-based assays. For example, the correlation
between bread-making quality and allelic status
at the Glu-1 (endosperm storage protein subunit
glutenin) loci (Payne et al. 1983, 1987; Rogers et al.
1989) has been widely used in breeding programs.
Some more recent examples of the utilization of MAS
for glutenin alleles include Ahmad (2000), de Bustos
et al. (2001), Radovanovic and Cloutier (2003), among
others. More recently, a particular effort to use MAS
in wheat breeding has been initiated in Australia.
Over 1,000 marker assays covering five loci were
performed at the University of Adelaide in the fiscal
year 1999–2000 (Eagles et al. 2001), rising to >6,000
assays for 10 loci in 2002 and to ∼20,000 assays in
2003 (Kuchel et al. 2003) and around 50,000 assays
in 2004 (SP Jefferies, Australia, pers. commun.). Loci
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Table 4. A list of some grain quality traits of wheat for which genes or QTLs have been identified with molecular markers

Trait Chromo- Molecular Number of Per cent Reference
some marker QTLs/gene phenotypic

identified variation
explained

Awn length 4A SSR Hd 8.5 Sourdille et al. (2002)
6B SSR B2 45.9 Sourdille et al. (2002)

Coleoptile length 4B RFLP 27–45 Rebetzke et al. (2001)

Culm thickness 2A RFLP 1 Keller et al. (1999a)
2B RFLP 1 13.2 Keller et al. (1999a)
3A RFLP 1 21 Keller et al. (1999a)
3B RFLP 1 11.3 Keller et al. (1999a)
4A RFLP 1 16 Keller et al. (1999a)
4B RFLP 1 12.9 Keller et al. (1999a)
5A RFLP 1 37.6 Keller et al. (1999a)
5B RFLP 1 11.1 Keller et al. (1999a)

Dormancy 2AL RFLP 1 – Mares et al. (2002)
2DL RFLP 1 – Mares et al. (2002)
4AL RFLP 1 – Mares et al. (2002)

Grain length 3B RFLP 1 21.9 Campbell et al. (1999)

Ear compactness 2B RFLP Ppd2 region 9–22 Sourdille et al. (2000a)

Floral fertility 1B SSR 1 10 Rousset et al. (2003)

Flour colour 3A RFLP 1 13 Parker et al. (1998)
7A RFLP/AFLP 1 60 Parker et al. (1998)
7A STS/AFLP 1 60 Parker and Langridge (2000)

Flowering time 1Am RFLP Eps-Am1 47 Bullrich et al. (2002)
2A SSR 1 11.5 Huang XQ et al. (2003a)
2A RFLP 1 14.1–16.6 Ahmed et al. (2000)
2B RFLP Esp-2BS 13.5–13.7 Ahmed et al. (2000)
2D SSR 1 15 Huang XQ et al. (2003a)
2D RFLP Ppd-D1 29–31 Li et al. (2002a)
6A SSR 2 13.7–16.9 Huang et al. (2003b)
7A RFLP Esp-7A 14.5–20.9 Ahmed et al. (2000)
2A SSR Ppd-A1 10–11 Li et al. (2002a)

Grain protein content 2A SSR 1 20.8 Prasad et al. (2003)
2A SSR 1 13.4–19.6 Prasad et al. (2003)
2D SSR 1 18.7 Prasad et al. (1999, 2003)
3D SSR 1 13.9–16.2 Prasad et al. (2003)
4A SSR 1 8.2–13.6 Prasad et al. (2003)
6B RFLP 1 72 Mesfin et al. (1999),

Chee et al. (2001),
Distelfeld et al. (2004)

6B STS/SSRs – up to 16.4 Khan et al. (2000b),
Prasad et al. (2003)

BSA ISSR, RAPD 9 13.4– 13.5 Dholakia et al. (2001)
5A SSR 1 6.2 Singh et al. (2001)
7A SSR 1 32.4 Prasad et al. (2003)
7D SSR 1 15.9 Prasad et al. (2003)

Grains/spike 3A RFLP 2 12.3– 18.3 Shah et al. (1999)
4A RFLP 1 12– 27 Araki et al. (1999)
5A RFLP 3 10– 42 Kato et al. (2000)
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Table 4. (continued)

Trait Chromo- Molecular Number of Per cent Reference
some marker QTLs/gene phenotypic

identified variation
explained

Grain weight 1A RFLP 1 11.8 Campbell et al. (1999)
1A SSR 1 15.1 Varshney et al. (2000b)
1B RFLP 1 11.1 Campbell et al. (1999)
2A SSR 1 17.2 Huang et al. (2003b)
2D SSR 1 15.4 Huang et al. (2003b)
3A RFLP 1 12.2 Shah et al. (1999)
3A/3B RFLP 1 10.9 Campbell et al. (1999)
3B RFLP 1 12.2 Campbell et al. (1999)
3B AFLP 2 6 Elouafi and Nachit (2004)
4B AFLP 1 3 Elouafi and Nachit (2004)
4D SSR 1 14.3 Huang et al. (2003b)
4D SSR 1 6.8–13.1 Liu et al. (2003)
5A RFLP 1 11.0–19.0 Kato et al. (2000)
5B SSR 1 16 Huang et al. (2003b)
6B SSR 2 28 Elouafi and Nachit (2004)
7A SSR 1 14.5 Huang et al. (2003b)
7B SSR 2 20.6–25.9 Huang et al. (2003b)
7D SSR 1 17.3 Huang et al. (2003b)

Heading time 2BS RFLP Ppd-B1 23.4–44.4 Sourdille et al. (2000a)
7BS RFLP earliness 7.3–15.3 Sourdille et al. (2000a)

per se

Leaf angle 1A RFLP 1 12.1 Keller et al. (1999a)
3B RFLP 1 11.1 Keller et al. (1999a)
4A RFLP 1 16.4 Keller et al. (1999a)
5A RFLP 1 11.2 Keller et al. (1999a)
7D RFLP 1 16.4 Keller et al. (1999a)

Leaf width 1B RFLP 1 14 Keller et al. (1999a)
3B RFLP 1 19.7 Keller et al. (1999a)
5A RFLP 1 14.9 Keller et al. (1999a)
5B RFLP 1 11.2 Keller et al. (1999a)

Milling yield 3A, 7D AFLP 2 19–22 Parker et al. (1999)

Number of spikeltes 2D SSR 1 – Rousset et al. (2003)
5B SSR 1 – Rousset et al. (2003)

Pre-harvest sprouting 2B RFLP/SSR 2 4–16.2 Kulwal et al. (2004)
tolerance (PHST)

2D RFLP/SSR 1 14.9 Kulwal et al. (2004)
3A RFLP 1 5.6 Groos et al. (2002)
3B RFLP/SSR 2 24.9 Groos et al. (2002)
3B RFLP/SSR 5 3–20 Kulwal et al. (2004)
3D SSR 1 11.6 Groos et al. (2002)
3D RFLP 3 3.2–17.4 Kulwal et al. (2004)
4A rice sequence (in GA20-oxidase-silico analysis) Li et al. (2004a)
5A RFLP 1 10.7 Groos et al. (2002)
5B SSR 1 – Kulwal et al. (2004)
5D RFLP 1 – Kulwal et al. (2004)
6A RFLP 1 – Kulwal et al. (2004)
6B SSR 1 – Roy et al. (1999)
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Table 4. (continued)

Trait Chromo- Molecular Number of Per cent Reference
some marker QTLs/gene phenotypic

identified variation
explained

7A RFLP 1 5.6 Groos et al. (2002)
7B RFLP/SSR 1 – Kulwal et al. (2004)
7D STS 1 – Roy et al. (1999)

Plant height 1B RFLP 1 15–30 Cadalen et al. (1998)
1B SSR 1 13.3 Keller et al. (1999a)
2A PCR 1 29.3 Keller et al. (1999a)
2B SSR 1 17.4 Huang et al. (2003b)
2D SSR Rht8 ∼ 100 Korzun et al. (1998)
3A Gene Eps 42.4 Shah et al. (1999)
3A RFLP 1 10.4 Shah et al. (1999)
4A RFLP 2 20–29 Araki et al. (1999)
4A SSR 1 23 Keller et al. (1999a)
4B RFLP 2 (Rht-B1) 10–20 Cadalen et al. (1998)
4B SSR Rht-B1 11.8 Huang et al. (2003b)
4D RFLP Rht-D1 9–15 Cadalen et al. (1998)
4D SSR Rht-D1 29.5 Huang et al. (2003b)
5A RFLP/SSR Rht-12 – Korzun et al. (1997b)
5A PCR 1 31 Keller et al. (1999a)
5B PCR 1 20 Keller et al. (1999a)
6A SSR 1 16.5 Huang et al. (2003b)
6B PCR 1 7 Keller et al. (1999a)
7A RFLP 1 10.3–11.7 Cadalen et al. (1998)
7B RFLP 1 7.7–16.5 Cadalen et al. (1998)
7B PCR 1 7 Keller et al. (1999a)

Spike length 1AL RFLP – 12 Sourdille et al. (2000a)

Spikes/plant 2D Gene-Ppd-D1 1 16–22 Li et al. (2002a)
4A RFLP 1 46–52 Araki et al. (1999)
5A RFLP 1 26–39.1 Kato et al. (2000)
7A RFLP 1 16–22 Li W et al. (2002)

Test weight 6B SSR 1 9 Elouafi and Nachit (2004)
7A SSR 1 17 Elouafi and Nachit (2004)

Tiller angle 2A RFLP 1 12–14 Li et al. (2002a)
3A RFLP 1 14–19 Li et al. (2002a)

Tiller number 1D RFLP 1 14–15 Li et al. (2002a)
2D RFLP 1 11–15 Li et al. (2002a)
5A RFLP Vrn1 7–37 Kato et al. (2000)
5A RFLP 1 10–19 Kato et al. (2000)
6A RFLP 1 12–31 Li et al. (2002a)

Vernalization 5B RFLP Vrn1/Fr1 – Galiba et al. (1995)
sensitivity 5B SSR Vrn-B1 – Salina et al. (2003)

5B SSR/AFLP Vrn-B1 – Barrett et al. (2002)
SB dCAPs Vrn2 – Iwaki et al. (2002)

(=Vrn-B1)
5B SSR Vrn2 – Iwaki et al. (2002)

(=Vrn-B1)
5B AFLP Ppd-B1 – William et al. (2003b)
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Table 4. (continued)

Trait Chromo- Molecular Number of Per cent Reference
some marker QTLs/gene phenotypic

identified variation
explained

5D SSR Vrn4 – Kato et al. (2003)
(=Vrn-D1)

7A AFLP VrnA-2 – William et al. (2003b)

Yield 2D SSR 1 11.5 Huang et al. (2003b)
3B SSR 2 9.6–21.6 Huang et al. (2003b)
4A RFLP 1 17–27 Araki et al. (1999)
4D SSR 2 10.1–12.3 Huang et al. (2003b)
5A Gene-q 1 23–27 Kato et al. (2000)

Others
Alpha-amylase 1B SSR 1 7.9–14.7 Zanetti et al. (2000)

3B RFLP 1 7–15.5 Zanetti et al. (2000)
5A RFLP 2 13.0–38.5 Zanetti et al. (2000)
6A RFLP 1 13.5–17.7 Zanetti et al. (2000)
7B RFLP 1 7.7–25.0 Zanetti et al. (2000)

Starch quality 4A AS-PCRa Wx-B1 – McLauchlan et al. (2001)
7A AS-PCR Wx-A1 – McLauchlan et al. (2001)
7D AS-PCR Wx-D1 – McLauchlan et al. (2001)
4A GS-PCRb GBSSc – Briney et al. (1998)

Polyphenol oxidase 2D RFLP 1 23 Demeke et al. (2001)
2A RFLP 1 12–16 Demeke et al. (2001)
3B RFLP 1 11–14 Demeke et al. (2001)
6B RFLP 1 12–14 Demeke et al. (2001)

Anther culturability 5B SSR 2 76.7 Zhang et al. (2003a)

Crossability (wheat-rye) 5B RFLP Kr1 65 Tixier et al. (1998)

Flag leaf senescence 2B AFLP/SSR 10.2–11.4 Verma et al. (2004)
2D AFLP/SSR 1 21.7–32.9 Verma et al. (2004)

Glume colour 1D SSR Rg2 – Arzani et al. (2003)

Species cytoplasm 1A RFLP scsti – Simons et al. (2003)
specific (scs) 1A RH mapping scsae – Kianian et al. (2003),

Hossain et al. (2004)

Thermosensitive genic 2B AFLP/SSR wtms1 – Xing et al. (2003)
male sterlity (TGMS)

Photoperiod – ISSR ptms1 – Cao et al. (2003)
temperature sensitive 3A ISSR ptms2 – Cao et al. (2003)
genic malesterlity
(PTSGMS)

aAS-PCR = allele-specific PCR
GS-PCR = gene-specific PCR
GBSS = granule bound starch synthetase

for which markers have been successfully tested
within experimental populations in Australia include
tolerance to high soil boron (Bo1), tolerance to
late-maturity α-amylase (LMA) (7BL), barley yellow

dwarf virus resistance (Bdv2) (7DL), cereal cyst
nematode resistance Cre1 (2BL), Cre8 (6BL), waxy
or granule-bound starch synthase (Wx-B1) (4A),
high-molecular-weight glutenin subunits (GluD1)
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(1DL), leaf rust resistances (Lr46) (1BL), (Lr34) (7DS),
height or dwarfing genes (Rht1) (4BS), (Rht2) (4DS),
(Rht8) (2DS), root lesion nematode resistance (Rlnn1)
and yellow flour colour (7AL), stem rust resistances
(Sr2) (3BS), (Sr36) (2B) and VPM (Ventricosa x
Persicum x Marne), a source for eyespot resistance
gene Pch1, obtained by introgrossion) segment
(2AS). Additional loci for which markers are under
investigation include aluminium toxicity tolerance
(4B), Glu-A3 (1AS), Glu-B3 (1BS), Lr1 (5DL), Lr13
(2B), Lr19 (7DL) and polyphenol oxidase activity
(2D) (Pallotta et al. 2003). At CIMMYT (Mexico),
marker implementation in wheat breeding involves
the routine deployment of markers for the four genes
Cre1, Cre3, BYDV resistance, ph1b mutant, and for
the Ae. ventricosa segment carrying Yr17, Lr37and
Sr38 translocated 2AS. Approximately 7,000 marker
assays are performed annually (William et al. 2003a).

With the availability of many more markers
than in earlier years, the potential for uptake is
now much greater than in the past. Reflecting this,
a consortium of 12 wheat-breeding and research
programmes across the US named ‘MASwheat’
(http://maswheat.ucdavis.edu/index.htm) has re-
cently been launched, aiming to ‘transfer new
developments in wheat genomics and biotechnology
to wheat production’. However, with a unit assay cost
in the range of US$1–2 (Dreher et al. 2003; Koebner
and Summers 2003), the widespread application of
MAS must compete with alternative assay methods
for the scarce funds available to most breeding
programs. Although it was recently suggested that
the bulk of MAS uptake remains restricted to low
volume applications, such as genotype construction
by backcrossing, and to the development of niche
genotypes such as waxy wheats (Koebner 2004), this
is clearly not the case for some breeding programmes
such as the Australian programme described above.
As the unit assay costs fall with the development of
automated platforms and high-throughput marker
systems, one can anticipate that MAS assays will
become increasingly feasible for commercial wheat
breeding.

2.4.2
Map-Based Cloning (MBC) of Genes in Wheat

In addition to their use for indirect selection of genes
or QTLs of agronomic importance (including resis-
tance to diseases), molecular markers offer the pos-

sibility of isolating genes of interest by positional
cloning with an ultimate objective of producing trans-
genic plants for crop improvement. There are three
major requirements for positional gene isolation: (i)
a high-resolution, high-density genetic map span-
ning the gene or region of interest; (ii) availability
of a large insert genomic YAC, BAC or PAC library for
preparation of a physical map to isolate the candidate
gene; and (iii) multiple independent mutant stocks,
an efficient transformation system for use in func-
tional complementation or an alternative technique
for functional analysis of candidate genes. All these
resources have become available in wheat (Lagudah
et al. 2001; Stein and Graner 2004).

However, long-distance chromosome walking is
not efficient in wheat because of the large amount of
repetitive DNA and the physical size of the genome. To
overcome this problem, several strategies have been
developed for isolating genes from wheat.

Genome Collinearity
The gene order appears to be well conserved among
various species of grass. This is referred to as syn-
teny. Since the rice genome has been sequenced,
it can be used as an intergenomic vehicle in cere-
als including wheat (Moore et al. 1995a; Keller and
Feuillet 2000). This approach was used for the iso-
lation of the vernalization response gene Vrn1 from
Triticum monococcum (Yan et al. 2003b). Complete
marker/gene collinearity was observed for the puta-
tive orthologous regions on T. monococcum chromo-
some 5Am and rice chromosome 3, and a BAC contig of
the target region was constructed from a T. monococ-
cum BAC library. It was collinear to two BACs repre-
senting the orthologous locus in rice. However, both
physical maps showed a gap between the same two
collinear genes. Interestingly, screening of a sorghum
BAC library revealed a collinear BAC that bridged
the gap in the other two species leading to a con-
sensus physical map across three cereal species. The
most promising candidate gene for Vrn1 proved to
be an orthologue in all three species. Similarly, using
the genome collinearity approach, Sutton et al. (2003)
have identified candidate meiotic genes at the Ph2 lo-
cus of wheat. They identified the rice genomic region
syntenous to the region deleted in wheat chromosome
pairing mutant ph2a. With the help of markers known
to reside within the region deleted in ph2a and data
from wheat, barley and rice genetic maps, markers
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delimiting the region deleted on wheat chromosome
3DS in the ph2a mutant were used to locate the synte-
nous region on rice chromosome 1S. A 6.58-Mb rice
contig generated from 60 overlapping rice PAC clones
spanning the syntenous rice region has enabled iden-
tification of 218 wheat ESTs putatively located in the
region deleted in ph2a. The candidate gene approach
may sometimes also fail, as suggested by the reports
of variation in the content and order of orthologous
genomic sequences from several cereal species (for
a review see Bennetzen and Ramakrishna 2002; Feuil-
let and Keller 2002). In particular, the identification
of candidate genes for race-specific disease resistance
loci, which are less conserved between species and
prone to genomic rearrangements (Leister et al. 1998),
has proved problematic, and the earlier optimism re-
garding the use of the model genome strategy has
diminished recently (Brueggeman et al. 2002; Bennet-
zen and Ma 2003).

Subgenome Chromosome Walking
In addition to the high proportion of repetitive DNA
in wheat, polyploidy poses another level of complexity
to positional cloning. As mentioned earlier, the three
homoeologous subgenomes A, B and D are highly
collinear and most of the functional loci occur as
triplicate genes. Therefore, screening of a large insert
library will yield two thirds of clones, which are not
related to a target locus in a specific subgenome. In
order to tackle this problem, large insert libraries were
constructed from diploid and tetraploid wheat species
(Stein and Graner 2004). Therefore an approach called
‘subgenome chromosome walking’, employing these
libraries, has been used to isolate disease resistance
genes. The first successful example of this approach
involved map-based cloning of the Lr10 leaf rust re-
sistance locus (located on chromosome 1AS) of bread
wheat. A three-step chromosome walk in a T. mono-
coccum BAC library initiated from a closely linked
RFLP marker allowed a BAC contig to be established,
which contained the flanking markers and two candi-
date resistance genes (Stein et al. 2000; Wicker et al.
2001). Markers cosegregating with the gene were de-
rived from the initial contig, and additional markers
were developed from low-copy sequences obtained
after low-pass shotgun sequencing of neighbouring
BAC clones. All markers derived from the T. mono-
coccum contig mapped to collinear segments of the T.
aestivum genetic map. The T. aestivum orthologues of
the two candidate genes were subsequently isolated.

One of the candidate genes, Rga1, proved to be Lr10
as confirmed after sequence analysis of mutant alleles
and complementation via transformation into a sus-
ceptible genotype (Feuillet et al. 2003).

Similarly, the powdery mildew resistance gene
Pm3b was isolated from T. aestivum using a subge-
nomic BAC library. Since chromosome walking in T.
monococcum was not successful due to a gap in the
BAC library, a BAC library of the tetraploid relative
T. turgidum ssp. durum (Cenci et al. 2003) was used,
allowing construction of a contig covering Pm3b. Re-
sistance conferred by transient expression was mon-
itored in the epidermis of detached wheat leaves of
a susceptible T. aestivum cultivar after biolistic bom-
bardment with the homoeologue of the identified can-
didate gene and subsequent powdery mildew infec-
tion (Yahiaoui et al. 2003). The Q locus of T. aestivum,
conferring free-threshing and square-headed spikes,
was physically delimited by the same strategy (Faris
et al. 2003) and should lead to the isolation of the Q
locus.

Another gene conferring resistance to wheat leaf
rust was isolated through the use of a Aegilops tauschii
(D genome) subgenomic cosmid library (Huang et al.
2003a). Lr21 was previously introgressed into T. aes-
tivum via synthetic wheat derived from a cross be-
tween T. turgidum and the resistant Ae. tauschii acces-
sion TA1649. A closely linked RFLP probe was used to
screen the cosmid library. A single cosmid clone har-
bouring the closely linked RFLP fragment could be
isolated. The Lr21 gene spans 4,318 bp and encodes
a 1,080-amino-acid protein containing a conserved
nucleotide-binding site (NBS) domain, 13 imperfect
leucine-rich repeats (LRRs), and a unique 151-amino-
acid sequence missing from known NBS-LRR proteins
at the N terminus. The whole cosmid was used for
complementation via stable transformation, and re-
sistance was achieved.

However, unlike disease resistance, many agro-
nomically important traits are controlled by QTLs (Ta-
ble 3). In recent years, significant progress has been
made in the isolation of QTLs such as those controlling
fruit weight (fw2.2) in tomato (Alpert and Tanksley
1996) and photoperiod sensitivity (Hd1, Hd3a, Hd6)
in rice (Yano et al. 2000; Takahashi et al. 2001; Ko-
jima et al. 2002). Due to systematic development of
resources in wheat, it is now becoming possible to
clone QTLs for some important traits in wheat for
crop-improvement programs.
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2.4.3
Allelic Diversity

An understanding of germplasm diversity and ge-
netic relationships among breeding materials is an
invaluable aid for crop-improvement strategies. Con-
ventional analyses of genetic diversity in germplasm
accessions, breeding lines and populations have re-
lied on pedigree information and morphological and
agronomic performance data. The advent of biochem-
ical and particularly DNA marker technology has im-
proved the accuracy and number of lines that can be
assessed in germplasm collections (Tanksley and Mc-
Couch 1997; Mohammadi and Prasanna 2003).

For practical reasons many of the early attempts
to study diversity employed RAPDs (Vierling and
Nguyen 1992; Joshi and Nguyen 1993). However, it
soon became clear that the greater reproducibility of
RFLPs was advantageous (for example, Siedler et al.
1994; Autrique et al. 1996). Now, SSRs and AFLPs have
largely replaced these for genetic diversity studies (Ta-
ble 4). In particular, some SSR loci can show such high
levels of variability that even closely related genotypes
can be distinguished from one another (Plaschke et
al. 1995; Prasad et al. 2000; Stachel et al. 2000). On
the other hand, AFLPs have the advantage of deliv-
ering a much higher multiplex ratio and are particu-
larly useful for fingerprinting and the assessment of
genetic diversity (Law et al. 1998; Bohn et al. 1999;
Schwarz et al. 2000). As some differences in AFLP
pattern have been found to be specific for particu-
lar plant organs (Donini et al. 1997), it is important
to extract template DNA from physiologically uni-
form tissues. Recently developed genic microsatel-
lites (or EST-SSRs) have been found to be superior
to genomic SSRs due to improved quality of band-
ing pattern (Eujayl et al. 2001; Leigh et al. 2003). Al-
though the informativeness of genic SSRs is gener-
ally lower than for genomic SSRs, their origin from
the conserved proportion of a genome have made
them more suitable as a tool to assess genetic diversity
across species (Gupta et al. 2003; Bandopadhyay et al.
2004; for a review see Varshney et al. 2005a). Recently,
retrotransposon-based molecular markers have also
been used for diversity studies in wheat by using the S-
SAP (sequence-specific amplification polymorphism)
assay (Queen et al. 2004). A summary of some genetic
diversity studies involving with different marker sys-
tems in Triticum species is given in Table 5.

Molecular-marker evaluations have indicated that
genetic diversity among varieties or inbred lines is

higher than expected, although it is lower than that
among landraces (Chen et al. 1994; Autrique et al.
1996; Zhang et al. 2002; Röder et al. 2003). For exam-
ple, Röder et al. (2003) found 198 alleles across 19 SSR
loci in 502 European varieties, 280 alleles in 450 Euro-
pean landraces and 323 alleles in 544 non-European
landraces. Of the 339 alleles found in 994 landraces,
147 are present only in landraces but not in varieties,
suggesting a genetic similarity of 57%.

Evidence of temporal flux in genetic diversity has
been observed in wheat varieties released at different
times within a country or region. Genetic diversity
appears to be decreasing in Iranian wheats (Sayed-
Tabatabaei and Shahnejat-Bushehri 2003), increasing
in Italian durum wheats (Maccaferri et al. 2003), but
has remained constant in the wheat varieties of Ar-
gentina (Manifseto et al. 2001), UK (Donini et al. 2000;
Koebner et al. 2003) and the Yaqui Valley of Mexico
(Souza et al. 1994). Interestingly, genetic diversity in
Nordic spring wheat was enhanced by plant breeding
in the first quarter of the 20th century and, following
a decrease during the second quarter, increased again
by plant breeding (Christiansen et al. 2002).

The use of molecular markers has also shown that
diversity within a genome is largely shaped by re-
combination and selection and is not homogenous.
In Aegilops, the polymorphism level of a locus has
been correlated with recombination rate along the
centromere to telomere axis (Dvorák et al. 1998b). In-
traspecific nuclear genome variation appears lower in
einkorn wheats and higher in Ae. speltoides, while this
pattern is reversed for chloroplast DNA (Mizumoto et
al. 2002). Comparison of landraces and improved vari-
eties of Chinese wheat revealed a significant difference
in the level of diversity within the D genome (Zhang
et al. 2003b), indicating that high selection pressure
has been applied to the D genome during the breeding
process.

Genetic diversity studies involving germplasm
from different countries or regions often allow sep-
aration of accessions into distinct groupings (Stachel
et al. 2000; Bai et al. 2003; Pester et al. 2003). Among
wild emmer wheats from Israel and Turkey, DNA
polymorphisms have been associated with microcli-
matic stress (Fahima et al. 1999, 2002; Li et al. 1999,
2002). Associations between allelic constitutions at
marker loci with agronomically important traits have
been proposed in some diversity studies (Kobiljski
et al. 2002; Roy et al. 2002; Bai et al. 2003). However,
although suitable genotypes for hybridization were
identified in this way (Roy et al. 2004), the overall ge-
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netic diversity of the parental lines was inadequate for
predicting either progeny variance or F1 performance
(Perenzin et al. 1998; Bohn et al. 1999; Dreisigacker
et al. 2003).

Marker analysis of common wheats with presump-
tive wild ancestors has provided insights into the
crop’s domestication and guided strategies for col-
lecting, evaluating and utilizing germplasm. AFLP
fingerprinting of einkorn and emmer wheats and bar-
ley, along with their wild progenitors, indicated that
both einkorn (Heun et al. 1997) and emmer wheats
(Özkan et al. 2002) were domesticated in a very small
area of southeastern Turkey near the Tigris and Eu-
phrates rivers more than 10,000 years ago. More re-
cently, microsatellite sequences have been used to
generate molecular clock estimates of the dates of
wheat domestication. These ranged from 9,000 to
19,000 years for the transition from T. dicoccoides
and T. aestivum and 8,705 to 18,414 years between
T. dicoccoides and T. durum (Fahima et al. 2003). Se-
quence variation at a number of D genome STS loci
has suggested that multiple D genome diploid par-
ents were involved in the origin of common wheat
(Talbert et al. 1998) and that all wheats share a single
D-genome gene pool, which is the strangulata form
of Ae. tauschii (Dvorák et al. 1998a). The strangulata
gene pool is larger than expected because of gene flow
from the tauschii form of Ae. tauschii (Lubbers et al.
1991; Dvorák et al. 1998a).

2.4.4
Comparative Mapping and Synteny

Molecular mapping of wheat and other grass species
suggested that despite more than 60 million years of
evolution within the subfamily of the Poaceae, the
individual grass genomes are characterized by large
segments of conserved linkage blocks that display
collinear marker orders between different species.
Similar to a LEGO-model, grass genomes are con-
sidered to be made up of conserved segments (Moore
1995). This model was extended by Gale and Devos
(1998), and it was shown that the grass genomes can be
displayed in concentric circles in which orthologous
genes, which are derived from a common ancestor
locus, are located on a radial line. Some reports on
comparative mapping dealing with wheat and other
cereal species are listed in Table 6. These studies pro-
vide important clues about the structural organiza-
tion of the cereal genomes. For instance, the com-

Fig. 1. Comparative location of genes determining dwarfness
(GA insensitive) on chromosomes 4B and 4D of wheat and 4H
of barley using the following basic maps: (1, 2) Börner et al.
(1997), (3) Ivandic et al. (1998). Mapped loci are marked with
a point. The connecting lines between chromosomes indicate
common loci which are underlined. Genetic distances (roughly
estimated) are given in centimorgans (cM). The gene loci are
boxed. c = estimated centromere position, S = short arm, L =
long arm

parative mapping of GA-insensitive dwarfing genes
suggested that the dominant Rht genes of wheat and
the codominat Dwf2 gene of barley are members of
a homoeoallelic series existing in the triticeae species
(Fig. 1). In a similar way, Fig. 2 shows that the wa1
locus (determining the waxless plant character) of
rye is homoeoallelic to the glaucousness (waxiness)
loci w1 or w21 of wheat and genes/alleles for glossy
sheat/spike (gs1, gs6, gs8) of barley. Furthermore, the
alignment of the gl2 (responsible for altering cuticle
wax) gene region of maize with the w21 of wheat sug-
gests the conservation of genes responsible for similar
traits acrosss different cereal genomes. In addition to
revealing evolutionary patterns within the Poaceae
subfamily; comparative mapping provides access to
the model genome of rice. An obvious strategy emerg-
ing from the concept of syntenous relationships is the
transfer of the vast amount of genomic information
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Table 6. A list of some important comparative mapping and genomics studies revealing the syntenic relationship of wheat with
other cereal species

Species References

Wheat, barley Namuth et al. (1994), Hohmann et al. (1995), Dubcovsky et al. (1996),
Hernandez et al. (2001), Salvo-Garrido et al. (2001), Weng and Lazar (2002b),
Varshney et al. (2005b)

Wheat, maize Devos et al. (1994)

Wheat, rice Kurata et al. (1994), Kato et al. (1999), Sarma et al. (1998, 2000),
Lamoureaux et al. (2002), Liu and Anderson (2003b), Laubin et al. (2003),
Sorrells et al. (2003), Francki et al. (2003), La Rota and Sorrells (2004),
Singh et al. (2004a), Li et al. (2004b), Yu et al. (2004b)

Wheat, rye Devos et al. (1992, 1993a), Khlestkina et al. (2004)

Wheat, barley, rye Devos et al. (1993b), Devos and Gale (1993), Börner et al. (1998),
Gudu et al. (2002)

Wheat, barley, rice Dunford et al. (1995), Gallego et al. (1998), Kato et al. (2001)

Wheat, maize, rice Ahn et al. (1993), Moore et al. (1995b)

Wheat, maize, oat, rice Van Deynze et al. (1995a,b)

Wheat, foxtail-millet, maize, rice Moore et al. (1995a)

and resources available in rice genome to the wheat
genome (see paragraph above, Genome Collinearity).

Our present knowledge of synteny is mainly based
on comparative mapping of cross-hybridizing RFLP
markers. Comparisons of genetic linkage maps are
severely limited in their resolution by the number
of orthologous loci detected and by population sizes.
Early comparative maps (e.g., Hulbert et al. 1990; Ahn
and Tanksley 1993; Ahn et al. 1993; Kurata et al. 1994;
Moore et al. 1995a,b; Devos and Gale 1997; Gale and
Devos 1998) greatly underestimated the complexity
of genome relationships. Those low-resolution com-
parative maps are biased by the use of single-copy
probes that do not sample multicopy regions, sim-
plifying assumptions about collinearity and placing
excessive emphasis of gene-rich regions (Bennetzen
2000; Gaut 2001, 2002). In silico comparison of DNA
sequences among different cereals makes it possible to
transfer the sequence information between species to
greatly enhance the resolution of comparative maps.
For instance, in silico comparison of 974 genetically
mapped barley ESTs with 524,720 wheat ESTs pro-
vided a potential set of 934 (95.4% of the loci tested)
EST-derived markers to wheat genetic maps (Varsh-
ney et al. 2004c). However, large-scale comparative
DNA sequence analysis of physically mapped wheat
ESTs with the rice genome suggested that there has

been an abundance of rearrangements, insertions,
deletions and duplications eroding the wheat-rice
genome relationship that may complicate the use of
rice as a model for cross-species transfer of informa-
tion in non-conserved regions (Sorrells et al. 2003; La
Rota and Sorrells 2004; see Sect. 2.5.2 below).

2.5
Impact of Genomics Research
on Wheat Genetics and Breeding

The publication of the complete genome sequence for
Arabidopsis (TAGI 2000) and drafts of rice genome
(Goff et al. 2002; Yu et al. 2002) provides the basis for
elucidating the gene and protein networks that control
biological processes. These model systems provide
the basis for determining the genes and the respec-
tive proteins that control key components of complex
traits in crop plants like wheat (Appels et al. 2003;
Gupta and Varshney 2004). A large amount of EST
data has been generated for wheat, which is being
used to study and analyse the transcriptome of wheat
(Powell and Langridge 2004). In addition to these ad-
vances in wheat genomics, novel approaches such as
linkage disequilibrium (LD) analysis and association
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Fig. 2. Comparative location of genes determining waxless plant on chromosomes 7R of rye, 2B and 2D of wheat, 2H of barley
and 2 of maize using the following basic maps: (1) Korzun et al. (1997a), (2, 4) Devos et al. (1993b), (3) Driscoll (1966), (5) Nelson
et al. (1995a), (6) Graner et al. (1991), (7) Franckowiak (unpublished, cf. Börner 1999), (8) Ahn and Tanksley (1993), (9) Coe and
Neuffer (1993). Mapped loci are marked with a point. The connecting lines between chromosomes indicate common loci which
are underlined. Genetic distances (roughly estimated) are given in centimorgans (cM). The gene loci are boxed. c = estimated
centromere position, S = short arm, L = long arm, TPB = translocation break point

mapping and genetical genomics would have a major
impact on wheat genetics and breeding in the near
future with the ultimate objective of crop improve-
ment.

2.5.1
Transcriptomics and Functional Genomics

In order to establish an inventory of expressed genes
in wheat, an international consortium (International
Triticeae EST Cooperative) was established to launch
the development of a wheat and barley EST database.
This effort provided the first serious collection of
ESTs and helped lead to other initiatives. In particular
a project entitled ‘The Structure and Function of
Expressed Portion of Wheat Genome’ involving 13
laboratories was established in 1999 and funded
by the National Science Foundation (NSF), USA
(http://wheat.pw.usda.gov/NSF/). The project had as
its objective to decipher the chromosomal location
and biological function of a large set of wheat genes,
to enhance our understanding of the biology of the
wheat plant and to create a new paradigm for the
improvement of this important crop. To this end,
a total of 117,510 ESTs (101,912 are 5′ ESTs and 15,605
are 3′ ESTs, as of July 2003) from 20 cDNA libraries

were generated (Zhang et al. 2004). Computational
analysis of this dataset yielded 18,876 contigs
and 23,034 singletons (http://wheat.pw.usda.gov/
NSF/curator/assembly.html; Lazo et al. 2004). In
addition to these ESTs, generated in NSF-sponsored
projects, other public laboratories and private
organizations such as the DuPont Corporation
also generated wheat ESTs and submitted them to
public databases. As a result, 587,650 wheat ESTs
are available in the public domain as of dbEST
release 012805 (http://www.ncbi.nlm.nih.gov/dbEST/
dbEST_summary.html). A computational analysis
of 554,379 wheat ESTs suggested the presence of
44,513 TCs (tentative consensi) and 83,420 singleton
ESTs, as per TIGR Wheat Gene Index Release 9.0, 20
September 2004 (http://www.tigr.org).

The extensive EST databases prepared from many
different tissues can be used to estimate gene expres-
sion levels by measuring the frequency of the appear-
ance of specific sequences, employing computational
tools such as Digital Differential Display (http://
www.ncbi.nlm.nih.gov/UniGene/info_ddd.shtml) or
HarvEST (http://harvest.ucr.edu/). An example of
the use of wheat ESTs from multiple cDNA libraries
to study developmental processes was shown by
Ogihara et al. (2003). After the analysis of 116,232
ESTs, generated from ten wheat tissues, the re-
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searchers identified correlated expression patterns of
genes across the tissues. Furthermore, relationships
of gene expression profiles among the ten wheat
tissues were inferred from global gene expression
patterns. However, the use of EST databases to study
expression profiles is limited by the availability of
cDNA libraries used to develop ESTs and by the
depth of EST sequencing. There are also problems
in tracking genes that may be represented by several
partial EST sequences.

Newer techniques allow the estimation of mRNA
abundance for large numbers of genes simultaneously.
The methods include serial analysis of gene expres-
sion (SAGE), microarrays, macroarrays and massively
parallel signature sequencing (MPSS). These methods
have not been extensively applied in wheat, although
nearly all have been applied to some aspects in other
cereals such as rice and maize (Milligan et al. 2004).

SAGE (serial analysis of gene expression), a logi-
cal extension of EST sequencing, can be used to study
expression patterns (Velculescu et al. 1995). Unfortu-
nately, SAGE does suffer from several problems. In
particular, SAGE experiments require large amounts
of RNA and can be very expensive if many sam-
ples are to be analysed, for example from a devel-
opmental series. As with MPSS (Brenner et al. 2000;
http://www.lynxgen.com/), the signatures generated
can be difficult to assign to particular genes when the
technique is applied to wheat, where a full genome
sequence is not available.

Microarrays and macroarrays offer a technique for
screening the expression profile of very large numbers
of genes simultaneously (Sreenivasulu et al. 2002).
Both types of arrays have been used to study grain
development in cereals. Macroarrays have the advan-
tage of ease of manufacture and low cost relative to
microarrays, but macroarrays do not provide the same
level of gene or probe density for screening. Although
macro-/microarrays have been used extensively in
some cereals such as maize, rice and barley, use of
these technologies in wheat has been limited. Re-
cently cDNA microarrays containing approximately
9,000 wheat cDNAs were used to monitor gene ex-
pression during the first 28 d of grain development
following anthesis (Leader et al. 2003). This study re-
vealed 66 differentially regulated genes, which showed
a sequence similar to transcription factors. Identified
genes can be used for gene-specific marker develop-
ment and synteny with rice to determine if any of
the genes map within regions corresponding to QTL
for grain yield or quality traits. Similarly, exploita-

tion of cDNA microarrays is under way to identify
the genes for endosperm development (Shinbata et al.
2003), for studying the Russian wheat aphid (RWA)
defense response mechanisms (Botha et al. 2003) and
assessment after fungicide application (Pasquer et al.
2003).

Real-time PCR (RT-PCR) has also been used to
study drought stress tolerance (Rampino et al. 2003).
Such approaches hold great potential for identifying
the genes corresponding to QTLs for use in breeding
as recently demonstrated in barley (Potokina et al.
2004). In addition, proteomic approaches have been
recently used to assess the relationship between the
wheat grain transcriptome and proteome (Branlard
et al. 2003). It is hoped that in the near future, the
above technologies will be put to extensive use in
wheat.

2.5.2
Comparative Genomics and Bioinformatics

The availability of a large number of ESTs of wheat
and other cereals and the complete genome se-
quence of rice has allowed sequence comparisons
between wheat and other cereal genomes and opened
a new area of comparative genomics. Over the last
decade, developments in the field of bioinformatics
responded to the needs of wheat (or Triticeae)
genomics researchers (Matthews et al. 2004). Several
databases and Web sites including GrainGenes
(http://wheat.pw.usda.gov/) for Triticeae, GRAMENE
(http://www.gramene.org/) for comparative mapping
in cereals, and TIGR (http://www.tigr.org/) for
genome analysis have been developed. For instance,
the GrainGenes database at present contains over
70 map sets and linkage data for T. aestivum, T.
turgidum and diploid species (Carollo et al. 2003).
The ‘Genomics’ page on the GrainGenes website,
http://wheat.pw.usda.gov/ggpages/genomics pro-
vides resources for wheat genomics researchers such
as assemblies of the ESTs, alignment of wheat ESTs to
the rice genome sequence, co-operative international
projects to develop wheat SNPs and SSRs, an assembly
of large DNA clones (BACs) into the physical map of
the D genome, and a database of repeat sequences
from the Triticeae (TREP) (Matthews et al. 2003).

The use of DNA-sequence-based comparative ge-
nomics for evolutionary studies and for transfer-
ring information from model species to related large-
genome species has revolutionized molecular genetics
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and breeding strategies for improving these crops (Pa-
terson 2004). Comparative sequence analysis methods
provide cross-referencing of genes between species
maps, enhance the resolution of comparative maps,
study patterns of gene evolution, identify conserved
regions of the genomes and facilitate interspecies gene
cloning.

A comparison (BLASTN analysis) of 5,780 ESTs
that were physically mapped in wheat chromosome
bins to 3,280 ordered BAC/PAC clones of rice re-
vealed numerous chromosomal rearrangements that
will significantly complicate the use of rice as a model
for cross-species transfer of information in non-
conserved regions (La Rota and Sorrells 2004). In
addition, the physical locations of non-conserved re-
gions were not consistent across rice chromosomes.
Some wheat ESTs with multiple wheat genome loca-
tions were found associated with the non-conserved
regions. An average of 35% of the putative single-copy
genes that were mapped to the most conserved bins
matched rice chromosomes other than the one that
was most similar.

As noted above, interruption of microcollinearity
was observed in other studies when extensive com-
parisons were made across smaller regions between
collinear chromosomes (arms) of wheat and rice. For
instance, a gene-by-gene BLASTN search of 2,932
genes from rice chromosome 11 (57.3 cM to 116.2 cM)
to wheat ESTs and physically mapped wheat ESTs re-
vealed that about one-third of the genes (homolo-
gous rice genes) were mapped to the homoeologous
group 4 chromosome of wheat, suggesting a com-
mon evolutionary origin (Singh et al. 2004a). Loca-
tion of bin-mapped wheat contigs to chromosomes
of all seven homoeologous groups was attributed to
the movement of genes (transpositions) or chromo-
some segments (translocations) within the rice or the
hexaploid wheat genomes. In another study on the
investigation of microcollinearity between the rice
genome and a total of 1,500 kb from physical BAC
contigs on wheat chromosome 1AS, a total of 27 con-
served orthologous sequences between wheat chro-
mosome 1AS and a region of 1,210 kb located on
rice chromosome 5S were identified. However, mi-
crocollinearity was found to be frequently disrupted
by rearrangements (Guyot et al. 2004). Similarly, mi-
crocollinearity was disrupted between a 2.6 cM region
(encompassing the grain protein content locus Gpc-
6B1) on wheat chromosome 6B and a 350 kb region
on rice chromosome 2 (Distelfeld et al. 2004). Nev-
ertheless, the region encompassing the Gpc-6B1 lo-

cus showed excellent conservation between the two
genomes, which facilitated the saturation of the target
region of the wheat genetic map with molecular mark-
ers, and the Gpc-6B1 locus was delimited to 0.3 cM
containing five candidate genes in the collinear 64-kb
region in rice. Comparative genomics also facilitated
the identification of genes controlling seed dormancy
and preharvest sprouting in wheat, barley and rice (Li
et al. 2004a).

2.5.3
Novel Approaches

AB-QTL Analysis
For the long-term sustainability of wheat produc-
tion, introduction of alien or exotic genes from wild
species is imperative. In the past, many useful genes
were transferred from wild relatives into wheat, most
of which were single genes or gene clusters confer-
ring resistance to various diseases. Fifty-seven genes
for resistance to diseases and pests were introduced
into wheat from other genera of the Triticeae fam-
ily via alien translocations. In many cases, the size
of the alien fragments and the translocation break-
points were precisely determined by genomic in situ
hybridization (for review see Friebe et al. 1996). For
transferring the QTLs of agronomically important
traits from a wild species to a crop variety, an approach
named ‘Advanced backcross QTL analysis (ABQA)’
was proposed by Tanksley and Nelson (1996). In this
approach, a wild species is backcrossed to a superior
cultivar, and during backcrossing cycles the transfer
of a desirable gene/QTL is monitored with molecu-
lar markers. The segregating BC2F2 or BC2F3 popula-
tion is then used not only for recording data on the
trait of interest but also for genotyping with polymor-
phic molecular markers. These data are then used for
QTL analysis, leading to the simultaneous discovery of
QTLs, while transferring these QTLs by conventional
backcrossing. This approach has been used in wheat
recently (Huang et al. 2003b, 2004). After genotyping
72 preselected BC2F2 plants derived from a cross be-
tween a German variety and synthetic wheat, Hunag
et al. (2003b) have identified 40 putative QTLs, in-
cluding 11 for yield, 16 for yield components, 8 for ear
emergence and 8 for plant height. Thus this approach
has the potential for direct use in wheat improvement.
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Association and Linkage Disequlibrium Analysis
Conventional techniques of molecular mapping re-
quire a mapping population based on the products of
one (doubled haploids) or two (F2s) cycles of recombi-
nations, limiting the resolution of genetic maps. In ad-
dition, such populations are often not representative
of the germplasm that is being actively used in breed-
ing programmes. In contrast, association mapping,
based on linkage disequilibrium (LD), does not re-
quire a conventional segregating population and may
in some cases be more powerful than conventional
analysis for identifying the genes responsible for the
variation in a quantitative trait (Buckler and Thorns-
berry 2002; for review see Flint-Garcia et al. 2003).
Combined with a consideration of population struc-
ture (Pritchard et al. 2000), this association mapping
allows for large-scale assessment of allele/trait rela-
tionships. A high degree of LD facilitates association
analysis of markers linked to a QTL but reduces the
resolution of the analysis (for review see Flint-Garcia
et al. 2003). For instance, in maize the rapid decay of
LD provides a means of mapping candidate genes with
high precision and at the same time allows one to as-
sociate alleles with phenotypic values (Thornsberry
et al. 2001). For those species with high LD, compara-
tive mapping and transcript profiling are necessary for
narrowing the list of candidate genes. Various kinds
of populations can be designed with the appropri-
ate resolution. For example, segmental introgression
lines would have high LD while long-term breeding
populations that have been intermated for many gen-
erations would have low LD (Sorrells 2004).

In wheat, some studies on association analysis
have already been conducted and provided mark-
ers linked with some traits (Paull et al. 1994, 1998).
Some efforts have been expended to study the asso-
ciation between growth habit and haplotype using
a set of 80 hexaploid cultivars and assaying a total of
seven SNPs located within a 3-kb region of molecular
marker PSR6001, a candidate marker for vernaliza-
tion responsive gene Vrn-A1 (Devos and Beales 2003).
However, large-scale studies on the estimation of LD
in the wheat genome are currently under way in sev-
eral laboratories. Such high-resolution mapping of
traits/QTLs to the level of individual genes will pro-
vide a new possibility for studying the molecular and
biochemical basis of variation in quantitative traits
and will help to identify specific targets for crop im-
provement in wheat. Though LD-based approaches
hold great promise for accelerating fine mapping, con-
ventional linkage mapping will continue to be useful

particularly when trying to ‘mendelize’ QTLs and as-
sessing the effect of QTL in isolation (Rafalski and
Morgante 2004).

Genetical Genomics
Recently, a new approach, called ‘genetical genomics’,
has also been proposed, where QTL mapping is com-
bined with expression profiling of individual genes
in a segregating (mapping) population (Jansen and
Nap 2001). In this approach, total mRNA or cDNA
of the organ/tissue from each individual of a map-
ping population is hybridized onto a microarray car-
rying a high number of cDNA fragments representing
the species/tissue of interest and quantitative data are
recorded reflecting the level of expression of each gene
on the filter. Under the presumption that every gene
showing transcriptional regulation is mapped within
the genome of the species of interest, the expression
data can be subjected to QTL analysis, thus mak-
ing it possible to identify the so-called ‘ExpressQTLs’
(eQTLs). The recently developed software tool Ex-
pressionview for combined visualization of gene ex-
pression data and QTL mapping (Fischer et al. 2003)
will be very useful in this connection. Based on seg-
regating populations, eQTL analysis identifies gene
products influencing the quantitative trait (level of
mRNA expression) in cis (mapping of the regulated
gene within the QTL) or trans (the gene is located
outside the QTL). The latter gene product (second-
order effect) is of specific interest because more than
one QTL can be connected to such a trans-acting fac-
tor (genes acting on the transcription of other genes)
(Schadt et al. 2003). The mapping of eQTLs allows
multifactorial dissection of the expression profile of
a given mRNA/cDNA, protein or metabolite into its
underlying genetic components and also makes it pos-
sible to locate these components on the genetic map
(Jansen and Nap 2001; Jansen 2003). Eventually, for
each gene or gene product analysed in the segregating
population (by using expression profiling methodol-
ogy), eQTL analysis will underline the regions of the
genome influencing its expression. This approach has
been used in maize (Schadt et al. 2003) and is being
investigated by several groups for wheat.
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2.6
Concluding Remarks

The development of genomics and genetics resources
in wheat has lagged behind that of many other plant
species. This has been largely related to concerns
about the large size and the polyploid nature of the
wheat genome. Therefore, despite its importance as
a food crop and the extensive genetic and cytogen-
tic resources that were available for wheat, genomics
programmes were slow to develop. However, over the
past few years this situation has changed dramati-
cally. Firstly, several programmes worked together to
build a resource base that now allows most genomics
approaches to be applied to wheat. Secondly, it has be-
come clear that the behaviour of the wheat genome is
different from that of many other species. This means
that genomics-based improvement of wheat will be
dependent on studies on wheat itself and also that
the study of the wheat genome offers some exciting
scientific challenges.

A large number of molecular markers have been
generated and mapped to produce dense genetic phys-
ical maps. Based on the available marker resources,
a number of agronomically important genes and an
even larger number of quantitative trait loci have been
tagged with molecular markers. Further progress in
trait mapping will critically depend on the availabil-
ity of appropriate plant material. The generation and
phenotypic analysis of experimental populations (F2,
DH, RIL, etc.) is time consuming and the development
of novel approaches of association genetics based on
the exploitation of linkage disequilibrium (LD) may
lead to the verification of candidate genes in natu-
ral populations or collections of various genotypes
(Rafalski 2002).

While the isolation of a given gene is usually a pre-
requisite to understanding its cellular function, the
identification and subsequent introgression of supe-
rior alleles will be of seminal importance to breed-
improved cultivars. The launch of several new ini-
tiatives to analyse the wheat genome structure will
facilitate the systematic development of wheat genetic
and genomic resources.
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Koebner RMD, Liu CJ, Masojć P, Xie DX, Gale MD (1993a)
Chromosomal rearrangement in the rye genome relative to
that of wheat. Theor Appl Genet 85:673–680

Devos KM, Millan T, Gale MD (1993b) Comparative RFLP maps
of the homoeologous group-2 chromosomes of wheat, rye
and barley. Theor Appl Genet 85:784–792

Devos KM, Chao S, Li Y, Simonetti MC, Gale MD (1994) Re-
lationship between chromosome 9 of maize and wheat
homoeologous group 7 chromosomes. Genetics 138:1287–
1292

Devos KM, Beales J (2003) Single nucleotide polymorphisms
(SNPs) associated with the vernalization response in wheat
In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc
10th Int Wheat Genet Symp, Paestum, Italy, pp 937–940

Dholakia BB, Ammiraju JSS, Santra DK, Singh H, Katti MV,
Lagu MD, Tamhankar SA, Rao VS, Gupta VS, Dhaliwal HS,
Ranjekar PK (2001) Molecular marker analysis of protein
content using PCR-based markers in wheat. Biochem Genet
39:325–338

Dieguez MJ, Ingala L, Perera E, Sacco F, Naranjo T (2003) Physi-
cal mapping of AFLPs on chromosome 6BL of wheat, which
includes the Lr3 gene for leaf rust resistance. In: Pogna NE,
Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat
Genet Symp, Paestum, Italy, pp 937–940

Dilbirligi M, Gill KS (2003) Identification and characterization
of candidate expressed genes of wheat. In: Pogna NE, Ro-
mano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat
Genet Symp, Paestum, Italy, pp 940–942

Distelfeld A, Uauy C, Olmos S, Schlatter AR, Dubcovsky J,
Fahima T (2004) Microcolinearity between a 2–cM region
encompassing the grain protein content locus Gpc-6B1 on
wheat chromosome 6B and a 350 kb region on rice chro-
mosome 2. Funct Integr Genom 4:59–66

Donini P, Elias ML, Bougourd SM, Koebner RMD (1997) AFLP
fingerprinting reveals pattern differences between tem-
plate DNA extracted from different plant organs. Genome
40:521–526

Donini P, Stephenson P, Bryan GJ, Koebner RMD (1998) The
potential of microsatellites for high throughput genetic di-
versity assessment in wheat and barley. Genet Resource
Crop Evol 45:415–421

Donini P, Law JR, Koebner RMD, Reeves JC, Cooke RJ (2000)
Temporal trends in the diversity of UK wheat. Theor Appl
Genet 100:912–917

Dreher K, Khairallah M, Ribaut JM, Morris M (2003) Money
matters (I): costs of field and laboratory procedures asso-
ciated with conventional and marker-assisted maize breed-
ing at CIMMYT. Mol Breed 11:221–234

Dreisigacker S, Zhang P, Warburton ML, Van Ginkel M, Hois-
ington D, Bohn M, Melchinger AE (2003) SSR and pedigree
analyses of genetic diversity among CIMMYT wheat lines
targeted to different megaenvironments. Crop Sci 44:381–
388

Driscoll CJ (1966) Gene-centromere distances in wheat by ane-
uploid F2 observations. Genetics 54:131–135

Dubcovsky J, Luo MC, Zhong GY, Bransteitter R, Desai A, Kilian
A, Kleinhofs A, Dvorak J (1996) Genetic map of diploid
wheat, Triticum monococcum L., and its comparison with
maps of Hordeum vulgare L. Genetics 143:983–999

Dunford RP, Kurata N, Laurie DA, Money TA, Minobe Y, Moore
G (1995) Conservation of fine-scale DNA marker order in



Chapter 2 Wheat 119

the genomes of rice and the Triticeae. Nucleic Acids Res
23:2724–2728

Dvorák J, Luo M-C, Yang Z-L, Zhang H-B (1998a) The struc-
ture of the Aegilops tauschii genepool and the evolution of
hexaploid wheat. Theor Appl Genet 97:657–670

Dvorák J, Luo MC, Yang ZL (1998b) Restriction fragment length
polymorphism and divergence in the genomic regions of
high and low recombination in self-fertilizing and cross-
fertilizing Aegilops species. Genetics 148:423–434

Dvorák J, Akhunov ED, Akhunov AR, Luo M-C, Linkiewicz AM,
Dubcovsky J, Hummel D, Lazo G, Chao S, Anderson OD et
al (2003) New insights into the organization and evolution
of wheat genomes. In: Pogna NE, Romano M, Pogna EA,
Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum,
Italy, pp 247–253

Dweikat I, Ohm H, Patterson F, Cambron S (1997) Identification
of RAPD markers for 11 Hessian fly resistance genes in
wheat. Theor Appl Genet 94:419–423

Eagles HA, Bariana HS, Ogbonnaya FC, Rebetzke GJ, Hollamby
GJ, Henry RJ, Henschke PH, Carter M (2001) Implementa-
tion of markers in Australian wheat breeding. Aust J Agric
Res 52:1349–1356

Effertz RJ, Meinhardt SW, Anderson JA, Jordahl JG, Francl LJ
(2002) Identification of a chlorosis-inducing toxin from
Pyrenophora tritici-repentis and the chromosomal location
of an insensitivity locus in wheat. Phytopathology 92:527–
533

Ellis MH, Spielmeyer W, Gale KR, Rebetzke GJ, Richards RA
(2002) “Perfect” markers for the RhtB1b and RhtD1b dwarf-
ing genes in wheat. Theor Appl Genet 105:1038–1042

Elouafi I, Nachit MM (2004) A genetic linkage map of the Durum
x Triticum dicoccoides backcross population based on SSRs
and AFLP markers, and QTL analysis for milling traits.
Theor Appl Genet 108:401–413

Endo TR, Gill BS (1996) The deletion stocks of common wheat.
J Hered 87:295–307

Eriksen L, Afshari F, Christiansen MJ, McIntosh RA, Jahoor A,
Wellings CR (2003a) Yr32 for resistance to stripe (yellow)
rust present in the wheat cultivar Carstens V. Theor Appl
Genet 108:567–575

Eriksen L, Borum F, Jahoor A (2003b) Inheritance and local-
isation of resistance to Mycosphaerella graminicola caus-
ing septoria tritici blotch and plant height in the wheat
(Triticum aestivum L) genome with DNA markers. Theor
Appl Genet 107:415–527

Eujayl I, Sorrells M, Baum M, Wolters P, Powell W (2001) As-
sessment of genotypic variation among cultivated durum
wheat based on EST-SSRS and genomic SSRs. Euphytica
119:39–43

Fahima T, Röder MS, Grama A, Nevo E (1998) Microsatellite
DNA polymorphism divergence in Triticum dicoccoides ac-
cessions highly resistant to yellow rust. Theor Appl Genet
96:187–195

Fahima T, Sun GL, Beharav A, Krugman T, Beiles A, Nevo E
(1999) RAPD polymorphism of wild emmer wheat popu-

lations, Triticum dicoccoides, in Israel. Theor Appl Genet
98:434–447

Fahima T, Röder MS, Wendehake K, Kirzhner VM, Nevo E
(2002) Microsatellite polymorphism in natural populations
of wild emmer wheat, Triticum dicoccoides, in Israel. Theor
Appl Genet 104:17–29

Fahima T, Ramachandran S, Krugman T, Röder MS, Nevo E,
Feldman MW (2003) Estimation of domestication times of
wheat and barley based on microsatellite polymorphism.
In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc
10th Int Wheat Genet Symp, Paestum, Italy, pp 481–483

Faris JD, Anderson JA, Francl LJ, Jordahl JG (1997) RFLP map-
ping of resistance to chlorosis induction by Pyrenophora
tritici-repentis in wheat. Theor Appl Genet 94:98–103

Faris JD, Haen KM, Gill BS (2000) Saturation mapping of
a gene-rich recombination hot spot region in wheat.
Genetics154:823–835

Faris JD, Fellers JP, Brooks SA, Gill BS (2003) A bacterial artifi-
cial chromosome contig spanning the major domestication
locus Q in wheat and identification of a candidate gene. Ge-
netics 164:311–321

Feuillet C, Keller B (1999) High gene density is conserved at
syntenic loci of small and large grass genomes. Proc Natl
Acad Sci USA 96:8265–8270

Feuillet C, Keller B (2002) Comparative genomics in the grass
family: molecular characterization of grass genome struc-
ture and evolution. Ann Bot 89:3–10

Feuillet, C, Travella S, Stein N, Albar L, Nublat A, Keller B
(2003) Map-based isolation of the leaf rust disease resis-
tance gene Lr10 from the hexaploid wheat (Triticum aes-
tivum L) genome. Proc Nat Acad Sci USA 100:15253–15258

Fischer G, Ibrahim SM, Brockmann GA, Pahnke J, Bartocci
E, Thiesen H-J, Serrano-Fernandez P, Möller S (2003) Ex-
pressionview: visualization of quantitative trait loci and
gene-expression data in Ensembl. Genome Biol 4:R477

Flint-Garcia SA, Thornsberry JM, Buckler IV ES (2003) Struc-
ture of linkage disequilbrium in plants. Annu Rev Plant
Biol 54:357–374

Francki MG, Appels R, Hunter A, Bellgard M (2003) Compara-
tive organization of 3BS and 7AL using wheat-rice synteny.
In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc
10th Int Wheat Genet Symp, Paestum, Italy, pp 254–257

Friebe B, Jiang J, Raupp J, McIntosh RA, Gill BS (1996) Char-
acterization of wheat-alien translocations conferring re-
sistance to disease and pests: current status. Euphytica
91:59–87

Gale MD, Atkinson MD, Chinoy CN, Harcourt R, Jia J, Li QY, De-
vos KM (1995) Genetic maps of hexaploid wheat. In: Chen
S (ed) Proc 8th Int Wheat Genet Symp. China Agricultural
Scientech Press, Beijing, pp 29–40

Gale MD, Devos KM (1998) Comparative genetics in the grasses.
Proc Natl Acad Sci USA 95:1971–1974

Galiba G, Quarrie SA, Sutka J, Morgunov A, Snape JW (1995)
RFLP mapping of the vernalisation (Vrn1) and frost resis-



120 R.K. Varshney, H.S. Balyan, P. Langridge

tance (Fr1) genes on chromosome 5A of wheat. Theor Appl
Genet 90:1174–1179

Gallego F, Feuillet C, Messmer M, Penger A, Graner A, Yano
M, Sasaki T, Keller B (1998) Comparative mapping of the
two wheat leaf rust resistance loci Lr1 and Lr10 in rice and
barley. Genome 41:328–336

Gandon B, Chiquet V, Guyomarc’h H, Baron C, Sourdille P,
Specel S, Foisset N, Murigneux A, Dufour P, Bernard M
(2002) Development of microsatellite markers for wheat
genetic mapping improvement. In: Plant, Animal & Mi-
crobe Genomes X Conf, San Diego, CA. http://www.intl-
pag.org/pag/10/abstracts/PAGX_P187.html

Gao LF, Tang JF, Li HW, Jia JZ (2003) Analysis of microsatellites
in major crops assessed by computational and experimen-
tal approaches. Mol Breed 12:245–261

Gao LF, Jing RL, Huo NX, Li Y, Li XP, Zhou RH, Chang XP,
Tang JF, Ma ZW, Jia JZ (2004) One hundred and one new
microsatellite loci derived from ESTs (EST-SSRs) in bread
wheat. Theor Appl Genet 108:1392–1400

Gardiner J, Schroeder S, Polacco ML, Sanchez-Villeda H, Fang
ZW, Morgante M, Landewe T, Fengler K, Useche F, Hanafey
M, Tingey S, Chou H, Wing R, Soderlund C, Coe EH (2004)
Anchoring 9,371 maize expressed sequence tagged uni-
genes to the bacterial artificial chromosome contig map
by two-dimensional overgo hybridization. Plant Physiol
134:1317–1326

Garg M, Singh S, Singh B, Singh K, Dhaliwal HS (2001) Estimates
of genetic similarities and DNA fingerprinting of wheats
(Tritium species) and triticale cultivars using molecular
markers. Indian J Agril Sci 71:438–443

Gaut BS (2001) Patterns of chromosomal duplication in maize
and their implications for comparative maps of the grasses.
Genome Res 11:55–66

Gaut BS (2002) Evolutionary dynamics of grass genomes. New
Phytologist 154:15–28

Gervais L, Dedryver F, Morlais JY, Bodusseau V, Negre S, Bilous
M, Groos C, Trottet M (2003) Mapping of quantitative trait
loci for field resistance to Fusarium head blight in an Eu-
ropean winter wheat. Theor Appl Genet 106:961–970

Giese H, Holm-Jensen AG, Mathiassen H, Kjær B, Rasmussen
SK, Bay H, Jensen J (1994) Distribution of RAPD markers
on a linkage map of barley. Hereditas 120:267–273

Gill KS (2004) Gene distribution in cereal genomes In: Gupta
PK, Varshney RK (eds) Cereal Genomics. Kluwer, Dor-
drecht, pp 361–38

Gill KS, Gill BS (1994) Mapping in the realm of polyploidy: the
wheat model. BioEssays 16:841–846

Gill KS, Gill BS, Endo TR (1993) A chromosome region-
specific mapping strategy reveals gene-rich telomeric ends
in wheat. Chromosoma 102:374–381

Gill KS, Gill BS, Endo TR, Taylor T (1996a) Identification and
high-density mapping of gene-rich regions in chromosome
group 1 of wheat. Genetics 144:1883–1891

Gill KS, Gill BS, Boyko EV (1996b) Identification and high den-
sity mapping of gene-rich regions in chromosome group 5
of wheat. Genetics 143:1001–1012

Gill BS, Qi L, Echalier B, Chao S, Lazo G, Anderson OD, Akhunov
ED, Dvorak J, Linkiewicz AM, Dubcovsky J et al (2003)
A transcriptome map of wheat. In: Pogna NE, Romano
M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet
Symp, Paestum, Italy, pp 261–264

Gilpin BJ, McCallum JA, Frew GM, Timmerman-Vaughan GM
(1997) A linkage map of the pea (Pisum sativum L) genome
containing cloned sequences of known functions and ex-
pressed sequence tags (ESTs). Theor Appl Genet 95:1289–
1299

Gladysz A, Steiner B, Castro M, Burestmayr H (2003) Transfer
of QTLs for resistance to Fusarium head blight from bread
wheat into durum wheat by marker-assisted breeding. In:
Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc
10th Int Wheat Genet Symp, Paestum, Italy, pp 715–717

Goff SA, Ricke D, Lan TH, Presting G, Wang RL, Dunn M,
Glazebrook J, Sessions A, Oeller P, Varma H et al (2002)
A draft sequence of the rice genome (Oryza sativa L ssp
japonica). Science 296:92–100

Gold J, Harder D, Townley–Smith F, Aung T, Procunier J (1999)
Development of a molecular marker for rust resistance
genes Sr39 and Lr35 in wheat breeding lines. Electr J Biotech
2:35–40

Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K, Fis-
chbeck G, Wenzel G, Herrmann RG (1991) Construction of
an RFLP map of barley. Theor Appl Genet 83:250–256

Groenewald JZ, Marais AS, Marais GF (2003) Amplified
fragment length polymorphism-derived microsatellite se-
quence linked to the Pch1 and Ep-D1 loci in common wheat.
Plant Breed 122:83–85

Groos C, Gay G, Perretant MR, Gervais L, Bernard M, Dedryver
F, Charmet D (2002) Study of the relationship between
pre-harvest sprouting and grain color by quantitative trait
loci analysis in a whitexred grain bread-wheat cross. Theor
Appl Genet 104:39–47

Grunberg AM, Costa JM, Kratochvil RJ (2001) Amplified frag-
ment length polymorphism in a selected sample of soft red
winter wheat. Cereal Res Commun 29:251–258

Gudu S, Laurie DA, Kasha KJ, Xia JJ, Snape JW (2002) RFLP
mapping of a Hordeum bulbosum gene highly expressed
in pistils and its relationship to homoeologous loci in other
Gramineae species. Theor Appl Genet 105:271–276

Guo PG, Bai GH, Shaner GE (2003) AFLP and STS tagging of
a major QTL for Fusarium head blight resistance in wheat.
Theor Appl Genet 106:1011–1017

Gupta PK, Varshney RK (2000) The development and use of mi-
crosatellite markers for genetic analysis and plant breeding
with emphasis on bread wheat. Euphytica 113:163–185

Gupta PK, Varshney RK (2004) Cereal genomics: An overview.
In: Gupta PK, Varshney RK (eds) Cereal Genomics. Kluwer,
Dordrecht, pp 1–18



Chapter 2 Wheat 121

Gupta PK, Varshney RK, Sharma PC, Ramesh B (1999) Molecu-
lar markers and their applications in wheat breeding. Plant
Breed 118:369–390

Gupta PK, Balyan HS, Edwards KJ, Isaac P, Korzun V, Röder
M, Gautier MF, Joudrier P, Schlatter AR, Dubcovsky J et
al (2002a) Genetic mapping of 66 new microsatellite (SSR)
loci in bread wheat. Theor Appl Genet 105:413–422

Gupta PK, Varshney RK, Prasad M (2002b) Molecular mark-
ers: principles and methodology. In: Jain SM, Brar DS,
Ahloowalia BS (eds) Molecular Techniques in Crop Im-
provement. Kluwer, Dordrecht, pp 9–54

Gupta PK, Rustgi S, Sharma S, Singh R, Kumar N, Balyan HS
(2003) Transferable EST-SSR markers for the study of poly-
morphism and genetic diversity in bread wheat. Mol Gen
Genom 270:315–323

Guyomarc’h H, Sourdille P, Edwards KJ, Bernard M (2002) Stud-
ies of the transferability of microsatellites derived from
Triticum tauschii to hexaploid wheat and to diploid related
species using amplification, hybridization and sequence
comparisons. Theor Appl Genet 105:736–744

Guyot R, Yahiaoui N, Feuillet C, Keller B (2004) In silico com-
parative analysis reveals a mosaic conservation of genes
within a novel colinear region in wheat chromosome 1AS
and rice chromosome 5S. Funct Integr Genom 4:47–58

Han F, Fedak G, Ouellet T, Somers D (2003) Isolation, charac-
terization and physical mapping of differential clones from
SSH library for Fusarium head blight (FHB) resistance In:
Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc
10th Int Wheat Genet Symp, Paestum, Italy, pp 952–954

Harker N, Rampling LR, Shariflou MR, Hayden MJ, Holton
TA, Morell MK, Sharp PJ, Henry RJ, Edwards KJ (2001) Mi-
crosatellites as markers for Australian wheat improvement.
Aust J Agric Res 52:1121–1130

Hartl L, Weiss H, Zeller FJ, Jahoor A (1993) Use of RFLP markers
for the identification of alleles of the Pm3 locus conferring
powdery mildew resistance in wheat (Triticum aestivum L).
Theor Appl Genet 86:959–963

Hartl L, Weiss H, Stephan U, Zeller FJ, Jahoor A (1995) Molec-
ular identification of powdery mildew resistance genes in
common wheat (Triticum aestivum L). Theor Appl Genet
90:601–606

Hartl L, Mohler V, Zeller FJ, Hsam SLK, Schweizer G (1999)
Identification of AFLP markers closely linked to the pow-
dery mildew resistance genes Pm1c and Pm4a in common
wheat (Triticum aestivum L). Genome 42:322–329

Harushima Y, Yano M, Shomura A, Sato M, Shimono T, Kuboki
Y, Yamamoto T, Lin SY, Antonio BA, Parco A et al (1998)
A high density rice genetic linkage map with 2275 markers
using a single F2 population. Genetics 148:479–494

Hazen SP, Leroy P, Ward RW (2002) AFLP in Triticum aestivum
L: patterns of genetic diversity and genome distribution.
Euphytica 125:89–102

Helguera M, Khan IA, Dubcovsky J (2000) Development of PCR
markers for wheat leaf rust resistance gene Lr47. Theor
Appl Genet 101:625–631

Helguera M, Khan IA, Kolmer J, Lijavetzky D, Zhong-qi L, Dub-
covsky J (2003) PCR assays for the Lr37-Yr17-Sr38 cluster
of rust resistance genes and their use to develop isogenic
hard red spring wheat lines. Crop Sci 43:1839–1847

Hernandez P, Dorado G, Prieto P, Gimenez MJ, Ramirez MC,
Laurie DA, Snape JW, Martin A (2001) A core genetic map
of Hordeum chilense and comparisons with maps of barley
(Hordeum vulgare) and wheat (Triticum aestivum). Theor
Appl Genet 102:1259–1264

Heun M, SchaferPregl R, Klawan D, Castagna R, Accerbi M,
Borghi B, Salamini F (1997) Site of einkorn wheat domesti-
cation identified by DNA fingerprinting. Science 278:1312–
1314

Hohmann U, Graner A, Endo TR, Gill BS, Herrmann RG (1995)
Comparison of wheat physical maps with barley linkage
maps for group 7 chromosomes. Theor Appl Genet 91:618–
626

Holton TA, Christopher JT, McClure L, Harker N, Henry RJ
(2002) Identification and mapping of polymorphic SSR
markers from expressed gene sequences of barley and
wheat. Mol Breed 9:63–71

Hossain KG, Kalavacharla V, Lazo GR, Hegstad J, Wentz MJ,
Kianian PMA, Simons K, Gehlhar S, Rust JL, Syamala RR
et al (2004a) A chromosome bin map of 2,148 expressed
sequence tag loci of wheat homoeologous group 7. Genetics
168:687–699

Hossain KG, Riera-Lizarazu O, Kalavacharla V, Vales MI, Rust
JL, Maan SS, Kianian SF (2004b) Molecular cytogenetic
characterization of an alloplasmic durum wheat line with
a portion of chromosome 1D of Triticum aestivum carrying
the scsae gene. Genome 47:206–214

Houshmand S, Knox RE, Clarke FR, Clarke JM (2003) Mi-
crosatellite markers associated with sawfly cutting in du-
rum wheat. In: Pogna NE, Romano M, Pogna EA, Galterio
G (eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy,
pp 1151–1153

Hu XY, Ohm HW, Dweikat I (1997) Identification of RAPD
markers linked to the gene Pm1 for resistance to powdery
mildew in wheat. Theor Appl Genet 94:832–840

Huang L, Gill BS (2001) An RGA like marker detects all known
Lr21 leaf rust resistance gene family members in Aegilops
tauschii and wheat. Theor Appl Genet 103:1007–1013

Huang XQ, Röder MS (2003) High-denisty genetic and physical
mapping of the powdery mildew resistance gene Pm24 on
chromosome 1D of wheat. In: Pogna NE, Romano M, Pogna
EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp,
Paestum, Italy, pp 961–964

Huang XQ, Hsam SLK, Zeller FJ, Wenzel G, Mohler V (2000)
Molecular mapping of the wheat powdery mildew resis-
tance gene Pm24 and marker validation for molecular
breeding. Theor Appl Genet 101:407–414

Huang XQ, Börner A, Röder MS, Ganal MW (2002) Assessing ge-
netic diversity of wheat (Triticum aestivum L) germplasm
using microsatellite markers. Theor Appl Genet 105:699–
707



122 R.K. Varshney, H.S. Balyan, P. Langridge

Huang L, Brooks SA, Li W, Fellers JP, Trick HN, Gill BS (2003a)
Map-based cloning of leaf rust resistance gene Lr21 from
the large and polyploid genome of bread wheat. Genetics
164:655–664

Huang XQ, Cöster H, Ganal MW, Röder MS (2003b) Advanced
backcross QTL analysis for the identification of quantita-
tive trait loci alleles from wild relatives of wheat (Triticum
aestivum L). Theor Appl Genet 106:1379–1389

Huang XQ, Wang LX, Xu MX, Röder MS (2003c) Microsatellite
mapping of the powdery mildew resistance gene Pm5e in
common wheat (Triticum aestivum L). Theor Appl Genet
106:858–865

Huang XQ, Kempf H, Ganal MW, Röder MS (2004) Advanced
backcross QTL analysis in progenies derived from a cross
between a German elite winter wheat variety and a syn-
thetic wheat (Triticum aestivum L.). Theor Appl Genet
109:933–941

Hulbert SH, Richter TE, Axtell JD, Bennetzen JL (1990) Ge-
netic mapping and characterization of sorghum and re-
lated crops by means of maize DNA probes. Proc Natl Acad
Sci USA 87:4251–4255

Incirli A, Akkaya MS (2001) Assessment of genetic relationships
in durum wheat cultivars using AFLP markers. Genet Re-
source Crop Evol 48:233–238

Ishii T, Mori N, Ogihara Y (2001) Evaluation of allelic diversity
at chloroplast microsatellite loci among common wheat
and its ancestral species. Theor Appl Genet 103:896–904

Ivandic V, Malyshev V, Korzun V, Graner A, Börner A (1998)
Comparative mapping of a gibberelic acid insensitive
dwarfing gene (Dwf2) on chromosome 4HS of barley. Theor
Appl Genet 98 :728–731

Iwaki K, Nishida J, Yanagisawa T, Yoshida H, Kato K (2002)
Genetic analysis of Vrn-B1 for vernalization requirement
by using linked dCAPS markers in bread wheat (Triticum
aestivum L). Theor Appl Genet 104:571–576

Jahoor A, Eriksen L, Backes G (2004) QTLs and genes for disease
resistance in barley and wheat. In: Gupta PK, Varshney RK
(eds) Cereal Genomics. Kluwer, Dordrecht, pp 199–252

Jansen RC (2003) Studying complex biological systems using
multifactorial perturbation. Nature Rev Genet 4:145–151

Jansen RC, Nap J-P (2001) Genetical genomics: the added value
from segregation Trends Genet 17:388–391

Järve K, Peusha HO, Tsymbalova J, Tamm S, Devos KM, Enno
TM (2000) Chromosomal location of a Triticum timophee-
vii-derived powdery mildew resistance gene transferred to
common wheat. Genome 43:377–381

Jia J, Devos KM, Chao S, Miller TE, Reader SM, Gale MD (1996)
RFLP-based maps of the homoeologous group-6 chromo-
somes of wheat and their application in the tagging of
Pm12, a powdery mildew resistance gene transferred from
Aegilops speltoides to wheat. Theor Appl Genet 92:559–565

Jiang JM, Gill BS (1994) Nonisotopic in-situ hybridization and
plant genome mapping – the first 10 years. Genome 37:717–
725

Joshi CP, Nguyen HT (1993) Application of the random ampli-
fied polymorphic DNA technique for the detection of poly-
morphism among wild and cultivated tetraploid wheats.
Genome 36:602–609

Jurman I, Castelluccio MD, Wolf M, Olivieri A, DeAmbrogio E,
Morgante M (2003) Construction of an SSR-based linkage
map of durum wheat. In: Pogna NE, Romano M, Pogna EA,
Galterio G (eds) Proc 10th Int Wheat Genet Symp, Paestum,
Italy, pp 968–970

Kantety RV, Rota ML, Matthews DE, Sorrells ME (2002) Data
mining for simple sequence repeats in expressed sequence
tags from barley, maize, rice, sorghum and wheat. Plant
Mol Biol 48:501–510

Kato K, Miura H, Sawada S (1999) Comparative mapping of the
wheat Vrn-A1 region with the rice Hd-6 region. Genome
42:204–209

Kato K, Miura H, Sawada S (2000) Mapping QTLs control-
ling grain yield and its components on chromosome 5A
of wheat. Theor Appl Genet 101:1114–1121

Kato K, Nakamura W, Tabiki T, Miura H, Sawada S (2001) De-
tection of loci controlling seed dormancy on group 4 chro-
mosomes of wheat and comparative mapping with rice and
barley genomes. Theor Appl Genet 102:980–985

Kato K, Yamashita M, Ishimoto K, Yoshino H, Fujita M (2003)
Genetic analysis of two genes for vernalization response,
the former Vrn2 and Vrn4, by using PCR-based molecular
markers. In: Pogna NE, Romano M, Pogna EA, Galterio G
(eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp
971–973

Keller B, Feuillet C (2000) Colinearity and gene density in grass
genomes. Trends Plant Sci 5:246–251

Keller M, Karutz C, Schmid JE, Stamp P, Winzeler M, Keller
B, Messmer MM (1999a) Quantitative trait loci for lodging
resistance in a segregating wheat × spelt population. Theor
Appl Genet 98:1171–1182

Keller M, Keller B, Schachermayr G, Winzeler M, Schmid JE,
Stamp P, Messmer MM (1999b) Quantitative trait loci for
resistance against powdery mildew in a segregating wheat
× spelt population. Theor Appl Genet 98:903–912

Khan AA, Bergstrom GC, Nelson JC, Sorrells ME (2000a) Iden-
tification of RFLP markers for resistance to wheat spin-
dle streak mosaic bymovirus (WSSMV) disease. Genome
43:477–482

Khan IA, Procunier JD, Humphreys DG, Tranquilli G, Schlatter
AR, Marcucci-Poltri S, Frohberg R, Dubcovsky J (2000b)
Development of PCR-based markers for a high grain pro-
tein content gene from Triticum turgidum ssp. dicoccoides
transferred to bread wheat. Crop Sci 40:518–524

Khlestkina EK, Than MHM, Pestsova EG, Röder MS, Malyshev
SV, Korzun V, Börner A (2004) Mapping of 99 microsatel-
lite loci in rye (Secale cereale L) including 39 expressed
sequence tags. Theor Appl Genet 109:725–732

Kianian SF, Hossain KG, Riera-Lizarazu O, Kalavacharla V, Vales
MI, Maan SS (2003) Radiation hybrid mapping of a species
cytoplasm specific (scsae)gene in wheat. In: Pogna NE, Ro-



Chapter 2 Wheat 123

mano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat
Genet Symp, Paestum, Italy, pp 595–597

Kim HS, Ward RW (1997) Genetic diversity in Eastern US soft
winter wheat (Triticum aestivum L em Thell) based on
RFLPs and coefficients of parentage. Theor Appl Genet
94:472–479

Klein PE, Klein RR, Cartinhour SW, Ulanch PE, Dong J, Obert
JA, Morishge DT, Schlueter SD, Childs KL, Ale M et al
(2000) A high throughput AFLP based method for con-
structing integrated genetic and physical maps: progress
toward a sorghum genome map. Genome Res 10:789–807

Knox RE, Menzies JG, Howes NK, Clarke JM, Aung T, Penner GA
(2002) Genetic analysis of resistance to loose smut and an
associated DNA marker in durum wheat doubled haploids.
Can J Plant Pathol 24:316–322

Kobiljski B, Quarrie S, Dencic S, Kirby J, Iveges M (2002) Genetic
diversity of the Novi Sad Wheat Core Collection revealed
by microsatellites. Cell Mol Biol Lett 7:685–694

Koebner RMD (2004) Marker-assisted selection in the cereals:
The dream and the reality. In: Gupta PK, Varshney RK (eds)
Cereal Genomics. Kluwer, Dordrecht, pp 317–330

Koebner R, Summers R (2003) 21st century wheat breeding:
selection in plots or detection in plates? Trends Biotech
21:59–63

Koebner RMD, Powell W, Donini P (2001) The contribution of
current and forthcoming DNA molecular marker technolo-
gies to wheat and barley genetics and breeding In: Janick J
(ed) Plant Breed Rev 21, pp 181–220

Koebner RMD, Donini P, Reeves JC, Cooke RJ, Law JR (2003)
Temporal flux in the morphological and molecular diver-
sity of UK barley. Theor Appl Genet 106:550–558

Kojima T, Nagaoka T, Noda K, Ogihara Y (1998) Genetic linkage
map of ISSR and RAPD markers in einkorn wheat in rela-
tion to that of RFLP markers. Theor Appl Genet 96:37–45

Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T,
Yano M (2002) Hd3a, a rice ortholog of the Arabidopsis FT
gene, promotes transition to flowering downstream of Hd1
under short-day conditions. Plant Cell Physiol 43:1096–
1105

Kong LR, Dong YC, Jia JZ (1998) Random amplified polymor-
phism of DNA analysis in Aegilops tauschii. Acta Bot Sin
40:223–227

Korzun V, Malyshev S, Voylokov A, Börner A (1997a) RFLP
based mapping of three mutant loci in rye (Secale ce-
reale L.) and their relation to homoeologous loci within
the Gramineae. Theor Appl Genet 95:468–473

Korzun V, Röder M, Worland AJ, Börner A (1997b) Mapping
of the dwarfing (Rht12) and vernalisation response (Vrn1)
genes in wheat by using RFLP and microsatellite markers.
Plant Breed 116:227–232

Korzun V, Röder MS, Ganal MW, Worland AJ, Law CN (1998) Ge-
netic analysis of the dwarfing gene (Rht8) in wheat. Part I:
Molecular mapping of Rht8 on the short arm of chromo-
some 2D of bread wheat (Triticum aestivum L). Theor Appl
Genet 96:1104–1109

Korzun V, Röder MS, Wendehake K, Pasqualone A, Lotti C,
Ganal MW, Blanco A (1999) Integration of dinucleotide
microsatellites from hexaploid bread wheat into a genetic
linkage map of durum wheat. Theor Appl Genet 98:1202–
1207

Kota RS, Gill KS, Gill BS, Endo TR (1993) A cytogenetically
based physical map of chromosome-1B in common wheat.
Genome 36:548–554

Kraic J, Silkova S, Hudcovicova, Gregova E, Bartos P (2003) Leaf
rust resistant wheat lines developed by marker-assisted
selection. In: Pogna NE, Romano M, Pogna EA, Galterio G
(eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp
742–745

Kuchel H, Wraner P, Fox RL, Chalmers K, Howes N, Langridge
P, Jefferies SP (2003) Whole genome based marker assisted
selection strategies in wheat breeding. In: Pogna NE, Ro-
mano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat
Genet Symp, Paestum, Italy, pp 144–147

Kulwal P, Singh R, Balyan HS, Gupta PK (2004) Genetic ba-
sis of pre-harvest sprouting tolerance using single-locus
and two-locus QTL analyses in bread wheat. Funct Integr
Genom 4:94–101

Kurata N, Nagamura Y, Yamamoto K, Harushima Y, Sue N,
Wu J, Antonio BA, Shomura A, Shimizu T, Lin et al (1994)
A 300 kolobase interval genetic map of rice including 883
expressed sequences. Nat Genet 8:365–372

Lage J, Warburton ML, Crossa J, Skovmand B, Andersen
SB (2003) Assessment of genetic diversity in synthetic
hexaploid wheats and their Triticum dicoccum and Aegilops
tauschii parents using AFLPs and agronomic traits. Eu-
phytica 134:305–317

Lagudah ES, Dubcovsky J, Powell W (2001) Wheat genomics.
Plant Physiol Biochem 39:335–344

Lamoureux D, Boeuf C, Regad F, Garsmeur O, Charmet G, Sour-
dille P, Lagoda P, Bernard M (2002) Comparative map-
ping of the wheat 5B short chromosome arm distal region
with rice, relative to a crossability locus. Theor Appl Genet
105:759–765

Langridge P, Chalmers K (1998) Techniques for marker devel-
opment. In: Slinkard AE (ed) Proc 9th Int Wheat Genet
Symp, Vol 1. University Extension Press, University of
Saskatchewan, Saskatoon, Canada, pp 107–117

Langridge P, Chalmers K (2004) The Principle: Identification
and application of molecular markers. In: Lörz H, Wenzel
G (eds) Biotechnology in Agriculture and Forestry, Vol 55.
Molecular markers systems. Springer, Berlin Heidelberg
New York, pp 3–22

Langridge P, Lagudah ES, Holton TA, Appels R, Sharp PJ,
Chalmers KJ (2001) Trends in genetic and genome anal-
yses in wheat: a review. Aust J Agric Res 52:1043–1077

Laroche A, Demeke T, Gaudet DA, Puchalski B, Frick M, McKen-
zie R (2000) Development of a PCR marker for rapid iden-
tification of the Bt-10 gene for common bunt resistance in
wheat. Genome 43:217–223



124 R.K. Varshney, H.S. Balyan, P. Langridge

La Rota CM, Sorrells ME (2004) Comparative DNA sequence
analysis of mapped wheat ESTs reveals complexity of
genome relationships between rice and wheat. Funct In-
tegr Genom 4:34–46

Laubin B, Nicot N, Amiour N, Sourdille P, Branlard G, Leroy
P (2003) In silico mapping and colinearity between the
homoeologous group 5 of wheat and the rice genome. In:
Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc
10th Int Wheat Genet Symp, Paestum, Italy, pp 280–283

Law JR, Donini P, Koebner RMD, James CR, Cooke RJ (1998)
DNA profiling and plant variety registration. III: The sta-
tistical assessment of distinctness in wheat using amplified
fragment length polymorphisms. Euphytica 102:335–342

Lazo GR, Chao S, Hummel D, Edwards H, Crosman CC, Lui N,
Matthews DE, Carollo VL, Hane DL, You FM et al (2004)
Development of an expressed sequence tag (EST) resource
for wheat (Triticum aestivum): EST generation, unigene
analysis, probe selection and bioinformatics for a 16,000
locus bin-delineated map. Genetics 168:585–593

Leader DJ, Cullup T, Ridley P, van Dodeweerd A-M (2003) Mi-
croarray analysis of wheat grain development: applications
to trait charcterization in the field. In: Pogna NE, Romano
M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet
Symp, Paestum, Italy, pp 287–292

Lee M (1995) DNA markers and plant breeding programs. Adv
Agron 55:265–344

Leigh F, Lea V, Law J, Wolters P, Powell W, Donini P (2003)
Assessment of EST- and genomic microsatellite markers
for variety discrimination and genetic diversity studies in
wheat. Euphytica 133:359–366

Leister D, Kurth J, Laurie DA, Yano M, Sasaki T, Devos K, Graner
A, Schulze-Lefert P (1998) Rapid reorganization of resis-
tance gene homologues in cereal genomes. Proc Natl Acad
Sci USA 95:370–375

Li YC, Fahima T, Beiles A, Korol AB, Nevo E (1999) Microcli-
matic stress and adaptive DNA differentiation in wild em-
mer wheat, Triticum dicoccoides. Theor Appl Genet 98:873–
883

Li W, Nelson JC, Chu CY, Shi LH, Huang SH, Liu DJ (2002a)
Chromosomal locations and genetic relationships of tiller
and spike characters in wheat. Euphytica 125:357–366

Li YC, Röder MS, Fahima T, Kirzhner VM, Beiles A, Korol AB,
Nevo E (2002b) Climatic effects on microsatellite diver-
sity in wild emmer wheat (Triticum dicoccoides) at the
Yehudiyya microsite, Israel. Heredity 89:127–132

Li C, Ni P, Francki M, Hunter M, Zhang Y, Schibeci D, Li H,
Tarr A, Wang J, Cakir M et al. (2004a) Genes controlling
seed dormancy and pre-harvest sprouting in a rice-wheat-
barley comparison. Funct Integr Genom 4:84–93

Li Z, Huang N, Rampling L, Wang J, Yu J, Morell M, Rahman S
(2004b) Detailed comparison between the wheat chromo-
some group 7 short arms and the rice chromosome arms
6S and 8L with special reference to genes involved in starch
biosynthesis. Funct Integr Genom 4:231–240

Ling H-Q, Zhu Y, Keller B (2003) High–resolution mapping
of the leaf rust disease resistance gene Lr1 in wheat and
characterisation of BAC clones from the Lr1 locus. Theor
Appl Genet 3:875–882

Linkiewicz AM, Qi L, Echalier B, Gill BS, Chao S, Lazo G, An-
derson OD, Akhunov ED, Dvorak J, Miftahudin et al. (2003)
A two thousand loci physical map of wheat homoeologous
group 5. In: Pogna NE, Romano M, Pogna EA, Galterio G
(eds) Proc 10th Int Wheat Genet Symp, Paestum, Italy, pp
986–988

Linkiewicz AM, Qi LL, Gill BS, Ratnasiri A, Echalier B, Chao
S, Lazo G, Hummel DD, Anderson OD, Akhunov ED et
al (2004) A 2,500-locus bin map of wheat homoeologous
group 5 provides insights on gene distribution and colin-
earity with rice. Genetics 168:665–676

Liu YG, Tsunewaki K (1991) Restriction fragment length poly-
morphism (RFLP) analysis in wheat II Linkage maps of the
RFLP sites in common wheat. Jpn J Genet 66:617–633

Liu SX, Anderson JA (2003a) Marker assisted evaluation of
Fusarium head blight resistant wheat germplasm. Crop Sci
43:760–766

Liu SX, Anderson JA (2003b) Targeted molecular mapping of
a major wheat QTL for Fusarium head blight resistance
using wheat ESTs and synteny with rice. Genome 46:817–
823

Liu Z, Sun Q, Ni Z, Yang T (1999a) Development of SCAR mark-
ers linked to the Pm21 gene conferring resistance to pow-
dery mildew in common wheat. Plant Breed 118:215–219

Liu ZQ, Pei Y, Pu ZJ (1999b) Relationship between hybrid per-
formance and genetic diversity based on RAPD markers in
wheat, Triticum aestivum L. Plant Breed 118:119–123

Liu J, Liu D, Tao W, Li W, Wang S, Chen P, Cheng S, Gao D
(2000) Molecular marker-facilitated pyramiding of differ-
ent genes for powdery mildew resistance in wheat. Plant
Breed 119:21–24

Liu SX, Griffey CA, Maroof MAS (2001a) Identification of molec-
ular markers associated with adult plant resistance to pow-
dery mildew in common wheat cultivar Massey. Crop Sci
41:1268–1275

Liu XM, Smith CM, Gill BS, Tolmay V (2001b) Microsatellite
markers linked to six Russian wheat aphid resistance genes
in wheat. Theor Appl Genet 102:504–510

Liu XM, Smith CM, Gill BS (2002a) Identification of microsatel-
lite markers linked to Russian, wheat aphid resistance genes
Dn4 and Dn6. Theor Appl Genet104:1042–1048

Liu Z, Sun Q, Ni Z, Nevo E, Yang T (2002b) Molecular character-
ization of a novel powdery mildew resistance gene Pm30 in
wheat originating from wild emmer. Euphytica 123:21–29

Liu D, Gao M, Guo X, Zhang A (2003) QTL mapping for kernel
weight in multiple environments. In: Pogna NE, Romano
M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet
Symp, Paestum, Italy, pp 989–993

Lotti C, Salvi S, Pasqualone A, Tuberosa R, Blanco A (2000)
Integration of AFLP markers into an RFLP-based map of
durum wheat. Plant Breed 119:393–401



Chapter 2 Wheat 125

Lubbers EL, Gill KS, Cox TS, Gill BS (1991) Variation of molec-
ular markers among geographically diverse accessions of
Triticum tauschii. Genome 34:354–361

Luo M-C, Thomas CS, Deal KR, You FM, Anderson OD, Gu Y-Q,
Li W, Kuraparthy V, Gill BS, McGuire PE, Dvorak J (2003)
Construction of contigs of Aegilops tauschii genomic DNA
fragments cloned in BAC and BiBAC vectors. In: Pogna NE,
Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat
Genet Symp, Paestum, Italy, pp 293–296

Ma ZQ, Lapitan NLV (1998) A comparison of amplified and
restriction fragment length polymorphism in wheat. Cereal
Res Commun 26:7–13

Ma ZQ, Sorrells ME, Tanksley SD (1994) RFLP markers linked
to powdery mildew resistance genes Pm1, Pm2, Pm3 and
Pm4 in wheat. Genome 37:871–875

Ma ZQ, Saidi A, Quick JS, Lapitan NLV (1998) Genetic mapping
of Russian wheat aphid resistance genes Dn2 and Dn4 in
wheat. Genome 41:303–306

Ma JX, Zhou RH, Dong YS, Wang LF, Wang XM, Jia JZ
(2001) Molecular mapping and detection of the yellow
rust resistance gene Yr26 in wheat transferred from
Triticum turgidum L using microsatellite markers. Euphyt-
ica 120:219–226

Ma ZQ, Lin F, Kong X, Wu JZ, Zhu HL, Xie SL, Wei JB, Liu
DJ (2003) Mapping QTLs associated with FHAB resistance
in a Wangshuibai x Nanda2419 population. In: Pogna NE,
Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat
Genet Symp, Paestum, Italy, pp 372–375

Maccaferri M, Sanguineti MC, Donini P, Tuberosa R (2003)
Microsatellite analysis reveals a progressive widening of the
genetic basis in the elite durum wheat germplasm. Theor
Appl Genet 107:783–797

Mago R, Spielmeyer W, Lawrence GJ, Lagudah ES, Ellis JG, Pryor
A (2002) Identification and mapping of molecular markers
linked to rust resistance genes located on chromosome
1RS of rye using wheat rye translocation lines. Theor Appl
Genet 104:1317–1324

Malik R, Brown-Guedira GL, Smith CM, Harvey TL, Gill BS
(2003) Genetic mapping of wheat curl mite resistance genes
Cmc3 and Cmc4 in common wheat. Crop Sci 43:644–650

Manifesto MM, Schlatter AR, Hopp HE, Suarez EY, Dubcovsky J
(2001) Quantitative evaluation of genetic diversity in wheat
germplasm using molecular markers. Crop Sci 41:682–690

Mares DJ, Mrva K (2001) Mapping quantitative trait loci associ-
ated with variation in grain dormancy in Australian wheat.
Aust J Agric Res 52:1257–1265

Mares D, Mrva K, Tan MK, Sharp P (2002) Dormancy in white-
grained wheat: Progress towards identification of genes and
molecular markers. Euphytica 126:47–53

Marino CL, Nelson JC, Lu YH, Sorrells ME, Leroy P, Tuleen
NA, Lopes CR, Hart GE (1996) Molecular genetic maps
of the group 6 chromosomes of hexaploid wheat Triticum
aestivum L em Thell). Genome 39:359–366
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