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The current advancement in plant biology research encompassing: generation of huge

amount of molecular-genetic data, development of impressive methodological skills in

molecular biology experimentation, and systems analyses, has set the stage to search

for ways/means to utilize the available resources to strengthen interdisciplinary efforts

to find solutions to the challenging goals of plant breeding efforts (such as abiotic stress

tolerance) ultimately leading to gainful applications in crop improvement. A positive fall

out of such a realization and efforts has been the identification/development of a new

class of very useful DNA markers called genic molecular markers (GMMs) utilizing

the ever-increasing archives of gene sequence information being accumulated under

the EST sequencing projects on a large number of plant species in the recent years,

These markers being part of the cDNAlEST-sequences, are expected to represent the

functional component of the genome i,e" gene(s), in contrast to all other random DNA-

based markers (RDMs) that are developed/generated from the anonymous genomic

DNA sequences/domains irrespective of their genic content/information. Therefore,

identifying DNA sequences that demonstrate large effects on adaptive plant behavior

remains fundamental to the development of GMMs. The few recent studies have now

demonstrated the utility of these markers in genetic studies, and also shown that GMMs

may be superior than RDMs for use in the marker-assisted selection, comparative

mapping, and exploration of the functional genetic diversity in the germplasm adapted

to different environments. The only constraint of GMMs is their low level of polymor-

phism as compared to the RDMs, which is expected of their origin from the relatively

conserved functional portion of the genome. This chapter provides a critical review of

the development and various applications of the GMMs.

R.K. Varshney and R. Tuberosa (eds.), Genomics-Assisted Crop Improvement:

Vol. 1: Genomics Approaches and Platforms, 13-29.

© 2007 Springer.



In agriculture, one of the main objectives of plant breeder is to improve the existing

cultivars, which are deficient in one or more traits by crossing such cultivars

with lines that possess the desired trait. A conventional breeding programme thus

involves crossing whole genomes followed by selection of the superior recombi-

nants from among the several segregation products. Indeed, such a procedure is

laborious and time consuming, involving several crosses, several generations, and

careful phenotypic selection, and the linkage drag (tight linkage of the undesired loci

with the desired loci) may make it further difficult to achieve the desired objective.

Advent of DNA marker technology, development of several types of molecular

markers and molecular breeding strategies offered possibilities to plant breeders

and geneticists to overcome many of the problems faced during conventional

breeding.

Molecular markers are now widely used to track loci and genome regions in

several crop-breeding programmes, as molecular markers tightly linked with a

large number of agronomic and disease resistance traits are available in major

crop species (Phillips and Vasil 2001, Jain et al. 2002, Gupta and Varshney

2004). These molecular markers include: (i) hybridization-based markers such

as restriction fragment length polymorphism (RFLP), (ii) PCR-based markers:

random amplification of polymorphic DNA (RA•.PD), amplified fragment length

polymorphism (AFLP) and microsatellite or simple sequence repeat (SSR). and (iii)

sequen'ce-based markers: single nucleotide polymorphism (SNP). The majority of

these molecular markers has been developed either from genomic DNA libraries

(e.g. RFLPs and SSRs) or from random PCR amplification of genomic DNA

(e.g. RAPDs) or both (e.g. AFLPs). These DNA markers can be generated in

large numbers and can prove to be very useful for a variety of purposes relevant

to crop improvement. For instance, these markers have been utilized extensively

for the preparation of saturated molecular maps (genetical and physical). Their

association with genes/QTLs controlling the traits of economic importance has

also been utilized in some cases for indirect marker-assisted selection (MAS) (e.g.

Koebner 2004, Korzun 2002). Other uses of molecular markers include gene intro-

gression through backcrossing, germplasm characterization, genetic diagnostics,

characterization of transformants, study of genome organization and phylogenetic

analysis (see Jain et al. 2002). For plant breeding applications, SSR markers. among

different classes of the existing markers, have been proven and recommended as

markers of choice (Gupta and Varshney 2000). RFLP is not readily adapted to high

sample throughput and RAPD assays are not sufficiently reproducible or transferable

between laboratories. While both SSRs and AFLPs are efficient in identifying

polymorphisms, SSRs are more readily automated (Shariflou et al. 200 J). Although

AFLPs can in plinciple be converted into simple PCR assays (e.g. STSs). this

conversion can become cumbersome and complicated as individual bands are often

composed of multiple fragments (Shan et al. 1999), particularly in large genome

templates.



2. GENIC MOLECULAR MARKERS: INTRODUCTION

AND DEVELOPMENTS

Due to emphasis on functional genomics, several gene discovery projects in the

form of genome sequencing, transcriptome sequencing or gene expression studies

have been established since last five years. As a result, a large number of genes have

been identified through 'wet lab' as well as in silica studies and a wealth of sequence

data have been accumulated in public databases (e.g. http://www.ncbi.nlm.nih.gov;

http://www.ebi.ac.uk) in the form of BAC (bacterial artificial chromosome) clones,

ESTs (expressed sequence tags), full length cDNA clones and genes. The availability

of enormous amount of sequence data from complete or partial genes has made it

possible to develop the molecular markers directly from the parts of genes. These

markers are referred as "genic" molecular markers (GMM).

The majority of the markers, developed and used in the past as described above

in section 1, are directly derived from the genomic DNA, and therefore could

belong to either the transcribed or the non-transcribed part of the genome without

any information available on their functions. In contrast, GMMs developed from

coding sequences like ESTs or fully characterized genes frequently have been

assigned known functions. Based on the site of polymorphism and later's effect on

phenotypic variation, GMMs have been classified into two groups (Anderson and

Luebberstedt 2003):

(i) Gene-targeted markers (GTMs): derived from polymorphisms within genes,

how~ver not necessarily involved in phenotypic trait variation, e.g. untranslated

regions (UTRs) of EST sequences (Schmitt et al. 2006; Aggarwal et al 2007);

(ii) Functional markers (FMs): derived from polymorphic sequences or sites within

genes and, thus, more likely to be causally involved in phenotypic trait

variation (e.g. candidate gene-based molecular markers). The FMs, depending

on the involvement in the phenotypic trait variation, are further classified

into two subgroups: (a) indirect functional markers (IFMs), for which the role

for phenotypic trait variation is indirectly known, and (b) direct functional

markers (DFMs), for which the role for the phenotypic trait variation is well

proven.

As per the above terminology, the molecular markers derived from anonymous

regions of the genome are called random DNA markers (RDMs), which mayor

may not be developed from the polymorphic site in gene or may not be developed

from a gene at all.

Although genic markers were developed earlier also, these were in the form

of cDNA-RFLP (Graner et al. 1991, Causse et al. 1994) for which functions

could not be predicted at that time. However, some efforts were made to sequence

these early cDNA clones to determine the genes and their functions (Michalek

et al. 1999). Compared to these earlier efforts, development of genic markers have

become a reality only in recent years, because of accumulation of large ESTs or

gene sequences resources resulting from EST and genome sequencing projects in

several crop species and also due to the developments in the field of bioinfor-

matics (Gupta and Rustgi 2004). For example, several transcriptome resources have



become available (http://www.ncbi.nlm.nih.gov/dbEST/dbEST_summary.html),

and software tools or pearl scripts have been developed to search for SSRs and

SNPs from EST or gene sequences (Varshney et al. 2004, 2005a).

Although, whole genome sequencing and annotation is the way to identify the

entire gene repository of a species, this has been possible only for a limited number

of crop species involving large scale sequencing of their genome or gene space. On

the other hand, ESTs represent a basic commodity within the analysis of genomes

and their genes for a species (Rudd et al. 2003). Whereas the complete sequencing

of a genome may utilize either a clone-by-clone approach or a whole genome

shotgun approach to acquire adequate coverage to assemble a meaningful scaffold,

EST sequencing is directed at the quick, cheap and simple sequencing of partial

gene transcripts (Sreenivasulu et al. 2002). As a result, a significant redundancy

can be observed in gene sequence data obtained from EST sequencing projects (see

Varshney et al. 2004). Therefore before developing molecular markers from ESTs.

it is essential to define the "unigenes" after cluster analysis of random ESTs using

appropriate computer programmes such as stackPack (Miller et al. 1999).

Once the unigene sequence data from EST analysis or non-redundant set of genes

are available, molecular markers can be developed using two main approaches:

(1) Direct mapping: Under this approach, either the cDNA clones corresponding

to the ESTs of interest can be used as RFLP probe or the peR primers can be

uni~enes

GJ

Figure 1. A scheme for development of genic molecular markers (GMMs). Two common ways to

develop GMMs are shown in the figure. In the first method, the sequence data are used to define the

unigenes and then the cDNA clones or genic clones corresponding to the unigenes can be assayed

as RFLPs or the unigene sequence data can be used to design the primer pairs and assayed using

STS/CAPS or SNP assays. In the second method, the sequence data can be mined by using some

computer programmes or scripts to identify the SSRs, SNPs or COSs from given sequence data and

then these markers, after defining the unigenes, can be assayed using appropriate genotyping platforms



designed for the EST/gene and used as STS or CAPS marker. Direct mapping

approach should be undertaken with the unigene set of ESTs or genes only.

(2) In silico mining: In this approach, the SSR or SNP identification software

tools are used to screen the sequence data for ESTs/genes. For identification of

SNPs, the redundant set of EST data, generated from more than one genotype

of a given species, are used. However, after identification of SNPs, only non-

redundant set of ESTs should be considered for SNP mapping.

A scheme for development of GMMs has been shown in Figure 1. Development of

FMs, however, requires: (i) functionally characterized genes, (ii) allele sequences

from such genes, (iii) identification of polymorphic, functional motifs affecting

plant phenotype within these genes, and (iv) validation of associations between

DNA polymorphisms and trait variation. Therefore depending on the objective as

well as available information or feasibility, the FMs, the special class of GMMs,

can also be generated.

Molecular markers have already shown their applications in a variety of ways in

several plant species (see Gupta and Varshney 2004). The development of GMMs,

now permits a targeted approach for detection of nucleotide diversity in genes

controlling agronomic traits in plant populations. Some main areas of plant breeding

and gen~tics, where the implementation of GMMs will prove quite useful, are

discussed here.

One of the main applications of molecular markers in plant breeding is their use as

diagnostic markers for the trait in the selection. However, use of random molecular

markers (ROMs) as a diagnostic tool entails the risk of losing the linkage through

genetic recombination. Even in case of GMMs, the gene-targeted markers (GTMs)

where polymorphism was discovered through one allele analysis without any further

specification of the polymorphic sequence motif are threatened by the same way

(Rafalski and Tingey, 1993). In contrast to ROMs or GTMs, FMs (DFMs or IFMs)

allow reliable application of markers in populations without prior mapping and the

use of markers in mapped populations without risk of information loss owing to

recombination.

The development of FMs is expensive and cannot be undertaken for all the traits

and in all crop species, GMM have been developed and mapped in several plant

species (Table 1). The genetic maps, developed after mapping/integration of GMM

are called "transcript" or "gene" maps. For example, based on the candidate genes

for drought tolerance, a comprehensive set of >200 gene-based markers have been

developed for barley (Rostocks et al. 2005). Recently, a "transcript map" of barley

after integrating more than 1000 gene-based markers (GTMs) has been developed,

(Stein et al. 2007). A kind of transcriptome map based on deletion mapping of



Table I. Some reports on development of genic molecular markers in important plant species

General name Species Type of markers References

developed

Cereals and grasses

Barley Hordeum vulgare EST-SSR, EST-SNP, Thiel et al. 2003, Rostocks

EST-RFLP, et al. 2005, Varshney et al.

cDNA-RFLP 2006, Willsmore et al. 2006,

Stein et al. 2007, Varshney

et al. 2007b

Maize Zea mays cDNA-RFLP, EST-SNP Gardiner et al. 1993, Chao

et al. 1994, Picoult-Newberg

et a1. 1999, Falque et al. 2005

Wheat Triticum aestivum EST-SSR, EST-SNP, Holton et al. 2002, Yu et al.

cDNA-RFLP 2004, Somers et al. 2003,

Gao et al. 2004, Qi X. et al.

2004, Nicot et al. 2004

Rice Oriza sativa EST-SSR, EST-SNP, Causse et al. 1994,

cDNA-RFLP, Harushima et al. 1998,

Intron Length Temnykh et al. 2001, Feltus

Polymorphism (ILP) et al. 2004, Wang et a1. 2005

Rye Secale cereale EST-SSR, EST-SNP Hackauf and Wehling, 2002,

Khlestkina et al. 2004,

Varshney et al. 2007b

Sorghum Sorghum bicolor EST-SSR, cDNA-RFLP Childs et al. 2001, Klein et al.

2003, Bowers et al. 2003,

Ramu et al. 2006, Jayashree

et al. 2006

Lolium Lolium perenne EST-SSR Faville et al. 2004

Legumes

White clover Trifolium repens EST-SSR Barret et al. 2004

Soybean Glycine max EST-SSR Song et al. 2004, Zhang et al.

2004

Fiber and oil seed crops

Cotton Gossypium sps. EST-SSR Zhang et al. 2005, Chee et al.

2004, Park et al. 2005-

Sunflower Helianthus sps. EST-SNP Lai et al. 2005

Fruit and vegetables

Grape Vitis vinifera EST-SSR Chen et al. 2006

Kiwi fruit Actinidia chinensis EST-SSR Fraser et al. 2004

Raspberry Rubus spp. EST-SSR Graham et al. 2004

Tomato Lycopersicon EST-SSR Frary et al. 2005

esculentum

Strawberry Fragaria spp. EST-SSR Sargent et al. 2006

Trees

Pinus Pinus ssp. EST-SSR, ESTP Cato et al. 2001

Coffee Coffea ssp. EST-SSR Bhat et al. 2005, Aggarwal

et al. 2007



more than 16,000 gene loci has been developed in wheat (Qi L-L et al. 2004). Such

molecular maps, not only provide gene based molecular markers associated with

the trait of interest after the QTL analysis, but also can be compared with those of

the other related plant species in an efficient manner.

Characterization of genetic variation within natural populations and among breeding

lines is crucial for effective conservation and exploitation of genetic resources

for crop improvement programmes. Molecular markers have proven useful for

assessment of genetic variation in germplasm collections (Hausmann et al. 2004;

Maccaferri et al. 2006). Evaluation of germplam with GMMs might enhance the

role of genetic markers by assaying the variation in transcribed and known function

genes, although there may be a higher probability of bias owing to selection.

While using the genic SSR markers for diversity studies, the expansion and

contraction of SSR repeats in genes of known function can be tested for association

with phenotypic variation or, more desirably, biological function (Ayers et al. 1997).

The presence of SSRs in the transcripts of genes suggests that they might have a role in

gene expression or function; however, it is yet to be determined whether any unusual

phenotypic variation might be associated with the length of SSRs in coding regions as

was reported for several diseases in human (Cummings and Zoghbi 2000). Similarly,

the use of SNP markers for diversity studies may correlate the SNPs of coding VS. non-

coding regions of the gene with the trait variation. The variation associated with delete-

rious characters, however, is less likely to be represented in the germplasm collections

of crop species than among natural populations because undesirable mutations are

commonly culled from breeding populations (Cho et al. 2000).

Several studies involving GMMs, especially genic SSRs, have been found useful

for estimating genetic relationship on one hand (see Gupta et al. 2003 Gupta and

Rustgi 2004, Varshney et al. 200Sa) while at the same time these have provided

opportunities to examine functional diversity in relation to adaptive variation (Eujayl

et al. 2001, Russell et al. 2004). It seems likely that with the development of

more GMMs in major crop species, genetic diversity studies will become more

meaningful by a shift in emphasis from the evaluation of anonymous diversity to

functional genetic diversity in the near future. Nevertheless, use of the neutral RDM

markers will remain useful in situations where: (i) GMMs would not be available,

and (ii) to address some specific objectives e.g. neutral grouping of germplasm.

Perhaps one of the most important features of the GMMs is that these markers

provide high degree of transferability among distantly related species. In contrast,

except RFLPs all other RDMs are generally constrained in this regard. Transfer-

ability of GMM markers to related species or genera has now been demonstrated

in several studies (Table 2). For example, a computational study based on analysis



Plant species Marker type Species, recorded Reference

transferability

Cereals and grasses

Barley (Hordeum EST-SSR, Wheat, rice, rye Thiel et al. 2003, Varshney

vulgare) EST-SNP et al. 2004, 2007b

Wheat (Triticum EST-SSR Aegilops and Triticum Holton et al. 2002, Gupta

aestivum) species, barley, maize, rice, et aI. 2003, Gao et aI. 2003,

rye, oats, soybean, Bandopadhyay et al. 2004,

Lophopyrum elongatum Yu et aI. 2004, Mullan et al.

2005, Tang et al. 2006

Rice (Oryza sativa) EST-SSR wild species of rice Cho et al. 2000

Sugarcane EST-SSR Saccharum robustum, Cordeiro et al. 2001

(Saccharaum Erianthus and Sorghum

officinarum)

Sorghum (Sorghum EST-SSR Eleusine coracana, Seashore Wang et aI. 2005

bicolor) paspalum, finger millet

Tall fescue (Festuca) EST-SSR subfamilies of Poaceae Mian et al. 2005

Fiber and oilseed crops

Cotton (Gossypium EST-SSR Cotton species Saba et aI. 2003

hirsutum)

Sunflower EST-SSR Heliantus angustifolius, Pashley et aI. 2006

(Helianthus Helianthus verticillatus

annus)

Fruit and vegetables

Strawberry EST-SSR F. gracilis, F. iinumae, F. Bassil etaI. 2006

(Fraga ria vesca) nilgerrensis, F. nipponica

Apricot (Prunus EST-SSR Vitaceae and Roseaceae Decroocq et al. 2003

armeniaca) family

Grape (Vitis vinifera) EST-SSR > 25 species from 5 Scott et al. 2000, Rossetto

Vitaceae and Roseaceae et al. 2002, Arnold et al.

2002, Decroocq et al. 2003

Tomato (Solanum EST-SSR Solanaceous members Frary et aI. 2005

lycopersicum)

Ferns and trees

Alpine lady-fern EST-SSR 9 species from Woodsiaceae Woodhead et aI. 2003

(Atyrium

distentifolium)

Pinus (Pinus taeda) EST-SSR 12 Pinus species Komulainen et aI. 2003,

Changne et al. 2004,

Liewlaksaneeyanawin et al.

2004

Spruce (Picea EST-SSR 23 Picea species Rungis et al. 2004

glauca)

Citrus (Citrus EST-SSR Ponch'us trifoliata Chen et al. 2006

sinensis)

Coffee (Coffea EST-SSR 16 species of coffee and Bhat et aI. 2005, Poncet et aI.

arabica, Coffea Psilanthus 2006, Aggarwal et al. 2007

canephora)



of ~ 1000 barley GMMs suggested a theoretical transferability of barley markers

to wheat (95.2%), rice (70.3%), maize (69.3%), sorghum (65.9%), rye (38.] %) and

even to dicot species (~16%). Infact, in silica analyses of GMMs of wheat, maize

and sorghum with complete rice genome sequence data have provided a larger

number of anchoring points among different cereal genomes as well as provided

insights into cereal genome evolution (Sorrells et al. 2003, Salse et al. 2004).

In some studies, the useofGMMs ofmajor crop species has been shown to enrich the

genetic maps of related plant species for which little marker information is available.

For example, barley EST-SSR as well as EST-SNP markers have been shown trans-

ferable as well as mappable in syntenic regions of rye (Varshney et al. 2004, 2005c,

2007a; Figure 2). Further, such kind ofmarkers from the related plant species offers the

possibility to develop anchor or conserved orthologous sets (CaS) for genetic analysis

and breeding in different species. In this direction, Rudd et al. (2005) identified a large

repository of such cas markers and developed a database called "PlantMarker".
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Figure 2. An example of integration of barley genic (EST-SSR) markers into syntenic regions of rye

genetic map. Integrated barley markers (GBMlO08, GBM1046) are shown in bold and capital font in

boxes on right hand side. Details about other markers present on this linkage group are available in

Korzun et al. (2001). Genetic distances are given in centimorgans (cM) on left hand side. The black

triangle indicates the estimated centromere position. The relationship of the linkage group 6R in terms

of Triticeae linkage group is shown on very left hand side (left to black triangle) as per Devos et al.

(1993). Both barley genic markers from linkage group 3H and 6H are mapped into expected syntenic

regions of the rye linkage group 6R. S = short arm, L = long arm



Since the development of first molecular markers i.e. RFLPs in 1980 (Botstein

et al. 1980), a diverse array of molecular marker technologies have come into

being revolutionizing conventional plant breeding efforts for crop improvement.

Significant strides have been made in crop improvement through conventional

random molecular markers (RDMs). For instance, these molecular markers besides

throwing light on organization, conservation and evolution of plant genomes, have

also aided geneticists and plant breeders to tag genes, map QTLs for the traits

of economic importance. Still, most of them are "anonymous" markers, that is to

say their biological function is unknown. In comparison, a putative function for

majority of the molecular markers, derived from the genes or ESTs, however can

be deduced using some bioinformatics tools; such markers (GMMs) are commonly

referred as functional markers (Varshney et al. 2005b). Although, in stricto sense,

the functional markers are based on functionally defined genes underlying specific

biochemical or physiological functions and therefore the FMs can be considered as

a class of GMMs (Anderson and Luebberstedt 2003).

The GMMs, like RDMs, could detect both length and sequence polymorphisms

in expressed regions of the genome but provide relatively stronger and robust

marker assays. However, as compared to the RDMs the developmental costs of

GMMs, depend on which specific class of GMMs is to be developed. Similarly

the applied value of the GMMs as compared to the RDMs varies depending on

the class of the GMMs. These relative costs and applications issues have been

detailed in Table 3. In summary, if the GMMs based on the polymorphic site

and verification are developed (i.e. FMs), these markers are superior to RDMs

for using them as diagnostic tools in marker-assisted selection as they may owe

the complete linkage with the trait locus alleles (Anderson and Luebberstedt

2003). In plant breeding, the GMMs are superior to RDMs for selection of, e.g.,

parent materials to build segregating populations, as well as subsequent selection

of lines (line breeding) or inbreds (hybrid breeding). Depending on the mode

of the GMM characterization, these can also be applied to the targeted combi-

nation of alleles in hybrid and synthetic breeding. In population breeding and

recurrent selection programs, the GMMs can be employed to avoid genetic drift at

characterized loci.

Being originated from the conserved proportion of the genome, the GMMs, as

compared to the RDMs, are the candidate markers for interspecific/intergeneric

transferability and comparative mapping/genomics studies in related plant species.

Since the GMMs represent the expressed portion of the genome, they sample the

variation in transcribed regions of the genome, and provide a more direct estimate

of functional diversity while screening the markers on the germplasm adapted

to different environments. Nevertheless, the GMMs, as compared to the RDMs

are less polymorphic and provide less alleles and lower PIC values. Additionally,

due to biased distribution in the genome, the GMMs are unsuitable for analyzing

population structure.



Feature GMMs RDMs

gSSRs, SNPs RFLPs RAPD/AFLPI ISSR etc.

Need for sequence data GeneslESTs Essential Not required Not required

data Essential

Costs of generation Low* High High Low-moderate

Labour involved Less Much Much Less

Level of polymorphism Low High Low Low-moderate

Interspecific High Low -moderate Moderate-High Low-moderate

transferability and

comparative

mapping

Function of markers Known Unknown Unknown Unknown

majority majority of

of times times

Utility in Great, if the High Moderate Low-moderate

marker- marker is

assisted derived from

selection the gene,

involved in

expression of

trait

*generally GMMs are by products of the available transcriptome resources being developed for functional

genomic studies.

It is clear that the GMMs and especially the FMs are extremely useful source of

markers in plant breeding for marker-assisted selection because these markers may

represent the genes responsible for expression of target traits. If so, there will not

be any recombination between the markers and the trait, thus representing perfect

indirect selection tools. While low level of polymorphism is an inherent feature of

the GMMs, it is compensated by their higher interspecific transferability as well as

capacity to sample the functional diversity in the germplasm. These features make

the development and application of the GMMs more attractive for plant breeding

and genetics.

With more DNA sequence data being generated continuously, the trend is

towards cross-referencing genes and genomes using sequence and map-based tools.

Because polymorphism is a major limitation for many species, SSR- and SNP-

based GMMs will be valuable tools for plant geneticists and breeders. In the

longer term, development of allele-specific, functional markers (FMs) for the

genes controlling agronomic traits will be important for advancing the science

of plant breeding. In this context genic SSR and SNP markers together with

other types of markers that target functional polymorphisms within genes will be

developed in near future for major crop species. The choice of the most appropriate



marker system, however, needs to be decided on a case-by-case basis and will

depend on many issues including the availability of technology platforms, costs

for marker development, species transferability, information content and ease of

documentation.
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