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Abstract. To enhance genetic maps of barley previously developed in Australia for identifying markers useable
in molecular breeding, a new set of simple sequence repeat (SSR) and indel markers was added to the maps.
These markers were developed through (i) database mining of barley expressed sequence tag (EST) sequences,
(ii) comparative barley-rice genome analysis, and (iii) screening of a genomic library with SSR probes. The primer
set selected for this study comprised 216 EST-SSR (eSSR) and 25 genomic SSR (gSSR) markers, which were
screened for polymorphism on 4 doubled haploid (DH) or recombinant inbred line (RIL) populations. In total,
81 new markers were added to the maps, with good coverage on all 7 chromosomes, except 6H, which only had
2 new markers added. The marker order of previously published maps was re-evaluated by comparing recombination
fractions calculated by 2 methods to discover the best position for each marker. The new SSR markers were then
added to the updated maps. Several of these new markers are linked to important barley disease resistance genes
such as those for cereal cyst nematode, spot form of net blotch, and leaf scald resistance, and are readily useable for
marker-assisted barley breeding. The new maps are available on-line at www.genica.net.au.
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Introduction
Barley (Hordeum vulgare L.) is the world’s fourth major
cereal crop, and is an important export crop for Australia.
Many molecular genetic linkage maps of barley have been
created, first based on RFLP markers (Graner et al. 1991;
Heun et al. 1991) and latterly on PCR-based markers
(Ramsay et al. 2000). Adapted and improved barley varieties
are now being released more rapidly than before through
the use of marker assisted selection (MAS), with more
than 27 loci being tracked with molecular markers in
Australian barley breeding programs (Langridge and Barr
2003). MAS has 2 critical requirements: knowledge of the
genetic loci controlling critical traits; and the availability of
informative, inexpensive molecular markers linked to these
loci. Simple sequence repeat (SSR) markers have become
the most commonly used tool for MAS in barley breeding
programs, and also the community standard marker system
for genetic mapping studies. New SSR markers are developed
by groups within the international cereal research community
to enhance gene discovery and MAS programs. These

markers require screening in barley germplasm to verify
their location and accurately determine their linkage with
key traits. Markers used in this project have been primarily
developed through the increasingly used method of database
mining of expressed sequence tag (EST) sequences in search
of SSRs (Thiel et al. 2003; R. K. Varshney, unpublished).
Compared with genomic SSR (gSSR) markers (Ramsay et al.
2000; Li et al. 2003), development of EST-derived SSR
(eSSR) markers is very cost effective and in addition, eSSR
markers possess a higher level of transferability for use across
species (Varshney et al. 2005).

Over the past decade, genetic mapping has been used
to identify many agronomic, quality, and disease resistance
loci in Australian barley varieties (Langridge and Barr
2003). Accurate localisation of genes is dependent on
having a high-quality genetic map with evenly spaced
molecular markers at an appropriate density (Varshney et al.
2004). If these markers are also useable in marker-assisted
breeding programs, the transfer of the technology and
consequent genetic gains will be more rapidly achieved.
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This paper describes improvement of the quality and
accuracy of 4 barley genetic maps through incorporation
of new eSSR and gSSR markers as an aid to MAS and the
future characterisation, mapping, and validation of marker
trait associations for key traits that are as yet poorly or
incompletely understood.

Methods
Plant materials

Four Australian barley populations with existing genetic maps
were chosen for this study (Barr et al. 2003a, 2003b; Karakousis
et al. 2003a, 2003b). These maps were developed from 3 doubled
haploid (DH) populations: Galleon*Haruna Nijo (479 markers),
Chebec*Harrington (372 markers), and Clipper*Sahara (285 markers),
and 1 DH/recombinant inbred line (RIL) population, Sloop*Alexis
(312 markers).

SSR genotyping and analysis

In total, 216 primer pairs for eSSR markers (Thiel et al. 2003;
R. K. Varshney, unpublished data) and 25 primer pairs for gSSR markers
(Li et al. 2003) were used in the present study. Nineteen EST-derived
SSR and indel markers were used (Rostoks et al. 2006). Standard
PCR conditions and subsequent electrophoresis of amplified fragments
were used (Karakousis et al. 2003c). All markers were tested for
polymorphism on 8 parental lines. Subsequent genotyping of each DH
or RI line was achieved by visually scoring each marker in accordance
with the corresponding parental alleles.

Comparative marker discovery

A comparative approach to exploit the synteny between grass genomes
was used to develop eSSRs linked to traits of interest. The primers
of 2 eSSRs (gbm 1174 and gbm 1006) that flanked the Rpt4 gene
(Williams et al. 1999) on chromosome 7H were used to identify
the EST sequences from which they were derived (HU02H07 and
bags37j12, respectively), which were aligned against the rice genome
to identify rice chromosome 6 BAC clones AP005395 (89% identity,
e-value 6e−89) and AP003634 (83% identity, e-value 6e−21). The rice
BACs AP005445, AP003621, and AP004324, which were flanked
by AP005395 and AP003634, were then used to search the barley
EST collection. The 50 most significant barley ESTs for each search
were then selected and searched for SSR motifs using a search tool
at: http://hornbill.cspp.latrobe.edu.au/cgi-binpub/brassica/indexssr.pl.
One SSR was selected from each set of barley ESTs that were
derived from the rice clones except for the set from AP005445
in which 2 SSRs were selected. The primers and their sequences
are as follows.

Ta
AP005395-1F: ATGAACCGAACCTCTACTAC AP005445-1R: TGTATGTATGTGTCGTCGTTG
AP005395-1R: GCAACTTAGCATCACACACA AP005445-1F: GCTGGTCGCTCGTAAAGG

AP005445-2F: ATTCCAACATCAATACAAGGA AP004324-1F: AAATCAGTTGCCATCCGT
AP005445-2R: AGGGCGACATCAGCAAGT AP004324-1R: CTGCTGTTGCTGTTGCTG

AP003621-1F: GCTGGTCGCTCGTAAAGG AP003634-1F: CCTCCTCTCACACCCTCTAC
AP003621-1R: TGTATGTATGTGTCGTCGTTG AP003634-1R: ATCACACGACACACCACAC

Curation of original maps
The original maps (Barr et al. 2003a, 2003b; Karakousis et al.
2003a, 2003b) were evaluated to establish a firm foundation of
quality control and data curation using the approach of Lehmensiek
et al. (2005). The procedure involved applying computer code using
S-Plus (Insightful Corp.) to the genotypic data, which calculates the

recombination fractions between all pairs of markers, regardless of the
assignment of markers to chromosomes. These were compared with the
recombination fractions produced using Map Manager and subsequent
differences between marker pairs were evaluated to discover the best
position for each marker. These improved maps formed the basis
of this study.

Addition of markers to maps

The original maps were imported into Map Manager QTX (version
QTXb20; Manly et al. 2001), using the Kosambi mapping function
(Kosambi 1944; Lander et al. 1987), with threshold values of
P = 0.05–0.001. New genotypic data from the DH and RI populations
were integrated into each chromosome using the ‘Links report’
function, then in conjunction with the ‘Ripple’ function and published
maps to retain the established alignment and order, the marker was
positioned. The number of double recombinants was evaluated and
data were rechecked if necessary. Maps were drawn using MapChart
(Voorrips 2002).

Results

The mapping populations Clipper*Sahara (C*S),
Chebec*Harrington (C*H), Galleon*Haruna Nijo (G*H),
and Sloop*Alexis (S*A) were obtained and screened for
polymorphism with all of the 241 SSR markers. eSSR
markers had a polymorphism rate of 40%, compared
with 60% polymorphism for gSSR markers. In total,
81 polymorphic markers were mapped on these populations,
with coverage on all chromosomes; however, 6H was the
least represented with only 2 new markers mapping to
that chromosome (Fig. 1). These markers were previously
unmapped in Australian germplasm, but chromosomal
locations for some of the markers were known (Li et al.
2003; Thiel et al. 2003). From this study, the location
of 56 previously unmapped eSSRs was determined and,
in addition, 25 eSSR and gSSR markers were added to
Australian maps for the first time. The new maps are
available on-line at www.genica.net.au. The comparative
marker discovery approach yielded 6 potential new SSRs, but
only 2 (AP005395-1 and AP003621-1) out of the 6 eSSRs
gave a clear polymorphism in a mapping population and
were mapped to chromosome 7H, near the target gene Rpt4.

The overall length of the maps was compared before and
after curation and addition of extra markers (Table 1). Even
with the addition of extra markers, the overall map lengths
decreased substantially in 3 of the 4 maps. In particular, the
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Fig. 1. Updated chromosomes 1H–7H of Australian mapping populations: Clipper*Sahara (C*S), Chebec*Harrington (C*H), Galleon*Haruna
Nijo (G*HN), Sloop*Alexis (S*A). New SSR markers are bold and underlined. Scale bar indicates centimorgan distances.



956 Australian Journal of Agricultural Research K. L. Willsmore et al.

CslC3
psr604c
abc171
bcd15

bcd22

P13/M57-3
wg178

Pc-A12a

Bmag0225

P13/M48-2

wg940

CslE1b

P13/M58-2

3H_S*H

pTAG683
ksuA3b
awwm1
psr1196
abc171
psr1316

HVM33
GBM1495
wg178
CesA5a
bcd809
cdo718
psr312
wg405c
wg940
ksuA1c
bcd298
pTAG645
abg4
wg110
Bmag13
ksuD19
psr596
GIV
HvJas
bcd451
Bmac129
Bmac29

3H_C*H

awwm1b
WM1.B
pTAG683
U184M13f/r
WM1
abc171c
abc171a
psr1196
psr1316
abc171b
psr929b
abg471
psr598
awwmSH7
pTAG637
bcd589
awwm3
awbma16
awbma15
wg405
ksuA3c
Bmac209
EBmac871
Bmag122
GBM1444
EBMac761
BMag361
GBM1031
HVM60
cdo718
wg940
GBM1405
abg4
bcd263
abc151
bcd147
wg110
ksuG62
bcd512
GBM1050
GBM1056
P202a
EBmac541
HVM62
EBmac708
EBmag705
psr931
GV
HVM70
wg222b
HvJas

3H_G*HN

awwm1d
bcd15
cdo395a
HvCW21
XYL2

cdo395b

awwm5
Bmac67
awbma15
wg405
HvPEPDIPR
Bmag006
Bmag603
EBMac848
GBM1213
EBMac672
EBMac761
EBMac760
BMag361
GBM1285
GBMS185
EBMac839
Bmag112
HVM33
wg178
Myb
HVM60
GVI
wg940
cdo113
GBM1233
BMag363
wg110
Bmag877
GVII
GI
GIII
GII
HvJAS
wg222b
wg222c

3H_C*S

0
10

20
30
40
50

60
70
80
90
100

110
120
130
140

150
160
170
180
190

200
210
220
230
240

250
260
270
280

290
300
310
320

GBM1143

wg622

mwg77

BMag106

bcd351b
bcd265
bcd808

awbms90
bcd453b
fh11
abg472
GBM1003
bcd15
wg719
cdo1406
EBmac788
EBmac635
EBmac701
abg54
psr164
abg498
wg114
bcd1130
cdo63
GBM1448
Calsyth
EXO2b
Bmy -1

HVM67

4H_G*HN

P11/M48-105
UGlcAEP
cdo795a
EBmac906
gms89
ksuA3d
Bmag353

abg472

P11/M48-112

cdo63

P12/M51-4
P13/M52-2

4H_S*H

wg622
mwg77
GERMIN
awbma30
HvUGDH
wg876
bcd265a
bcd808c
GBM1482
HvKNOX3
EBmac998
wg232
cdo795
Mne1a
cdo358
awbma29
psr163
awbma12b
psr141a
ksuA3d
Bmag218
EBmac683
EBmac403
EBmac711
EBmac696
blue -aleurone
wg464
abc152b
cdo541
ABCT
abc152a
Mne1b
wg719
ksuG10
cdo669a
cdo669c
AnionT1a
EBmac679
wg114
TaCMD
GBM1220
HvMloh1A
cdo1312
cdo63
ksuE2
bcd1130
HvGSL1
GBM1015
AnionT2b
HVM67
abc305a
HvGlyT5
HvBmy1

4H_C*S

wg622

GERMIN
HvOLE
bcd339a
bcd351a
MNEa
wg232
cdo795
awbms62
psr141
PM
EBMac711
EBMac863
EBMac403
GBM1236
EBMac637
EBMac749
EBMac542
BMag333
MNEb
ABG472
fh11
GBM1003
wg719
cdo1406
wg114
abg498
ksuE2
cdo1312
cdo63
cdo677
bcd1130
GBM1048
BmyI
BMY1(isozym)
EXO2c
EXO2e

4H_C*H

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

BMag509
abg705a
psr326
bcd276
Bmac113
Bmac28 6
Bmag387
Bmac96
BMag401
EBMac965
GBM1426
BMag22

psr637

abg3

GBMS68
abg712
gms61

gms27

Bmag222

GBM1492

P11/M51-193

5H_S*Al

abc483
ksuD4
abg463
awbma12
BMag509 ksuH7 cdo1335a
cdo665a
abg708
abg705
abg497
psr326
cdo749
CesA5b QZDC awbma33
awbma32 awbma1
awbms31
HvACLI awbms54 pTAG354a
BMag401 BMac578 EBMac562
GBM1039
EBMac965
abc156c
abc164
psr117a ksuA1 bcd276
bcd1072 psr360 AxaI
psr162
BG123
cdo989 bcd21b wg530
ksuD16
wg181 wg564
BMa g22
abc168
RH
wg364
bcd508
GBM1227
psr637
wg1026
GBMS14
psr131b abg702b
awbma13b
abg3
EXO2g abc254 EXO2a
mwg514
cdo504
psr426
abg712
bcd221b
GBMS141
GBMS68
Ebmatc3
Bmag222
X-I
bcd298
cdo419b
abg391 psr370b
abg390 abc310
cdo6 78
psr115 abg707b
psr394
abg460 abg57 pTAG354b
Rlch5(BaHaNa)
cdo460
HVM6
P13/M50 -252

5H_G*HN

ksuD4
HvTL
abg705 abg164
Bmag105
wg405b
bcd1072 psr117a ksuA1a
psr161 psr1204 bcd147a
bcd276
awbms53
HVM3
awbms88 awbms70 awbms75
HvA CLI EBMac562
EBMac965

BMag22
Hr2

psr637c

abg3

GBM1436
abg712
bcd808
awbma3
X-I

bcd339e

cdo460
abg460
abg57
cdo506
gms1

5H_Ch*H

awwm1.5

BMag509

cdo749

HvACLI

GBM1399

EBmac854

GBM1483

Bmag22

cdo400
HvUDPGPP

bcd808b
GBMS141

gms2 7

cdo678b

awbma32
cdo506

HVM6

5HCxS

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

Fig. 1. (continued)
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Table 1. Total genome length (cM) for each Australian barley mapping population before and after addition
of new markers

Chebec*Harrington Galleon*Haruna Nijo Clipper*Sahara Alexis*Sloop

Before curation and addition 1618.4 1570.5 1816.2 1241.2
of new markers

After curation and addition 1214.5 1452.8 950.9 1247.0
of new markers

Number of new markers added 23 22 16 27

length of the Clipper*Sahara map decreased by over 800 cM,
highlighting the benefits of the curation process.

Discussion

The addition of these new SSR markers to genetic maps
of barley serves dual purposes: improving chromosome
coverage and marker density, and replacing expensive and
complex marker technologies with readily implementable,
inexpensive and robust SSR technology. This provides barley
breeders with a greater number of potentially useable markers
to use for tracking a locus, overcoming the low levels of
marker polymorphism between parents in breeding programs,
which is still the greatest impediment to MAS (Varshney et al.
2004). Greater coverage of the distal ends of chromosome
maps with SSRs has been achieved with the new markers,
and this is very helpful in terms of marker order and
map alignment.

Marker order has been established using a combination
of techniques, aiming to minimise chromosome length and
the number of double recombinants whilst maximising LOD
scores. In addition, the approximate location and order
of markers has been checked using a comparative map
viewer (www.genica.net.au), although a greater emphasis
has been placed on maintaining high LOD scores with
the least number of crossovers between adjacent markers.
Even though it is possible to continue to increase marker
density further, researchers and breeders will determine when
these maps have obtained a degree of saturation suitable
for effective MAS, gene exploration, and quantitative trait
loci detection.

Random marker screening to improve barley maps rarely
finds new markers linked to important loci. Markers were
selected from the set of gSSR markers (Li et al. 2003)
as having potential links to important genes and were
mapped in those locations accordingly. The eSSR markers
(Varsheny et al., unpublished) also mapped to regions of
interest; however, the random development of the markers
from EST databases can result in the positioning of
markers to chromosome locations with no known genes.
However, bioinformatics-based marker discovery, based
on synteny between triticeae species, may be the most
effective method to produce highly informative and locus-
specific SSR markers. This approach was used in this
study to tag the Rpt4 gene (Williams et al. 1999) on

chromosome 7H with 2 new eSSR markers, and many extra
in-silico-derived eSSR markers are also available to fine-map
this gene.

The polymorphism rate for EST-derived SSR markers was
44% relative to 60% for markers identified from genomic
libraries. Karakousis et al. (2003c) found that SSRs derived
from random genomic sequences were twice as polymorphic
in Australian germplasm as those derived from ESTs, and
Pillen et al. (2000) generated low PIC values for EST-
derived SSR markers when screened against European and
North American barley cultivars. However, the inexpensive
discovery of potentially large numbers of genetically or
functionally targetted SSRs via ESTs may outweigh their
lower informativeness.

Currently, these barley genetic maps provide important
marker-trait associations to breeding programs for disease
resistance and tolerance genes, quality traits for malting, and
agronomic traits for improved yield potential, frost tolerance,
and maturity. Several of the new SSR markers mapped in this
study are linked to genes for resistance to diseases such as
cereal cyst nematode, net blotch, and scald and are ready
for immediate implementation, as well as for use in future
mapping studies.
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