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Abstract
Chickpea is the third most important grain legume grown in the arid and semi-arid regions

of the world. In spite of vast germplasm accessions available in different genebanks, there

has been very limited use of these accessions in genetic enhancement of chickpea. However,

in recent years, specialized germplasm subsets such as global composite collection, core

collection, mini core collection and reference set have been developed. In parallel, significant

genomic resources such as molecular markers including simple sequence repeats (SSRs), single

nucleotide polymorphisms (SNPs), diversity arrays technology (DArT) and transcript sequences,

e.g. expressed sequence tags, short transcript reads, have been developed. By using SSR, SNP and

DArT markers, integrated genetic maps have been developed. It is anticipated that the use of

genomic resources and specialized germplasm subsets such as mini core collection and reference

set will facilitate identification of trait-specific germplasm, trait mapping and allele mining for

resistance to biotic and abiotic stresses and for agronomic traits. Advent of the next

generation sequencing technologies coupled with advances in bioinformatics offers the possi-

bility of undertaking large-scale sequencing of germplasm accessions so that modern breeding

approaches such as genomic selection and breeding by design can be realized in near future

for chickpea improvement.
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Introduction

Chickpea (Cicer arietinum L.) is one of the oldest

(earlier than 9500 BC) and widely cultivated pulse

crops in over 50 countries of the world. Chickpea is a

member of the West Asian Neolithic crop assemblage,

associated with the origin of agriculture in the Fertile

Crescent some 10,000 years ago (Lev-Yadun et al.,

2000; Zohary and Hopf, 2000). It most probably origi-

nated in south-eastern Turkey and adjoining Syria.

C. bijugum, C. echinospermum, and C. reticulatum,

the wild annual species of Cicer, closely related to chick-

pea are predominantly found in this region. Southwest

Asia and the Mediterranean are the two primary centres

of origin, and Ethiopia is the secondary centre of diver-

sity (Vavilov, 1926, 1951). Wild annual Cicer originated

mainly in the Mediterranean regions having a wide eco-

geographic range, differing in habitat, topographic and

climatic conditions (Abbo et al., 2003; Berger et al.,

2003). The four evolutionary bottlenecks in chickpea

reported are (1) scarcity and limited distribution of the

wild progenitor, C. reticulatum, (2) founder effect

associated with domestication, (3) shift, early in the

crop’s history, from winter to spring sowing, and the

attendant change using rainfall as it occurs to a reliance

on residual soil moisture, (4) replacement of locally* Corresponding author. E-mail: r.k.varshney@cgiar.org
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evolving landraces by the elite cultivars produced by

modern plant breeding (Abbo et al., 2003).

Chickpea is a self-pollinated crop, with 2n ¼ 2x ¼ 16

chromosomes and a genome size of 740 Mb (Arumuga-

nathan and Earle, 1991). Two distinct forms of cultivated

chickpeas are desi (small seeds, angular shape and

coloured seeds with a high percentage of fibre) and

kabuli types (large seeds, owl shaped, beige-coloured

seeds with a low percentage of fibre). A third type, desig-

nated as intermediate or pea-shaped, is characterized by

medium to small size and round/pea-shaped seeds. Hair-

like structures on its stems, leaves and pods secrete acids

that provide the first line of defence against pests, redu-

cing the need for chemical sprays (Yadav et al., 2007).

Chickpea seeds contain protein, fibre, calcium, potass-

ium, phosphorus, iron, zinc and magnesium along with

appreciable quantities of selenium, sodium and copper,

which make it one of the nutritionally best composed

edible dry legumes, for human consumption (Esha,

2010). Like as most other beans, chickpea is a good

source of cholesterol lowering fibre (Pittaway et al.,

2006). In addition to lowering cholesterol, the high

fibre content prevents blood sugar levels from rising

too rapidly after a meal, making chickpea a good

choice for individuals with diabetes, insulin resistance

or hypoglycaemia (McIntosh and Miller, 2001). Chickpea

does not contain any antinutritional factors except the

raffinose-type oligosaccharides, which cause flatulence

(Williams and Singh, 1987). However, the oligosacchar-

ides can be neutralized by boiling or mere soaking in

water (Queiroz et al., 2002).

Chickpea is the second most important grain legume in

Asia after soybean, which contributes 86.73% of global

production from 89.89% area. The global area under

chickpea is about 11.08 Mha, with a total production of

9.77 Mt and an average productivity of 882 kg/ha (FAO,

2009). India accounts for 67.68% of this area (7.50 Mha),

and 66.91% (6.54 Mt) of production followed by

Pakistan (with 9.75% of area: 1.08 Mha and 0.741 Mt).

Chickpea is also an important crop in Iran (0.56 Mha),

Turkey (0.45 Mha), Myanmar (0.20 Mha), Australia

(0.36 Mha), Ethiopia (0.23 Mha), Mexico (0.11 Mha), Syria

(0.07 Mha), the USA (0.04 Mha), Canada (0.05 Mha),

Spain (0.02 Mha) and Eritrea (0.02 Mha) (FAO, 2009).

Chickpea is traditionally grown extensively as a low

input crop under receding soil moisture status with

minimum management. Despite its high morphological

variability, genetic variation is low (Udupa et al., 1993),

probably a consequence of its monophyletic decadence

from its wild progenitor C. reticulatum in the Fertile

Crescent (Ladizinsky and Adler, 1976; Lev-Yadun et al.,

2000; Abbo et al., 2003). The major constraints to chick-

pea productivity are biotic stresses (like Helicoverpa

pod borer and fusarium wilt) and abiotic stresses (like

drought, extreme temperatures and salinity), apart from

its poor response to better management. The progress

achieved through conventional breeding for improved

varieties is not in pace with the current requirements,

which is evident from the stagnant production of

chickpea during the past two decades (Varshney et al.,

2010b). With the exception of soybean, to various

extents, legume crops, including chickpea, have suffered

from the lack of genomic resources for genetic and geno-

mic analysis – they have literally been ‘orphans’ from the

genomics revolution (Varshney et al., 2009a). Recent

years have seen tremendous progress in the development

of large-scale genomic resources such as DNA-based

molecular markers, comprehensive genetic maps,

whole-genome transcription profiling techniques to

identify genomic regions and genes underlying plant

stress responses (Varshney et al., 2009a, 2010b). These

genomic tools will be useful to understand and access

the diversity conserved in ex situ germplasm collections

for chickpea improvement (Glaszmann et al., 2010).

This article discusses the global status of germplasm

collection, development of mini core and reference

sets, identification of trait-specific germplasm, advances

in the development of genomic resources and the utility

of genomic and germplasm resources for chickpea

improvement.

Germplasm assembly

The genus Cicer has 43 species (nine annual and

34 perennial), out of which C. arietinum is the only

cultivated species. The species C. arietinum has wide

variability with thousands of landraces spread over

50 countries and a large number of traditional cultivars,

which were grown and maintained by farmers world-

wide (Singh et al., 2008b). However, after the intro-

duction of modern, high-yielding, genetically uniform

varieties, much of the species diversity has been lost

due to replacement of traditional varieties and landraces

over wide areas. In addition, change in dietary habits,

natural calamities, land and crop conversion (defores-

tation, developmental activities such as hydroelectric

projects, roads and urbanization), introduction of exotic

crops, etc. have further aggravated the situation (http://

www.primalseeds.org/bioloss.htm; Pusadeea et al., 2008;

Upadhyaya et al., 2010). The vulnerability of genetically

uniform modern varieties, which are planted to large

areas, to new pests, diseases, climatic conditions and

changes in the market needs is widely acknowledged.

The diverse landraces, exotics and wild relatives

hold a wealth of alleles, which, if included in breeding

programmes, can help raise the yield levels and enhance

stress resistance level of agronomically superior cultivars.
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This emphasized the need for preservation of germplasm,

which led to assembling and maintaining a very large

number of germplasm accessions (over 97,400) by

many countries and conserving them in their genebanks

(WIEWS-FAO, 2009).

Germplasm repositories

Although germplasm exchange and plant introduction

have been in practice sporadically for centuries, purpose-

ful efforts started only in the 1920s, and genebanks have

been established in different countries. The major chick-

pea germplasm repositories (ex situ) in the world are

listed in Table 1.

The International Crops Research Institute for the Semi-

Arid Tropics (ICRISAT) genebank has the largest collection

of 20,267 accessions in the genus Cicer from 60 distinct

countries across five continents (Asia, Africa, the Americas,

Europe and Oceania-pacific) including 308 accessions of

18 (eight annual and ten perennial) wild Cicer species.

Of these, 4153 accessions were obtained from 65 collection

missions in 14 countries across Asia (eight countries) and

Africa (six countries); the remaining 16,114 were donations

from 58 countries across five continents. Of the 308 wild

accessions, 233 were donations from seven countries (Aus-

tralia, India, Israel, Lebanon, Syria, the UK and the USA),

and the remaining (75) were collected from Afghanistan,

Turkey, Syria and Pakistan.

The International Centre for Agricultural Research in

the Dry Areas (ICARDA) genebank holds 13,462 acces-

sions from 61 distinct countries across five continents

(Asia, Africa, the Americas, Europe and Oceania-pacific)

including 270 accessions of 12 (nine annual and three

perennial) wild Cicer species. Of these, 3245 accessions

were obtained from 160 collection missions in 41

countries, and the remaining were donations from

Ethiopia, Israel, Jordan, Lebanon, Syria and Turkey.

Table 1. Major genebanks holding chickpea germplasm

Institutes/genebanks
No. of

wild accessions
No. of cultivated

accessions

Australian Temperate Field Crops Collection, Australia 241 8414
Plant Genetic Resources Centre, BARI, Bangladesh – 752
Embrapa Hortaliças, Brazil – 775
Agriculture and Agri-Food Canada, Canada 2 507
Institute of Biodiversity Conservation, Ethiopia – 1173
Leibniz Institute of Plant Genetics and Crop

Plant Research (IPK), Germany
11 522

Fodder Crops and Pastures Institute, Greece – 445
Institute for Agrobotany, Hungary 5 1165
Indian Agricultural Research Institute, India – 2000
ICRISAT, India 308 19,959
National Bureau of Plant Genetic Resources, India 241 14,463
Regional Station, Akola, India – 813
Tehran University, Iran – 1200
National Plant Gene Bank of Iran, Iran – 5700
National Institute of Agrobiological Sciences, Japan – 682
Instituto Nacional de Investigaciones Agrı́colas, Mexico – 1600
Nuclear Institute of Agricultural and Biology, Pakistan – 500
Plant Genetic Resources Institute, Pakistan 24 2122
Pulses Research Institute, Pakistan – 520
University of the Philippines, Philippines – 407
N.I. Vavilov All-Russian Scientific Research Institute of

Plant Industry, Russian Federation
– 2091

Instituto Nacional de Investigación y Tecnologı́a
Agraria y Alimentaria, Centro de Recursos Fitogenéticos, Spain

– 644

Instituto Andaluz de Investigación Agroalimentaria
y Pesquera, Centro de Investigación y Formación
Agroalimentaria Córdoba, Spain

– 608

ICARDA, Syrian Arab Republic 270 13,192
Plant Genetic Resources Department, Turkey 22 2054
Institute of Plant Production n.a. V.Y. Yurjev of UAAS, Ukraine – 1021
Western Regional Plant Introduction Station, USDA-ARS,

Washington State University, USA
202 6561

Uzbek Research Institute of Plant Industry, Uzbekistan – 1055
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Of the 270 wild species accessions, 180 were collected

from Afghanistan, Armenia, Jordan, Lebanon, Syria,

Tajikistan and Turkey.

Characterization and evaluation

The characterization, evaluation and documentation of

the germplasm are essential for utilization in crop

improvement and for efficient management. Therefore,

all the chickpea accessions have been characterized and

evaluated at the ICRISAT research farm, Patancheru,

India (188N, 788E, 545 m.a.s.l.), for seven qualitative and

13 quantitative traits, following the chickpea descriptors

(IBPGR, ICRISAT and ICARDA, 1993). A multi-disciplinary

approach is followed for characterization and evaluation

of chickpea germplasm for biotic and abiotic stresses,

agronomic traits and for updating and maintenance of

databases. These germplasm accessions contain very

useful diversity for crop improvement. Evaluation of

wild species had resulted in identification of genes for

resistance to botrytis grey mould in C. judaicum and

C. pinnatifidum (Singh et al., 1982); to ascochyta blight in

C. bijugum, C. pinnatifidum and C. yamashitae (Shah

et al., 2005); to fusarium wilt in C. bijugum (Infantino

et al., 1996). Two wild species C. echinospermum and

C. reticulatum are cross-compatible with the cultivated

C. arietinum and are reported to be resistant to several

pests (cyst nematodes, leaf minor and bruchids) and dis-

eases (fusarium wilt, ascochyta blight and Phytophthora),

apart from tolerance to cold (Dwivedi et al., 2005).

Geographic patterns of diversity

The primary centre of diversity is the Fertile Crescent

(Abbo et al., 2003), where the crop was domesticated

and later spread to the secondary centres – the northeast

Africa, the Mediterranean, Europe and the Indian sub-

continent and more recently to Mexico and Chile (van der

Maesen, 1972). The distribution of landraces and wild rela-

tives of chickpea occurs in three main regions from 88 to

528N latitude and 88W to 858E longitude covering (1) the

western Mediterranean, Ethiopia, Crete and Greece, (2)

Asia Minor, Iran and Caucasus, (3) Central Asia, Afghani-

stan and the Himalayan region (van der Maesen, 1972).

The ICRISAT’s chickpea germplasm collection represents

this entire area, showing wide range of variation for var-

ious morphological and agronomic traits. The level of

diversity found among the traits indicate that West Asia

region in which southwest Asia, one of the primary centres

of diversity, is located was adequately represented by

5,564 (33.1%) accessions in the ICRISAT genebank.

This was also demonstrated by the highest diversity for

the morphological descriptors and agronomic traits

observed in this region. The principal component (PC)-

based hierarchical cluster analysis resulted in two clusters.

The accessions from Africa, South Asia and Southeast Asia

grouped together as cluster-I, and the accessions from

rest of the countries (the Americas, Europe, West Asia,

the Mediterranean region and East Asia) formed cluster-II

(Upadhyaya, 2003). The accessions in cluster-I were pre-

dominantly desi type, short statured, with low plant antho-

cyanin, pink flowers, angular shaped and rough, brown

seeds of low seed weight, where most accessions in clus-

ter-II were predominantly of kabuli type with no anthocya-

nin pigmentation, beige-coloured seeds with smooth seed

surface and high 100 seed weight.

Morphological diversity

Large phenotypic diversity exists for morphological,

reproductive, yield, nutrient content and biotic/abiotic

stress tolerance-related traits in the chickpea germplasm.

The variability ranges for some valuable traits are plant

pigmentation (green to high pigmented), growth habit

(five types), flower colours (seven colours), seed-coat

colour (21 colours), plant height (14–105 cm), plant

width (13–124 cm), days to flowering (31–107 d), flower-

ing duration (13–75 d), days to maturity (84–169 d), pod

number/plant (2–251), seeds/pod (1–3.2), seed weight

(4–65 g), seed shape (three types), seed testa texture

(three types), seed yield (70–5100 kg/ha) and seed

protein (8–30%) (http://www.icrisat.org/what-we-do/

crops/ChickPea/Project1/pfirst.asp).

Low use of genebank germplasm collection

ICRISAT has provided 314,525 chickpea seed samples to

recipients in 86 countries from 1974 till Nov, 2010. The

evaluation of the chickpea germplasm by national pro-

grammes has led to the release of 17 accessions directly

as cultivars in 15 countries (Table 2). A small proportion

of chickpea germplasm at ICRISAT and other genebanks

has been used in crop improvement programmes. For

example, in the ICRISAT chickpea breeding programme

(1978–2004), only 91 were germplasm accessions among

12,887 (586 unique) parents used in the development of

3548 advanced breeding lines (Upadhyaya et al., 2006a).

Two most frequently used cultivars were L 550 and K 850.

In India, out of 126 chickpea cultivars released in the past

four decades, 41% had Pb 7 as one of the parents; IP 58,

F 8, S 26 and Rabat were also the most extensively used

parents (Kumar et al., 2004)). Plant breeders frequently

use parental lines from their working collections only,

as they make reasonable and steady progress in most
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cases, and broadening the adapted genetic base generally

will dilute agronomic performance (Kannenberg and

Falk, 1995). Plant breeders consider elite inbred lines as

the best genetic resources simply because each line

contains a combination of genetic traits that satisfies

the marketplace (Troyer, 1990). Yet new germplasm, if

used in crop improvement programmes, can (1) raise

the genetic ceiling on improvement, (2) decrease

vulnerability to biotic and abiotic stresses, (3) add new

developmental pathways and ecological adaptations

(Kannenberg and Falk, 1995).

Although plant breeders recognize the limitation of

their working collections and the potential value of

wild and landrace resources, they are often reluctant to

use these resources for the following reasons:

(1) Lack of reliable knowledge about stable donors for

specific traits.

(2) Linkage load of many undesirable genes.

(3) Lack of germplasm assessment for economic traits

that show high genotype–environment interaction

and require expensive, laborious and replicated

multi-environment evaluation.

(4) Assumed risks: while dealing with unknown and

wild germplasm lines, breeders are apprehensive

about the possibility of complete programme fail-

ures; timescales may be too long; or the value of

the new varieties may never allow costs to be

recouped. Additionally, there is the possibility of

introducing toxic, allergenic or pharmaceutically

active plant products into food products, risks that

are virtually absent in crossing elite, widely grown

germplasm (Heslop-Harrison, 2002).

(5) The need of plant breeders for genetically diverse,

trait-specific and agronomically desirable parents is

not met by the information available in the genebank

databases.

(6) The restricted access due to limited seed availability

and regulations governing international exchange.

Advances in development of large-scale genomic
resources

Until recently, a very limited number of genomic

resources such as few hundred molecular markers,

some fragmentary genetic maps were available in chick-

pea. In the past 5 years, however, several national and

international initiatives have tackled the challenge of

dearth of genomic resources for genetics and breeding

of chickpea (Varshney et al., 2010b; Fig. 1). As a result,

various types of genomic resources such as microsatellite

or simple sequence repeat (SSR)/sequence tagged micro-

satellite sites, expressed sequence tags (ESTs), single

nucleotide polymorphism (SNP), cleaved amplified poly-

morphic sequences (CAPS), conserved intron spanning

primers and diversity array technology (DArT) markers

have been developed for chickpea.

Table 2. Chickpea germplasm lines released as cultivars in different countries

Accession Country of origin Country of release Assigned name Year of release

ICC 552 India Myanmar Yezin 1 1986
ICC 4951 India Myanmar ICC 4951 –
ICC 6098 India Nepal Radha 1987
ICC 8521 Italy USA Aztec 1980
ICC 8649 Afghanistan Sudan Shendi 1987
ICC 11 879 Turkey Turkey Guney Sarisi 482 1986

Algeria – 1988
Morocco – 1987
Syria Ghab 1 1982

ICC 13 816 USSR (former) Algeria – 1984
Italy Sultano 1987
Syria Ghab 2 1986
Cyprus Yialousa 1984

ICC 14 911 USSR (former) Turkey – 1986
Morocco – 1987

ICC 4923 India India Jyothi 1978
ICC 4998 India Bangladesh Bina Sola 2 1994
ICC 14 880 India Australia Hira 1997
ICC 237 India Oman ICC 237 1988
ICC 14 302 India India Anupam 1984
ICC 14 559 Bangladesh Bangladesh Bari Chhola 5 1995
ICC 3274 Iran Bangladesh Bari Chhola 7 1999
ICC 4994 India Myanmar Keyhman 1986
ICC 14 808 India Ethiopia Yelbey 2006
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SSR markers

SSR markers are considered the markers of choice for

plant genetics and breeding applications (Gupta and

Varshney, 2000). In case of chickpea, however, only

few hundred SSR markers were available until recently

(Table 3). It is also important to note that majority of

these markers were developed from targeted SSRs

for assaying variation in particular repeat motifs.

Furthermore, low level of polymorphism especially in

the cultivated germplasm of chickpea posed a need for

the development of large-scale SSR markers. Hence, in

order to increase the molecular marker repertoire and

to develop genome-wide SSR markers, ICRISAT in collab-

oration with the University of Frankfurt, Germany, devel-

oped 311 SSR markers from SSR-enriched libraries

Table 3. Genomic resources available for chickpea

Marker type Number of markers References

Genomic SSR 28 Hüttel et al. (1999)
174 Winter et al. (1999)
10 Sethy et al. (2003)

233 Lichtenzveig et al. (2005)
13 Choudhary et al. (2006)
85 Sethy et al. (2006a, b)
63 Qadir et al. (2007)

311 Nayak et al. (2010)
1344 ICRISAT and UC-Davis,

USA (unpublished)
EST-derived SSR 60 Choudhary et al. (2009)

77 Varshney et al. (2009b)
106 Buhariwalla et al. (2005)

CAPS 12 Rajesh and Muehlbauer (2008)
5 Varshney et al. (2007)

DArT 15,360 DArT Pty Ltd., Australia
and ICRISAT (unpublished data)

SNP c. 9000 identified and
768 on GoldenGate assay

ICRISAT, UC-Davis and NCGRa

a ICRISAT, international crops research institute for the sem-arid tropics, Hyderabad, India; UC-Davis,
University of California, Davis, USA; NCGR, National Center for Genome Research, New Mexico, USA.
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Fig. 1. A holistic approach to harness germplasm diversity through genomic tools. Modern genomics technologies such as
NGS and high-throughput genotyping platform together with appropriate germplasm and their precise phenotyping can be
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(Nayak et al., 2010) and 1344 SSR markers from bacterial

artificial chromosome (BAC)-end sequence mining

approaches in collaboration with the University of Cali-

fornia, Davis, USA (unpublished data; Table 3). As ESTs

from various tissues and developmental stages of chick-

pea have also been reported (Boominathan et al., 2004;

Romo et al., 2004; Buhariwalla et al., 2005; Coram and

Pang, 2005; Choudhary et al., 2009; Varshney et al.,

2009b), a few hundred SSR markers have been devel-

oped from ESTs (Buhariwalla et al., 2005; Choudhary

et al., 2009; Varshney et al., 2009b). As a result of the

above-mentioned efforts, .2000 SSR markers represent-

ing the entire chickpea genome are available at present.

Transcript sequences and SNP markers

Molecular marker technologies, however, are currently

undergoing a transition from largely serial technologies

based on separating DNA fragments according to their

size (SSR, amplified fragment length polymorphism

(AFLP)) to highly parallel, hybridization-based technol-

ogies that can simultaneously assay hundreds to tens of

thousands of variations especially in genes. This tran-

sition has already taken place in several major crop

species such as rice (Nasu et al., 2002), maize (Yan

et al., 2009), soybean (Wu et al., 2010) and common

bean (Hyten et al., 2010). In case of chickpea, only few

hundred ESTs and some reports on identification of

SNPs were available. Recent years have witnessed signifi-

cant progress in the development of comprehensive

resource of transcripts by using Sanger sequencing as

well as by using ‘next generation sequencing’ (NGS)

technologies (Varshney et al., 2009c) that are being

deployed for understanding genome dynamics as well

as for the development of SNP markers.

Sanger sequencing of a number of cDNA libraries con-

structed from drought- and salinity-challenged tissues has

provided about 20,000 ESTs in chickpea (Varshney et al.,

2009b). Two NGS technologies, namely Roche 454/FLX

and Illumina/Solexa, have also been used to sequence

the transcriptomes of reference genotype or parental gen-

otypes of several mapping populations of chickpea to

access the gene space and develop functional markers.

For instance, c. 500,000 transcript reads have been gener-

ated after sequencing the pooled and normalized RNA

isolated from .20 tissues from different developmental

stages. Combined analysis of Sanger ESTs together with

454/FLX transcript reads provided 103,215 tentative

unique sequences in chickpea. In parallel, RNA of four

chickpea lines that represent parents of different

mapping populations has been sequenced by using

Illumina/Solexa sequencing approach that has resulted

c. 118 million reads for chickpea. Alignment of these

Illumina/Solexa reads of these genotypes with transcrip-

tome assemblies of the respective species has provided

a large number (tens of thousands) of SNPs. Selected

set of SNPs are being used to develop large-scale SNP

genotyping platform in chickpea that will augment

recently developed GoldenGate assay platforms for 768

SNPs by the University of California, Davis, USA, the

National Centre for Genome Resources (NCGR), USA

and the ICRISAT (Varshney et al., 2010a).

High-throughput genotyping DArT platform

DArT offers a rapid and DNA sequence-independent

shortcut to medium-density genome scans of any plant

species. A single DArT assay simultaneously types

hundreds to thousands of SNPs and insertion/deletion

polymorphisms spread across the genome. Hence, in

collaboration with DArT Pty Ltd., Australia, extended

DArT arrays with 15,360 features for chickpea have

been developed at ICRISAT (Varshney et al., 2010a).

Genetic maps

Because of limited amount of genomic resources and

a low polymorphism in cultivated germplasm, initial

genetic mapping studies were restricted to inter-specific

mapping populations. These mapping populations

were derived from wide crosses between C. arietinum

and C. reticulatum and between C. arietinum and

C. echinospermum (Collard et al., 2003). While several

research groups used the C. arietinum £ C. reticulatum

mapping population for developing genetic map

by deploying a variety of molecular markers (Table 4),

the mapping population based on C. arietinum £ C.

echinospermum cross has been used occasionally.

ICRISAT in collaboration with several partners like the

University of California, Davis, USA, and the University of

Frankfurt, Germany, has recently developed a comprehen-

sive genetic map of chickpea that comprises.1500 marker

loci including 315 SSR and 420 SNP loci. Part of this map

has already been published (Nayak et al., 2010). Recently,

a consensus map with 555 loci has also been developed

by Millan et al. (2010) based on five crosses, i.e. FLIP

84-92C(3) £ PI 599072, Hadas £ Cr205, ICC 4958 £ PI

489777, ILC 72 £ Cr5-10 and ICCL 81 001 £ Cr5-9.

For trait mapping, it is, however, important to develop

genetic maps based on intra-specific mapping popu-

lations (Fig. 1). In past, several genetic maps were also

developed by employing intra-specific (kabuli and desi)

crosses, and QTLs/markers associated with different

agronomic traits have been identified (Table 4). At ICRI-

SAT also, recently two intra-specific maps have been

developed for ICC 4958 £ ICC 1882 (253 SSR loci) and
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ICC 283 £ ICC 8261 (191 SSR loci). These maps have

been used to identify the hotspot containing QTLs

for several drought tolerance-related traits in chickpea

genome (unpublished data). Recently, a consensus

intra-specific genetic map of chickpea has been con-

structed by merging linkage maps from ten different

populations based on SSR markers as bridging markers

(Millan et al., 2010).

Assessment of allelic diversity in germplasm
collections

Crop breeders are reluctant to select parental lines from

thousands of available germplasm lines without knowing

their performance especially for quantitative traits, which

are highly environment sensitive. Selecting a few lines

from these vast pools of germplasm is like searching for

a needle in a haystack. Obviously, it is more appropriate

and attractive to have a small sample of a few hundred

germplasm lines, based on critical evaluation, represent-

ing the entire diversity of the species. Genomic tools

such as molecular markers developed as mentioned

above may be useful to select such a representative set

of diversity that can be useful in breeding programme

(Glaszmann et al., 2010).

Genetic diversity studies

Almost all kind of molecular markers have been used for

analysis of genetic diversity in chickpea germplasm.

Majority of these studies, however, employed random

amplification of polymorphic DNA and AFLP markers.

Although a limited number of genotypes were used for

diversity analyses in majority of these studies, the main

outcome of these studies was availability of a low level

of genetic diversity in cultivated germplasm compared

with wild species. Some of these studies have been men-

tioned in supplementary Table S1 (available online only

at http://journals.cambridge.org).

Some diversity studies have also provided a general

consensus about the members of the first crossability

group, which contains C. arietinum along with C. reticula-

tum (Ahmad, 1999; Iruela et al., 2002; Rajesh et al., 2002;

Sudupak et al., 2002, 2004; Javadi and Yamaguchi, 2004;

Nguyen et al., 2004), suggested to be the annual progenitor

of chickpea (Ladizinsky and Adler, 1976), and C. echinos-

permum, suggested to have played a significant role in

the evolution of cultivated chickpea (Tayyar and

Waines, 1996). The second crossability group contained

C. bijugum, C. judaicum and C. pinnatifidum (Ahmad,

1999; Sudupak et al., 2002, 2004; Sudupak, 2004; Nguyen

et al., 2004). The last three species, C. yamashitae,

Table 4. Molecular genetic maps developed for chickpea

Mapping population Marker loci mapped References

Inter-specific (C. arietinum £ C. reticulatum)
ICC 4958 £ PI 489777 29 Gaur and Slinkard (1990a, b)

120 Winter et al. (1999)
354 Winter et al. (2000)
56 Tekeoglu et al. (2002)

296 Pfaff and Kahl (2003)
521 Nayak et al. (2010)

PI 360177 £ PI 489777 and PI 360348 £ PI 489777 28 Kazan et al. (1993)
ICC 4958 £ PI 489777, PI 360177 £ PI 489777

and PI 360348 £ PI 489777
91 Simon and Muehlbauer (1997)

FLIP 84-92C £ PI 599072 144 Santra et al. (2000)
JG 62 £ CA-2156 117 Rajesh et al. (2002)
Hadas £ Cr205 93 Abbo et al. (2005)
ILC 72 £ Cr5-10 89 Cobos et al. (2006)

Inter-specific (C. arietinum £ C. echinospermum)
Lasseter £ PI 527930 83 Collard et al. (2003)

Intra-specific (C. arietinum £ C. arietinum)
ICCV 2 £ JG 62 103 Cho et al. (2002)
ILC 1272 £ ILC 3279 55 Udupa and Baum (2003)
ICC 12 004 £ Lasseter 69 Flandez-Galvez et al. (2003a, b)
CA 2139 £ JG 62, CA 2156 £ JG 62 138 Cobos et al. (2005)
JG 62 £ Vijay, Vijay £ ICC 4958 273 Radhika et al. (2007)
ICC 4991 £ ICCV 04 516 84 Kottapalli et al. (2009)
WR 315 £ C 104 102 Sharma et al. (2004)

Consensus map
Five narrow crosses (desi £ kabuli) 229 Millan et al. (2010)
Five wide crosses (C. arietinum £ C. reticulatum) 555 Millan et al. (2010)
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C. chorassanicum and C. cuneatum, were either not

included in many studies or differentially positioned with

respect to the cultivated germplasm.

Allelic diversity in the global chickpea composite
collection

A composite collection of 3000 lines, representing a

wide spectrum of genetic diversity captured from the

entire collection of chickpea germplasm preserved in

the ICRISAT and ICARDA genebanks, was developed by

Upadhyaya et al. (2006a). The composite collection that

includes core and mini core collections was genotyped

using 48 SSR markers and field evaluated for seven

qualitative and 17 quantitative descriptors. A total of

1683 alleles were detected, 935 rare and 748 common

alleles. Gene diversity varied from 0.533 to 0.974.

Kabuli as a group were genetically more diverse than

other seed types. Several group-specific unique alleles

were detected: 104 in kabuli, 297 in desi and 69 in wild

Cicer; 114 each in West Asia and the Mediterranean;

117 in South and Southeast Asia; ten in African region

accessions (Upadhyaya et al., 2008).

Core, mini core and reference sets for enhancing
the use of germplasm in breeding

Selecting a representative sample of all the diversity in

the large collection would facilitate the enhanced use of

germplasm in the breeding programmes. Such samples

would be cost effective and easy to maintain by indivi-

dual breeders. A core collection (Frankel, 1984) is a

subset, consisting of approximately 10% of total acces-

sions, which captures most of the available diversity in

the entire collection (Brown, 1989). At ICRISAT, a core

collection consisting of 1956 accessions was developed

(Upadhyaya et al., 2001). However, the size of core

was still large for practical use by breeders to identify

trait-specific accessions for use in crop improvement

(Glaszmann et al., 2010).

To overcome the above-mentioned constraint,

Upadhyaya and Oritz (2001) postulated the mini core

collection concept, where approximately 10% of core

collection (1% of entire collection) is selected without

loosing any diversity of the core or entire collection.

Following these procedures, a mini core set of 211 acces-

sions in chickpea was developed at ICRISAT (Upadhyaya

and Oritz, 2001). This mini core collection is an ‘Inter-

national Public Good’ now, and the ICRISAT has supplied

28 sets of chickpea mini core collection to national part-

ners in several countries. The mini core collection has

been thoroughly evaluated at ICRISAT and by national

partners in diverse and multiple environments at several

locations in Canada, India, Japan, Mexico, Sweden, the

USA, and diverse trait-specific germplasm lines have

been identified for use in crop improvement. This

approach has provided a point of entry to the world chick-

pea germplasm and as a working collection for scientists

to tackle their region-specific problems. The detailed

information is available in Upadhyaya et al. (2009).

Furthermore, based on allelic diversity data of global

composite collection of chickpea, a ‘reference set’ of

most diverse 300 accessions was selected (Upadhyaya

et al., 2008). Genotype-based reference set on 48 SSR

markers captured 1315 alleles, where the reference set

based on seven qualitative traits captured 1237 alleles

(Upadhyaya, 2008). Mining allelic variation in the mini

core collection and reference set will facilitate identifi-

cation of diverse germplasm with beneficial traits for

enhancing the genetic potential of chickpea globally

and broaden the genetic base of cultivars.

Identification of trait-specific germplasm for use
in chickpea improvement programme

The use of genetic resources in the breeding programmes

has been mainly as sources of resistance to pests and

diseases (Knauft and Gorbet, 1989), or as sources of

male sterility, short stature or any such character with

simple inheritance. In fact, there have been fewer efforts

for identifying germplasm lines for increasing yield

potential than for pest resistance and nutritional quality

(Halward and Wynne, 1991). Using the core\mini core

approach, a number of germplasm lines have been

identified at ICRISAT and national programmes. This

includes tolerance to abiotic and biotic stresses and to

agronomic characters such as early maturity (28 acces-

sions, Upadhyaya et al., 2007b); large-seeded kabuli

(49 accessions, Gowda et al., 2010); high yield (39 acces-

sions, Upadhyaya et al., 2007a); resistance/tolerance to

biotic stresses (Pande et al., 2006) such as ascochyta

blight (3), botrytis grey mould (55), wilt (67), dry root

rot (5), multiple resistance (31); Helicoverpa resistance-

related traits (15 accessions – five each for low

leaf feeding score, low larval survival and low larval

weight, Upadhyaya et al., 2010); drought avoidance

root traits (18 accessions, Kashiwagi et al., 2005; five

accessions, Krishnamurthy et al., 2003); salinity tolerance

(29 accessions, Serraj et al., 2004; 16 accessions, Vadez

et al., 2007); ten accessions high soil plant analysis

development meter reading (Kashiwagi et al., 2010);

water use efficiency (six accessions, and cool canopy

temperature, one accession, Kashiwagi et al., 2006a, b);

high temperature tolerance (ten accessions, Upadhyaya

et al., 2010).
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Towards genomics-based germplasm research for
chickpea improvement

As mentioned above, specialized germplasm collections

such as composite collection, core collection, mini core

collection and reference sets representing global diversity

are available now. In parallel, new genomic resources

have been developed that can be used for detection and

utilization of allelic diversity. Availability of high-through-

put genotyping platform such as GoldenGate or Infinium

assay (SNP genotyping), capillary electrophoresis (SSR

genotyping) and DArT arrays (DArT genotyping) on

appropriate germplasm collections mentioned will facili-

tate the use of association genetics approach for identifi-

cation of genes/markers associated with traits of interest

to breeders. Advent of NGS technology has also encour-

aged chickpea community for undertaking genome

sequencing effort. For instance, the National Institute of

Plant Genome Research (NIPGR), New Delhi (India), is

using Roche/454 and Applied Biosystem SOLiD (AB

SOLiD) sequencing technologies (http://www.nipgr.res.

in/NGCPCG/ngcpcg.html). Once the reference genome

of chickpea is available, low-cost and faster re-sequencing

technologies such as Illumina/Solexa and AB SOLiD will

offer the possibilities to generate the genome sequences

for the entire set of reference set or composite collection

in short term and for the entire germplasm collection in

long term. However, association of genomic sequences/

haplotypes with traits of interest to breeders would

require multi-location and precise phenotyping data as

well as appropriate analytical tools on high-computing

bioinformatics platform. Nevertheless, advances in high-

throughput phenotyping as well as in bioinformatics

platform (e.g. cloud computing) and tools are expected

to facilitate initiation of ‘genomics-assisted breeding’

(Varshney et al., 2005) or ‘Breeding by design’ approaches

such as ‘genomic selection’ ( Jannink, 2010) in chickpea

breeding in coming future.
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Arreguin-Espinoza R, Weigand F, Muehlbauer FJ and Kahl
G (1999) Characterization and mapping of sequence-
tagged microsatellite sites in the chickpea (Cicer arietinum L.)
genome. Molecular Genomics Genetics 262: 90–101.
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