REVIEW

Arthropod Natural Enemies of *Helicoverpa armigera* (Hübner) (Lepidoptera: Noctuidae) in India

J. ROMEIS AND T. G. SHANOWER

Crop Protection Division, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh 502 324, India

(Received for publication 16 November 1995; revised manuscript accepted 27 May 1996)

Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) is one of the most serious insect pests in the Old World. In India, it causes substantial losses to legume, fibre, cereal oilseed and vegetable crops. This paper reviews the literature on the biology, ecology, efficacy, rearing and augmentation of endemic parasitoids and predators, as well as exotic parasitoids introduced and released in India. It also provides updated lists of H. armigera natural enemies native to India. In addition, reports of augmentative releases of Trichogramma spp., the most extensively studied natural enemy of H. armigera are summarized.

Keywords: Helicoverpa armigera, natural enemies, biological control, India

INTRODUCTION

Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) is one of the most serious insect pests in the Old World. It is widely distributed from the Cape Verde Islands in the Atlantic Ocean, through Africa, Asia and Australia to the South Pacific islands and from southern Europe to New Zealand (Reed & Pawar, 1982). In India, *H. armigera* has been recorded on at least 181 plant species from 45 plant families (Manjunath *et al.*, 1989), including major crops such as cotton (*Gossypium* spp.), sorghum (*Sorghum bicolor* Linnaeus), tomato (*Lycopersicon esculentum* Mill.), pigeonpea (*Cajanus cajan* (Linnaeus) Millspaugh) and chickpea (*Cicer arietinum* Linnaeus). Annual losses due to *H. armigera* in pigeonpea and chickpea have recently been estimated to exceed US\$600 million (International Crops Research Institute for the Semi-arid Tropics (ICRISAT), 1992). Losses in other crops add substantially to the total damage caused by *H. armigera*.

Life-table studies reveal that *H. armigera* often shows a typical type III survivorship curve (Fitt, 1989) and most mortality, biotic and abiotic, occurs during the egg and early larval stage (e.g. Kyi *et al.*, 1991). However, survivorship may vary between different crops and seasons (e.g. Van den Berg & Cock, 1993a). King *et al.* (1982), King and Coleman (1989) and Fitt (1989) reviewed the potential for biological control of *Heliothis/Helicoverpa* spp., focusing mainly on the New World species *Helicoverpa zea* (Boddie) and *Heliothis virescens* (Fabricius). King *et al.* (1982) listed several examples from the US where, in the absence of insecticides, natural enemies maintain *Heliothis* spp. populations below economic levels.

This paper reviews research on the natural enemies of H. armigera in India. Included are updated lists of endemic parasitoids and predators, replacing earlier lists from Manjunath *et al.* (1989) and Nikam and Gaikwald (1989), as well as a list of exotic parasitoids introduced into India against H. armigera. The use of mass releases of Trichogramma spp. (native and exotic) for the biological control of H. armigera in India is also reviewed. Much of the work reviewed in this paper is unpublished or appears in books and journals not widely available outside India. The primary objectives of this paper are to make these results available to biocontrol workers outside India, and to provide a basis for further research on H. armigera natural enemies within India.

• The term 'percentage parasitism' is used throughout this review. There are several problems associated with this term (see Van Driesche (1983) for further discussion). In the studies cited here, H. armigera eggs and/or larvae were collected in the field and held in the laboratory. The percentage parasitism has been estimated by simply dividing the number of hosts producing parasitoids by the total number of hosts collected. This does not accurately reflect the impact of specific parasitoids on H. armigera populations, but is the only measurement given in these studies. In this review, parasitism levels are only cited when both the host stage and the number of hosts collected are reported.

NATIVE EGG AND EGG-LARVAL PARASITOIDS

Six egg parasitoids from two families are recorded from India (Table 1), but only *T. chilonis* Ishii (Hymenoptera: Trichogrammatidae) is found in significant numbers in the eggs of *H. armigera* (Manjunath *et al.*, 1970; Sithanantham *et al.*, 1982a). This species was earlier known as *T. australicum* Girault or *T. confusum* Viggiani, which were synonomized with *T. chilonis* by Nagarkatti and Nagaraja (1979). Of the seven Trichogrammatoidea native to India (Nagaraja, 1978), *T. armigera* Nagaraja, *T. bactrae* Nagaraja and *T. bactrae* sp. *fumata* Nagaraja have been recorded from *H. armigera* eggs. Only a single, unconfirmed report of egg parasitism of *H. armigera* by a *Telenomus* sp. (Hymenoptera: Scelionidae) exists (Manjunath *et al.*, 1970). Four egg–larval parasitoids, all species of *Chelonus* (Hymenoptera: Braconidae), have been recorded parasitizing *H. armigera* eggs (Table 1).

The levels of egg parasitism by endemic *Trichogramma* spp. vary widely on different host plants (Table 2). The reasons for low parasitism rates on sunflower (*Helianthus annuus* Linnaeus) have not been investigated; on okra (*Abelmoschus esculentus* (H.) Moench), trichogrammatids are trapped and killed by the sticky exudate on the capsules (Goretzkaya, 1940). Chickpea secretes an acid exudate from all green tissues which is thought to interfere with *Trichogramma* spp. searching behaviour (Yadav *et al.*, 1985; Pawar *et al.*, 1986b). The only record of egg parasitism by native trichogrammatids on chickpea was by Gangaraddi (1987), who found 4% of eggs parasitized by *T. achaeae* Nagaraja and Nagarkatti around Dharwad (Karnataka). No details of sampling procedures or frequency were given, making it difficult to assess. On pigeonpea, parasitoids are repelled on or near the plant surface and walking behaviour has been found to be significantly hindered by trichomes and trichomal exudates on pigeonpea buds and pods (J. Romeis, unpublished).

In traditional pigeonpea-sorghum inter-cropping systems in India, where pigeonpea produces flowers at least 1 month after sorghum anthesis, *Trichogramma* spp. were found to parasitize only low levels of *H. armigera* eggs on the pigeonpea (Bhatnagar & Davies, 1981). When shortduration pigeonpea is inter-cropped with hybrid sorghum, flowering times and the availability of *H. armigera* eggs are more closely synchronized. In this system, Duffield (1994) found that the movement of the parasitoids to pigeonpea was facilitated and egg parasitism levels of up to 69% on different pigeonpea genotypes were recorded. Similar studies have not been able to duplicate these results (J. Romeis, unpublished).

Manjunath (1972) reported an average parasitism level of 4.5% (n = 1175) for *T. armigera* in *H. armigera* eggs on tuberose (*Polianthus tuberosa* Linnaeus). There are no reports of field parasitism rates for *T. bactrae* and *T. bactrae* sp. *fumata*. Similary, no levels of parasitism are reported for *Telenomus* sp.

Order, family and species ^a	Host stage parasitized ^b	Reference
DIPTERA		
Sarcophagidae		
Sarcophaga sp.	L?	Srinivas & Jayaraj, 1989
Seniorwhitea reciproca (Walker)	L. Lp	CIBC, 1974
(as Sarcophaga orientaloides White)	Lp	
Tachinidae		
Carcelia sp.	L?	Achan et al., 1968
Carcelia S. L. ? illolacum ^c	L?	Raodeo, 1971 (in Raodeo & Sarkade, 1979
Carcelia kockiana Townsend	L?	Achan et al., 1968
[Carcelia peraequalis Mesnil]	L?	Achan et al., 1968
Carcelia raoi ^c	L?	Rao, 1968
Compsilura concinnata Meigen	L	CIBC, 1974
Exorista bombycis (Louis)	L	Swamy et al., 1993
Exorista japonica (Townsend)	L	Achan et al., 1968
Exorista xanthaspis (Wiedemann)	L	Bhatnagar et al., 1982
Exorista xanthaspis (Wiedemann)	L	Achan et al., 1968
(as E. fallax of authors)		
Goniophthalmus halli Mesnil	Lp	Achan <i>et al.</i> , 1968
Hystricovoria bakeri Townsend	Ĺ	Raodeo et al., 1982
(as Afrovoria indica (Mesnil)		, <u>.</u>
[Pales coeruleo-nigra (Mesnil)]	L	CIBC, 1974
Palexorista sp.	Ĺ	Mathur, 1970
Palexorista (as Drino) sp. nr. unisetosa	Ĺ	Achan <i>et al.</i> , 1968
Palexorista laxa (Curran)	L	Achan <i>et al.</i> , 1968
(as Drino imberbis (Wiedemann)) ^d	2	
Palexorista (as Drino) munda (Wiedemann)	L	Chauthani & Hamm, 1967
Palexorista solennis (Walker)	Ĺ	ICRISAT, 1976
Peribaea spp.	Ĺ	Tripathi & Sharma, 1985
Peribaea orbata (Wiedemann)	Ĺ	Chari <i>et al.</i> , 1992
Peribaea orbata (Wiedemann)	Ĺ	Achan <i>et al.</i> , 1968
(as Strobliomyia aegyptia (Villeneuve))	4	roman er un, 1966
Pseudogonia rufifrons (Wiedemann)	Lp	Achan et al., 1968
(as Isomera cinerascens (Rondani))	Зr	110nun (1 wii, 1900
Senometopia (as Eucarcelia) illota (Curran)	L or Lp	Achan et al., 1968
Sisyropa apicata ^c	L	Achan <i>et al.</i> , 1968
Sisyropa formosa Mesnil	Ĺ	Raodeo et al., 1982
Sturmiopsis inferens Townsend	L	ICRISAT, 1976
Suensonomyia n. sp.	?	Achan <i>et al.</i> , 1968
Thecocarcelia acutangulata (Macquart)	Ļ	Achan <i>et al.</i> , 1968
(as T. incedens (Rondani))	L	Achan et ut., 1900
Voria ruralis (Fallen)	L	Achan et al., 1968
Voria ruralis (Fallen)	L	Achan <i>et al.</i> , 1968
(as V. edentata Baranov)	L	Achan et al., 1908
Winthemia sp. nr? diversoides Baranov	L	Achan <i>et al.</i> , 1968
Chloropidae		
Mepachymerus ensifer (Thomson)	L	Verma et al., 1971
HYMENOPTERA		
Bethylidae		
Goniozus sp.	L	Sivagami et al., 1975
Goniozus (as Parasierola) sp.	L	Divakar et al., 1983
Odontepyris sp.	L	Rao, 1968
Braconidae		
Agathis fabiae (Nixon)	L	Srinivas & Jayaraj, 1989
Aleiodes (Rogas) sp. ^e	L	Yadav, 1980
Aleiodes sp.? testaceus (Spinola)	L	Pawar et al., 1986a
Apanteles sp.	Ĺ	Achan et al., 1968

TABLE 1. Parasitoids of H. armigera reported from India

TABLE 1. Continued

Order, family and species ^a	Host stage parasitized ^b	Reference
Apanteles sp. nr. taprobanae Cameron	L	Yadav, 1980
Apanteles sp. (vitripennis group)	L	Kushwaha, 1995
Apanteles angaleti Muesebeck	L	Patil et al., 1991
Bracon sp.	L	Achan et al., 1968
Bracon cushmani Muesebeck	L	CIBC, 1974
Bracon gelechiae Ashmead	L	Achan et al., 1968
Bracon greeni (Ashmead)	L	Achan et al., 1968
Bracon lefroyi (Dudgeon & Gough)	L	Seshu Reddy, 1973
		(in Jayaramaiah &
		Jagadeesh Babu, 1992)
Chelonus sp.	El	Bhatnagar et al., 1982
Chelonus curvimaculatus (Cameron)	El	Bhatnagar et al., 1982
Chelonus formosanus Sonan	El	Yadav, 1980
Chelonus heliopae Gupta	El	Achan <i>et al.</i> , 1968
Chelonus narayani Subba Rao	El	Subba Rao, 1955
Cotesia (as Apanteles) sp. nr. glomeratus (Linnaeus)	L	Achan <i>et al.</i> , 1968
Cotesia (as Apanteles) sp. (glomeratus group)	L	Achan <i>et al.</i> , 1968
Cotesia (as Apanteles) ruficrus (Haliday)	L	Achan <i>et al.</i> , 1968
Cryptosalius sp.	L?	Srinivas & Jayaraj, 1989
Glyptapanteles (as Apanteles) sp. nr. phytometrae (Wilkinson)	L	Yadav, 1980
Habrobracon (as Bracon) brevicornis (Wesmael)	L	Achan et al., 1968
Habrobracon (as Bracon) hebetor (Say)	L	CIBC, 1974
Microplitis sp.	L	Hussain & Mathur, 1924
Microplitis flaviventris Ivanov	L	Yadav, 1980
Snellenius (as Microplitis) maculipennis (Szepligeti)	L	Krishnamurti & Usman, 1954
Chalcididae	_	
Brachymeria albicrus (Klug)	Р	Achan <i>et al.</i> , 1968
(as <i>B. responsator</i> (Walker)) <i>Brachymeria marmonti</i> (Girault) (as <i>B. wittei</i> (Schmitz)) ^f		Singh et al., 1990
Eulophidae		
Euplectrus sp.	L	Mathur, 1970
Euplectrus euplexiae Rohwer	L	Singh & Balan, 1986
Stenomesius japonicus (Ashmcad)	Ĺ	Yadav, 1980
(as S. impressus Masi)		
Tetrastichus howardi (Olliff) (as T. ayyari Rohwer)	Р	Cherian & Subramaniam, 1940
Ichneumonidae		
Agrypon nox Morley	Lp	Mathur, 1970
Attractodes sp.	L	Hussain & Mathur, 1924
Banchopsis ruficornis (Cameron)	L	Mathur, 1967
Barichneumon sp.	Lp	Mathur, 1967
Briborus sp.	L?	Yadav, 1980
Campoletis sp.	L	CIBC, 1974
Campoletis chlorideae Uchida	L	ICRISAT, 1976
Campoletis multicinctus Gravenhorst	L	Dutt, 1923
Campoplex collinus (Morley)	L	Kakar & Dogra, 1989
Charops aditya Gupta & Maheshwary	L	Nanthagopal & Uthamasamy, 1989
Charops bicolor (Szepligeti)	L	Singh et al., 1990
Disophrys sp.	L	Pawar et al., 1986b
Ecthromorpha sp.	Р	Raodeo et al., 1982
Enicospilus sp.	L	Achan et al., 1968
Enicospilus sp. nr. shinkanus Uchida	L	Pawar et al., 1986b
Enicospilus sp. nr. insinuator (Smith) (as nr. zyzzus Chiu)	L	ICRISAT, 1976
Enicospilus capensis (Thunberg)	L	Gauld & Mitchell, 1981
Enicospilus heliothidis Viereck	Ĺ	Gauld & Mitchell, 1981
Enicospilus heliothidis Viereck	Ĺ	Bilapate, 1981a
(as E. biconatus Townes, Townes & Gupta)	-	r,

TABLE 1. Continued

Order, family and species ^a	Host stage parasitized ^b	Reference
Enicospilus melanocarpus Cameron	L	Gauld & Mitchell, 1981
Enicospilus shinkanus (Uchida)	Lp	Bhatnagar et al., 1982
Enicospilus signativentris (Tosquinet)	Ĺ	Nikam, 1980
Enicospilus signativentris (Tosquinet) (as E. pectiniclavae Rao & Nikam)	L	Nikam, 1980
Eriborus sp.	L	Achan et al., 1968
Eriborus argenteopilosus (Cameron)	L	Achan et al., 1968
Eriborus pilosellus (Cameron)	L	Achan et al., 1968
Eriborus trochanteratus (Morley)	L	Bhatnagar et al., 1982
Eutanyacra (as Amblyteles) albuannulatus Cameron	Р	CIBC, 1974
Gelis sp.	L?	Singh, 1994
Ichneumon sp.	L	ICRISAT, 1976
Leptobatopsis indica (Cameron)	L?	Srinivas & Jayaraj, 1989
Metopius rufus Cameron	L?	ICRISAT, 1976
Netelia sp.	L	Mathur, 1970
Temelucha sp.	L	Bhatnagar et al., 1982
Xanthopimpla sp.	L?	Srinivas & Jayaraj, 1989
Xanthopimpla punctata (Fabricius)	Р	CIBC, 1974
Xanthopimpla scutellare ^c (Fabricius)	Р	CIBC, 1974
Xanthopimpla stemmator (Thunberg)	Lp	ICRISAT, 1976
Scelionidae		
Telenomus sp.	E	Manjunath et al., 1970
Trichogrammatidae		
Trichogramma sp.	E	Bhatnagar et al., 1982
Trichogramma achaeae Nagaraja & Nagarkatti	E	Nagaraja & Nagarkatti, 1969
Trichogramma chilonis Ishii (as T. australicum Girault, T. confusum Viggiani ^g)	E	Manjunath et al., 1970
Trichogrammatoidea sp.	Е	Bhatnagar et al., 1982
Trichogrammatoidea armigera Viggiani	Ē	Manjunath, 1972
Trichogrammatoidea bactrae Nagaraja	Ĕ	Jai Rao et al., 1980
Trichogrammatoidea bactrae sp. fumata Nagaraja	Ē	Bhatnagar et al., 1982

"Species in [square brackets] are African (N. P Wyatt, personal communication, 1996).

 ${}^{b}E = egg$; EI = egg-larval; L = larval; Lp = larval-pupal; P = pupal parasitoid; L? = larvae were attacked, hos stage of emergence is unknown; ? = unknown.

"These species names are probably not valid (N. P. Wyatt, personal communication, 1996).

^dMisidentification recognized by CIBC (1978).

"The genus Rogas was transferred to Aleiodes (see Van den Berg et al., 1988).

¹Hyper-parasitoid of Braconidae and Ichneumonidae (Bouček, 1988).

⁸Synonomized by Nagarkatti and Nagaraja (1979).

Little is known about the ecology of *Chelonus* spp. egg-larval parasitoids. Parasitism levels caused by *C. heliopae* Gupta and *C. narayani* Subba Rao were found to be 'negligible' in Rajasthan (Achan *et al.*, 1968). For *C. curvimaculatus* (Cameron), parasitism levels (based on samples of first to third instar larvae) were found to be below 2% on different crops, with 7.5% recorded on pearl millet by Pawar *et al.* (1986a) (Table 3). In addition, Duffield (1993) found that up to 5% of the first and second instar larvae collected (n = 784) on different pigeonpea varieties were parasitized by this parasitoid. Similar low levels of parasitism were reported by Kushwaha (1995) from first to sixth instar larvae collected on chickpea (n = 1495), pigeonpea (n = 965) (<1%) and lucerne (*Medicago sativa* Linnaeus) (2%, n = 280). The levels of parasitism caused by this group of parasitoids are likely to have been underestimated in many studies; the first two larval instars, which are difficult to find in the field and are often overlooked, are the optimal host stages from which to sample *Chelonus* spp.

The mass rearing of *Trichogramma* spp. has been widely studied. In India, they are usually reared on eggs of the factitious host *Corcyra cephalonica* Stainton (Lepidoptera: Pyralidae)

Host plant	No. of eggs collected	Parasitism level (%)	Reference
Chickpea	4 084	0.0	Pawar et al., 1986a ^a
	1 022	0.0	Sithanantham et al., 1982a
	865 650	0.0 0.0	Yadav & Patel, 1981 Yadav <i>et al.</i> , 1985
_			
Cotton	158	60.1	Patel, 1980
	86 40	51.0 50.0	Naganagoud & Thontadarya, 1984 Yadav <i>et al.</i> , 1985
	150	38.0	Sithanantham <i>et al.</i> , 1982a
	245	29.8	Pawar <i>et al.</i> , 1986a
	150	3.0	Dhandapani et al., 1992
Cowpea	887	37.0	Sithanantham et al., 1982a
•	1 048	35.8	Pawar et al., 1986a
Green gram	23	17.4	Pawar et al., 1986a
Groundnut	709	32.3	Sithanantham et al., 1982a
	2 805	14.8	Pawar et al., 1986a
Lucerne	122	29.5	Yadav et al., 1985
Maize	392	47.2	Sithanantham et al., 1982a
	3 150	32.9	Pawar et al., 1986a
Okra	150	8.0	Thontadarya et al., 1978
	124	5.0	Naganagoud & Thontadarya, 1984
	680	0.1	Pawar et al., 1986a
	676	0.1	Sithanantham et al., 1982a
Pearl millet	255	15.3	Sithanantham et al., 1982a
	3 281	12.5	Pawar et al., 1986a
Pigeonpea	26 756	0.2	Pawar <i>et al.</i> , 1986a
	6 887	0.2	Sithanantham et al., 1982a
Potato	407	56.0	Yadav et al., 1985
Safflower	612	17.5	Pawar et al., 1986a
Sorghum	9 466	40.6	Sithanantham et al., 1982a
	35 408	33.6	Pawar et al., 1986a
Sunflower	287	0.3	Pawar <i>et al.</i> , 1986a
Tomato	585	14.9	Yadav <i>et al.</i> , 1985
	440	2.3	Sithanantham et al., 1982a
	447	2.2	Pawar et al., 1986a
Tuberose	1 175	35.7	Manjunath, 1972
Acanthospermum hispidum	173	4.0	Pawar et al., 1986a
Cleome gynandra	160	0.0	Pawar et al., 1986a
Cocculus hirsutus	50	6.0	Pawar et al., 1986a
Commelina benghalensis	115	9.6	Pawar et al., 1986a
Corchorus trilocularis	108	1.0	Pawar et al., 1986a
Datura metel	2 688	0.4	Pawar et al., 1986a
Emilia sonchifolia	50	6.0	Pawar <i>et al.</i> , 1986a

 TABLE 2.
 Mean parasitism levels of H. armigera eggs caused by naturally occurring populations of Trichogramma spp. on different crops and weeds

Host plant	No. of eggs collected	Parasitism level (%)	Reference
Lagascea mollis ^b	1 935 4 204	0.5 5.9	Pawar et al., 1986a Romeis, unpublished
Sesbania bispinosa	50	16.0	Pawar et al., 1986a
Sonchus oleraceus	295	9.1	Pawar et al., 1986a

^aParts of the data in Pawar *et al.* (1986a) have been reported in Bhatnagar *et al.* (1982, 1983) and Pawar *et al.* (1986b, 1989a).

^bEarlier misidentified as Gomphrena celosioides (N. J. Armes, personal communication, 1996).

TABLE 3.	Parasitism levels of <i>H. armigera</i> larvae by common parasitoids on different crops and weeds in Andhra
	Pradesh, Maharashtra and Karnataka (after Pawar et al., 1986a) ^a

		. of ollected ^b	Parasitism level (%) caused by						
Crop	L1-L3	L4-L6	Chelonus curvimaculatus ^c	Eriborus spp. ^c	Senometopia illota ^d	Goniophtalmus halli ^d			
Bean	9	116	0.0	0.0	0.9	1.7			
Chickpea	33 960	30 398	< 0.1	< 0.1	7.0	0.4			
Cotton	86	115	0.0	0.0	0.0	0.0			
Cowpea	1 949	4 256	0.2	0.1	0.8	3.3			
Green gram	58	738	1.7	0.0	3.1	0.4			
Groundnut	3 627	3 308	< 0.1	0.2	1.5	1.9			
Linseed	1 040	1 020	0.5	12.1	8.1	15.2			
Maize	556	1 669	0.0	0.5	0.3	0.2			
Onion	21	80	0.0	0.0	3.8	1.2			
Pearl millet	784	365	7.5	1.3	6.3	0.5			
Pigeonpea	21 294	68 394	< 0.1	5.6	8.2	7.4			
Safflower	2 831	2 509	1.0	6.5	7.5	1.6			
Sorghum	19 104	18 627	1.3	1.4	3.4	0.4			
Sunflower	224	127	0.0	0.0	0.0	4.7			
Tomato	973	2 076	0.0	0.1	0.3	0.3			
Acanthospermum hispidum	485	1 566	3.7	0.2	0.0	0.1			
Cleome gynandra	1 546	480	7.1	0.8	0.0	0.0			
Datura metel	2 227	2 891	0.0	0.0	0.9	0.2			
Lagascea mollis ^e	3 943	1 800	3.0	0.4	0.5	1.0			
Sesbania bispinosa	101	592	0.0	13.9	4.6	20.1			

^aParts of the data in Pawar et al. (1986a) have been reported in Bhatnagar et al. (1983) and Pawar et al. (1985a, 1986b, 1989a).

 ${}^{b}L1-L3 =$ first to third instar larvae; L4-L6 = fourth to sixth instar larvae.

Parasitism levels are based on collected first to third instar larvae.

^dParasitism levels are based on collected fourth to sixth instar larvae.

'Earlier misidentified as Gomphrena celosioides (N. J. Armes, personal communication, 1996).

(Singh et al., 1994a). Navarajan Paul et al. (1981) have shown this to be a suitable alternative to *H. armigera*. Before exposure to the parasitoids, *C. cephalonica* eggs should be killed because the larvae are cannibalistic. Eggs are usually killed by ultraviolet (UV) irradiation (Maninder & Varma, 1980; Singh et al., 1994a). The recommended exposure time varies according to the intensity of the UV source. Hugar et al. (1990) showed that eggs could be killed by chilling at -5° C for 48 h, but these eggs were significantly less acceptable to *T. chilonis* than were untreated eggs. Parasitized eggs can be stored at 10°C for as long as 49 days without affecting parasitoid survival (Jalali & Singh, 1992). Patil et al. (1978) reported that eggs parasitized by the

exotic *T. brasiliensie* Ashmead could be stored at 8° C for up to 1 week without affecting parasitoid fecundity. Several potentially serious constraints to mass rearing *T. chilonis* have been reported. Laboratory-reared females have shown a significantly higher degree of sterility than wild-type females (Nagarkatti & Nagaraja, 1978), and laboratory-reared populations were more sensitive to both high and low temperatures than wild types (Nagarkatti, 1979).

In searching for strains of *T. chilonis* better adapted to certain field conditions, Mandal and Somchoudhury (1991), as well as Jalali and Singh (1993), compared parasitoid populations collected from different habitats and localities. They found variations in morphometric and biological attributes, such as the number of host eggs parasitized per female and adult longevity. Abraham and Pradhan (1976) attempted to select a *T. chilonis* strain adapted to high temperatures and low humidity, but without success.

Mass releases of several *Trichogramma* spp., predominantly *T. chilonis* but also *T. brasiliensie*, have been made on different crops (Table 4). Unfortunately, it is not often possible to determine whether these releases have been successful from the available reports. In some cases, only the post-release egg mortality was measured. This has little value in determining the economic benefit of the release since pest density and the level of damage must also be considered. The biological control of *H. armigera* on tomato using *Trichogramma* spp. has been shown to be feasible with field releases (Table 4). Singh *et al.* (1994a) recommended the release of *T. chilonis* or *T. achaeae* in cotton at a rate of 150 000 females ha⁻¹ every week for 6 weeks starting with the appearance of the pest. One of the constraints to the practical and effective use of *Trichogramma* egg parasitoids is the low quality of 'Trichocards' currently available in India (J. Romeis, unpublished).

Another egg parasitoid, *T. bactrae*, was successfully reared on *C. cephalonica* eggs (Jai Rao et al., 1980). Neither species of Trichogrammatoidae has been mass reared.

The potential for mass rearing the egg-larval parasitoid *C. heliopae* has been studied by Patel *et al.* (1973). One-day-old eggs of *Spodoptera litura* Fabricius (Lepodoptera: Noctuidae) were the most suitable factitious hosts. Super-parasitism was common in laboratory cultures and was suspected to be the reason why large numbers of parasitized eggs failed to hatch. Subba Rao (1955) successfully reared *C. narayani* on *C. cephalonica*.

Patel (1975) attempted weekly field releases of *C. heliopae* in 0.4-ha plots of tomato and chickpea. In tomato, the highest parasitism rate (6-7%) was reached after two releases of 150 000 parasitoids per hectare per week or after five releases of 100 000 parasitoids per hectare per week. In chickpea, the maximum parasitism rate was higher (up to 21%) after four releases of 100 000 parasitoids per hectare per week. 'Young' post larvae were collected to evaluate the parasitism level. This parasitoid was not successful in regulating *H. armigera* populations in either crop.

NATIVE LARVAL AND LARVAL-PUPAL PARASITOIDS

The largest group of H. armigera natural enemies reported from India are the larval and larval-pupal parasitoids with more than 60 identified species (Table 1).

The most important and well-studied larval parasitoid, *Campoletis chlorideae* Uchida (Hymenoptera: Ichneumonidae), is reported to be an important mortality factor for *H. armigera* on several crops and weeds (Table 5). It preferentially attacks second instar larvae (Nikam & Gaikwald, 1989) and is therefore potentially effective in suppressing larval populations before significant damage is caused (Nikam & Gaikwald, 1991; Kushwaha, 1995). Parasitoid larvae emerge from third and fourth instar host larvae to pupate and spin a cocoon, and thus sampling the first three instars of *H. armigera* larvae would be necessary to evaluate accurately the impact of this parasitoid. Unfortunately, very few authors have collected only the small (first to third instar) larvae. Therefore, as a comparison, parasitism levels measured on collections of first to sixth instar larvae are also listed in Table 5. As the table shows, collecting all larval instars underestimates the actual parasitoid impact.

Pimbert and Srivastava (1989) found significantly higher levels of *H. armigera* larvae parasitized by *C. chlorideae* on chickpea inter-cropped with coriander (*Coriandrum sativum*

		Interval	No. of			Parasitism	level (%) ^a		Reference
	No. of releases	between releases (days)	females released (ha ⁻¹)	Species released	Plot size (ha)	Test plot	Control	Evidence of success	
Cotton	3	14	1 000 000	T. chilonis ^b	1.0	32	3	40% Reduction in H. armigera larvae	Dhandhapani et al., 1992
Tomato	5	7	250 000	T. chilonis	0.2	32-96	4–5	40% Reduction in <i>H. armigera</i> larvae 70% Reduction in fruit damage	Yadav <i>et al.</i> , 1985
	10	7	250 000	T. chilonis	0.2	27-96	15-52	65% Reduction in fruit damage	Yadav <i>et al.</i> , 1985
	8	10	125 000	T. chilonis	0.2	20-50	0-11	No record	Yadav et al., 1985
	6	7	50 000	T. brasiliense	1.0	78	12	55% Reduction in fruit damage	Singh <i>et al.</i> , 1994b
	?'	7	250 000	T. chilotraeae	?	92	?	50-75% Reduction in fruit damage	Patel (in Stinner, 1977)
Potato	5	7	250 000	T. chilonis	0.2	35–94	13-84	69% Reduction in H. armigera larvae	Yadav <i>et al.</i> , 1985; Patel, 1980
	?	7	250 000	T. chilotraeae	?	94	?	No record	Patel (in Stinner, 1977)
Sunflower	?	?	100 000	T. chilonis	1.0	3	0	No record	Singh <i>et al.</i> , 1994b
Chickpea	?	7	250 000	T. chilonis	0.2	0	0	No record	Yadav <i>et al.</i> , 1985

TABLE 4. Augmentative releases of Trichogramma spp. against H. armigera on different crops in India

^aParasitism level record is either maximum or range. ^bReleased together with 50 000 *Brinckochrysa scelestes*/per release per hectare.

Unknown.

exotic *T. brasiliensie* Ashmead could be stored at 8° C for up to 1 week without affecting parasitoid fecundity. Several potentially serious constraints to mass rearing *T. chilonis* have been reported. Laboratory-reared females have shown a significantly higher degree of sterility than wild-type females (Nagarkatti & Nagaraja, 1978), and laboratory-reared populations were more sensitive to both high and low temperatures than wild types (Nagarkatti, 1979).

In searching for strains of *T. chilonis* better adapted to certain field conditions, Mandal and Somchoudhury (1991), as well as Jalali and Singh (1993), compared parasitoid populations collected from different habitats and localities. They found variations in morphometric and biological attributes, such as the number of host eggs parasitized per female and adult longevity. Abraham and Pradhan (1976) attempted to select a *T. chilonis* strain adapted to high temperatures and low humidity, but without success.

Mass releases of several *Trichogramma* spp., predominantly *T. chilonis* but also *T. brasiliensie*, have been made on different crops (Table 4). Unfortunately, it is not often possible to determine whether these releases have been successful from the available reports. In some cases, only the post-release egg mortality was measured. This has little value in determining the economic benefit of the release since pest density and the level of damage must also be considered. The biological control of *H. armigera* on tomato using *Trichogramma* spp. has been shown to be feasible with field releases (Table 4). Singh *et al.* (1994a) recommended the release of *T. chilonis* or *T. achaeae* in cotton at a rate of 150 000 females ha⁻¹ every week for 6 weeks starting with the appearance of the pest. One of the constraints to the practical and effective use of *Trichogramma* egg parasitoids is the low quality of 'Trichocards' currently available in India (J. Romeis, unpublished).

Another egg parasitoid, *T. bactrae*, was successfully reared on *C. cephalonica* eggs (Jai Rao et al., 1980). Neither species of Trichogrammatoidae has been mass reared.

The potential for mass rearing the egg-larval parasitoid *C. heliopae* has been studied by Patel *et al.* (1973). One-day-old eggs of *Spodoptera litura* Fabricius (Lepodoptera: Noctuidae) were the most suitable factitious hosts. Super-parasitism was common in laboratory cultures and was suspected to be the reason why large numbers of parasitized eggs failed to hatch. Subba Rao (1955) successfully reared *C. narayani* on *C. cephalonica*.

Patel (1975) attempted weekly field releases of C. heliopae in 0.4-ha plots of tomato and chickpea. In tomato, the highest parasitism rate (6-7%) was reached after two releases of 150 000 parasitoids per hectare per week or after five releases of 100 000 parasitoids per hectare per week. In chickpea, the maximum parasitism rate was higher (up to 21%) after four releases of 100 000 parasitoids per hectare per week. 'Young' post larvae were collected to evaluate the parasitism level. This parasitoid was not successful in regulating H. armigera populations in either crop.

NATIVE LARVAL AND LARVAL-PUPAL PARASITOIDS

The largest group of H. armigera natural enemies reported from India are the larval and larval-pupal parasitoids with more than 60 identified species (Table 1).

The most important and well-studied larval parasitoid, Campoletis chlorideae Uchida (Hymenoptera: Ichneumonidae), is reported to be an important mortality factor for H. armigera on several crops and weeds (Table 5). It preferentially attacks second instar larvae (Nikam & Gaikwald, 1989) and is therefore potentially effective in suppressing larval populations before significant damage is caused (Nikam & Gaikwald, 1991; Kushwaha, 1995). Parasitoid larvae emerge from third and fourth instar host larvae to pupate and spin a cocoon, and thus sampling the first three instars of H. armigera larvae would be necessary to evaluate accurately the impact of this parasitoid. Unfortunately, very few authors have collected only the small (first to third instar) larvae. Therefore, as a comparison, parasitism levels measured on collections of first to sixth instar larvae are also listed in Table 5. As the table shows, collecting all larval instars underestimates the actual parasitoid impact.

Pimbert and Srivastava (1989) found significantly higher levels of *H. armigera* larvae parasitized by *C. chlorideae* on chickpea inter-cropped with coriander (*Coriandrum sativum*

		Interval	No. of			Parasitism	level (%) ^a		
Сгор	No. of releases	between releases (days)	females released (ha ⁻¹)	Species released	Plot size (ha)	Test plot	Control	Evidence of success	Reference
Cotton	3	14	1 000 000	T. chilonis ^b	1.0	32	3	40% Reduction in H. armigera larvae	Dhandhapani et al., 1992
Tomato	5	7	250 000	T. chilonis	0.2	32-96	4–5	40% Reduction in <i>H. armigera</i> larvae 70% Reduction in fruit damage	Yadav <i>et al.</i> , 1985
	10	7	250 000	T. chilonis	0.2	27-96	15-52	65% Reduction in fruit damage	Yadav <i>et al.</i> , 1985
	8	10	125 000	T. chilonis	0.2	20-50	0-11	No record	Yadav <i>et al.</i> , 1985
	6	7	50 000	T. brasiliense	1.0	78	12	55% Reduction in fruit damage	Singh et al., 1994b
	?'	7	250 000	T. chilotraeae	?	92	?	50-75% Reduction in fruit damage	Patel (in Stinner, 1977)
Potato	5	7	250 000	T. chilonis	0.2	35–94	13-84	69% Reduction in H. armigera larvae	Yadav <i>et al.</i> , 1985; Patel, 1980
	?	7	250 000	T. chilotraeae	?	94	?	No record	Patel (in Stinner, 1977)
Sunflower	?	?	100 000	T. chilonis	1.0	3	0	No record	Singh <i>et al.</i> , 1994b
Chickpea	?	7	250 000	T. chilonis	0.2	0	0	No record	Yadav <i>et al.</i> , 1985

TABLE 4. Augmentative releases of Trichogramma spp. against H. armigera on different crops in India

^aParasitism level record is either maximum or range. ^bReleased together with 50 000 *Brinckochrysa scelestes*/per release per hectare.

Unknown.

	No. of colled			sitism (%) ^a	
Сгор	L1-L3	L1-L6	L1-L3	L1-L6	Reference
Chickpea		78		35.9	Prasad & Chand, 1986
		14 950		18.5	Kushwaha, 1995
	33 960	64 358	29.2	15.4	Pawar et al., 1986a ^b
		666		12.2	Bilapate, 1981b
	18 111	30 222	14.7	8.8	Bilapate et al., 1988
Cotton		405		10.4	Bilapate, 1981b
		135		9.6	Patel, 1980
	86	201	8.1	3.5	Pawar et al., 1986a
		119		2.5	Kushwaha, 1995
Cowpea	1 949	6 205	6.9	2.2	Pawar <i>et al.</i> , 1986a
Green gram	58	796	13.8	1.0	Pawar et al., 1986a
Groundnut	3 627	6 935	6.8	3.6	Pawar <i>et al.</i> , 1986a
Linseed	1 040	2 060	13.6	6.8	Pawar <i>et al.</i> , 1986a
Lucerne		566		3.9	Kushwaha, 1995
Maize	556	2 225	17.8	4.4	Pawar et al., 1986a
		52		3.8	Kushwaha, 1995
Pea		86		24.4	Kushwaha, 1995
Pearl millet	784	1 149	49.0	33.4	Pawar <i>et al.</i> , 1986a
Pigeonpea		965		10.2	Kushwaha, 1995
		202		1.5	Bilapate, 1981b
	(1 256) ^c	1 393	(1.6)	1.4	Duffield, 1993
	21 294	89 688	3.6	0.9	Pawar <i>et al.</i> , 1986a
	13 625	26 437	1.4	0.7	Bilapate et al., 1988
Safflower		738		36.2	Pawar <i>et al.</i> , 1985a
	2 831	5 340	41.6	22.1	Pawar et al., 1986a
		49		12.2	Bilapate, 1981b
		481		11.8	Kushwaha, 1995
Sorghum	19 104	37 731	49.2	24.9	Pawar et al., 1986a
	(402)		(17.2)		Duffield, 1993 ^c
Sunflower	224	351	6.3	4.0	Pawar <i>et al.</i> , 1986a
Tomato		3 311		4.2	Kushwaha, 1995
	973	3 049	5.3	1.7	
Acanthospermum hispidum	485	2 051	2.1	0.5	Pawar <i>et al.</i> , 1986a
Cleome gynandra	1 546	2 026	6.6	5.0	Pawar <i>et al.</i> , 1986a
Datura metel	2 227	5 1 1 8	7.6	3.2	Pawar <i>et al.</i> , 1986a
Lagascea mollis ^d	3 943	5 743	21.4	14.7	Pawar <i>et al.</i> , 1986a
Sesbania bispinosa	101	693	23.8	3.5	Pawar <i>et al.</i> , 1986a
Aeschynomene indica	65	230	24.6	7.0	Pawar <i>et al.</i> , 1986a

TABLE 5. Mean parasitism levels of H. armigera larvae caused by C. chlorideae on different crops and weeds

 $^{a}L1-L3 =$ first to third instar larvae; L1-L6 = first to sixth instar larvae.

^bParts of the data in Pawar et al. (1986a) have been reported in Bhatnagar et al. (1983) and Pawar et al. (1985a, 1986b, 1989a,b).

^cData in parentheses are based on collected first to fourth instar larvae.

^dEarlier misidentified as Gomphrena celoisoides (N. J. Armes, personal communication, 1996).

Crop	No. of	Parasitism level (%) caused by			
	larvae (first to sixth instar) collected	Carcelia spp.	G. halli		
Chickpea	666	0.0	6.5		
Cotton	405	0.5	1.2		
Pigeonpea	202	4.0	5.9		
Safflower	49	0.0	10.2		
Sorghum	25	52.0	8.3		

 TABLE 6.
 Parasitism levels of first to sixth instar H. armigera larvae by the tachinids Carcelia spp. (most probably including S. illota) in Maharashtra (after Bilapate, 1981b)

Linnaeus) than on sole cropped chickpea plants. They suggested that nectar-rich coriander plants were used as an adult food source and attracted parasitoids to the chickpea crop.

There was much confusion about the taxonomic status of *C. chlorideae*. It was earlier misidentified as *Diadegma (Horogenes) fenestrale* (Holmgren) (Tikar & Thakare, 1961; see Mathur & Dharmadhikari, 1970) or as *C. flavicincta* (Ashmead) (*C. perdistinctus* (Viereck)) (Gangrade, 1964; Achan *et al.*, 1968; Vaishampayan & Veda, 1980). The latter is known as a parasitoid of *Heliothis* spp. from the Americas (Kogan *et al.*, 1989) and does not occur in India. This misidentification was discussed by Gupta (1974). However, Singh *et al.* (1991) still listed *D. fenestrale* as a parasitoid of *H. armigera*.

One other genus of hymenopteran larval parasitoids, *Eriborus* spp. (Hymenoptera: Braconidae), can cause significant mortality in the first to third instar larvae on some crops and weeds (Table 3). Kushwaha (1995) collected first to sixth instar larvae on different crops and reported 23% parasitism from pigeonpea (n = 90) and less than 1% from chickpea $(n = 14\,950)$ and lucerne (n = 112). Duffield (1993) collected over 400 first to fourth instar larvae sorghum and reported less than 1% parasitism by *Eriborus* spp. They preferentially parasitize second instar larvae (Nikam *et al.*, 1990).

Tachinids are the most important group of dipteran parasitoids. They parasitize older instars and emerge from sixth instar larvae or pupae (Bilapate, 1981a,c; Nikam & Gaikwald, 1989). Achan et al. (1968) and Rao (1968) found 16-20% of H. armigera larvae (based on collections of first to sixth instar larvae) to be parasitized by each of three species: Palexorista laxa (Curran) (earlier misidentified as Drino imberbis (Wiedemann), as recognized by the Commonwealth Institute of Biological Control (CIBC), 1978) and the larval-pupal parasitoids Senometopia (as Eucarcelia) illota (Curran) and Goniophthalmus halli Mesnil. S. illota, emerges from host larvae (as a larval parasitoid) when early instars have been parasitized (Patel et al., 1970). Collecting fourth to six or first to sixth instar host larvae, Pawar et al. (1986a) and Bilapate (1981b) respectively observed differences in the level of parasitism caused by tachinids among different crops and weeds (Tables 3 and 6). One difficulty with the study by Bilapate (1981b) is that all larval instars (first to sixth) were collected. As mentioned earlier, this will underestimate the level of parasitism and may also bias the comparison between host plants. For example, small larvae are easier to find on chickpea than on pigeonpea (Reed et al., 1987; Reed & Lateef, 1990), and the proportion of large larvae collected will be relatively higher on pigeonpea, resulting in an overestimate of the level of parasitism caused by tachinids. Patel et al. (1970) reported a mean parasitism level of 9.9% caused by S. illota on fourth to sixth instar host larvae (n = 3982)collected on different crops. Duffield (1993) sampled third to sixth instar larvae (n = 747) on piegeonpea and reported a parasitism level of 6.3% caused by tachinids.

The host plant on which H. armigera is found has an important effect on the distribution and abundance of larval parasitoids. Some authors (e.g. Bhatnagar *et al.*, 1982; Sithanantham, 1985) have generalized that larvae of H. armigera on pigeonpea suffer greater parasitism by dipteran than by hymenopteran parasitoids, while on chickpea the latter are more common. This may be true for some technids (Tables 3 and 6; Sithanantham, 1981) and C. chlorideae (Table 5) but

should not be extrapolated to all dipteran and hymenopteran larval parasitoids. Sithanantham et al. (1982b, 1983) observed that the choice of cultivar could affect the efficacy of larval parasitoids. They reported lower parasitization rates on resistant, compared with susceptible, cultivars of chickpea and pigeonpea.

The development of techniques used to rear larval parasitoids has largely focused on *C. chlorideae*. The optimal developmental temperature for *C. chlorideae* was 31°C (Nikam & Basarkar, 1978); at this temperature, egg-to-adult development was completed in 17 days, and adult longevity was 9 days when insects were provided with 20% honey solution. Patel *et al.* (1988a) observed 100% emergence in *C. chlorideae* pupae stored at 8.2°C for 10 days, but after 15 days emergence declined to 75%. The adult life span, however, was not adversely affected. Although this preliminary work has been carried out, a technique for mass producing *C. chlorideae* is still not available (Manjunath, 1992). Two factors limiting *C. chlorideae* rearing are the high mortality among parasitized larvae and an unfavourable sex ratio (>4 males:females) in laboratory-reared parasitoids (Patel, 1975). Basarkar and Nikam (1982) also reported a male-biased sex ratio in laboratory cultures.

Krishnamoorthy and Mani (1989) recommended using 4-day-old S. litura larvae as an alternative host for rearing E. argenteopilosus (Cameron) because laboratory cultures are less susceptible to viral and bacterial diseases. S. litura is readily accepted by the parasitoid.

Rearing methods for three tachinid parasitoids, G. halli, S. illota and Palexorista (as Drino) munda (Wiedemann), have been reported. G. halli must be reared on H. armigera larvae. Attempts to rear this species on alternative lepidopteran hosts were not successful (Patel & Singh, 1972). At 27°C egg-to-adult development was completed in 23 days. Only one parasitoid emerged from each host, but as many as 87% of the laboratory-reared puparia produced adults (Patel & Singh, 1972). Patel et al. (1970) reared S. illota at 27°C; egg-to-adult development was completed in 25 days and females produced an average of 168 eggs. At 32°C development was faster (22 days), but the emerging adult flies were unable to expand their wings. Higher parasitism levels were recorded when host larvae were infested with two or three parasitoid eggs (60 or 64% respectively) instead of one (48%). However, the percentage of parasitoid puparia obtained was higher when only one egg was placed in each host larva (48, 35 and 30% for one, two and three eggs respectively), because generally only one parasitoid maggot emerged from each host (Patel et al., 1970). Host larvae were anaesthetized to reduce host defensive behaviour. A rearing method for P. munda was developed in the US after importation from India. Chauthani and Hamm (1967) reared this parasitoid at 26-28°C and 70-90% relative humidity on both H. virescens and S. frugiperda (J. E. Smith) (Lepidoptera: Noctuidae). Several authors have observed that tachinid parasitoids must be exposed to sunlight to stimulate mating (Achan et al., 1968; Patel et al., 1970; Patel & Singh, 1972). In contrast, Chauthani and Hamm (1967) reported that P. munda mated successfully under laboratory conditions without such exposure. The potential for using larval parasitoids in augmentative releases has been evaluated in the US with promising results (King et al., 1982; King & Coleman, 1989), but no such effort has been made in India.

Mass rearing larval parasitoids on *H. armigera* is laborious and inefficient since parasitized larvae must be reared in isolation to avoid cannibalism (Nagarkatti, 1982). An effective and economical mass-rearing method must be developed before larval parasitoids can be used in biological control. Possible solutions would be to use factitious hosts or an artificial diet; some successful examples of the latter are listed by Greany *et al.* (1984). The larvae of *H. peltigera* (Denis & Schiffermüller) (Lepidoptera: Noctuidae) could be used as an alternative host for some parasitoids (N. J. Armes, personal communication, 1995). Larvae of *H. peltigera* are not cannibalistic and are hosts of important parasitoids such as *C. chlorideae* (Manjunath *et al.*, 1976).

NATIVE PUPAL PARASITOIDS

In contrast to the large number of larval parasitoids, only five pupal parasitoids have been recorded from *H. armigera* in India: the chalcid *Brachymeria albicrus* (Klug) (as *B. responsator*

Walker), the eulophid *Tetrastichus howardi* (Olliff) (as *T. ayyari* Rhower) and three ichneumonids (Table 1). Only negligible parasitism levels are reported for these pupal parasitoids (Cherian & Subramaniam, 1940; Achan *et al.*, 1968; CIBC, 1974).

However, in life-table studies, pupal mortality is underestimated. As *H. armigera* pupates under the soil surface (Ghosh *et al.*, 1986), pupae are only rarely sampled. Therefore, the pupal mortality reported in *H. armigera* life tables (e.g. Bilapate *et al.*, 1979; Nanthagopal & Uthamasamy, 1989; Tripathi & Singh, 1991) is caused by larval-pupal parasitoids and does not include the impact of true pupal parasitoids. The effect of pupal parasitoids may be important and should not be underestimated. For example, in Australia, Murray (1991) found that 8.2% of the pupae (n = 124) collected in chickpea were parasitized by *Ichneumon promissorius* Erichson (Hymenoptera: Ichneumonidae).

PREDATORS

In India more than 60 species of arthropods are recorded as predators of H. armigera (Table 7). However, this relationship has not been confirmed for about one-third of them under field conditions.

The biology of most of these predators is unknown, and their role in regulating *H. armigera* populations, individually or as a group, has not been quantified. Few studies have attempted to estimate the impact of potential predator species on *H. armigera* populations. In comparison, Van den Berg and Cock (1993a,b) have shown that in East Africa, predators, especially ants and anthocorids, are the most important group of natural enemies of *H. armigera* on maize, sorghum and sunflower.

Chrysopids have been the most extensively studied group of *H. armigera* predators. Singh *et al.* (1994b) studied the feeding potential of four native chrysopid predators in the laboratory. *Mallada boninensis* (Okamoto) was the most effective, and consumed up to 463 *H. armigera* eggs/first instar chrysopid larva, followed by *Apertochrysa* sp. (364 eggs/larva), *M. astur* (Banks) (244 eggs/larva) and *Chrysoperla carnea* Stephens (175 eggs/larva). During its larval development, a single larva of *Brinckochrysa* (as *Chrysopa*) scelestes (Banks) (Neuroptera: Chrysopidae) consumed 665 eggs or 410 young larvae. Its larval development was completed in 8.6 days when fed on eggs and 11.7 days when fed on larvae (Krishnamoorthy & Mani, 1982). However, the feeding potential of chrysopids has not been tested in the field.

Other predators such as the mud wasps, *Delta pyriforme* (Fabricius), *D. companiforme* esuriens Fabricius and *D. conoideus* (Gmelin) (Hymenoptera: Eumenidae), which prey on larvae of *H. armigera*, have only limited value in controlling the pest because of their long generation time. Their activity might be increased by providing sources of water and nesting sites protected from ants (Pawar & Jadhav, 1983). This type of habitat manipulation to augment natural enemies has not been investigated.

The feeding potential of the ant species recorded as predators on *H. armigera* is still unknown. Observations by King (1986) at ICRISAT indicated a high larval mortality by *Camponotus* sp. An ongoing study at ICRISAT indicates that ants may be important predators of *H. armigera* pupae (K. B. Tawar, personal communication, 1995). The host plant has an impact on the efficacy of ants and perhaps other predators. Romeis *et al.* (1996) observed *Paratrechina longicornis* (Latreille) removing *H. armigera* eggs from potted pigeonpea plants. Large numbers of eggs were removed from leaves, while eggs on flower-buds, flower-petals or pods suffered significantly less predation. The difference seems to be due to the type and distribution of trichomes on different pigeonpea plant structures.

Very few studies have investigated the abundance and within-plant distribution of different predators. Duffield (1993, 1995) studied predators in pigeonpea-sorghum fields and found the following predatory groups to be most abundant: neuropterans, mainly chrysopids; coccinellids, mainly *Chilomenes* (as *Menochilus*) sexmaculatus (Fabricius); anthocorids, mainly *Orius* spp. and spiders. Only the anthocorids showed a seasonal abundance and within-plant distribution pattern mirroring that of *H. armigera* eggs. Anthocorids may use *H. armigera* eggs as prey more

Reported					
	stage				
Order, family and species	attacked ^a	Reference			
COLEOPTERA					
Anthicidae Formicomus sp.	Е	Sigsgaard, 1996			
	2	51555au 0, 1770			
Carabidae Calosoma indicum Hope ^b	?	Singh <i>et al.</i> , 1990			
Coccinellidae					
Chilomenes (as Menochilus) sexmaculatus	E, L	Bhatnagar et al., 1983			
Fabricius Coopinelle sentempungtate (Linneous)	БI	Mehto et al., 1986			
Coccinella septempunctata (Linnaeus)	E, L	Mento el al., 1986			
Staphilinidae Unidentified species	L	Singh, 1994			
	L	Singh, 1994			
DERMAPTERA Carcinophoridae					
Euborellia annulata (Fabricius)	L	Bhatnagar et al., 1983			
(as <i>E. stalli</i> (Dohrn))	L	Photosop et al. 1093			
Euborellia annulipes (Lucas)	L	Bhatnagar et al., 1983			
Labiduridae Nala lividipes (Dufour)	L	Bhatnagar et al., 1983			
	L	Dhamaga er un, 190,5			
ORTHOPTERA Mantidae					
Humbertiella sp.	L	Bhatnagar et al., 1983			
HEMIPTERA					
Anthocoridae					
Orius albidipennis (Reuter) ^b Orius maxidentex (Ghauri)	E, L E, L	Salim <i>et al.</i> , 1987 Bhatnagar <i>et al.</i> , 1983			
Orius tantillus (Motschulsky)	E, L E, L	Sigsgaard & Esbjerg, 1994			
Lygaeidae					
Paromius gracilis (Rambur)	L	Bhatnagar et al., 1983			
Miridae					
Cyrtopeltis (as Nesidiocoris) tenuis (Reuter) ^b	?	Chari et al., 1992			
Nabidae					
Nabis spp.	L	Yadav, 1990			
Nabis (as Tropiconabis) capsiformis Germar	L	Bhatnagar et al., 1983			
Pentatomidae	Ţ	Deciendre & Detal 1071			
Andrallus spinidens (Fabricius) ^b Cantheconidea (Eocanthecona)	L L	Rajendra & Patel, 1971 Bhatnagar & Davies, 1978			
(as Canthecona) sp.					
Cantheconidea (Eocanthecona) furcellata (Wolff)	L	Bhatnagar et al., 1983			
•					
Reduviidae Acanthaspis pedestris Stål ^b	L	Sahayaraj & Ambrose, 1994			
Acanthaspis quinquespinosa (Fabricius) ^b	L	Sahayaraj, 1991 (in Ambrose, 1995)			
Catamiarus brevipennis (Serville) Coranus sp.	L L	Bhatnagar <i>et al.</i> , 1983 Yadav, 1980			
Coranus spiniscutis Reuter	L	CIBC, 1974			
Ectomocoris tibialis Distant ^b Ectomocoris xavierei Vennison & Ambrose ^{b,c}	L	Ambrose, 1985 (in Ambrose, 1995)			
Ectomocoris xavierei Vennison & Ambrose	L L	Vennison, 1988 (in Ambrose, 1995) Bhatnagar et al., 1983			
Edocla slateri Distant ^b	L	Ambrose, 1985 (in Ambrose, 1995)			
Endochus inornatus Stål ^b	L	Lakkundi, 1989 (in Ambrose, 1995)			

TABLE 7. Arthropod predators of H. armigera reported from India

TABLE 7. Continued

	Reported stage		
Order, family and species	attacked ^a	Reference	
Endochus parvispinus Distant ^b	L	Lakkundi, 1989 (in Ambrose, 1995)	
Endochus umbrinus Distant ^b	L	Sahayaraj, 1991 (in Ambrose, 1995)	
Euagoras plagiatus (Burmeister) ^b	Ĺ	Vennison, 1988 (in Ambrose, 1995)	
Isyndus heros Fabricius ^b	L	Lakkundi, 1989 (in Ambrose, 1995)	
Lestomerus (as Pirates) affinis (Serville) ^b	Ĺ	Ambrose, 1985 (in Ambrose, 1995)	
Oncocephalus annulipes Stål	Ĺ	CIBC, 1974	
Rhynocoris (as Harpactor) costalis (Stål) ^b	Ĺ	Krishnananda & Satyanarayana, 1984	
Rhynocoris fuscipes (Fabricius)	L	(in Chari <i>et al.</i> , 1992) CIBC, 1974	
Rhynocoris kumarii Ambrose & Livingstone ^{b,c}	L		
Rhynocoris lapidicola Samuel & Joseph ^b	_	Ambrose, 1985 (in Ambrose, 1995)	
Rhynocoris ingrainatus (Esbrisius)	L	Joseph, 1959	
Rhynocoris marginatus (Fabricius)	L	Bhatnagar et al., 1983	
Rhynocoris scualis ^{b.c}	L	Krishnananda & Satyanarayana, 1984 (in Chari et al., 1992)	
Sycanus indagator Stål	L	CIBC, 1974	
Sycanus reclinatus Dohm ^b	L	Vennison & Ambrose, 1992 (in Ambrose, 1995)	
Sycanus versicolor Dohm ^b	L	Kumaraswami & Ambrose, 1992	
HYMENOPTERA Eumenidae			
Delta companiforme esuriens Fabricius	L	Pawar & Jadhav, 1983	
Delta conoideus (Gmelin)	L	Pawar & Jadhav, 1983	
Delta pyriformis (Fabricius)	L	Pawar & Jadhav, 1983	
Formicidae			
Camponotus sp.	L	King, 1986	
Camponotus sericeus (Fabricius) ^d	Ĺ	Manjunath et al., 1976	
Cataglyphis bicolor (Fabricius)	Ĺ	Khan & Sharma, 1972	
Dorylus labiatus Shuckard	Ĺ	Mehto $et al.$, 1986	
Paratrechina longicornis (Latreille)	Ē	Romeis et al., 1995	
Pheidole sp.	E	Romeis et al., 1995 Romeis et al., 1995	
Solenopsis geminata (Fabricius)		Dhandapani et al., 1994	
Tapinoma melanocephalum (Fabricius)	E, L	Musthak Ali, personal communication 1995	
Sphecidae			
Sphex argentatus Fabricius	L	Bhatnagar et al., 1983	
	-		
Vespidae			
Polistes olivaceus (DeGeer)	L	Bhatnagar et al., 1983	
Polistes olivaceus (DeGeer) ^b	L	Singh <i>et al.</i> , 1990	
(as P. hebraeus Fabricius)	L	511611 Cr 44., 1770	
Ropalidia marginata (Lepeletier)	т	Photosor at al 1002	
	L	Bhatnagar et al., 1983	
Vespa orientalis (Linnaeus) Vespa sincta ^{h,c}	L	Bhatnagar et al., 1983	
•	L	Bhat & Virupakshappa, 1992	
Vespa tropica haemotodes Bequaert	L	Bhatnagar et al., 1983	
NEUROPTERA			
Chrysopidae	-	0	
Apertochrysa sp. ^b	E	Singh et al., 1994b	
Brinckochrysa (as Chrysopa) scelestes (Banks)	E, L	Krishnamoorthy & Mani, 1982	
Chrysopa sp.	E, L	Bhatnagar et al., 1983	
Chrysoperla sp.	E, L	Srinivas & Jayraj, 1989	
Change and a second of the second	E, L	Manjunath et al., 1976	
Chrysoperla carnea (Stephens) ^d	L, L		
Mallada astur (Banks) ^b	E, L E	Singh et al., 1994b	

Order, family and species	Reported stage attacked ^a	Reference
ARACHNIDA: ARANEAE		
Araneidae		
Leucauge tessellata (Thorell)	L	Bhatnagar et al., 1983
Neoscona theisi (Walckenaer)	L	Bhatnagar et al., 1983
Clubionidae		
Cheiracanthium inornatum O. P. Cambridge	E, L	Sigsgaard, 1996
Clubiona sp.	L	Bhatnagar et al., 1983
Oxyopidae		
Oxyopes sp.	L	Singh, 1994
Oxyopes ratnae Tikader	L	Dhulia & Yadav, 1991
Thomisidae		
Ozyptila reenae Basu	L	Bhatnagar et al., 1983
Thomisus sp.	Ĺ	Bhatnagar et al., 1983

TABLE 7. Continued

 ${}^{a}E = egg; L = larvae; ? = unknown.$

^bThese species were either observed preying on *H. armigera* in the laboratory or the location of the observation (field or laboratory) is unknown.

^cThese species names are probably not valid (G. R. Stonedahl and A. Polaszek, personal communication, 1996). ^dFirst reported to attack *H. peltigera* but now recognized as also attacking *H. armigera*.

readily than other generalist predators. The abundance of all predators was much lower on pigeonpea than on sorghum, although pigeonpea supported higher densities of *H. armigera*. For example, anthocorids were found at a peak 'per plant' density of 3.6 on sorghum and only 0.5 on pigeonpea. Similar crop-specific differences were reported for adult coccinellids (1.6 versus 0.6), neuropteran eggs (3.0 versus 0.2) and spiders (1.2 versus 0.7) (Duffield, 1995). Sigsgaard and Esbjerg (1994) also found *O. tantillus* (Motschulsky) to be a more effective predator on sorghum than on pigeonpea. The predator was more active on reproductive than vegetative structures of both plants, and fed on eggs and first instar larvae of *H. armigera*.

On black gram (Vigna mungo (Linnaeus) Hepper), Dhuri et al. (1986) found a significantly higher density of the coccinellid C. septempunctata (Linnaeus) when it was inter-cropped with sorghum and a larger number of the predatory wasp Polistes olivaceus (DeGeer) (as P. hebraeus Fabricius) (Hymenoptera: Vespidae) on plants inter-cropped with green gram (V. radiata Linnaeus) in comparison with sole crops.

Mehto *et al.* (1986) recorded a maximum of 0.3 spiders and 0.7 *C. septempunctata* per chickpea plant. Other studies have noted the abundance of predatory spiders, but without recording their efficacy (Singh & Singh, 1977; Dhulia & Yadav, 1991). Laboratory studies of the feeding potential of *Clubiona* sp. (Acarina: Clubionidae) showed that these spiders can consume a large number of *H. armigera* eggs (59/day) and young larvae (three/day) (ICRISAT, 1982).

The usefulness of ants, anthocorids and chrysopids as egg predators must be weighted against the possible disadvantage of them feeding on parasitized eggs. Egg predation may be an important mortality factor for egg parasitoids because parasitized eggs remain in the field up to three times longer than unparasitized eggs, and are therefore exposed to predators for a longer period. Krishnamoorthy and Mani (1985) observed the feeding behaviour of larvae of *B. scelestes* on *H. armigera* eggs parasitized by *T. chilonis*. There was no difference in consumption between fresh unparasitized eggs and 1-day-old parasitized eggs, but the predator consumed significantly more parasitized eggs when the eggs were greater than 3 days old. However, it is unclear if this has an impact on the combined use of these natural enemies in the field.

There are other examples of mutual interference among *H. armigera* natural enemies. Ants have been reported to remove chrysopid larvae from the plants (Singh *et al.*, 1994b) and

chrysopid eggs are parasitized by *Trichogramma* sp. (Pawar et al., 1985b; Kapadia & Puri, 1991).

Chrysopids are the only *H. armigera* predators to be mass produced in India. Life tables have been constructed under laboratory conditions for *C. carnea*, *M. boninensis*, *M. astur* and *Apertochrysa* sp. (Bakthavatsalam *et al.*, 1994). The highest net reproductive rate was for *C. carnea* ($R_0 = 559$). Chrysopid larvae are easy to rear on *C. cephalonica* eggs, but they are cannibalistic and must be separated (Krishnamoorthy & Nagarkatti, 1981; Patel *et al.*, 1988b; Singh *et al.*, 1994c). Adults are maintained on an artificial diet. For *C. carnea*, Singh *et al.* (1994b) reported the highest fecundity (about 900 eggs/female) with a diet containing black gram flour, honey, yeast and sugar in equal proportions by volume. According to Singh *et al.* (1994b), eggs of *C. carnea* can be stored at 10°C for 15 days without a reduction in the proportion hatching; storage beyond 30 days significantly reduced hatching. The age of the eggs (up to 60 h) at the time of storage had no impact on their ability to hatch.

Singh *et al.* (1994c) recommended releasing *C. carnea* or *M. boninensis* at 50 000 ha⁻¹ in cotton, twice during a season, at an interval of 15 days. No data on the success of such field releases in cotton have been reported. In a 2-year study, Venkatesan *et al.* (1994) made three releases of first instar larvae of *B. scelestes* (one head⁻¹) on sunflower at 10-day intervals. They reported complete suppression of the *H. armigera* larval population in both years. However, the study was carried out using small plots and the results should be confirmed in larger field studies. Dhandapani *et al.* (1992) released *B. scelestes* (50 000 ha⁻¹) together with *T. chilonis* (100 000 ha⁻¹) in cotton and reported a 40% reduction in *H. armigera* larvae (Table 4). Unfortunately, the impact of the two biocontrol agents was not separated.

EXOTIC PARASITOIDS

The first introduction to India of an exotic natural enemy to control *H. armigera* was the egg parasitoid *T. pretiosum* Riley (Hymenoptera: Trichogrammatidae) in 1964 (Sankaran, 1974). A total of 16 hymenopteran and two dipteran parasitoids of *H. armigera* has been introduced from the Americas, Africa and Europe (Table 8). From the limited records available, it appears that only one larval parasitoid, the tachinid *Eucelatoria bryani* Sabrosky (introduced as *Eucelatoria* sp. near *armigera* (Coquillett)), is established on *H. armigera*.

The effectiveness of exotic Trichogramma spp. is still in doubt. Among the species introduced into India, T. brasiliense is the most frequently released. This species has been successfully used in an inundative release programme on tomato (Singh et al., 1994b; Table 4). Singh et al. (1994a) recommended weekly releases of T. brasiliense at 50 000 females ha⁻¹ in this crop. T. brasiliense was not effective in cotton. Between 1974 and 1976, Raodeo et al. (1978) made weekly releases at a rate of 50 000 parasitoids ha⁻¹ in cotton fields at different locations in Maharashtra. Almost six million parasitoids were released in total. T. brasiliense was recovered on C. cephalonica egg cards during the cotton growing season, but no recovery was made in subsequent years. Singh and Jalali (1992) released T. brasiliense on potted cotton plants artificially infested with H. armigera eggs. The experiment was conducted outdoors but it is not clear if it was in a cotton field. Even at the highest release rate of 250 000 parasitoids ha⁻¹, fewer than 8% of the eggs were parasitized by T. brasiliense, compared with at least 70% parasitism caused by the indigenous T. chilonis and T. achaeae. Divakar and Pawar (1987) were not able to recover T. brasiliense after inundative releases of between 300 000 and 6 million parasitoids/ year between 1977 and 1983 around Bangalore (Karnataka) in different crops. Unfortunately, the authors only gave the total area covered by the release but did not report the actual number of parasitoids released/unit area. Kaker et al. (1990) reported that no adult parasitoids emerged from H. armigera eggs parasitized in the laboratory by T. brasiliense, T. perkinsi Girault and T. minutum Riley. No parasitoids emerged from parasitized eggs (black egg stage) collected in tomato fields after releasing the three species.

Balasubramanian et al. (1989) recorded up to 62% parasitism by T. pretiosum in chickpea after mass releases. This is the only record of high levels of parasitized H. armigera eggs collected

parasitoids have either not been maintained in culture after their initial introduction or have not been released.

CONCLUSIONS

H. armigera is a devastating pest on several crops in India, despite the sometimes high levels of parasitism reported for some parasitoids. Though the parasitoid and predator lists given in this paper appear to be extensive, new species continue to be discovered. The taxonomic status of many species must be clarified as there have been many misidentifications, as demonstrated for the most important larval parasitoid, *C. chlorideae*. Records of species belonging to the Sarcophagidae as parasitoids of *H. armigera* may not be correct. This group deposit larvae in wounds, damaged tissues, and dead animals and plants (see Van den Berg *et al.*, 1988). Nonetheless, species of Sarcophagidae are listed as parasitoids of *Heliothis* spp. from the Americas (Kogan *et al.*, 1989) and *H. armigera* from Africa (Van den Berg *et al.*, 1988).

Of greater importance is the paucity of information concerning the impact of known natural enemies of H. armigera populations in the field. The identification of key natural enemies and knowledge of their effectiveness is essential for the development and implementation of management strategies (Bellows et al., 1992; Room et al., 1990). Life-table studies of H. armigera conducted by Bilapate and others (Bilapate et al., 1979, 1988; Bilapate, 1981a,c) report generation survival rates of 37-94%. The mortality of the different life stages is highly underestimated because of the design of these studies (see Fitt, 1989 for discussion). In comparison, life-table studies of H. armigera conducted in East Africa revealed generation survival rates of only 7-18% (Van den Berg & Cock, 1993a). Two H. armigera life-table studies from India report generation survival rates similar to Van den Berg and Cock (1993a). Tripathi and Singh (1991) recorded generation survival between 13 and 28% in larvae exposed to field conditions. Only parasitism was recorded in this study; no impact of predators (or unknown causes) was given. Nanthagopal and Uthamasamy (1989) reported generation survival of 2-5% for H. armigera on cotton. The impact of parasitoids was generally low and mortality from "migration and unknown" causes was high. This may be indirect evidence for the existence of chewing predators. Indirect evidence suggests that natural enemies and/or abiotic factors have the greatest impact on H. armigera populations on sorghum; reported egg densities are high, but larval populations are often low (Pawar et al., 1989a). The population-regulating mechanisms that keep H. armigera at sub-economic levels in sorghum are unknown. Understanding these mechanisms in sorghum could provide an insight into the reasons why they fail to regulate H. armigera populations in other crops.

To understand *H. armigera* population dynamics, accurate and complete life-table studies are needed. This would include experiments to evaluate the impact of natural enemies using exclusion techniques, observations of egg and larval cohorts and feeding trace methods (Kiritani & Dempster, 1973; Luck *et al.*, 1988; Bellows *et al.*, 1992). Currently, in the absence of these studies, the full impact of natural enemies on *H. armigera* population dynamics in India is unknown.

Attempts to suppress *Heliothis* spp. populations by augmenting natural enemy populations have been inconsistent, and economic feasibility has rarely been demonstrated (King *et al.*, 1982; King & Coleman, 1989). A highly fecund, polyphagous and mobile insect such as *H. armigera* can increase in number rapidly and disperse to new host plants. Large quantities of natural enemies are needed at field release sites soon after eggs or early instar larvae are observed. For these reasons, *Trichogramma* spp. and, to some extent, chrysopids have been the preferred candidates for augmentative-release programmes. In India, the only successful examples of the practical use of natural enemies to control *H. armigera* have utilized *Trichogramma* spp. In the most well-documented example, inundative releases of *T. chilonis* on cotton, combined with the release of the predator *B. scelestes*, were as successful in suppressing *H. armigera* as insecticides, and had a similar cost-benefit ratio (Dhandapani *et al.*, 1992). Though successful, widespread

adoption of these strategies has not occurred. Until an analysis of the reasons for lack of adoption is made, the constraints to using this pest control strategy will remain unknown.

The introduction of exotic natural enemies into India may still be useful, especially the strategy of finding new host-parasite associations (Pimentel, 1963). It is difficult to recommend a specific parasitoid guild, as suggested by Greathead and Girling (1982), as a candidate species for an *H. armigera* biological control programme in India, for two reasons. Firstly, as previously discussed, the impact of indigenous parasitoids is unknown, so it is not clear which guild is ineffective. Secondly, the parasitoid fauna for *H. armigera* differs between crops and therefore 'gaps' in the parasitoid guild may be crop-specific. One possibility could be the introduction of *Telenomus* egg parasitoids from Africa or Australia. In Africa the widespread, host-specific *T. ullyetti* Nixon is abundant, with a second species, *T. laeviceps* (Förster), occurring in North Africa and Europe. In Australia, an additional (undescribed) species of *Telenomus* is common on *H. armigera* (A. Polaszek, personal communication, 1996). Future classical biological control programmes must be carried out carefully and reported in far greater detail than has previously been the case, including an analysis of reasons in the case of failure (Stiling, 1993). This is essential if these programmes are to advance beyond the 'try-it-and-see' stage (Cock, 1986).

ACKNOWLEDGEMENTS

The authors thank the taxonomists at the Natural History Museum (London) who checked the species names in this review: P. D. Hillyard (spiders), N. P. Wyatt (Diptera), G. R. Stonedahl (Heteroptera) and A. Polaszek (International Institute of Entomology, London) who checked all remaining names with the aid of the CABI Arthropod Name Index (ANI). The authors would also like to thank H. Nagaraja for providing helpful comments and H. Van den Berg, J. A. Wightman, N. J. Armes, M. A. Hoy, A. B. S. King and an anonymous reviewer for suggestions on earlier drafts of the manuscript. This paper was approved as journal article no. JA 1847 by ICRISAT.

REFERENCES

- ABRAHAM, C.C. & PRADHAN, S. (1976) Studies on developing races of *Trichogramma australicum* Girault suitable for high temperature, low humidity conditions. *Madras Agricultural Journal* **63**, 550–556.
- ACHAN, P.D., MATHUR, K.C., DHARMADHIKARI, P.R. & MANJUNATH, T.M. (1968) Parasites of Heliothis spp. in India. Commonwealth Institute of Biological Control, Technical Bulletin 10, 129–149.
- AMBROSE, D.P. (1995) Reduviids as predators: their role in biological control, in Biological Control of Social Forest and Plantation Crops Insects (ANANTHAKRISHNAN, T.N., Ed.) Oxford & IBH, New Delhi, pp. 153–170.
- ANONYMOUS (1992) Annual Report, All Indian Coordinated Research Project on Biological Control of Crop Pests and Weeds. Biological Control Centre, National Centre for Integrated Pest Management, technical document no. 39, Bangalore, India (limited distribution).
- BAKTHAVATSALAM, N., SINGH, S.P., PUSHPALATHA, N.A. & BHUMMANNAVAR, B.S. (1994) Life tables of four species of chrysopids (Neuroptera: Chrysopidae). Journal of Entomological Research 18, 357–360.
- BALASUBRAMANIAN, S., ARORA, R.S. & PAWAR, A.D. (1989) Biological control of *Heliothis armigera* (Hubn.) using *Trichogramma pretiosum* Riley and nuclear polyhedrosis virus in Sriganganagar district of Rajasthan. *Plant Protection Bulletin, India* 41, 1–3.
- BASARKAR, C.D. & NIKAM, P.K. (1982) Longevity, fecundity and sex-ratio of Campoletis chlorideae Uchida (Hymenoptera: Ichneumonidae). Indian Journal of Parasitology 6, 125-126.
- BELLOWS, T.S., VAN DRIESCHE, R.G. & ELKINTON, J.S. (1992) Life-table construction and analysis in the evaluation of natural enemies. Annual Review of Entomology 37, 587-614.
- BHAT, N.S. & VIRUPAKSHAPPA, K. (1992) Present status of *Heliothis* on sunflower and strategies for its management in India, in Helicoverpa *Management: Current Status and Future Strategies. Proceedings of the First National Workshop*, 30–31 August 1990 (SACHAN, J.N. Ed.) Directorate of Pulses Research, Kanpur, pp. 115–120.
- BHATNAGAR, V.S. & DAVIES, J.C. (1978) Factors affecting populations of gram pod borer, *Heliothis armigera* (Hübner) (Lepidoptera: Noctuidae) in the period 1974–77 at Patancheru (Andhra Pradesh). Bulletin of Entomology 19, 52–64.
- BHATNAGAR, V.S. & DAVIES, J.C. (1981) Pest management in intercrop subsistence farming, in *International Workshop on Intercropping*, International Crops Research Institute for the Semi-arid Tropics, Patancheru, Andhra Pradesh, pp. 249–257.

- KING, E.G. & COLEMAN, R.J. (1989) Potential for biological control of Heliothis species. Annual Review of Entomology 34, 53-75.
- KING, E.G., POWELL, J.E. & SMITH, J.W. (1982) Prospects for utilization of parasites and predators for management of *Heliothis* spp., in *Proceedings of the International Workshop on* Heliothis *Management*. International Crops Research Institute for the Semi-arid Tropics, Patancheru, Andhra Pradesh, pp. 103–122.
- KIRITANI, K. & DEMPSTER, J.P. (1973) Different approaches to the quantitative evaluation of natural enemies. Journal of Applied Ecology 10, 323-330.
- KOGAN, M., HELM, C.G., KOGAN, J. & BREWER, E. (1989) Distribution and economic importance of *Heliothis* virescens and *Heliothis zea* in North, Central and South America including a listing and assessment of the importance of their natural enemies, in *Proceedings of the Workshop on Biological Control of* Heliothis: *Increasing the Effectiveness of Natural Enemies* (KING, E.G. & JACKSON, R.D., Eds) Far Eastern Regional Research Office, United States Department of Agriculture, New Delhi, pp. 241–297.
- KRISHNAMOORTHY, A. & MANI, M. (1982) Feeding potential and development of Chrysopa scelestes Banks on Heliothis armigera (Hübn.) under laboratory conditions. Entomon 7, 385-388.
- KRISHNAMOORTHY, A. & MANI, M. (1985) Feeding behavior of Chrysopa scelestes Banks on the parasitised eggs of some lepidopterous pests. Entomon 10, 17–19.
- KRISHNAMOORTHY, A. & MANI, M. (1989) Studies on the biology and rearing of an indigenous parasitoid Eriborus argenteopilosus Cam. (Hym., Ichneumonidae). Journal of Biological Control 3, 80-82.
- KRISHNAMOORTHY, A. & NAGARKATTI, S. (1981) A mass rearing technique for Chrysopa scelestes Banks (Neuroptera: Chrysopidae). Journal of Entomological Research 5, 93–98.
- KRISHNAMURTI, S. & USMAN, S. (1954) Some insect parasites of economic importance noted in Mysore state. Indian Journal of Entomology 16, 327–344.
- KUMAR, P. & BALLAL, C.R. (1990) Influence of laboratory hosts on the biological attributes of Chelonus blackburni (Hym.: Braconidae). Entomophaga 35, 329-333.
- KUMAR, P., SINGH, S.P., BALLAL, C.R. & JALALI, S.K. (1988) Relationship between the host age and the fitness components of *Hyposoter didymator* Thunb. (Hymenoptera: Ichneumonidae). Journal of Biological Control 2, 69-71.
- KUMARASWAMI, N.S. & AMBROSE, D.P. (1992) Biology and prey preference of Sycanus versicolor Dohrn (Hemiptera: Reduviidae). Journal of Biological Control 6, 67-71.
- KUSHWAHA, K.S. (1995) Environmental Interaction: Insect Pest Management. Kushwaha Farm-book Series, Udaipur.
- KYI, A., ZALUCKI, M.P. & TITMARSH, I.J. (1991) An experimental study of early stage survival of *Helicoverpa armigera* (Lepidoptera: Noctuidae) on cotton. Bulletin of Entomological Research 81, 263–271.
- LUCK, R.F., SHEPARD, B.M. & KENMORE, P.E. (1988) Experimental methods for evaluating arthropod natural enemies. Annual Review of Entomology 33, 367-391.
- MANDAL, S.K. & SOMCHOUDHURY, A.K. (1991) Occurrence of ecotypes in *Trichogramma chilonis* Ishii (Trichogrammatidae: Hymenoptera). Journal of Entomological Research 15, 266–270.
- MANI, M. & KRISHNAMOORTHY, A. (1983) Recovery of two exotic parasites, *Trichogramma brasiliensis* (Hymenoptera: Trichogrammatidae) and *Eucelatoria bryani* (Diptera: Tachinidae) from *Heliothis armigera* (Lepidoptera: Noctuidae) in tomato fields. *Entomophaga* 28, 401-405.
- MANINDER & VARMA, G.C. (1980) Effect of ultra-violet light and sub-zero temperature on the eggs of *Corcyra* cephalonica Stainton for emergence and progeny development of *Trichogramma brasiliensis* Ashmead. Science and Culture **46**, 300-301.
- MANJUNATH, T.M. (1972) Biological studies on *Trichogrammatoidea armigera* Nagaraja—a new dimorphic egg parasite of *Heliothis armigera* in India. *Entomophaga* 17, 131–147.
- MANJUNATH, T.M. (1992) Biological control by augmentation of natural enemies in India: retrospect and prospects, in *Emerging Trends in Biological Control of Phytophagous Insects* (ANANTHAKRISHNAN, T.N., Ed.) Oxford & IBH, New Delhi, pp. 213–222.
- MANJUNATH, T.M., PHALAK, V.R. & SUBRAMANIYAM, S. (1970) First record of egg parasites of Heliothis armigera (Hubn.) (Lepidoptera: Noctuidae) in India. Commonwealth Institute of Biological Control, Technical Bulletin 13, 111-115.
- MANJUNATH, T.M., PATEL, R.C. & YADAV, D.N. (1976) Observations on Heliothis peltigera (Schiff.) (Lepidoptera: Noctuidae) and its natural enemies in Anand (Gujarat, India). Proceedings of the Indian Academy of Sciences (Animal Sciences) 83, 55-65.
- MANJUNATH, T.M., BHATNAGAR, V.S., PAWAR, C.S. & SITHANANTHAM, S. (1989) Economic importance of Heliothis spp. in India and an assessment of their natural enemies and host plants, in Proceedings of the Workshop on Biological Control of Heliothis: Increasing the Effectiveness of Natural Enemies (KING, E.G. & JACKSON, R.D., Eds) Far Eastern Regional Research Office, United States Department of Agriculture, New Delhi, pp. 197-228.
- MATHUR, K.C. (1967) Notes on *Banchopsis ruficornis* Cameron (Hym.: Ichneumonidae) an internal larval parasite of *Heliothis armigera* (Hübner) in India. Current Science **36**, 356-357.
- MATHUR, K.C. (1970) Four new records of parasites attacking *Heliothis armigera* (Hub.) in Himachal Pradesh, India. Current Science 39, 167.

- MATHUR, K.C. & DHARMADHIKARI, P.R. (1970) True identity of Horogenes fenestralis Holmgren as a parasite of Heliothis armigera (Hübner). Commonwealth Institute of Biological Control, Technical Bulletin 13, 109-110.
- MEHTO, D.N., SINGH, K.M. & SINGH, R.N. (1986) Natural enemy complex on insect pest complex in chickpea Cicer arietinum Linn. Bulletin of Entomology 27, 1-12.
- MURRAY, D.A.H. (1991) Investigations into the development and survial of *Heliothis* spp. pupae in southeast Queensland. PhD thesis, University of Queensland, Brisbane, Australia.
- NAGANAGOUD, A. & THONTADARYA, T.S. (1984) Incidence of natural ememies of *Heliothis armigera* (Hubner) and *Earias* spp. on okra used as trap crop in the management of cotton bollworms. *Current Research* 13, 56-57.
- NAGARAJA, H. (1978) Studies on Trichogrammatoidea (Hymenoptera: Trichogrammatidae). Oriental Insects 12, 489–530.
- NAGARAJA, H. & NAGARKATTI, S. (1969) Three new species of *Trichogramma* (Hymenoptera: Trichogrammatidae) from India. *Entomophaga* 14, 393-400.
- NAGARKATTI, S. (1979) Experimental comparison of laboratory-reared vs wild-type *Trichogramma chilonis* (Hym.: Trichogrammatidae). II. Tolerance of non-optimal temperatures. *Entomophaga* 24, 417–421.
- NAGARKATTI, S. (1982) The utilization of biological control in *Heliothis* management in India, in *Proceedings of the International Workshop on* Heliothis *Management*. International Crops Research Institute for the Semi-arid Tropics, Patancheru, Andhra Pradesh, pp. 159–167.
- NAGARKATTI, S. & NAGARAJA, H. (1978) Experimental comparison of laboratory reared vs wild-type Trichogramma confusum (Hym.: Trichogrammatidae). I. Fertility, fecundity and longevity. Entomophaga 23, 129–136.
- NAGARKATTI, S. & NAGARAJA, H. (1979) The status of *Trichogramma chilonis* Ishii (Hym.: Trichogrammatidae). Oriental Insects 13, 115–118.
- NAGARKATTI, S. & SINGH, S.P. (1989) Importation and establishment of new natural enemies of *Heliothis* spp. (Lep.: Noctuidae) into India, in *Proceedings of the Workshop on Biological Control of Heliothis: Increasing the Effectiveness of Natural Enemies* (KING, E.G. & JACKSON, R.D., Eds) Far Eastern Regional Research Office, United States Department of Agriculture, New Delhi, pp. 375-385.
- NANTHAGOPAL, R. & UTHAMASAMY, S. (1989) Life tables for American bollworm, *Heliothis armigera* Hubner on four species of cotton under field conditions. *Insect Science and its Application* 10, 521-530.
- NAVARAJAN PAUL, A.V., DASS, R. & PARSHAD, B. (1981) Influence of different hosts on parasitism by *Trichogramma chilonis* Ishii and *T. exiguum* Pinto and Platner (Hymenoptera: Trichogrammatidae). Zeitschrift für Angewandte Entomologie 92, 160–164.
- NIKAM, P.K. (1980) Studies on Indian species of *Enicospilus* Stephens (Hymenoptera: Ichneumonidae). Oriental Insects 14, 131-219.
- NIKAM, P.K. & BASARKAR, C.D. (1978) Studies on the effect of temperature on the development of *Campoletis* chlorideae Uchida (Ichneumonidae), an internal larval parasite of *Heliothis armigera*. Entomon 3, 307-308.
- NIKAM, P.K. & GAIKWALD, A.M. (1989) Role of hymenopterous parasitoids in the biological control of *Heliothis armigera* (Hubn.) (Lepidoptera: Noctuidae) with special reference to *Campoletis chlorideae* Uchida (Hymenoptera: Ichneumonidae). *Journal of Entomological Research* 13, 6–20.
- NIKAM, P.K. & GAIKWALD, A.M. (1991) Effect of host larvae of *Helicoverpa armigera* Hubner on the parasiting ability of *Campoletis chlorideae* Uchida. *Entomon* 16, 301-303.
- NIKAM, P.K., PAWAR, C.V., GAIKWALD, A.M., AMBEDKAR, S.N. & PANDIT, R.S. (1990) Host age selection by Eriborus argenteopilosus (Cameron) an internal larval parasitoid of Heliothis armigera (Hubner). Indian Journal of Invertebrate Zoology and Aquatic Biology 2, 64–67.
- PATEL, R.C. (1975) To Assess the Effectiveness of Mass Releases of Laboratory Bred Chelonus heliopae Gupta and to Maintain Cultures and Improve Breeding Methods of Other Parasites for Use in Future Releasing Program, 17 December 1969 to 17 September 1975. Final technical report, Gujarat Agricultural University, Anand, Gujarat.
- PATEL, R.C. (1980) Role and feasibility of natural enemies in integrated pest management of cotton. Andhra Agricultural Journal 27, 35-40.
- PATEL, R.C. & SINGH, R. (1972) Biology and breeding method of Goniophthalmus halli Mesnil (Diptera, Tachinidae), a larval parasite of Heliothis armigera (Hubn.). Indian Journal of Agricultural Sciences 42(B), 739-743.
- PATEL, R.C., SINGH, R. & PATEL, P.B. (1970) Bionomics of Carcelia illota (Curran), tachinid parasite of Heliothis armigera (Hbn.) larvae. Bulletin of Entomology 11, 161-168.
- PATEL, R.C., PATEL, J.C. & PATEL, J.K. (1973) Mass rearing of Chelonus heliopae Gupta. Indian Journal of Entomology 35, 119-126.
- PATEL, A.G., YADAV, D.N. & PATEL, R.C. (1988a) Effect of low temperature storage on Campoletis chlorideae Uchida (Hymenoptera: Ichneumonidae) an important endo-larval parasite of Heliothis armigera Hubner (Lepidoptera: Noctuidae). Gujarat Agricultural University Research Journal 14, 79-80.
- PATEL, A.G., YADAV, D.N. & PATEL, R.C. (1988b) Improvement in mass rearing technique of green lacewing Chrysopa scelestes Banks (Neuroptera: Chrysopidae). Gujarat Agricultural University Research Journal 14, 1-4.
- PATIL, A.R., RAODEO, A.K. & BILAPATE, G.G. (1978) Some effect of tempeature on development of Trichogramma brasiliensis Ashmead. Research Bulletin of the Marathwada Agricultural University 2, 19-21.

- PATIL, B.V., THIMMAIAH, G., THYAGRAJAN, K.S. & HARDCASTLE, M.J. (1991) Conservation of ecosystem with higher profit through integrated pest management in cotton. *Entomon* 16, 291-300.
- PAWAR, C.S. & JADHAV, D.R. (1983) Wasps—predators of Heliothis on pigeonpea. International Pigeonpea Newsletter 2, 65-66.
- PAWAR, A.D., DIVAKAR, B.J. & SINGH, S.N. (1981) Field recovery of Eucelatoria sp. nr. armigera (Coq.) (Diptera: Tachinidae) from Heliothis armigera (Hübn.) (Lepidoptera: Noctuidae) in Karnataka, India. Entomon 6, 175-177.
- PAWAR, A.D., PRASAD, J., ASRE, R. & SINGH, R. (1983) Introduction of exotic parasitoid, Chelonus blackburni Cameron in India for the control of cotton bollworms. Indian Journal of Entomology 45, 436–439.
- PAWAR, C.S., BHATNAGAR, V.S. & JADHAV, D.R. (1985a) Heliothis species and their larval parasites on sole and intercrop safflower in India. Insect Science and its Application 6, 701-704.
- PAWAR, C.S., BHATNAGAR, V.S. & JADHAV, D.R. (1985b) Some predatory insects and their parasites. Science and Culture 51, 101-102.
- PAWAR, C.S., BHATNAGAR, V.S. & JADHAV, D.R. (1986a) Host Plants and Natural Enemies of Heliothis spp. in India: A Compendium. International Crops Research Institute for the Semi-arid Tropics, Cropping Entomology, progress report 13, Patancheru, Andhra Pradesh.
- PAWAR, C.S., BHATNAGAR, V.S. & JADHAV, D.R. (1986b) Heliothis species and their natural enemies, with their potential for biological control. Proceedings of the Indian Academy of Sciences (Animal Sciences) 95, 695-703.
- PAWAR, C.S., BHATNAGAR, V.S. & JADHAV, D.R. (1989a) Helicoverpa on sorghum. Indian Journal of Entomology 51, 416–421.
- PAWAR, C.S., BHATNAGAR, V.S. & JADHAV, D.R. (1989b) Campoletis chlorideae Uchida (Hymenoptera: Ichneumonidae) as a parasite of Helicoverpa armigera (Hub.) (Lepidoptera: Noctuidae) in southwest India. Proceedings of the Indian Academy of Sciences (Animal Sciences) 98, 259-265.
- PIMBERT, M.P. & SRIVASTAVA, C.P. (1989) Variation management and the biological control of *Helicoverpa* armigera in chickpea. International Chickpea Newsletter 21, 16–19.
- PIMENTEL, D. (1963) Introducing parasites and predators to control native pests. Canadian Entomologist 95, 785-792.
- PRASAD, D. & CHAND, P. (1986) Campoletis chlorideae Uchida a new parasitoid of Heliothis armigera (Hubner) in Ranchi, Bidar. Indian Journal of Entomology 48, 231-232.
- PRASAD, J., PAWAR, A.D. & SHARMA, R.K. (1982) Biocontrol trials with an exotic egg-larval parasitoid, *Chelonus blackburni* Cameron on *Heliothis armigera* (Hübner) at Mundhal, Hissar, Haryana. Journal of Advanced Zoology 3, 160–161.
- RAJENDRA, M.K. & PATEL, R.C. (1971) Studies on the life history of a predatory pentatomid bug, Andrallus spinidens (Fabr.). Journal of the Bombay Natural History Society 68, 319-327.
- RAO, V.P. (1968) Heliothis spp. and their parasites in India. Pest Articles and News Summaries, Section A 14, 357-375.
- RAO, V.P., GHANI, M.A., SANKARAN, T. & MATHUR, K.C. (1971) A Review of the Biological Control of Insects and Other Pests in Southeast Asia and the Pacific Region. Commonwealth Institute of Biological Control, technical communication 6, Commonwealth Agricultural Bureaux, Slough.
- RAODEO, A.K. & SARKATE, M.B. (1979) Cotton pests and their natural enemies. *Plant Protection Bulletin, India* 31, 90–98.
- RAODEO, A., SARKATE, M.B., DESHPANDE, A.B., THOMBRE, V.T., SEERAS, N.R., TAYADE, D.S. & GAIKWALD, D.D. (1978) Studies on mass multiplication, field recovery and release of *Trichogramma brasiliensis* Ashm. an egg parasite of cotton bollworms at Parbhani. *Journal of Maharashtra Agricultural Universities* 3, 103-106.
- RAODEO, A.K., SARKATE, M.B. & KULKARNI, S.N. (1982) Integrated approach for the control of cotton pests in Maharashtra state, in *Proceedings of the Seminar on Integrated Pest Management System for Cotton*, Hyderabad, India. Central Institute for Cotton Research, Nagpur, technical bulletin No. 4, pp. 1–10.
- REED, W. & LATEEF, S.S. (1990) Pigeonpea: pest management, in *The Pigeonpea* (NENE, Y.L., HALL, S.D. & SHEILA, V.K., Eds) CAB International, Wallingford, pp. 349–374.
- REED, W. & PAWAR, C.S. (1982) Heliothis: a global problem, in Proceedings of the International Workshop on Heliothis Management. International Crops Research Institute for the Semi-arid Tropics, Patancheru, Andhra Pradesh, pp. 9-14.
- REED, W., CARDONA, C., SITHANANTHAM, S. & LATEEF, S.S. (1987) Chickpea insect pests and their control, in *The Chickpea* (SAXENA, M.C. & SINGH, K.B., Eds) CAB International, Wallingford, pp. 283–318.
- ROMEIS, J., ROMEIS, O. & SHANOWER, T.G. (1995) Paratrechina longicornis (Hynenoptera: Formicidae), a predator of Helicoverpa armigera (Lepidoptera: Noctuidae) eggs. Journal of Biological Control 9, 56-58.
- ROOM, P.M., TITMARSH, I.J. & ZALUCKI, M.P. (1990) Life tables, in Heliothis: Research Methods and Prospects (ZALUCKI, M.P., Ed.) Springer, New York, pp. 69–79.
- SABROSKY, C.W. (1981) A Partial Revision of the Genus Eucelatoria (Diptera: Tachnidae) Including Important Parasites of Heliothis. United States Department of Agriculture, technical bulletin no. 1635.
- SAHAYARAJ, K. & AMBROSE, D.P. (1994) Stage and host preference and functional response of a reduviid predator Acanthaspis pedestris Stal to four cotton pests. Journal of Biological Control 8, 23-26.

- SALIM, M., MASUD, S.A. & KHAN, A.M. (1987) Orius albidipennis (Reut.) (Hemiptera: Anthocoridae)—a predator of cotton pests. Philippine Entomologist 7, 37–42.
- SANKARAN, T. (1974) Natural enemies introduced in recent years for biological control of agricultural pests in India. Indian Journal of Agricultural Sciences 44, 425-433.
- SANKARAN, T. & NAGARAJA, H. (1979) A note on Eucelatoria sp. near armigera Cog. (Diptera, Tachinidae) imported from USA for trials against H. armigera Hub. (Lepidoptera: Noctuidae) in India. Entomon 4, 379-381.
- SARKATE, M.B. & RAODEO, A.K. (1980) Preliminary studies on control of cotton bollworms with exotic parasitoids. Andhra Agricultural Journal 27, 30–32.
- SARKATE, M.B., RAODEO, A.K., SEERAS, M.R. & JAWALE, M.D. (1978) A note on the recovery of Chelonus blackburni Cameron (Braconidae: Hymenoptera) an exotic egg-larval parasite of cotton bollworms. Current Science 47, 474.
- SHEKHARAPPA, JAIRAO, K. & LINGAPPA, S. (1988a) Studies on superparasitism in *Eucelatoria bryani* Sabrosky (Diptera: Tachinidae), a larval parasitoid of *Heliothis* spp. Entomon 13, 307-308.
- SHEKHARAPPA, JAIRAO, K. & SUHAS, Y. (1988b) Effect of refrigeration of puparia on adult emergence and pupal period of *Eucelatoria bryani*. Indian Journal of Agricultural Sciences 58, 875–877.
- SHEKHARAPPA, JAI RAM, K. & SUHAS, Y. (1992) Influence of temperature and humidity on pupae of *Eucelatoria* bryani Sabrosky (Diptera: Tachinidae). Agricultural Science Digest 12, 65–68.
- SIGSGAARD, L. (1996) Serological analysis of predators of *Helicoverpa armigera* Hübner (Lepidoptera: Noctuidae) eggs in sorghum-pigeonpea intercropping at ICRISAT, India: a preliminary field study, in *The Ecology of Agricultural Pests: Biochemical Approaches* (SYMONDSON, W.O.C. & LIDDELL, J.E., Eds) Systematics Association Special Volume, Chapman and Hall, London, pp. 367-381.
- SIGSGAARD, L. & ESBJERG, P. (1994) Orius tantillus, a predator of Helicoverpa armigera eggs and young larvae in south India, in Abstracts, Third International Conference on Tropical Entomology, Nairobi, Kenya, abstract C36.
- SINGH, S.P. (1994) Fifteen Years of AICRP on Biological Control. Project Directorate of Biological Control, Indian Council on Agricultural Research, technical bulletin 8, Bangalore.
- SINGH, G. & BALAN, J.S. (1986) Host plant and natural ememies of Heliothis armigera (Hubner) in Haryana. Indian Journal of Ecology 13, 175-178.
- SINGH, S.P. & JALALI, S.K. (1992) Effect of different dosages on parasitism of *Helicoverpa armigera* eggs by *Trichogramma* spp., in *Emerging Trends in Biological Control of Phytophagous Insects* (ANANTHAKRISHNAN, T.N., Ed.) Oxford & IBH, New Delhi, pp. 43-47.
- SINGH, K.M. & SINGH, R.N. (1977) Succession of insect pests in green gram and black gram under dryland conditions at Delhi. *Indian Journal of Entomology* 39, 365-370.
- SINGH, J., SANDHU, S.S. & SINGLA, M.L. (1990) Ecology of Heliothis armigera (Hub.) on chickpea in Punjab. Journal of Insect Science 3, 47-52.
- SINGH, Y., SINGH, S.P. & MATHUR, K.K. (1991) Parasitization of Heliothis armigera (Hb.) on Bengal gram in Delhi. Indian Journal of Entomology 53, 128-133.
- SINGH, S.P., JALALI, S.K., BHUMANNAVAR, B.S., BAKTHAVATSALAM, N. & PUSHPALATHA, N.A. (1994a) Production and Use of Trichogrammatid Egg Parasitoids. Project Directorate of Biological Control, Indian Council of Agricultural Research, technical bulletin 11, Bangalore.
- SINGH, S.P., BHUMANNAVAR, B.S., JALALI, S.K., BAKTHAVATSALAM, N. & PUSHPALATHA, N.A. (1994b) Chrysopids and Trichogrammatids. Strain Selection and Utilization. Project Directorate of Biological Control, Indian Council of Agricultural Research, technical bulletin 9, Bangalore.
- SINGH, S.P., JALALI, S.K., BHUMANNAVAR, B.S., BAKTHAVATSALAM, N. & PUSHPALATHA, N.A. (1994c) Production and Use of Chrysopid Predators. Project Directorate of Biological Control, Indian Council of Agricultural Research, technical bulletin 10, Bangalore.
- SITHANANTHAM, S. (1981) Eucelatoria sp., parasitoid of Heliothis on pigeonpea. International Pigeonpea Newsletter 1, 32.
- SITHANANTHAM, S. (1985) Principles and methods of pest management in pulses, in Microbial Control and Pest Management (JAYARAJ, S., Ed.) Tamil Nadu Agricultural University, Coimbatore, pp. 219-228.
- SITHANANTHAM, S. (1987) Insect pests of pigeonpea and chickpea and their management, in *Plant Protection in Field Crops* (VEERABHADRA RAO, M. & SITHANANTHAM, S., Eds) Plant Protection Association of India, Hyderabad, pp. 159–173.
- SITHANANTHAM, S., BHATNAGAR, V.S., JADHAV, D.R. & REED, W. (1982a) Some aspects of *Trichogramma* spp. in eggs of *Heliothis armigera* (Hb.), (Lepidoptera: Noctuidae). Presented at the *International Symposium on* Trichogramma and other Egg Parasitoids, Antibes, France (limited distribution).
- SITHANANTHAM, S., RAO, V.R. & REED, W. (1982b) The influence of host-plant resistance in chickpea on parasitism of *Heliothis armigera* Hb larvae. International Chickpea Newsletter 6, 21-22.
- SITHANANTHAM, S., RAMESHWAR RAO, V. & REED, W. (1983) Influence of pigeonpea resistance to Heliothis on the natural parasitism of Heliothis larvae. International Pigeonpea Newsletter 2, 64-65.
- SIVAGAMI, V., MOHANSUNDARAM, M. & SUBBA RAO, P.V. (1975) Records of parasites and predators of some south Indian crop pests. *Indian Journal of Entomology* 37, 100-101.

- SIVAPRAKASAM, N., BALASUBRAMANIAN, G., JAYARAMAN, V., NARAYANAN, A. & VENKATESAN, S. (1986) Fie recovery of Eucelatoria bryani on Heliothis armigera (Hubner). Madras Agricultural Journal 73, 614-61
- SRINIVAS, P.R. & JAYARAJ, S. (1989) Record of natural ememies of *Heliothis armigera* from Coimbatore Distriction Tamil Nadu. Journal of Biological Control 3, 71-72.
 STILING, P. (1993) Why do natural enemies fail in classical biological control programs? American Entomological Control Structure (1993) Why do natural enemies fail in classical biological control programs? American Entomological Control Structure (1993) Why do natural enemies fail in classical biological control programs? American Entomological Control Structure (1993) Why do natural enemies fail in classical biological control programs? American Entomological Control Structure (1993) Why do natural enemies fail in classical biological control programs?
- 39, 31-37.
- STINNER, R.E. (1977) Efficacy of inundative releases. Annual Review of Entomology 22, 515-531.
- SUBBA RAO, B.R. (1955) A new species of Chelonus on Heliothis armigera (Hb.). Indian Journal of Entomolog 17, 63-64.
- SWAMIAPPAN, M. & BALASUBRAMANIAN, M. (1980) Studies on mass multiplication and potentiality of *Chelonu blackburni* (Cam.) a braconid parasite of cotton bollworms. *Entomon* 5, 73-75.
- SWAMY, K.C.N., DEVAIAH, M.C. & GOVINDAN, R. (1993) Laboratory studies on ovipositional preference an biology of uzi fly, Exorista bombycis on some species of lepidoptera, in Recent Advances in Uzi Fly Research Proceedings of the National Seminar on Uzi Fly and its Control (CHANNA BASAVANNA, G.P., VEERANN, C & DANDIN, S.B., Eds) Department of Sericulture, University of Agricultural Sciences, Bangalore, pp. 43-48
- THONTADARYA, T.S., HANUMANNA, M. & JAI RAO, K. (1978) Record of Trichogramma australicum Girault on the eggs of Heliothis armigera (Hubner) infesting bhendi (Abelmoschus esculentus [H.] Moench). Curren Research 7, 206.
- TIKAR, D.T. & THAKARE, K.R. (1961) Biomomics, biology and immature stages of an ichneumonid, *Horogene*. *fenestralis* Holmgren, a parasite of gram caterpillar. *Indian Journal of Entomology* **23**, 116–124.
- TRIPATHI, S.R. & SHARMA, S.K. (1985) Population dynamics of Heliothis armigera (Hübner) (Lepidoptera: Noctuidae) on gram in the Terai belt of NE Uttar Pradesh. Giornale Italiano di Entomologia 2, 347-353
- TRIPATHI, S.R. & SINGH, R. (1991) Population dynamics of Helicoverpa armigera (Hubner) (Lepidoptera. Noctuidae). Insect Science and its Application 12, 367-374.
- VAISHAMPAYAN, S.M. & VEDA, O.P. (1980) Population dynamics of gram pod borer, Helicoverpa armigera (Hubner) and its outbreak situation on gram, Cicer arietinum L. at Jabalpur. Indian Journal of Entomology 42, 453–459.
- VAN DEN BERG, H. & COCK, M.J.W. (1993a) Stage-specific mortality of *Helicoverpa armigera* in three smallholder crops in Kenya. *Journal of Applied Ecology* 30, 640–653.
- VAN DEN BERG, H. & COCK, M.J.W. (1993b) Exclusion cage studies on the impact of predation on *Helicoverpa* armigera in cotton. Biocontrol Science and Technology **3**, 491–497.
- VAN DRIESCHE, R.G. (1983) Meaning of 'percent parasitism' in studies of insect parasitoids. Environmental Entomology 12, 1611–1622.
- VAN DEN BERG, H., WAAGE, J.K. & COCK, M.J.W. (1988) Natural Enemies of Helicoverpa armigera in Africa: A Review. Commonwealth Agricultural Bureaux International, Wallingford.
- VENKATESAN, S., BALASUBRAMANIAN, G., KARUPPUSAMY, P. & SUNDARA BABU, P.C. (1994) Evaluation of biocontrol agents on the management of capitulum borer, *Helicoverpa armigera* (Hubner) on sunflower, in *Biological Control of Insect Pests. Proceedings of V National Symposium on Advances in Biological Control of Insect Pests* (GOEL, S.C., Ed.) Uttar Pradesh Zoological Society, Muzaffarnagar, 1993, pp. 169–172.
- VARMA, G.C. & MANGAT, L.S. (1984) Laboratory studies on superparasitism in Chelonus blackburni Cameron (Braconidae: Hymenoptera). Entomon 9, 297-303.
- VERMA, J.P., MATHUR, Y.K. & SHARMA, S.K. (1971) A new record of Mepachymerus ensifer Thoms. as parasite of Heliothis armigera Hubn. in India. Indian Journal of Entomology 33, 219.
- YADAV, D.N. (1980) Studies on the natural enemies of *Heliothis armigera* (Hubner) and its biological control using an egg parasite, *Trichogramma australicum* Girault (Hymenoptera: Trichogrammatidae). *Gujarat Agricultural* University Research Journal 6, 62–63.
- YADAV, D.N. (1990) Scope of biological control of *Heliothis armigera* in cotton and pulses: success and failure, in *Proceedings of the First National Workshop on* Heliothis *Management: Current Status and Future Strategies.* Directorate of Pulses Research, Kanpur, pp. 259–267.
- YADAV, D.N. & PATEL, R.C. (1981) Egg-parasitism of Heliothis armigera (Hb) (Lepidoptera: Noctuidae) in Gujarat. Gujurat Agricultural University Research Journal 7, 19-22.
- YADAV, D.N., PATEL, R.C. & PATEL, D.S. (1985) Impact of inundative releases of Trichogramma chilonis Ishii against Heliothis armigera (Hbn.) in Gujarat (India). Journal of Entomological Research 9, 153-159.