$$
5378
$$

Development of genomic resources in pigeonpea [Cajanus cajan (L.) Millspaugh]

Report Submitted to

Barkatullah University, Bhopal, Madhya Pradesh, India

By
Anuja Dubey

International Crops Research Institute for the Semi-Arid Tropics
Patancheru, 502324
Andhra Pradesh, India
icrisat(a cgiar.org
T 64382

$$
\left[\begin{array}{c}
\text { Saswant S. Kanwar Library } \\
\text { ICRISAT } \\
64 \because 82
\end{array}\right.
$$

CERIIFICATE

This is to certify that Ms. Anuja Thubey has carried out the research work on "Development of genomic resources in pigconpea [Cajanas cajan (L.) Millspaugh]" for the degree of Doetor of Philosophy (Ph.D.) under joint-supervision of Dr. Ragini (iothalwal. H.O.D. Deparmen of Bioinformatics and Biotchology. Barkambah University, Bhopal and Dr. Rajeev K Varshney Principle Scientist-Applied (ienomics. International crops Rescarch Institute for Semi-Arid Tropics (ICRIS \wedge T), Patancheru.

The research work is original and no part of this work has been submitted for the award of iny degree or diploma of any other University or Institute.

Dr RajeevK-Varshney
(Cu-supervisar)
RAJEEV K. VARSHNEY
Principal Scientist - Applied Genomics; Leader: SP2-Genomics Towards

Gene Discovery (GCP)

CERTIFICATE

This is to certify that Ms Anuja Dubey has carried out the research work on "Development of genomic resources in pigeonpea [Cajanus cajun (L.) Millspaugh]" for the degree of Doctor of Philosophy (Ph.D.) in the subject of Biotechnology from Barkatullah University, under my supervision at ICRISAT.

The research work is original and no part of this work has been submitted for the award of any degree or diploma of any other University or Institute.

Dr. Rajeev K Varshney
(3APADEA)K. VARSHNEY
Principal: Scientist - Arrived Genomics;
Leader SP" C......rs Towards
Gene U, i..... , .P)
Center of Excelitil.e genomics
ICRISAT. Patancheru-502 324, india.

Acknowledgement

Endless compassion of Almighty turns my difficult task to a feeling of pleasant journey of my life. Emotions cannot be adequately expressed in words because emotions are transformed into a mere formality. Hence, my acknowledgements are many times more than what I am expressing fiere. I 6ow my fread before my parents whose fiardships, patience and perseverance today I stand has kept me going at all fard times.

I have received a lot of ad-hoc response from many generous grandees in many quarters to those pain stacking days encompassing the research work. I wish to vow my genuflexion with deep sense of gratitude to my co-supervisor Dr. Rajeev K Varshney, Principal Scientist-Applied genomics,ICRISAT and Leader Theme 1- Comparative and Applied Genomics, Generation Challenge Programme, for fis conscientious guidance, gracious, cordial and meticulous expfications and encapsilative remarks towards the representation of this dissertation. His valuable suggestions Grought a panacea for me dealing with this research work. I can truly say that whatever he has done for m e is not possible for every advisor to do for his advisee.

At this stage I feel pleasure to express my profound regards, indeftress and gratitude to my supervisor Dr Ragini Gothalwal, Department of Bioinformatics and Biotechnology,Barkatullaf University, Bhopal, for her expedient advice, debonair discussion, innovative ideas, abiding interest and invaluable support during this tenure of research work.

A depth of gratitude is owed to Dr. William Dollente Dar, Director General of the ICRISAT, for giving me opportunity to work in one of the best labs of International standards. With respect, regards and immense pleasure, I wish to acknowledge and express sincere thanks from my heart to several scientists including Dr. Trushar Shah, Abhishe反 Rathore, Dr. Vivek Thakur for the valuable suggestions.

I feel immense pleasure to express my sincere thanks to $\mathcal{M r}$. R Vijaya Kumar, Mr. R Ramarao, Pigeonpea Breeding for their help in conducting the research trials at Patanchern. Mrs. Seetfia Kannan, Mrs. ManjuLa B, Mr. Prasad KDV and Mr. Murali Krishna Y for their administrative help. Words are less to express my gratitude to Mr. A Gafoor, from Applied Genomics Laboratory, ICRISAT for providing technical help. I place on record my heartfelt thanks to all my Labmates and friends especially Abhishek, Himabindu, Srivani, $\mathcal{N L}$ Raju, Naresh, Gnanesh, Neha, Serwer, Spurthi, Manish, Pavana, Nicy, Lekha, Ramesh, Mayank Prashas KVSS, Yogendra, Ashutosf, Reyaz, Bhanuprakash, Reetu, Prasad, Pradeep.

I also thank all the friends and staff at Department of Bioinformatica and Biotechnology, Barkatullah University, Bhopal for their kind help and co-operation. Assistance rendered by the members of Central Support La6, Library and Learning System Unit at ICRISAT is gratefully acknowtedged.

Words would fail to express the depth of my feelings for my strength, my husband Dinesh for his all time support, constant encouragement, affectionate love and for always being there for $m e$.

I seize the opportunity to express my heartiest sense of reverence, respect and affection to my parents $\mathcal{M r}$. D. K, Dubey and Mrs. Kiran Dubey, whose unending Love, care, su6dued spirit of co-operation, and timefy encouragement throughout my research work and their support at every crucial moment of my life. I also express my heartiest sense of reverence, respect and affection to my 6rother Dr. Aditya Dubey, and Loving sister Ms. Anurita Dubey who always supported and encouraged me during all the time.

The Generation Challenge programme (GCP) and Pigeonpea Genomics Initiative of Indian Council of Agricultural Research (ICAR) under the framework of Indo-US Agricultural Knowledge Initiative (AKI) are greatly acknowledged for providing financial support to camy out this research work.

I convey my whole hearted thanks to all those, who directly or indirectly felped during my research work.

Hyderabad

May, 2011

Title: Development of genomic resources in pigeonpea (Cajanus cajan L . Millspaugh)

Name: Anuja Dubey
Institute: Barkatullah University, Bhopal, India
Supervisor: Dr. Rajeev K. Varshney
Submitted: May 2011

Abstract

This study reports generation of large-scale genomic resources for pigeonpea, a so-called 'orphan crop species' of the semi-arid tropic regions. A set of $88,860 \mathrm{BAC}$ (bacterial artificial chromosomes)-end sequences (BESs) were generated after constructing two BAC libraries by using HindIII (34,560 clones) and BamHI (34,560 clones) restriction enzymes. A total of 3,072 novel SSR primer pairs were synthesized and tested for length polymorphism on two parental genotypes (ICP 28 and ICPW 94). In addition, Roche FLX/454 sequencing was carried out on a normalized cDNA pool prepared from 31 tissues and produced 494,353 short transcript reads (STRs). Cluster analysis of these STRs, together with 10.817 Sanger ESTs, resulted in 127.754 pigeonpea transcript assemblies (CcTAs). Additionally, Illumina IG sequencing was performed on four parental genotypes of two mapping populations and a set of 7.453 SNPs were identified. Based on BES-SSR markers, the first SSR-based genetic map comprising of 239 loci was developed for this previously uncharacterized genome. In summary, while BAC libraries, BESs and CcTAs should be useful for genomics studies, BES-SSR, SNP markers, and the genetic map should be very useful for linking the genetic map with a future physical map as well as for molecular breeding in pigeonpea.

TABLE OF CONTENT

1.INTRODUCTION

2. REVIEW OF LITERATURE
2.1 Pigeonpea Genomics
2.1.1 Marker repertoire of pigeonpea
2.1.1.1 Restriction fragment length polymorphism (RFLP)
2.1.1.2 Randomly amplified polymorphic DNA (RAPD)
2.1.1.3 Amplified fragment length polymorphism (AFLP)
2.1.1.4 Diversity array technology (DArT)
2.1.1.5 Microsatellites or simple sequence repeats (SSRs)
2.1.1.6 Single nucleotide polymorphisms (SNPs)
2.2 BAC-end Sequencing and SSR Mining
2.3 Next Generation Sequencing Technologies
2.3.1 Roche FLX/454 sequencing
2.3.2 Illumina/Solexa !G sequencing
2.3.3 Applications of NGS technology
2.4 SNP Genotyping Platform
2.5 Genetic Mapping

3. MATERIALS AND METHODS

3.1 Plant Material
3.2 Identification and Validation of SSR markers
3.2.1 BAC-library construction and end sequencing
3.2.2 Mining of SSRs
3.2.3 Primer designing
3.2.4 Screening on parental genotypes of mapping population
3.3 Development of Pigeonpea Transcriptome Assembly
3.3.1 Roche FLX/454 sequencing
3.3.2 Sequence data assembly and clustering
3.3.3 Characterization of pigeonpea 454 transcriptome assembly
3.3.3.1 Identification of paralogous
3.3.3.2 Alignment of 454 pigeonpea sequence assemblies to soybean genome
3.3.3.3 Functional annotation and similarity search
3.4 Identification of SNPs
3.4.1 Illumina/ Solexa sequencing and SNP identification
3.4.2 Development of SNP genotyping platform
3.5 Construction of Genetic Maps
4. RESULTS
4.1 Development of Microsatellites From BAC-end Sequences
4.1.1 Development of BAC-end sequences and identification of SSRs
4.1.2 Functional annotation of BESs
4.1.3 Identification of BES-SSR
4.1.4 Frequency and distribution of SSRs
4.1.5 Correlation between BAC end annotation and SSR occurrence
4.1.6 Development of novel SSRs markers
4.1.7 Polymorphism assessment of BES-SSR
4.2 Development of Transcript assembly for Pigeonpea
4.2.1 Clustering and assembly of transcript reads
4.2.2 Identification of paralogous genes and genome duplication events
4.2.2 Characterization of pigeonpea transcriptome
4.2.2.1 Comparison with soybean genome
4.2.2.2 Comparison with other legumes and model plant species at the transcript level
4.2.2.3 Functional annotation and gene ontology (GO) categorization

4.3 SNP Discovery

4.3.1 Identification of disease responsive genes
4.4 SNP Genotyping Platform
4.5 Linkage Mapping

5. DISCUSSION

5.1 Development of BES-SSR Markers
5.2 Development of Pigeonpea Transcriptome Assembly (CcTA)

5.2.1 Clustering and assembly of transcript reads

5.2.2 Segmental genome duplication events
5.2.3 Gene structure. annotation and functional categorization
5.2.4 Identification of SNPs
5.2.5 Candidate genes for FW
5.4 Development of Genetic Linkage Map
6. SUMMARY
7. REFERENCES

LIST OF TABLES

Table No. Description

BAC-end sequence characteristics
2 Distribution of polymorphic markers into different repeat classes
3 Frequency and distribution of different SSR motifs
4 List of newly developed SSR markers isolated from BAC-ned sequences of pigeonpea
5 Sequence length distribution before and after assembly of Roche/454 STRs and Sanger ESTs
6 Mapping of pigeonpea 454-Sanger assemblies on soybean genome
7 Illumina sequencing based SNP discovery in five parental combinations

LIST OF FIGURES

Figure Discription
No.
1 Overview of the 454 sequencing technology
2 Overview of Illumina/Solexa 1G sequencing
3 Plant tissue samples for FLX/454 sequencing
4 Graphical overview of cDNA normalization for FLX/454 sequencing
5 Annotation pipeline for analysis of BESs
6 Distribution of BESs according to annotation
7 Distribution of BAC end categories according to BES cluster depth
8 Distribution and frequency of SSRs in differing genome fractions
9 Percentage amplification pattern of different SSR motifs
10 Sequence length distribution before and after assembly of short transcript reads (STRs)
11 Histogram plot of pigeonepea TUSs based on alignment to soybean genome

12 Distribution and alignment of pigeonpea TUS against the reference genome of soybean

13 Gene structure prediction based on comparison of CcTA and soybean genome

14 Similarity search of TUSs across different plant EST databases
15 a) Distribution of pigeonpea TUSs of the CcTA with putative functions assigned through Gene Ontology annotation to Biological process
15 b) Distribution of pigeonpea TUSs of the CcTA with putative functions assigned through Gene Ontology annotation to Molecular function.
$15 \mathrm{c})$ Distribution of pigeonpea TUSs of the CcTA with putative functions assigned through Gene Ontology annotation to Cellular component.
16 Distribution of pigeonpea TUSs onto GO assignment showing coverage of major enzyme classes
17 Reference genetic map of pigeonpea derived from an inter-specific F2 population (ICP $28 \times$ ICPW 94)

1. INTRODUCTION

Pigeonpea (Cajanus cajan L.) is one of the major pulse crop of the tropics and sub-tropics. It is a major food legume crop in South Asia and East Africa with India is the largest producer (3.5 Mha) followed by Myanmar (0.54 Mha) and Kenya (0.20 Mha). It is the only cultivated food crop of the Cajaninae sub-tribe of economically important tribe Phaseoleae under sub-family Papilionoideae of Leguminosae family. It has a diploid genome with 11 pairs of chromosomes $(2 n=2 x=22)$ and a genome size estimated to be 858 Mbp (Greilhuber and Obermayer, 1998). The revised genus Cajanus now comprises 32 species, with 18 species distributed in Asia, 15 in Australia, and one in West Africa. Of these, 13 are endemic to Australia, 8 to Indian subcontinent and Myanmar, and one to West Africa. The rest of them occur in more than one country (van der Maesen 1990). On a global basis pigeonpea can been considered as an underexploited under resourced crop. The origins of pigeonpea have been a matter of dispute for a long time. Some authorities considered Africa to the center of origin due to evidence like presence wild species in West Africa (Rachie and Roberts, 1974). But inspite of this, several conclusions have been drawn in favour of India being the center of origin (van der Maesen, 1990). This is due to presence of large genetic diversity, several wild relatives, and presence of archeological remains and large scale usage of the crop in daily diet. It is believed to have traveled from India to Malaysia, then to East Africa and from there up the Nile Valley to West Africa. Historians believe that the crop then traveled to the New World from Zaire or Angola prior to the main slave trade.

Pigeonpea is the most versatile grain legume and its importance has been realized in India as a multipurpose crop. It is a hardy, drought-tolerant crop which often grows on poor soils. Pigeonpea has been used in numerous ways like for grain, fuel, wood, livestock feed. Apart from
the many direct uses of pigeonpea it is a good crop to improve soil fertility. Pigeonpea forms nodules on its roots which contain nitrogen fixing bacteria and hence makes pigeonpea a crop which can be grown in poor soil conditions. These bacteria capture nitrogen from air and turn it into a form which the pigeonpea plants can use for growth. Pigeonpea contributes to the C, N and P economy of the soil (Rego and Nageswara Rao, 2000). Pigeonpea seeds have 20-22\% protein and are consumed as green peas, while grain or split peas. The seed and pod husks make a quality feed, whereas dry branches and stems serve as domestic fuel. Fallen leaves from the plant provide vital nutrients to the soil and the plant also enriches soil through symbiotic nitrogen fixation. Hence, fits into agroforestry and shifting cultivation system as a source of soil ameliorator. The protein content of pigeonpea ranges from 21% to over 25%.

India is the largest producer (2.30 mt) of pigeonpea followed by Myanmar (0.54 mt) and Malawi (0.16 mt) (FAOSTAT. 2009). The Indian sub continent alone contributes nearly 92 per cent of the total world production. Major states in terms of area and production are Maharashtra, Uttar Pradesh. Madhya Pradesh, Karnataka, Gujarat and Andhra Pradesh together contributes for about 90 per cent of area and 93 per cent of production of pigeonpea. Inspite of its importance very less attention have been paid either to crop production or technology development in case of pigeonpea. Although India leads the world both in area and production of pigeonpea. its productivity is lower than the world average. This is attributed to factors such as various abiotic (e.g. drought, salinity and water-logging) and biotic (e.g. diseases like Fusarium wilt, sterility mosaic and pod borer insects) stresses. Furthermore poor production practices such as low plant densities. low soil fertility, insufficient weeding and insufficient/inappropriate use of fungicides and herbicides are other constraints.

Diseases of economic concern include Fusarium wilt (Fusarium udum Butler), sterility mosaic disease (SMD), leaf spot (Mycovellosiella cajani) and to a lesser extent powdery mildew (Leveillula taurica). Apart from this the important pest which effect the crop production severely include the pod boring lepidoptera (Helicoverpa armsigera Hübner, Maruca vitrata Geyer and Etiella zinkenella Treitsche), pod sucking bugs (Clavigralla tomentosicollis Ståll and Clavigralla horrida Germar) and podfly (Melanagromyza chalcosoma Spencer) (Minja et al., 2000). Furthermore, aboitic stresses like water logging and salinity also reduce pigeonpea production. In pigeonpea. plant growth as well as flowering is highly influenced by the environment. Hence, breeding for wider adaptation, a complex phenomenon is a major issue to be tackled. Although related wild species are a rich reservoir of not only resistance genes against various biotic and abiotic stresses but also of genes responsible for yield components such as pods per plant, length of fruiting branches, and number of primary branches per plant, use of inter-specifics in pigeonpea improvement have been limited. This is due to the poor crossability of cultivated Cajanus cajan to species other than the closest species. Cajanus cajanifolia and C. scaraboides. Conventional breeding approaches which have been used for several decades offer limitation in overcoming various biotic and abiotic stresses (Varshney et al., 2007). These breeding programs provide a limited amount of new diversity into the breeding gene pool, hence narrowing the genetic diversity within the elite gene pool.

Various advances in plant biotechnology and especially genomics together with traditional plant breeding technologies have led to the development of new improved varieties in a number of crop species with greater tolerance/resistance and higher yield (Varshney et al., 2006. 2010a). In this context, molecular markers play a very important role as these are used for estimating diversity in germplasm, trait mapping, molecular breeding. genetic purity assessment of hybrid
seeds, etc. Among a range of molecular markers starting with isozymes, RFLP (restriction fragment length polymorphism), RAPD (random amplified polymorphic DNA), AFLP (amplified fragment length polymorphism), SSR (simple sequence repeat), SNP (single nucleotide polymorphism) and more recently microarray-based DArT (diversity array technology). Among all the marker types, SSR and SNP markers are considered as the current markers of choice for plant genetics and breeding applications (Gupta and Varshney, 2000). While SNP markers have a promising future in plant breeding applications, and may augment or displace SSR based marker systems, SNP based markers and associated technologies are in their infancy in most crops, including pigeonpea, while SSR marker technologies are better established for wide spread use in molecular breeding. Utilization of substantial variability among pigeonpea landrace and germpalsm line for various morphological, physiological and agronomical traits using genomics-assisted-breeding can be an alternative approach to overcome the limitations of conventional breeding strategies. A revision of current breeding methods by utilizing genomics-assisted breeding is a must. Genomics-assisted breeding approaches have greatly advanced with the increasing availability of genome and transcriptome sequence data for several model plant and crop species (Varshney et al., 2009a). This platform provides a broad range of applications including development of molecular markers, whole genome sequencing (Green et al., 2006), transcriptome and gene regulation studies (Bainbridge et al., 2006; Berezikov et al., 2006), metagomics analysis (Krause et al., 2006) and amplicon sequencing (Sogin et al.. 2006: Taylor et al.. 2007). These kind of platforms are available for many crops including. cowpea. common bean and soybean. pigeonpea being very important still lack these kind of studies.

Although efforts have been made in the recent past for development of molecular markers for this economically important crop but these were too elementary. In case of pigeonpea, until recently, only a few hundred SSR markers are available (Burns et al., 2001; Odeny et al., 2007, 2009; Saxena RK et al., 2010a). A situation that is further hampered by low levels of genetic diversity within cultivated germplasm demands large scale development of genomic resources. With advent of next generation sequencing technologies (NGS) like Roche FLX/454, Illumina/Solexa 1G Analyser and $\mathrm{ABI} /$ SOLiD, it has become very easy to develop sequence data at very affordable prices. The sequence data produced can be used for large scale marker discovery. Furthermore, high-throughput marker genotyping platform and a very low cost associated to them calls for large scale development of genomic resource for this earlier called orphan crop.

Keeping the above in view, the present study was proposed with following objective:

1. Development of microsatellites markers from BAC-end sequences.
2. Development of transcript assembly for pigeonpea.
3. Large scale identification of SNPs.
4. Development of SNPs genotyping platform.
5. Genetic mapping of SSRs markers.

2. REVIEW OF LITERATURE

Pigeonpea (Cajanus cajan L. Millsp.) is an important grain legume crop of rainfed agriculture in the semi-arid tropics. Efforts have been made to improve production and to extend crop's adaptation beyond tropical and subtropical regions. However these efforts have very less contribution in productivity of this crop. Furthermore lack of high yielding cultivars has been the major factor underlying this bottleneck. In addition, other factors such as of biotic and abiotic stresses cause major yield losses every year. Unavailability of adequate genetic variation in germplasm collections is another bottleneck for successful breeding programme. An effective way to exploit the available genetic variation among germplasm collections would be development of genomics tools such as, ESTs (expressed sequence tags), molecular markers, genetic maps for molecular breeding (Varshney et al., 2005). However, molecular breeding approach has not yet been initiated in pigeonpea primarily due to: availability of limited genomic resources and limited level of genetic diversity in majority of elite germplasm collection. Effort should be made for large scale development of genomic resources in pigeonpea.

2.1 Pigeonpea Genomics

Pigeonpea an important legume crops of India as well as other parts of the world is one of these kinds. Low availability of genetic resources is the major constrain in overcome various biotic and abiotic stresses which restrict the production of the crop (Saxena. 2008). Various studies have been performed to study the pattern of genetic diversity and development of molecular markers to enable marker assisted selection for improvement of this crop. Genetic diversity among wild species of the pigeon pea genus Cajanus has been studied using restricted fragment length polymorphism (RFLP) DNA as the specific nuclear probes (Nadimpalli et al., 1994). In yet another study extremely high DNA polymorphism among wild species of pigeonpea was
reported (Ratnaparkhe et al., 1995). However, the DNA polymorphism among pigeonpea cultivars was very low (Sivaramakrishnan et al., 1997). Amplified fragment length polymorphism (AFLP) has been used for analysis of DNA banding pattern among cultivars and wild species (Punguluri et al., 2006). Diversity array technology (DArT) markers analysis also revealed low polymorphism among pigeonpea cultivars and high polymorphism between cultivated pigeonpea and its wild relatives (Yang et al., 2006). Because of this low level of polymorphism in pigeonpea there was an urgent need of large-scale development genomic resources so as to undertake studies like germplasm characterization and molecular-mapping.

2.1.1 Marker repertoire in pigeonpea

The development of molecular techniques for genetic analysis has led to a great augmentation in our knowledge of crop genetics and our understanding of the structure and behavior of various crop genomes. Following are the molecular marker systems developed till date in pigeonpea.

2.1.1.1 Restriction fragment length polymorphisms (RFLPs)

Restriction fragment length polymorphism, or RFLP, refers to a difference between two or more samples of homologous DNA molecules arising from differing locations of restriction sites. In RFLP analysis the DNA sample is digested using restriction enzymes and the resulting restriction fragments are separated according to their lengths by gel electrophoresis. RFLP markers were used for diversity analysis of 24 genotypes belonging to genera Cajanus. Dunbaria. Eriosema, and Rhynchosia. This study showed that accessions of cultivated C. cajan shared more DNA fragments with C. scarabaeoides than with C. cajanifolia (Nadimpalli et al., 1993). In yet another diversity study RFLP-PCR markers from 4 chloroplast gene specific primers were used to estimate diversity in 28 species belonging to five genera of the sub-tribe

Cajaninae; viz., Cajanus (15 species), Rhynchosia (10 species), Dunbaria, Flemingia and Paracalyx. This study showed very little variation in restriction patterns of five different genera indicating occurrence of limited evolutionary changes in chloroplast genome of these five genera (Lakshmi et al., 2000). RFLP markers from 3 maize mitochondrial probes were used to estimate diversity in 28 accessions representing 12 species of Cajanus and 4 species of Rhynchosia. 12 species of Cajanus were taken from 6 sections (Cajanus, Atylosia, Fruticosa. Cantharospermum. Volubilis and Rhynchosoides). Cluster analysis resulted in a clear-cut separation of two genera i.e. Cajanus and Rhynchosia. Species belonging to sections like Cajanus, Fruticosa and Rhynchodoides exhibited section specific grouping while species like cajanifolius, volubilis. mollis showed discrepancy in their positions (Sivaramakrishnan et al., 2002). Hence, RFLPs have been used in pigeonpea, to overcome the problems associated with phylogenic grouping such as inconsistencies in taxonomic relationships based on data from morphology, cytology and crossability.

2.1.1.2 Randoml amplified polymorphic DNA (RAPD)

Randomly amplified polymorphic DNA (RAPD) markers are DNA fragments from PCR amplified random segments of genomic DNA with single primer of arbitrary nucleotide sequence. Unlike traditional PCR analysis. RAPD (pronounced "rapid") does not require any specific knowledge of the DNA sequence of the target organism. RAPD markers were used for cluster analysis of 13 species belonging to the genera Cajanus, Dunbaria. Eriosema, and Rhynchosia. Results from cluster analysis indicated the proximity of C cajan to C. albicans, C. sericeus and C. lineatus than C. acutifolius, C. grandifolius and C. reticulatus. All the Rhynchosia species grouped together suggesting their origin from a common ancestor (Ratnaparkhe et al., 1995). Potential of RAPD in discriminating varieties of distinct characters
was demonstrated in a study using 15 RAPD markers in 11 cultivated pigeonpea genotypes (Lohithaswa et al., 2003). Cluster analysis resulted in separation of 24 genotypes into distinct clusters and sub-clusters suggesting RAPD as a good marker system for diversity analysis and cultivar identification (Choudhury et al., 2008). Higher level of polymorphism (>80\%) was observed for 50% of 17 markers and cluster analysis resulted in formation of two distinct groups for 17 pigeonpea cultivars (Malviya and Yadav, 2010).

2.1.1.4 Amplified fragment length polymorphisms (AFLPs)

Amplified fragment length polymorphisms (AFLPs) is a highly sensitive PCR-based tool used in molecular biology to detect DNA polymorphisms. The technique includes i) digestion of total cellular DNA with one or more restriction enzymes and ligation of restriction half-site specific adaptors to all restriction fragments, ii) selective amplification of some of these fragments with two PCR primers that have corresponding adaptor and restriction site specific sequences iii) electrophoretic separation of amplicons on a gel matrix, followed by visualisation of the band pattern. AFLPs in 14 combination showed high level of polymorphism was observed between C. cajan and C. volubilis (62.08%) and C. cajan and R. bracteata (62.33%) while among cultivated types percentage of genetic variation was found to be very less (13.28\%) (Panguluri et al., 2006). A total of four combinations of AFLP markers were used for diversity analysis of 41 pigeonpea varieties of African (32) and Asian (9) origin. This study showed absence of major clustering pattern and population str atification and suggested that African and Asian pigeonpea were not genetically diverse (Wasike et al., 2005).

2.1.1.4 Diversity array technology markers (DArTs)

Diversity array technology (DArT) is a cost effective hybridization-based marker technology that offers a high multiplexing level while being independent of sequence information. This technology offers molecular breeding programs an alternative approach to whole-genome profiling. DArT works by reducing the complexity of a DNA sample to obtain a 'representation' of that sample. DArT markers were used to estimate diversity in 96 pigeonpea genotypes representing 20 different species of Cajanus. Of the total 700 markers, only 64 were found to be polymorphic among C. cajan accessions supporting existence of narrow genetic base in cultivated pool. Most of the diversity was restricted to wild relatives or between the wild and cultivated species (Yang et al.. 2006).

2.1.1.5 Microsatellites or simple sequence repeats (SSRs)

Microsatellites or simple sequence repeats (SSRs) are stretches of DNA. consisting of tandemly repeated short units of 1-6 basepair in length. SSRs have been shown to be part of or linked to some genes of agronomic interest as a result since long time SSRs have been drawing attention of scientific research for crop improvement. The positive attributes coupled with their multiallelic nature, co-dominant transmission, relative abundance, extensive genome coverage and requirement of only small amount of template DNA have contributed to the extraordinary increase of interest in SSRs in many organisms (Zane et al., 2002, Morgante et al., 2002). Traditionally, three approaches are used for identification and development of SSR markers: (i) construction of SSR-enriched library followed by sequencing of SSR positive clones (Gupta and Varshney, 2000), (ii) mining of EST (expressed sequence tag) transcript sequence generated by Sanger sequencing (Varshney et al., 2005) or short transcript sequences generated by next generation sequencing technologies (Varshney et al., 2009a), (iii) mining the BAC (bacterial artificial chromosome)- end sequences (BESs) (Mun et al., 2006). The development of SSR
markers from BESs circumvents the limitations of the first two approaches, as a large number of SSRs can be rapidly identified and such genomic SSRs tend to display higher level of polymorphism relative to transcript associated SSRs. In addition, BES-SSR markers serve a useful resource for integrating genetic and physical maps (Mun et al., 2006; Schultz et al., 2007; Schlueter et al., 2007). So far, the first two approaches have been used for developing SSR markers in pigeonpea with some success despite the labour-intensive and time consuming nature of the SSR enrichment and very low polymorphism levels of SSRs identified from the mining of transcript sequences.

First study based on these markers reported development of 20 SSRs, of which only half were polymorphic in cultivated pigeonpea germplasm (Burns et al.. 2001). Based on genomic DNA libraries another set of 20 SSRs makers was developed and used for diversity analysis of 15 cultivated and 9 wild relatives, as a result less diversity was detected in cultivated pigeonpea. Among different species least genetic distance and largest similarity coefficient was found between C. cajan and C. cajanifolius (Odeny et al., 2007). A total of 113 SSRs were developed from SSR enriched libraries of pigeonpea. These were used for diversity analysis of 24 pigeonpea breeding lines (Odeny et al., 2009). Similarly 23 SSRs were developed from SSR enriched genomic DNA library (Saxena et al., 2010a). Furthermore in another study 84 ESTSSRs assosiated with biotic stress resistance were developed (Raju et al., 2010).

2.1.1.6 Single nucleotide polymorphisms (SNPs)

Single nucleotide polymorphisms (SNPs) are highly abundant form of genetic variation present throughout the genome (Cho et al.. 1999; Rafalski, 2002). High frequency in genome makes SNP makers an attractive tool for mapping, maker-assisted breeding and map-based cloning (Batley et al., 2003). SNP marker are markers of choice for various application (Rafalski, 2002)
including marker assisted-breeding (Anderson and Lu"bberstedt 2003; Varshney et al. 2007), genetic diversity (Nasu et al., 2002; Varshney et al., 2007), association mapping (Jander et al., 2002), construction of high-density genetic map (Cho et al., 1999), genome wide linkage disequilibrium (Ching et al., 2002; Mather et al., 2007). Due to progress in SNP genotyping platform and assayin technologies, these markers tend to be moat preferred marker system in plant genomics studies. In case of pigeonpea no study on development of these markers has been reported till date.

Among various marker systems, simple sequence repeats (SSRs) or microsatellites and single nucleotide polymorphisms (SNPs) are considered the preferred marker systems for the genetics and breeding community (Gupta and Varshney, 2000; Gupta et al.. 1996). The first set of 10 SSR markers however became available only in 2001 (Burns et al., 2001). Subsequently, additional SSR markers have been generated at ICRISAT by using SSR-enriched library (Odeny et al., 2007, 2009; Saxena et al., 2010a) and about 200 SSR markers became available. Less than 10% SSR polymorphism in cultivated germplasm demanded the availability of large number of SSR markers for developing a useful set of SSR markers for pigeonpea breeding.

2.2 BAC-end Sequencing and SSR Mining

In past cloning and hybridization based procedures were used for identification of molecular markers. These procedures were low throughput, expensive and time consuming. In recent past bacterial artificial chromosome (BAC) library has proved to be a valuable resource for large scale development of genetic markers BAC based cloning was initially described by Shizuya and colleagues. Higher stability of BAC vectors over YAC (yeast artificial chromosome) makes BACs first choice for libraries construction in highthroughput genomic sequencing projects. The
end sequencing of the BACs is proven to be a useful resource for selecting minimally overlapping clones. In past BAC-end sequencing approach has been used for whole genome sequencing of many species. BAC libraries have been constructed for a variety of species such as rice (Wang et al., 1995), maize (Yim et al., 2002), sorghum (Woo et al., 1994), soybean (Shoemaker et al., 1996; Salimath and Bhattacharyya, 1999; Tomkins et al., 1999; Meksem et al., 2000). papaya (Ming et al., 2001), and apple (Vinatzer et al., 1998). These libraries have made invaluable contributions to plant genomic studies including map-based or positional cloning of genes. genome-wide physical map construction (Mozo et al., 1999; Klein et al., 2000: Chen et al., 2002; Han et al., 2007), genome sequencing (The Arabidopsis Genome Initiative, 2000; International Rice Genome Sequencing Project, 2005), and comparative genomics ($\mathrm{O}^{`}$ Neill and Bancroft, 2000; Ilic et al., 2003). BAC-end sequences (BESs) are valuable resources for the development of genetic markers such as BAC-end sequence based microsatellite markers (Shultz et al.. 2007). BAC end sequence provides a random survey of the information contents (genes, transposons, repeats) of unsequenced genomes (Lai et al.. 2006; Hong et al., 2007), and yields molecular markers useful for genetic mapping (Frelichowski et al.. 2006; Marek et al.. 2001 and Shultz et al.. 2007), and cloning of genes of agricultural interest (Coyne et al., 2007: Liang et al., 2007). Furthermore. in many agriculturally important species BAC clones and physical maps are being rapidly developed since they are essential components in linking phenotypic traits to the responsible genetic variation, to integrate the genetic data. for the comparative analysis of genomes, and to speed up marker-assisted selection (MAS) for breeding. It has been reported that analysis of BES data can provide an overview of microsatellites, of an unsequenced genome (Lai et al., 2006). SSR markers have proven to be the
best for this kind of analysis but where available in very low number, till date 156 SSRs have been for reported pigeonpea (Burns et al., 2001; Odeny et al., 2007, 2009).

2.3 Next Generation Sequencing Technologies

Genome sequencing is a robust method for gene discovery and for identifying transcripts involved in specific biological process. Over the past decade genome sequencing technology has become more efficient for complex genomes. Sequencing projects have provided not only the first insight into the gene complement for these tissue regions but also sets of genes involved in a number of biological processes. Several approaches were explored as a replace met to conventional Sanger sequencing technology these include sequencing by hybridization (Khrapko et al., 1989), mass spectrometry resolution (Koster et al., 1996), direct imaging of DNA sequence by atomic force microscopy (Hansma et al., 1992). other approaches include techniques based sequencing by synthesis (Hyman, 1988; Brenner et al., 2000) and microfluidics to sequencing (Woolley and Mathies, 1995). With the advent of reduced costs and higher throughput sequencing methods, expressed sequence tags (ESTs) can be economically generated for a wider range of organisms, thereby providing a more comprehensive assessment of an organism's transcriptome. In recent years, high-through expression profiling technologies like pyrosequencing have transformed molecular genetics approaches in legumes significantly (Margulies ef al., 2005). The advent of high throughput next generation sequencing technologies such as Roche FLX/454 sequencing developed by 454 Life Sciences (acquired by Roche), Solexa by lllumina Genome Analyser (Hayward, CA, USA) and SOLiD from ABI has created the potential for generating considerably increased amounts of information for many organisms including orphan legume crop like pigeonpea. Roche FLX/454 technology provide inexpensive, genome-wide information producing approximately 100 Mb sequence data in a single run,
contrasting to $\sim 440 \mathrm{~Kb}$ sequence data generated by Sanger sequencing (Mardis. 2008). While Illumina/Solexa 1G sequencing technology allows to sequence millions of short cDNA of average length of 35 bp per sample tag (read), reducing the library construction cost, runtime and also increasing the sensitivity. Presently, the improvised Illumina/Solexa IG technology generates $75+\mathrm{bp}$ reads for a total of $>33 \mathrm{~Gb}$ of paired-end data per run. Their efficient in-depth sampling of the transcriptome compared to Sanger sequencing has also been demonstrated (Hanriot et al., 2008). But the relatively shorter reads produced by these technologies is a major drawback. However, the availability of various denovo assembly software programs such as CAP3 (Huang and Madan 1999), PCAP (Huang et al., 2003), RePS (Wang et al., 2002), and Phusion (Mullikin et al., 2003). MAQ, SOAP, ELAND. MOSAIK, VALVET, EULER, SSAKE, SHARCGS can effectively assemble the shorter reads. Previously, combinatorial strategy involving cDNA normalization and FLX-454 deep sequencing platform has been employed in transcriptome characterization studies in Medicago (Cheung et al., 2006), Coral (Meyer et al., 2009), Melitaea cinxia (Glanville fritillary butterfly) (Vera et al., 2008) and many other nonmodel organisms.

Genomics-assisted breeding approaches have greatly advanced with the increasing availability of genome and transcriptome sequence data for several model plant and crop species (Varshney et al., 2009b). This platform provides a broad range of applications including whole genome sequencing (Green et al., 2006), transcriptome and gene regulation studies (Bainbridge et al., 2006: Berezikov et al., 2006). metagomics analysis and amplicon sequencing (Sogin et al., 2006; Taylor et al., 2007). Extremely efficient in-depth sampling of the transcriptome by these sequencing technologies as compared to Sanger sequencing has also been demonstrated in several plant species such as Medicago (Cheung et al., 2006), barley (Steuernagel et al., 2009),
etc. Trancriptome assembly not only contributes to identification of potential novel genes associated with specific tissues but it also allows us to address the key issue of gene expression structure in tissues. Furthermore, it is possible to search for genes that are expressed in a wide range of tissues, including genes that are of importance to embryonic development, because all the libraries used in the study are from various developmental stages. Gene discovery and gene expression are key objectives of most genome projects (Jantasuriyarat et al., 2005). A major current task in genomics is to characterize the functional importance of individual genes within the context of their interactions with other genes. The transcriptome of a particular species can be analyzed by sampling a large number of reads from normalized cDNA libraries constructed from different tissues or tissues from different developmental conditions or physiological stages (Gorodkin et al., 2007). Compared with non-normalized cDNA libraries, studies of normalized cDNA libraries depleted the abundance of transcripts and optimizes discovery of novel genes (Flinn et al., 2005).

2.3.1 Roche FLX/454 sequencing

Development of next generation sequencing technologies has significantly increased the volume of sequencing projects conducted by scientific community. Three main evolutionary improvements enabled genome sequencing projects in many species. These include, i) use of fluorescent tags instead of radioactive labels to detect the terminated ladders; ii) use of capillary electrophoresis in place of slab gels; and iii) development of paired-end sequencing protocols incorporating hierarchical template sizes (plasmids, fosmids and bacterial artificial chromosomes (BACs) to provide sequence context and orientation beyond the constraints of the actual sequence read-length in the conventional sequencing techniques (Meldrum, 2000). The 454 Life Sciences sequencing platform initiated the next generation sequencing by providing solution to
three main bottlenecks of conventional sequencing faced by scientific community i.e. library preparation, template preparation and sequencing (Christensen, 1997). As direct incorporation of natural nucleotides seemed more efficient than repeated cycles of incorporation, detection and cleavage, technology based on pyrophosphate release with an enzymatic cascade ending in luciferase and is detection by emitting light was used for Roche FLX/454 platform. Roche FLX/454 sequencing was based on moving both the template preparation step and the pyrosequencing chemistry to the solid phase (Ronaghi et al., 1996; 1998). Template DNA is nebulized and size-selected to produce a population of double-stranded fragments ranging from 400 to 600 bases. Two distinct oligonucleotide adapters are ligated onto the fragments, providing priming sites for subsequent amplification and sequencing. One of the adapters is biotinylated, permitting collection of single-stranded templates. The templates are amplified and immobilized by compartmentalizing individual template molecules and $28 \mu \mathrm{~m}$ DNA capture beads within droplets of an emulsion. PCR reactions conducted inside the droplets amplify the template molecules and complementary primers covalently attached to the DNA capture immobilize the product on the bead surface. Template-covered DNA capture beads are loaded into individual wells etched into the surface of a fiber-optic slide. The sequencing process uses an enzymatic cascade to generate light from inorganic pyrophosphate (PPi) molecules released by the incorporation of nucleotides as a polymerase replicates the template DNA (Margulies et al., 2005). Individual nucleotides are provided to the open wells by flowing them over the fiber-optic slide. The number of photons generated by the cascade is proportional to the number of nucleotides incorporated by the polymerase and the release of the PPi generated by the individual sequencing reactions (Figure 1). Initially the system generated $\sim 20 \mathrm{Mb}$ of 110 base-read per 8 hrs run, subsequent released product generated an average of 100 Mbs of 250 base-reads. Using
high density fiber-optic $400-600 \mathrm{Mbs}$ of data is generated per run with an average size of 450 bps. Assembly of 148 Mbp of Roche/454 ESTs obtained for multiple genotypes was aligned and 23,742 SNPs were found in Eucalyptus (Novaes et al., 2008) Roche FLX/454 sequencing of shoot apical meristem generated 261000 ESTs of which 30% were novel; ~ 400 unique ESTs were also identified, for which 27 genes were validated using RT-PCR (Emrich et al., 2007). A total of 292,465 ESTs were generated using Roche FLX/454 sequencing in Medicago, 184.599 unique sequences were identified. This study also include identification of 400 EST SSRs in Medicago (Cheung et al., 2006).

2.3.2 Illumina/Solexa 1G sequencing

In contrast to the 454 and ABI methods which use a bead-based emulsion PCR to generate "polonies", Illumina utilizes a unique "bridged" amplification reaction that occurs on the surface of the flow cell. The flow cell surface is coated with single stranded oligonucleotides that correspond to the sequences of the adapters ligated during the sample preparation stage. Singlestranded, adapter-ligated fragments are bound to the surface of the flow cell exposed to reagents for polyermase-based extension. Priming occurs as the free/distal end of a ligated fragment "bridges" to a complementary oligo on the surface. Repeated denaturation and extension results in localized amplification of single molecules in millions of unique locations across the flow cell surface (Figure 2). This process is referred to as Illumina's "cluster station". an automated flow cell processor. A flow cell containing millions of unique clusters is now loaded into the 1 G sequencer for automated cycles of extension and imaging. The first cycle of sequencing consists first of the incorporation of a single fluorescent nucleotide, followed by high resolution imaging of the entire flow cell. These images represent the data collected for the first base. Any signal above background identifies the physical location of a cluster (or polony), and the fluorescent
emission identifies which of the four bases was incorporated at that position.This cycle is repeated, one base at a time, generating a series of images each representing a single base extension at a specific cluster. Base calls are derived with an algorithm that identifies the emission color over time. At this time reports of useful Illumina reads range from 26-50 bases. Illumina/Solexa 1G sequencing was used for identification of $8,23,325$ unique SNPs in Arabidopsis (Ossowski et al., 2008). Illumina/Solexa IG sequencing generated 574 Mbp data which was used to identify and mark repetitive regions and define putative gene space in barley (Wicker et al., 2008).

2.3.3 Applications of NGS technology

NGS technologies have already been used for variety of applications, such as development of SSR and SNP- based molecular markers. Applications of NGS technology resequencing of wellcharacterized sp. (Ossowski et al., 2008), de novo sequencing of crop sp. without reference sequence (Hiremath et al., unpublished), association mapping using natural population, expression and nucleotide polymorphism in transcriptome, wide crosses and alien introgression, population genetics and evolutionary biology, organeller and genome-wide assembly (Varshney et al., 2009a).

2.4 SNP Genotyping Platform

In contrast to other marker system, allele discrimination cannot be based on size difference on gel in case of SNP. Many SNP genotypying platforms have been developed over the past years. These technologies include i) allele specific hybridization, ii) primer extension, iii) oligonucleotide ligation iv) invasive cleavage (Sobrino et al., 2005). The detection procedure for analyzing the products of these allele discriminating reaction include a) gel electrophoresis, b) fluorescence resonance energy transfer (FRET) c) fluorescence polarization, d) array or chips, e)
luminescence, f) mass spectrophotometry. The KBiosciences PCR SNP genotyping system is a novel homogeneous fluorescent genotyping system which utilizes a unique form of allele specific PCR. This platform offers very high SNP to assay conversion rate, is flexible and offers ability to perform direct or indirect assays, works well in 96,384 or even 1536-well plate formats. KASPar assay is the most cost-effective SNP typing system, accurate, reproducible and requires small amounts of sample material. The KASPar assay system relies on the discrimination power of a novel form of competitive allele specific PCR to determine the alleles at a specific locus within genomic DNA for SNP typing. Traditionally, allele specific PCR (ARMs) has been shown to work by a number of groups worldwide. A number of improvements to this technique have been made in the past few years. The most significant of these is the use of 3' - 5' exonuclease deleted Taq DNA polymerases. These deleted Taq's increase the discriminating power of the technique, however the technique can still suffer from extension of the incorrect allele, providing false positive signals. This technique employs a novel form of allele specific PCR that is distinct and different from ARMS. This increases the robustness and discriminating power of the technique. A novel fluoresence resonance energy transfer (FRET) homogeneous format is now available for this technique. The concordance rate has been shown to $>99.5 \%$ with an error rate and reproducibility to be $<0.3 \%$.

2.4 Genetic Mapping

Genetic mapping is an important subject in biological research. Molecular markers and genetic maps are important pre-requisites for undertaking molecular breeding methodologies for crop improvement. Furthermore crop improvement programs has benefited from genetic diversity and mapping studies (Varshney et al., 2006). A genetic map is based on the frequencies of recombination between molecular markers or gene loci during crossover of homologous
chromosomes. The greater the frequency of recombination (segregation) between two genetic markers, the farther apart they are assumed to be. Conversely, the lower the frequency of recombination between the markers, the smaller the physical distance between them. This is the procedure of locating the molecular marker or gene loci/QTLs in order, indicating the relative distance among them and assigning them to their linkage group on the basis of their recombination value from all pair-wise combination. A genetic map acts like a road map of chromosome representing the recombination of loci derived from two different parents. Genetic linkage was first discovered by the British geneticists William Bateson and Reginald Punnett shortly after Mendel's laws were rediscovered. The understanding of genetic linkage was expanded by the work of Thomas Hunt Morgan. Morgan's observation that the amount of crossing over between linked genes differs led to the idea that crossover frequency might indicate the distance separating genes on the chromosome. Alfred Sturtevant, a student of Morgan's, first developed genetic maps, also known as linkage maps. It has been proposed that the greater the distance between linked genes, the greater the chance that non-sister chromatids would cross over in the region between the genes. A linkage map is created from analysis of many segregating markers, ideally avoiding having the inaccuracies that will occur due to the possibility of multiple recombination events. the construction of genetic map involves i) production of mapping population; ii) identification of polymorphism between parental genotypes for moleular markers and iii) linkage analysis of markers. By working out the number of recombinants it is possible to obtain a measure for the distance between the genes loci. This distance is called a genetic map unit (m.u.) or a centimorgan (cM) and is defined as the distance between genes for which one product of meiosis in 100 is recombinant. A recombinant frequency (RF) of 1% is equivalent to 1 m.u. But this equivalence is only a good approximate
for small percentages; the largest percentage of recombinants cannot exceed 50%, which would be the situation where the two genes are at the extreme opposite ends of the same chromosomes i.e 'unlinked' (Kearsey and Pooni, 1996). In this situation, any crossover events would result in an exchange of genes, but only an odd number of crossover events (a $50-50$ chance between even and odd number of crossover events) would result in a recombinant product of meiotic crossover. A statistical interpretation of this is through the Haldane mapping function or the Kosambi mapping function, among others. A linkage map is created by finding the map distances between a number of genetic marker or gene loci that are present on the same chromosome, ideally avoiding having significant gaps between traits to avoid the inaccuracies that will occur due to the possibility of multiple recombination events. Linkage is calculated using odds ratios. This ratio is expressed in the form of logarithm of odds (LOD) value or LOD score (Risch, 1992). LOD is a statistical estimate of whether two loci (the sites of genes) are likely to lie near each other on a chromosome and are therefore likely to be inherited together as a package. A LOD score of three or more is generally taken to indicate that two gene loci are close to each other on the chromosome. A LOD score of three means the odds are a thousand to one (i.e 1000:1) in favor of genetic linkage. This LOD score can be lowered down in order to integrate makers within map constructed at higher LOD value. Software programs used for the generation of genetic maps include Mapmaker/ EXP (Lander et al., 1987; Lincoln et al., 1993) most commonly used software and MapManager QTX (Manly et al.. 2001). GMendel (http://cropandsoil.oregonstate.edu/Gmendel), MSTMap (Wu et al., 2008). Another commonly used software is JoinMap which is used for map construction as well as combining maps developed from other mapping populations.

3. MATERIALS AND METHODS

3.1 Plant Material

With an objective of developing BAC- libraries pigeonpea accession Asha (ICPL 87119) was used. Seeds of Asha were grown under greenhouse conditions to the seedling stage and transferred to continuous darkness for 2 days prior to use. Developed libraries were used for end sequencing and identification of SSRs. Parents of an inter-specific mapping population ICP 28 and ICPW 94 were used for validation of identified SSR markers. Pusa Ageti (ICP 28) an early maturing pigeonpea variety was selected for cDNA normalization, library construction and transcriptome studies. Seeds were sown in pots (5 seeds per pot), maintained at glass-house. Four pigeonpea genotypes ICPL 87119. ICPL 87091, ICP 28 and ICPW 94 were used for identification of SNP markers using Illumina sequencing technology.

3.2 Identification and Validation of SSR markers

3.2.1 BAC-library construction and end sequencing

Nuclei were isolated and embedded in low melting point agarose, size selection by means of two rounds of pulsed field gel electrophoresis was carried out for BamHI and Hindlll digested DNA. Large size DNA fragments were ligated in vector pCC 1 BAC and transformed by electroporation in to Epicenter's E.coli EPI300-TIR cells. The insert sizes for each library were estimated based on pulsed field gel electrophoresis of Notl-digested BAC DNA. End sequencing was performed for the positive clones. There were 88,860 useful BES reads. Output sequence data was converted into FASTA format and vector sequences were masked. Terminal vector sequences were then trimmed and BESs shorter than 100 bp were discarded.

3.2.2 Mining of SSRs

BAC-end sequences were used for mining of microsatellite markers using Perl based MIcroSAtellite (MISA) search module (Varshney et al.. 2002) which is capable of identifying perfect as well as compound SSRs. All sequences with a size more than 100 bps were placed in a single text file in FASTA format, this file was used as an input for MISA. The criteria used for the identification of true SSR included minimum ten repeats for mono, six repeats for di and five repeats for tri-, tetra-, penta- and hexa-nucleotide for simple SSRs. Two SSRs separated by 100 nucleotide bases were considered under compound SSRs class. The sequence complimentarity was considered while classifying these microsatellites.

3.2.3 Primer designing

Designing of primer for identified SSR was done through standalone Primer3 program using MISA generated Primer 3 input file. The criteria used for designing primer pairs included Tm range of $57^{\circ} \mathrm{C}-60^{\circ} \mathrm{C}$ with an average of $59^{\circ} \mathrm{C}$., amplicon size $100-280 \mathrm{bps}$, primer length $20 \pm$ 5 bp and GC\% 50 ± 5. Primers designed for Mononucleotide were excluded. M13 dye labelled primer pairs were synthesized for selected 3072 SSRs. The redundancy in the identified SSRs in terms of BAC clones was removed through cluster analysis. As result, from each clone single primer pair was selected for synthesis.

3.2.4 Screening on parental genotypes of mapping population

Amplification profile of 3072 BES-SSR primer pair was checked on two pigeonpea genotypes ICP 28 and ICPW 94. PCRs were performed in a $5 \mu \mathrm{l}$ reaction volume $[0.5 \mu \mathrm{l}$ of 10 X PCR buffer, $1.0 \mu \mathrm{l}$ of $15 \mathrm{mM} \mathrm{MgCl} 2,0.25 \mu \mathrm{l}$ of $2 \mathrm{mM} \mathrm{dNTPs}, 0.15 \mu \mathrm{l}$ of 2 pM primer anchored with MI3-tail (MWG-Biotech AG, Bangalore, India), 0.1 U of Taq polymerase (Bioline, London,

UK), and $1.0 \mu \mathrm{l}$ (5 ng) of template DNA] in 96-well micro titre plate (ABgene, Rockford, USA) using thermal cycler GeneAmp PCR System 9700 (Applied Biosystems, Foster City, USA). Touch-down PCR program was used for this reaction which included Initial denaturation at $94^{\circ} \mathrm{C}$ for $15 \min 5$ cycles of denaturation at $94^{\circ} \mathrm{C}$ for 20 sec touchdown from $60^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(1{ }^{\circ} \mathrm{C}\right.$ decrease in each cycle) extension at $72^{\circ} \mathrm{C}$ for 30 sec for next 31 cycles, denaturation at $94^{\circ} \mathrm{C}$ for 20 sec annealing at $55^{\circ} \mathrm{C}$ for 20 sec extension at $72^{\circ} \mathrm{C}$ for 30 sec final extension at $72^{\circ} \mathrm{C}$ for 20 min . Amplified primer pairs were initially visualized for amplicon bands using 1.2% agarose gel, capillary electrophoresis on ABI (3730) analyser was then used to further resolve fragment for better data analysis to assess polymorphic markers.

3.3 Development of Pigeonpea Trancriptome Assembly

3.3.1 Roche FLX/454 sequencing

Pusa Ageti (ICP 28) variety of pigeopea was used for construction of Roche FLX/454 sequencing based trancriptome assembly of pigeonpea (CcTA). In order to maximize the diversity of expressed genes in pigeonpea, different developmental stages of tissue samples were targeted for collection and construction of cDNA library. These tissue samples included embryo, cotyledon, root and shoot primordia. apical meristem, leaves, senescence leaves, flowers, stamen, and roots (Figure 3) harvested from several individual glass-house grown pigeonpea plants at different time intervals. This was done with an objective to induce gene expression associated with those developmental processes. Tissues were washed briefly with 0.1% DEPC water and then were frozen in liquid nitrogen. Total RNA was extracted from all the harvested tissues using modified hot-acid phenol method (Schmitt et al., 1990). The integrity and purity of all the samples were assessed both on 1.2% formaldehyde agarose gel and UV Spectrophotometer at
$\mathrm{A}_{260}: \mathrm{A}_{280}$. An equal amount of each appropriate RNA sample was pooled to form a composite collection of total RNA sample for each tissue. Eleven cDNA libraries were constructed from each tissue sample to characterize specific stages of gene expression (Figure 4).

In order to minimize differences among the abundance of different transcripts (i.e., genes expressed at different levels), amplified cDNA was normalized employing the Smart cloning methodology (Ouyang and Buell, 2004; Zhu et al., 2001) using the services of Evrogen [www.evrogen.com] and Sfi IA/B primers/adapters that permit directional cloning. Briefly, starting from RNA, reverse transcription was carried out using the pooled RNA samples. The primer annealing mixture ($5 \mu \mathrm{l}$) containing $0.3 \mu \mathrm{~g}$ of total RNA; 10 pmol SMART-Sfi IA oligonucleotide (5'-AAGCAGTGGTATCAACGCAGAGTGGCCATTACGGC CrGrGrG- 3') and 10 pmol CDS -Sfi IB primer (5^{\prime}-AAGCAGTGGTATCAACGCA GAGTGGCCGAG $\left.\operatorname{GCGGCCd}(\mathrm{T}) 20-3^{\prime}\right)$ was heated at $72^{\circ} \mathrm{C}$ for 2 min and cooled on ice for 2 min . First-strand cDNA synthesis was carried out by the addition of PowerScript Reverse Transcriptase (BD Biosciences Clontech) in a final volume of $10 \mu \mathrm{l}$, containing IX First-Strand Buffer (50 mMTris $\mathrm{HCl}(\mathrm{pH} 8.3) ; 75 \mathrm{mMKCl} ; 6 \mathrm{mM} \mathrm{MgCl} 2): 2 \mathrm{mM}$ DTT; 1 mM of each dNTP, incubated at $42^{\circ} \mathrm{C}$ for 1.5 hr and then cooled on ice. The first-strand cDNA was diluted 5 times with TE buffer, heated at $72^{\circ} \mathrm{C}$ for 7 min and used for amplification by Long-Distance PCR in a $50 \mu \mathrm{l}$ reaction containing 1μ diluted first-strand cDNA, 1X Advantage 2 reaction buffer (BD Biosciences Clontech), $200 \mu \mathrm{M} \quad \mathrm{dNTPs}, \quad 0.3 \quad \mu \mathrm{M}$ SMART PCR primer (5'-AAGCAGTGGTATCAACGCAGAGT- 3^{\prime}) and $1 X$ Advantage 2 Polymerize mix (BD Biosciences Clontech). 18 PCR cycles were performed using the following parameters: $95^{\circ} \mathrm{C}$ for $7 \mathrm{sec} ; 65^{\circ} \mathrm{C}$ for $20 \mathrm{sec}: 72^{\circ} \mathrm{C}$ for 3 min . Amplified doubled standard cDNA product was purified using QIAquick PCR Purification Kit (QIAGEN. CA), concentrated by ethanol precipitation and
adjusted to a final concentration of $50 \mathrm{ng} / \mu \mathrm{l}$. For cDNA normalization, $3 \mu \mathrm{l}$ (about 150 ng) purified dscDNA plus I $\mu \mathrm{l}$ 4X Hybridization Buffer (200 mM HEPES-HCl, pH $8.0 ; 2 \mathrm{M} \mathrm{NaCl}$) was overlaid with one drop of mineral oil, denatured $95^{\circ} \mathrm{C}$ for 5 min and then allowed to anneal at $68^{\circ} \mathrm{C}$ for 4 h . The following preheated reagents were added to the hybridization reaction at $68^{\circ} \mathrm{C}: 3.5 \mu \mathrm{l}$ milliQ water; $1 \mu \mathrm{l}$ of 5 X DNAse buffer (500 Mm Tris-HCl, pH $8.0 ; 50 \mathrm{mM} \mathrm{MgCl} 2$, 10 mM DTT): $0.5 \mu \mathrm{l}$ double-strand nuclease (DSN) enzyme. After a period of 30 min . incubation at $65^{\circ} \mathrm{C}$, the DSN enzyme was inactivated by heating at $95^{\circ} \mathrm{C}$ for 7 min . The normalized cDNAs samples were diluted by adding $30 \mu \mathrm{l}$ of milliQ water and used for PCR amplification. The PCR reaction $(50 \mu \mathrm{l}$) contained $1 \mu \mathrm{l}$ diluted cDNA ; IX Advantage 2 reaction buffer (BD Biosciences Clontech); $200 \mu \mathrm{M} \mathrm{dNTPs} ; 0.3 \mu \mathrm{M}$ SMART PCR primer; 1X Advantage 2 Polymerize mix (BD Biosciences Clontech) and was amplified for 18 cycles of $95^{\circ} \mathrm{C}$ for $7 \mathrm{sec} ; 65^{\circ} \mathrm{C}$ for $20 \mathrm{sec} ; 72^{\circ} \mathrm{C}$ for 3 min . One part of the amplified, normalized adapter-ligatedcDNA population was digested with Sfil and directionally cloned into Clontech'sp DNR vector at the SfiA/B sites. For 454 sequencing, approximately, $3 \mu \mathrm{~g}$ of the final normalized, adaptor-ligated cDNA population was sheared via nebulization into small fragments a few hundred base pairs in length. The fragment ends were made blunt and short adaptors which provide the priming sequences for both amplification and sequencing of the sample library fragments were ligated onto both ends. These adaptors also provide a sequencing key (a short sequence of four nucleotides) which was used by the system software to recognize legitimate library reads. Next, the library was immobilized onto streptavidin beads, facilitated by a 5^{\prime} biotin tag on Adaptor B, and any nicks in the double stranded library are repaired. Finally, the unbound strand of each fragment (with 5'-Adaptor A) was released, and the recovered single-stranded DNA library's quality is assessed.

3.3.2 Sequence data assembly and clustering

All the sequence analyses were conducted using publicly available software and custom Perl scripts. Quality trimming of the sequences was done by removing adapter sequences and short sequences (< 50 nucleotides) for the assembly process as this will lead to false joining of reads, and chimeras that were sequenced and reduced the quality of unique sequences. The vector trimmed high quality sequences were selected for further clustering and alignment into tentative unique sequences (TUSs) using the CAP3 program (Huang and Madan, 1999). The assembly included the publicly available 10,817 ESTs of pigeonpea along with the Roche/454 pyrosequencing reads.

3.3.3 Characterization of pigeonpea 454 trancriptome assembly

3.3.3.1 Identification of paralogous

The analysis was conducted. using both. the contig consensus sequences as well as the singletons following assembly. The longest open reading frame was identified using EMBOSS: getorf (http://emboss.open-bio.org/wiki/Appdocs) to identify all open reading frames and a custom script to retain only the longest. Clustering of these sequences followed using a virtual suffix tree generation with six frame translation using Vmatch (Beckstette et al.. 2006). Gene families of size 2-6 were clustered with the parameters i.e. subject percent match of 85 and query percent match of 70, a minimum length of 20 amino acids and an exdrop of 30 . Pair wise alignments were obtained using ClustalW (Thompson et al.. 1994) and synonymous distances (Ks values) calculated using the method of Goldman and Yang (1994) as implemented in PAML (Yang 1997).

3.3.3.2 Alignment of 454 pigeonpea sequence assemblies to soybean genome

Alignment of pigeonpea TUSs with soybean genome was done using GMAP. This alignment was done by considering a stringency criterion of 90% identity and 80% coverage. For alignment, maximum intron length was considered as $20,000 \mathrm{bp}$ and the number of introns per gene fragment was considered as 8 . Poor and repetitive sequences were discarded. To get the best hit and multiple equally-good matches, the highest scoring alignment satisfying stringency criteria was taken as the best hit. Alignments within 1% identity and 1% coverage were considered as multiple equally-good matches.

3.3.3.3 Functional annotation and similarity search

Homology searches were performed against non-redundant (nr) nucleotide sequences of soybean (Glycine max- 351,935), Medicago (Medicago truncatula- 217,148), lotus (Lotus japonicus148,617), common bean (Phaseolus vulgaris- 21,807), wild soybean (Glycine soja-18,419), red clover (Trifolium pretense- 37.860), grape wine (Vitis vinifera- 312,911), black cotton wood (Populus trichocarpa- 89,198), Arabidopsis (Arabidopsis thaliana-616,064) and rice (Oryza sativa-1,169,591) available at the TIGR Plant Transcript Assemblies database using BLASTN algorithm at a significance threshold of $\leq 1 E-30$.

TUSs were compared with UniRef non-redundant protein database from UniProt knowledgebase using BLASTX algorithm to deduce a putative function. Sequence similarity was considered best at a bit-score greater than 50 and a significant e-value $\leq 1 E-08$. Each TUS was assigned a putative cellular function based on the significant database hit with the lowest E-value. Subsequently, TUSs that showed a significant BLASTX hit were used for functional annotation based on Gene Ontology categories from UniProt database (UniProt-GO). This process allowed assignment of TUSs to the GO functional categories of biological process, cellular component
and molecular function. Distribution of TUSs was further investigated in terms of their assignment to sub-categories of the main GO categories. In each main category, the percentages of sub-categories distribution do not add up to 100% because some deduced proteins have more than one GO category.

3.4 Identification of SNPs

3.4.1 Illumina/ Solexa 1G sequencing and SNP identification

Pigeonpea genotypes i.e. ICPL87119, ICPL87091, ICP 28 AND ICPW 94 were subjected to Illumina/ Solexa IG sequencing. A total of fifteen seeds from each of these genotypes were grown in green house. Total RNA from root tissue was extracted using modified hot-acid phenol method (Schmitt et al.. 1990). cDNA libraries of these four genotypes were subjected to Illumina/ Solexa 1G sequencing. Identification of SNPs from Illumina data was carried out using the Alpheus software system (Miller et al., 2008). SNPs were identified on the basis of alignment of Illumina reads generated from each of the genotypes against a reference- in this case. the 454based pigeonpea trancriptome assembly and respective counter genotype, allowing not more than two mismatches. Based on alignment results, variants at a particular nucleotide position were identified. Significant variants were selected based on two criteria i) allele frequency between two genotypes >0.8, and number of tags aligned to the reference >5.

3.4.2 Development of SNP genotyping platform

KASPar genotyping platform was developed using the identified SNPs. The selection of SNPs was done based on three criteria i) SNPs positions containing 60 bps flaking sequences, ii) Frequency difference between two alleles ≥ 0.8 iii) read depth ≥ 5.

3.5 Construction of Genetic Maps

Genotyping data were assembled for all segregating makers from $79 \mathrm{~F}_{2}$ lines of ICP $28 \times$ ICPW 94 mapping population and linkage analysis was performed with the help of Joinmap v 4.0 (Van Ooijen, 2006). Prior to linkage mapping, marker segregations in the populations were subjected to goodness of fit test to assess deviations from the expected Mendelian segregation ratio of 1:2:1. "Locus genotype frequency" function was used to calculate the chi-square values for all the markers. Distorted markers were also included for linkage analysis. Both the component maps were constructed using "Regression mapping algorithm" which relies on sequential addition of markers into a linkage group which starts from the most informative pair of loci (Van Ooijen, 2006). Linkage groups were determined based on "Independence test LOD score". Placement of markers into different linkage groups was done with "LOD groupings" and "Create group using the mapping tree" commands. Map calculations were performed with parameters like LOD value ≥ 2.0, recombination frequency ≤ 0.40 and a chi-square jump threshold for removal of loci $=5$. Addition of a new locus may influence the optimum map order, hence a "Ripple" was performed after adding each marker into map. Map distances were calculated using Kosambi mapping function (Kosambi, 1944) and third round was set to allow mapping of optimum number of loci in genetic map. Mean chi-square contributions or average contributions to the goodness of fit of each locus were also checked to determine the best fitting position for markers in genetic map. The markers showing negative map distances and large jump in mean chi-square values did not fit those map positions hence were discarded from mapping. Final map was drawn with the help of Mapchart 2.2 (Voorrips, 2002).

4. RESULTS

4.1 Development of Microsatellites Markers from BAC-end Sequences

With an objective to develop genomic recourses in pigeonpea and increase marker repertoire BAC-end sequencing approach was used to obtain a set of BAC-associated SSRs.

4.1.2 Development of BAC-end sequences and identification of SSRs

Development of BAC-end sequences based SSRs may provide a foundation for both genetic and physical map analysis. Under this approach two BAC libraries were constructed one using HindIII and other using Bam H 1 restriction enzymes. The HindIII library is composed of 34,560 clones with an estimated average insert size of $120,000 \mathrm{bp}$, while the BamH 1 library is composed of 34,560 clones with an estimated average insert size of $115,000 \mathrm{bp}$. These clones combinely represent $\sim 11 \mathrm{X}$ coverage of the pigeonpea genome. A total of 50,000 randomly selected BAC clones were subjected to end sequencing which resulted in generation of 88.860 BAC end sequences (BES) with an average read length of 620 bp . Most of the $50,000 \mathrm{BAC}$ clones contain high quality sequence from both ends. The combined data represent $\sim 56 \mathrm{Mbp}$ of DNA sequences, which were submitted to the National Center for Biotechnology Information (NCBI) Genome Survey Sequence (GSS) database.

As a prelude to the comprehensive analysis these BAC-end sequences were analyzed for redundancy between clones and for sequence content as well as for removal of cytoplasmic organellar sequences using the annotation pipeline shown in Figure 5. Sequences were clustered using criteria of $\geq 95 \%$ identity and $\geq 200 \mathrm{bp}$ overlap, producing a set of 41,736 singleton sequences and 10,711 sequence clusters. This non-redundant sequence set was filtered for rRNA, chloroplast and mitochondrial sequences using $\operatorname{BLAST}^{*} \mathrm{~N}^{\bullet}$ against datasets of the corresponding
sequence types, yielding a set of 41,329 singletons and 10,610 non-redundant BESs that were presumed to derive from the nuclear genome. In total this non-redundant nuclear genome dataset surveys 35 Mb or $\sim 4.3 \%$ of the pigeonpea genome.

4.1.3 Functional annotation of BESs

A series of parallel analyses were performed to annotate the features of singletons and clustered BESs. Similarity to transcribed sequences or known proteins was assessed by BLAST'N' and BLAST' X ’ of sequences against the TIGR plant transcript assemblies (http://plantta.jcvi.org/) and the National Center for Biotechnology (NCBI) information non-redundant protein database, respectively, using an E-value cutoff of $<1.00 \mathrm{E}^{-20}$. Further evidence of protein coding regions, as well as standardized nomenclature, was obtained by queries against the Interpro and GeneOntology Molecular Function databases. Similarity to known plant repeat sequences was assessed by BLAST $\mathrm{N}^{`}$ and $\mathrm{IBLAST}^{\prime} \mathrm{X}^{`}$ against a database of plant repeat sequences (http://www.jcvi.org). Based on the compiled information, BESs were subdivided into five primary categories: (1) non-annotated, (2) gene-containing, (3) retroelement-containing, (4) transposable element-containing, and (5) organelle- or ribosomal rRNA-containing, as shown in Figure 6 and Table 1. Most sequence annotations were supported by multiple lines of evidence and a fraction of sequences were predicted to include both genes and either retroelements or transposable elements. Non-annotated sequences accounted for the majority of BAC ends, representing 53% of all non-redundant singletons and clusters, while nearly equal proportions of BESs were annotated as genes (21%) or retroelements (22%). It is likely that the retroelement category is an underestimate, because many of the most abundant Interpro descriptors within the "gene" category, such as "DNA/RNA Polymerase", are equally consistent with either "gene" or
"retroelement". In the absence of additional annotation supporting classification as a retroelement, such sequences were classified as "gene".

Clustering of sequences as singletons or contigs provides a relative measure of sequence copy number (Table 1). As shown in Figure 7 a and b , greater than 80% of sequences annotated as either gene or non-annotated were associated with clusters of depth <5 (Figure 7a) and their relative prevalence declined rapidly with cluster depth >1 (Figure 7b). By contrast, nearly 50\% of all retroelement-containing sequences and 33% of all transponson-containing sequences were associated with clusters of depth >5, and they accounted for the vast majority of clusters with depth >10 sequences. Thus. sequence cluster depth supports the truism that mobile elements (i.e., retroelements and transposable elements) are often members of repetitive sequence families, while genes and intergenic regions (here we equate non-annotated sequences with intergenic regions) typically reside in less repetitive regions of the genome.

4.1.4 Identification of BES-SSR

With the goal of increasing genetic marker density we have used BAC- end sequencing approach to identify SSR markers in pigeonpea. A total of 88,860 BES sequences were generated and were used for mining of SSRs markers. As a result of this 18,149 SSRs (1 SSR per 3.11 Kbp) were identified in 14.001 BESs representing 6,590 BAC clones. 3,124 BESs contained more than one SSR. A total of 2,111 SSRs were present in compound form (Table 2). Among these 6665 (71.53%) were defined as class Il SSR $(10 \leq \mathrm{n}<20 \mathrm{bp})$ and 2652 were class I SSR $(\geq 20 \mathrm{bp})$. 2111 SSRs were found to be in compound formation. Maximum number of bases interrupting two SSRs in compound formation was 100 .

4.1.5 Frequency and distribution of SSRs

Frequency of different SSRs identified during the present study revealed that mono and dinucleotide were the most abundant classes with 8,827 mono-nucleotide repeats (48%) and 7,617 dinucleotide repeats (41%) of total SSRs, followed by tri- nucleotides sharing $8 \%(1,441)$ of total SSRs. Apart from this tetra-, penta- and hexa- nucleotide SSRs occurred at lower proportions which combinely account for arround 2% of total SSRs (Table 3). Among mononucleotide repeats A / T (8631) was significantly more abundant than C / G (196). These all mononucleotide were excluded from the present study. Among di-nucleotide repeat four types (AT, GC, AG and AC), AT was most common (4309) followed by AG (1953) and AC (1343) on the other hand GC (12) motifs were least common. All ten possible types of tri-nucleotide repeats were found in these BESs. Among these AAT/TTA motif was most common followed by AAG/CTT motif. Among the 11 different types of tetra nucleotide repeat motifs AAAT/TTTA was found to be most common. The total number of penta-nucleotide repeat motifs was eight and all of these were rare. Maximum numbers of different motif classes were recorded for hex nucleotide repeat motifs (total 21 types). Among these ACACCT/ATGTGG was most abundant.

4.1.6 Correlation between BAC end annotation and SSR occurrence

After excluding all mono-nucleotide repeat SSRs and SSRs with length $<10 \mathrm{bp}$, the remaining 6,212 SSRs were selected for further analysis. These 6,212 SSRs were derived from 4,614 nonredundant BAC ends (singletons and clusters), 17 of which were annotated as organelle (15 chloroplast and 2 mitochondria).

The remaining 4.597 non-redundant BESs were divided among the four annotation categories, as shown in Table 1. Eighty-nine percent of these SSR-containing BESs (SSR-BESs) were either non-annotated or gene-containing, while 9.8% were retroelement-containing (Figure 8 and Table 1). The rate of SSR occurrence per 100 kb also differs considerably between annotation
categories, consistent with the uneven discovery of SSRs between annotation categories. Thus, SSRs are twice as frequent per 100 kb in gene-containing (G) and non-annotated (NA) sequences compared to retroelement-containing (RE) sequences (Table 1 and Figure 8). Consistent with the likely pressure of purifying selection, BAC ends containing tri-nucleotide repeats were more likely to be annotated as genes (31%), compared to the remaining SSR-containing BAC sequences (22% annotated as genes).

For purposes of developing a uniform analysis of known pigeonpea SSRs, we obtained 457 SSRs submitted to NCBI GeneBank by researchers at the University of Bonn (Odney et al. 2007; Saxena et al., 2009). Both of these publicly available SSR sets were generated using PCR-based microsatellite enrichment strategies. As shown in the Table 1, the relative distribution of SSRs between genome fractions differs substantially for SSRs obtained by means of genome enrichment compared to random BAC end sequencing. In particular. genome-enrichment methodologies produced approximately three times the rate of retroelement-associated SSRs and ~ 100-fold increase in the rate of SSRs derived from organelle or rRNA sequences, most of which were chloropast derived (data not shown).

4.1.7 Development of novel SSRs markers

Microsatellites are categorized into two groups based on length of SSR tracts and their potential as informative genetic marker: hypervariable Class I and potiantially variable Class II SSR. (Temnykh et al. 2001). All the microsatellites having a repeat length of $\geq 10 \mathrm{bp}$ for di-, $\geq 15 \mathrm{bp}$ for tri-,$\geq 20 \mathrm{bp}$ for tetra-, $\geq 25 \mathrm{bp}$ for penta and $\geq 30 \mathrm{bp}$ for hexanucleotide were selected for SSR marker development. A result a total of 6,590 primer pairs were designed. Out of designed primer pairs, a total of 3,072 primer pairs were synthesized (Table 4). Primer pairs were designed to amplify sequences containing both perfect and compound SSRs. These 3072 primers are
designated as ' CcM^{\prime} ' markers prefix CcM indigating Cajanus cajan microsatellite. All primer pairs were first evaluated for successful PCR amplification on genomic DNA of two parental genotypes of mapping population i.e. ICP 28 and ICPW 94. Among these primer pairs 3026 (98.5%) showed successful amplification.).The tetra- and penta- nucleotide motifs had the highest success rate (100%) of PCR amplification followed by compound tri and di nucleotide repeats. Hexanucleotide repeats were having 97.67% amplification. (Figure 9). Of the all repeat motifs (AT)n repeats were having lesser level of amplification.

4.1.8 Polymorphism assessment of BES-SSR

BES-SSRs with successful PCR amplification were used for polymorphism assessment on the parental genotypes using capillary electrophoresis. As a result of this, 378 polymorphic SSRs were identified. Identified polymorphic SSRS were used for genotyping of $79 \mathrm{~F}_{2}$ lines of ICP 28 \times ICPW 94 mapping population.

4.2 Development of Transcript assembly for Pigeonpea

4.2.1 Clustering and assembly of transcript reads

A comprehensive set of 31 different plants developmental stages from early vegetative growth until development of reproductive organs (Figure 2) were collected for isolation of cDNAs. These cDNAs were pooled and normalized. Roche/454 sequencing of this normalized cDNA pool generated a total of 494.353 short transcript reads (STRs) were generated with an average length of 171 bp . In addition at the time of data analysis, 10,817 Sanger ESTs with average read length 527 bp were available in public domain. These two sequence datasets were analyzed separately as well as combinly. Based on analysis of 454 STRs, 52,827 contigs containing 354,131 STRs with an average length of 262 bp including 4.308 high confidence singletons were
identified. Out of 48,519 contigs about $53.2 \%(25,850)$ were shorter than 250 bps . Remaining 140,222 STRs remained singletons. On the other hand Sanger ESTs analysis provided 746 contigs with an average length 637 bp and the remaining 5,553 Sanger ESTs were termed singletons. In order to develop a transcriptome reference in pigeonpea, 505,170 Roche/454 STRs and Sanger ESTs were assembled to yield a total of 127.754 tentative unique sequences (TUSs), with $\sim 61.8 \%(79,028)$ singletons and the remaining 38.1% aligned to form 48,726 contigs with an average length of 273 bp (Figure 10) and maximum length of $2,067 \mathrm{bp}$ (Contig 48542). A total of $3,006(6.1 \%)$ contigs measured more than 500 bp in length. The detailed analysis of length distribution of 454/FLX STRs, Sanger ESTs and assembled 454 STRs and Sanger ESTs has been given in Table 5 . Overall redundancy of the library was 25.2% which suggests that the normalization process was effective and the present generated library has the potential to uncover many more transcripts.

4.2.2 Identification of paralogous genes and genome duplication events

To identify potential signatures of genome duplication in pigeonpea, the transcriptome assembly (CcTA) was analyzed in detail using two approaches. In the first approach, sequence similarity was used to identify putative homologous gene pairs and pair-wise synonymous distances. Of the total 127,754 sequences (of which 48.726 are contigs), 9.8% (12.515) were clustered into a gene family. Of those, 3,098 are duplicates of family size $2 ; 537$ are in families of size $3 ; 181$ are in families of size 4,89 are in families of size 5 and 68 are in families of size 6 . Out of the above 5,778 pair wise synonymous distance measures were calculated that fall in the Ks range of 0 to 1.5 (Figure 11). Assuming that synonymous mutations occur in a clock-like manner following duplication and increase approximately linearly with time (Blanc et al., 2004), we can use the
synonymous distance between a gene pair to predict an approximate time of divergence between those two genes, or when a duplication event occurred. Figure II shows a histogram plot of the percent of pair wise distances to the synonymous distance value (Ks). There is a peak at roughly 0.06 and using the same clock as was used for soybean (Schumtuz et al., 2010), this gives a divergence estimate of ~ 4.9 million years ago. While this might be indicative of a more recent duplication, it is much more likely to be the result of a segmental duplication given that only 9.8% of the sequences clustered into gene families. Another potential explanation for this peak is potentially an artifact of either the read length in contigs or the assembly process itself. Certainly this can and will be clarified with the genome sequence.

The chromosome number of pigeonpea $(2 n=22)$ are the same as other phaseoloids such as common bean (Phaseolus vulgaris) and cowpea (Vigna unguiculata) are $2 \mathrm{n}=22$ while those of soybean $(2 n=40)$ suggest an independent duplication in soybean following divergence from pigeonpea. With an objective to understand the pattern of genome duplication in cowpea and common bean also, similar analysis was conducted based on 16.791 Sanger ESTs for cowpea and 89,168 ESTs for common bean obtained from NCBl (Oct 2009). In the case of common bean, out of the 2,334 contigs, only 76 clustered into a gene family (or 3.26%) while 96.74% were remained as singletons. The breakdown of cluster sizes (or gene family sizes) is 27 clusters of family size 2 . one cluster of family size 3 , two clusters of family size 4 and one cluster of family size 11 . Similarly, for cowpea, 11 contigs were found to form clusters (1.55%) while $\mathbf{9 8 . 4 5 \%}$ are single copy contigs. The breakdown of gene families is four clusters of size 2 and one cluster of size 3 .

In the second approach using BLASTN $(<=1 \mathrm{e}-4)$ was utilized to align the, 37,170 pigeonpea sequences to the 46,430 soybean gene set (http://www.phytozome.net/soybean). Repeats such as large gene families, rDNA and other repeats were removed from the aligned dataset. Since soybean is highly duplicated due to past whole genome duplications, many of the pigeonpea contigs aligned to more than one gene locus. For best-hit alignments (first hit), 19,996 alignments had a mean sequence identity of 92.29%. The mean sequence identity for the 17,174 that had second good alignments was 91.56%. The most recent duplication event in soybean occured ~ 13 Mya, after the divergence from pigeonpea. If both alignments were to duplicates from the most recent duplication in soybean, we would expect approximately similar identity scores, however, a t-test between the first and second alignment values (\% sequence identity) was significantly different (p -val <0.00001). Thus, the difference in scores for the first and second best alignments is likely be a reflection of alignments to duplicated genes in soybean that have undergone asymmetric evolution or to duplicated genes from both the ancient (~ 59 Mya) and the more recent ($\sim 13 \mathrm{Mya}$) duplication events (Figure 12).

Based on analysis of detailed data on pigeonpea, limited data for cowpea and common bean and published results for soybean (Schmutz et al., 2010), all four of these phaseoloid legumes, like most legumes, share the more ancient duplication at $\sim 50-60$ Mya. The pigeonpea genome shows slight evidence for another small-scale duplication, probably segmental, at 4.9 Mya , that does not appear to be shared with other phaseoloids. This indicates that recent the duplication in pigeonpea genome might have happened after separation of Cajanus from cowpea and common bean, but did not result in a change in chromosome number.

4.2.2 Characterization of pigeonpea transcriptome

4.2.2.1 Comparison with soybean genome

As an effort to validate gene structures in the newly developed assembly, the 127,754 TUSs were aligned to soybean using GMAP (http://www.icrisat.org/what-wedo/biotechnology/LegumeSequenceDatasets.html). The threshold for identity and coverage was set to 90% and 80%, respectively. As a result, 33,874 TUSs showed alignment and covered 10,857 genes of soybean. A total of 16,367 TUSs showed unique best matches with the soybean genome. TUSs were distributed across the chromosomes of soybean. An n average of $\sim 1,693$ loci on each soybean chromosome had significantly hits with an exception of chromosome 13 which had the highest number of loci $(4,162)$ mapped (Table 6). The alignment results are uploaded to GBrowse. In GBrowse window, the direction of the arrows represents the orientation of the sequences. To give an indication about the confidence of location of pigeonpea TUSs in soybean genome, the sequences with single best hit are shown in green color and the sequences with multiple good matches are shown in red color (Figure 13).

4.2.2.2 Comparison with other legumes and model plant species at the transcript level

Detailed analysis of pigeonpea TUSs was performed using BLASTN (e-value $\leq 1 \mathrm{E}-30$) similarity searches against plant EST datasets at JCVI. These results indicated that pigeonpea ESTs show highest percentage overlap with soybean (Glycine max) with 26.972 (21.11%), followed by Medicago (Medicago truncatula) 12.643 (9.89\%), Lotus (Lotus japonicus) 10,472 (8.19%), common bean (Phaseolus vulgaris) 9,936 (7.77%), wild soybean (Glycine soja) 9,081 (7.10\%), red clover (Trifolium pretense) 6,292 (4.92\%), grape vine (Vitis vinifera) 5,394 (4.22\%), and other model plant species such as Arabidopsis (Arabidopsis thaliana) 2,980 , (2.85\%) and black cotton wood (Poplus trichocarpa) 3,646 (2.33\%) and rice (Oryza sativa)

2,714 (2.12\%). Detailed results of BLASTN analyses are given in Figure 14. Of 127,754 unigenes, 735 (0.5%) were showed significant similarity across all the plant EST databases compared in this study and 82.100 (64.26%) did not show similarity to any plant species analyzed.

4.2.2.3 Functional annotation and gene ontology (GO) categorization

BLASTX (e-value $\leq 1 \mathrm{E}-08$ and a bit-score value of ≥ 50) analysis of 127,754 TUSs against the UniRef non-redundant protein database enabled the putative identity assignment of these sequences into functional categories. A total of 32.719 (25.6%) TUSs showed significant similarity to the non-redundant protein database while 8,949 sequences (7.0%) had low similarity and $86,086(67.3 \%)$ sequences had no significant matches. The 32,719 TUSs showing significant hit were analyzed further for functional categorization and to retrieve enzyme IDs as following: (i) Functional categorization was assigned by mapping the $29.921(91.40 \%)$ out of 32,719 . TUSs showing significant hit on BLASTX analysis onto the Gene Ontology categories using the UniProt Gene Ontology Consortium. TUSs with assigned putative roles were classified into three principle categories: biological process, cellular component and molecular function. As a result, 5.455 TUSs were successfully assigned under biological process (Figure 15a), 3,958 for cellular component (Figure 15b) and 6.491 for molecular function (Figure 15c). According to this GO schema, single protein corresponding to a TUS typically has more than one Ontology assignment. Furthermore under biological process, the sub-category metabolic process accounted for the highest percentage of TUSs at $4,080(31 \%)$ followed by cellular process 3,904 (30\%), biological regulation 865 (7\%), localization 864 (7\%), establishment of localization 846 (6%) and response to stimulus $702(5 \%)$. The remaining sub-categories accounted to 21% of
total significant TUSs (Figure 15a). In the cellular component category, the highest percentage of TUSs was assigned to cell part category $3,854(44 \%)$, followed by organelle $2,379(28 \%)$. organelle part $1,118(12 \%)$ and macromolecular complex $886(10 \%)$. The remaining 6% of TUSs were accounted to other defined sub-categories (Figure 15b). In molecular function, $45 \%(4.628)$ of TUSs accounted to binding, followed by catalytic activity $3.873(38 \%)$ and transporter activity $481(5 \%)$. The remaining sub-categories accounted to 12% of TUSs (Figure 15 c). As expected, these libraries are derived from developing tissues, hence majority of the transcripts were involved in developmental categories like metabolic and cellular process (Zhang et al., 2004).

Enzyme IDs were retrieved from the UniProt database and were distributed into one of the six major enzyme classes such as transferases- 31% (474), followed by hydrolases 28% (443), oxido-reductases- 25% (389) ligases 6% (98). lyases 5% (79), and isomerases 5% (79) (Figure 16).

4.3 SNP Discovery

Using Illumina/Solexa 1G sequencing in total 150.8 million tags were generated from four genotypes (ICPL 87119, ICPL 87091, ICP 28 and ICW 94). Number of tags generated per genotype varied from 16.84 million (ICPL 87091) to 18.64 million (ICW 94). For identification of SNPs. Illumina tags for two genotypes of a given mapping population were aligned with 127,754 TUSs (pigeonpea transcriptome assembly) and variants were identified using Alpheus program of NCGR (Miller et al 2008). The number of SNPs in an individual cross ranged from 6263 (ICPL $87119 \times$ ICPL 87091) to 1,190 (ICP $28 \times$ ICPW94) (Table 7). In total, 7,453 SNPs were identified.

4.3.1 Identification of disease responsive genes

Fusarium wilt (FW) is a serious disease that adversely affects pigeonpea production. With an objective to identify candidate genes for this disease, Illumina/Solexa tags of FW stressed genotypes ICPL 87091 and ICPL 87119 were used. Alpheus program of NCGR (Miller et al 2008) was used to achieve expression read count based on the alignment of 1llumina/Solexa tags of ICPL 87119 (resistant) and ICPL 87091 (susceptible) genotypes to 127,754 TUSs (CcTA). Since the numbers of Illumina/Solexa tags mapped to the CcTA varied among genotypes, data normalization for more precise quantification was done by considering per million reads for discerning the expression values. A numerical comparison of FW-responsive reads generated from resistant and susceptible genotype representing a mapping population was conducted. The threshold $\log 2$ for this analysis was taken as -2 to +2 . The number of TUSs with significant differential expression was 1.869 (ICPL $87119 \times$ ICPL 87091).

4.4 SNP Genotyping Platform

In order to design KASPar assays for detected SNPs, following criterion were used: i) Detected SNPs should contain at least 60 bp upstream and downstream sequences; ii) Frequency difference between the two genotypes of a mapping population ≥ 5 : iii) read depth ≥ 5. KASPar assay were designed for 1.834 SNPs. A panel of 94 pigeonpea genotypes including parents of mapping populations, advanced breeding lines and wild relatives was used to validate 1,834 SNPs. As a result 1,616 SNPs were validated with a success rate of 88.1%. In case of ICP 28 x ICPW 94, 1,616 SNPs were identified and 1,094 could be validated.

4.5 Linkage Mapping

An inter-specific F_{2} population derived from ICP 28 (C. scaraboides) \times ICPW 94 (C. cajan) was selected for the construction of a reference genetic map. Consistent with a wide genetic cross, this pairwise comparison had the highest number of polymorphic SSRs. The mapping population was genotyped with all polymorphic markers and marker segregation data were analyzed by the goodness of fit test for a 1:2:1 segregation ratio. Only 138 (36.50%) markers showed good agreement with the exepected segregation ration $1: 2: 1$ (at the threshold of $p=0.05$). Among the 240 markers with deviation from Mendelian ratios we observed instances of complete absence or very low occurence of one parental allele, and instances of excess heterozygosity.

The genetic linkage map was constructed in a stepwise manner, beginning with the 138 normally segregating markers at LOD 5 and a minimum recombination fraction of 37.5. Subsequently, the 240 distorted markers were tested for integration with the help of Joinmap 3.0 software. The combined 239 markers yielded a genetic map of $930.90 \mathrm{cM}(919 \mathrm{~kb} / \mathrm{cM})$ (Figure 17), with an average of 21 markers per linkage group and an average between marker distance of 3.8 cM . A total of 11 linkage group could be assigned, and these are presumed to correspond to the haploid chromosome set of C. cajan $(\mathrm{n}=11)$.

5. DISCUSSION

The study deals with the large scale development of genomic resources of pigeonpea. This includes development of BES-SSR makers, development of pigeonpea transcriptome assembly using Roche FLX/454 sequencing, development of SNP makers using Illumina-1G sequencing and construction of genetic linkage map using developed SSR markers. The results of the study have been discussed in context of available studies.

5.1 Development of BES-SSR Markers

Presence of narrow genetic base of pigeonpea has slowed down the wide use of molecular marker technology for crop improvement (Saxena, 2008). The present study, focus mainly on the increase of genomic resources of pigeonpea, which will enable the use of marker-assistedselection in this crop. With an objective of enriching SSR marker repertoire, two BAC libraries were developed with an estimated $\sim 11 \mathrm{X}$ genome coverage of pigeonpea. Sequencing of 50,000 BAC clones from both insert ends provided 88,860 BAC-end sequences (BESs). Removal of cytoplasmic orgeneller BESs and cluster analysis facilitated the maximum possible recovery of nuclear genomic sequences comprising 41,329 singletons and 10,601 non-redundant contigs. With an objective to understand the constitution of SSR containing BAC clones, BESs were run through an annotation pipeline. Major proportion of the sequences remained non-annotated which may be considered as 'novel' C. cajan sequences. The overall repetitive fraction, resulting from BES analysis was found to be intermediate (22.15\%) when compared with the percentage of repetitive elements in BESs of other legumes such as Trifolium (8.5\%), soybean (33.5\%), and common bean (49.3\%) (Schlueter et al., 2008). BES annotation analysis has shown a considerable variability in the amount of repetitive fraction in different crop species such as
tomato (49.3\%) (Budiman et al., 2000), papaya (16\%) (Lai et al., 2006), banana (36\%) (Cheung and Town, 2007), and citrus (25\%) (Terol et al., 2008). This variation in the amount of repetitive elements in BESs is an indicative feature of presence of repetitive elements in the genome of a species. A varying level of annotations in different species may also be responsible for difference in repetitive elements. Proportion of annotated genic fraction was found more or less similar as observed in the BESs analysis of other crop species such as Phaseolus (29.3\%) (Schlueter et al. 2008), apple (10.9\%) (Han and Korban, 2008), banana (11\%) (Cheung and Town, 2007), Brassica (11\%) (Hong et al., 2007) and papaya (19. \%) (Lai et al., 2006).

BESs have been very useful to develop SSR markers in several plant species including legumes like soybean (Shultz et al., 2007), common bean (Schlueter et al., 2008) and Medicago (Mun et al., 2006). In terms of SSRs abundance, overall density of I SSR per 5.64 kb seems to be in good congruency with the earlier reports in plant genomes (Cardie et al., 2000). Similar results showing SSR frequencies of 1 SSR per 4 to 10 kb were achieved in different plant species like Medicago, soybean, Lotus, Arabidopsis and rice (Mun et al., 2006). This discrepancy observed in different studies may be accounted to (i) amount of sequence data analyzed, (ii) criteria for SSR identification, and (iii) different sources of derived sequences. It is also important to note that after excluding non-annotated BESs, majority (70.21\%) of SSRs fall belong to be associated with genes. These observations are in agreement of the comphrehensive study of Morgante et al. (2002) where SSRs were found associated mainly with genes.

In terms of distribution of SSRs, among the dinulcetoide repeats motifs $(A T)_{n}$ was found to be the most abundant followed by $(\mathrm{AG})_{\mathrm{n}}$ and $(\mathrm{AC})_{\mathrm{n}}$ repeats, which is in good agreement with the general finding in most plants (Gupta et al., 1996, Katti et al., 2001, Temnykh et al., 2001). In
rice and other monocots CG/GC motif is very common, the least abundance of GC/CG motif in pigeonpea genome is consistence with previous observation in other legume species (Medicago, Lotus and soybean). Such low abundance of "CG" di-nucleotide repeats may be attributed to their tendency of forming secondary structures (hairpins), leading to a selective pressure against 'CG' accumulation in genomes (Eustice et al., 2008).

While converting identified SSRs into genetic markers, though 3,072 SSR primer pairs were synthesized; of these 2,964 (96.48%) primers yielded scorable amplicons. This rate of successful amplification is quite higher than earlier reported in pigeonpea (Burns et al., 2001; Odeny et al., 2007, 2009; Saxena et al., 2010a). All the repeat classes showed more than 98% amplification except di-nucleotide repeats which had comparatively lower rate of amplification (95.98%).

All the successfully amplified primer pairs were screened for polymorphism. The overall frequency of length polymorphism was found to be 12.75% which is lower than reported in earlier studies i.e. 50\% (Burns et al., 2001), 81.3\% (Saxena et al., 2010b), and 95\% (Odeney et al., 2007). Occurrence of a very low level of DNA polymorphism among pigeonpea cultivars is not unexpected as several studies have documented such results (Sivaramakrishnan et al., 1997; Yang et al., 2006; Saxena RK et al., 2010b).

The frequency of marker polymorphism increased dramatically with SSR locus longer than 200 bp. PIC values for SSR markers were also analyzed in relation to repeat length and unit type. In terms of repeat length, Class I SSRs were more polymorphic as compared to the Class II SSRs which may be accounted to the hypervariable nature of Class I SSRs (Temnykh et al., 2001) Among different type of repeat unit classes, tetra-nucleotide repeats, in general, showed the higher average PIC value (0.64) followed by di-nucleotide repeats (0.57). It was also observed that among trinucleotide repeat class, the 'TAA' repeat motifs, displayed higher polymorphism
(average PIC value $=0.59$). Similarly, 'TA' repeat motifs in di-nucleotide repeat class had a higher average PIC value (0.59) compared to the others. Similar trends were also observed in other legumes such as chickpea (Nayak et al., 2010), Medicago (Mun et al., 2006), and Phaseolus (Cordoba et al., 2010) where the SSR markers with repeat motifs 'TAA' or 'TA' exhibited extensive abundance and polymorphism as well. Higher average PIC value of compound SSRs (0.58) can be attributed to the fact that the markers with compound SSRs have more than one SSR motif, which increases their chance to be polymorphic (Gupta and Varshney, 2000).

5.2 Development of Pigeonpea Transcriptome Assembly (CcTA)

A comprehensive study for development of CcTA was carried out using NGS based Roche FLX/454 sequencing technology. Based on phenology and utility of genotype in breeding programs PusaAgeti (ICP 28), a leading pigeonpea variety in India. was chosen for developing CcTA. Generated sequence data have been analyzed to understand the transcriptome architecture and genome organization with respect to potential duplication.

5.2.1 Clustering and assembly of transcript reads

Until recently, only 10,817 ESTs were available of which $>90 \%$ was developed during last two years. With an objective to generate a comprehensive transcriptomic resource, deep sequencing was undertaken on normalized pools of cDNAs from 31 tissues. Normalization of cDNA from the different tissues was done to optimize the discovery of novel genes. Unlike conventional sequencing, 454 library preparations involves random shearing of the normalized but un-cloned cDNA population, fragment-end polishing, adaptor ligation, library immobilization, single
stranded DNA library isolation and sequencing (Cheung et al., 2006; Margulies et al., 2005). Therefore Roche FLX/454-based gene discovery projects represent a viable and perhaps favorable alternative to Sanger-based sequencing of EST libraries when a diverse sampling of genes is more important than obtaining full transcripts length contigs (Novaes et al., 2008).

With an objective to compare assemblies, cluster analysis was done based on: (i) exclusively 494,357 Roche FLX/454 STRs, (ii) exclusively 10,817 Sanger ESTs, and (iii) combined dataset of 494,357 Roche FLX/454 STRs and 10,817 Sanger ESTs. Based on these analyses it was found that assembly of only Roche FLX/454 STRs had coverage of 12.73 Mbp with an average length of contig sequences as 262 bp . In contrast, though the coverage of the assembly based on Sanger ESTs was lower (0.47 Mbp), the average length of contig sequences was 637 bp . It is important to note that though number of Sanger ESTs as compared to Roche FLX/454 STRs is just 2.18%, the coverage based on Sanger assembly is 3.81% as compared to Roche FLX/454 assembly. Assembly based on combined dataset. however, provided higher genome coverage with 13.27 Mbp with and an average contig length of 273 bp . It is also important to note that 23.209 contigs of the assembly of combined dataset were longer than 600 bp while the longest contig based on only $454 / \mathrm{FLX}$ was 500 bp ; and only 3,169 contigs were longer 500 bp . It is therefore evident that inclusion of Sanger ESTs in assembly has an advantage in masking the redundancy of sequence overlap and allowing improved assembly representing distinct transcripts and better coverage. Similar observations were made in some other recent studies in Medicago (Cheung et al., 2006) and Atlantic salmon (Quinn et al.. 2008). In summary, this study provides a sufficiently highquality assembly of 127.754 TUSs representing 1.53% pigeonpea genome sequence. This assembly has been referred as pigeonpea transcriptome assembly (CcTA) and was used for ensuing analyses.

5.2.2 Segmental genome duplication events

Within a genome, if a reasonably large group of duplicated genes with similar synonymous distances can be identified, this can be indicative of an ancient large-scale duplication event, or a polyploid event. Previous analyses in legumes have found evidence for an ancient duplication event roughly 50 million years ago ($\mathrm{Ks} \sim .8$) that occurred across a majority of the legumes (Cannon et al., 2010). We were interested in determining if these were evidence for an independent duplication event in pigeonpea and whether or not they are shared by other close relatives. From the developed dataset it is evident that the duplication event which occurred in soybean ~ 13 million years ago was not shared by pigeonpea or any other member of the clade Phaseoloids. Clustering of the pigeonpea transcripts revealed that $\sim 9.8 \%$ of the dataset represents gene families. While pairwise synonymous distances of these duplicated genes do present a peak at 0.06 , this is not evidence for a major duplication event. Perhaps this peak represents a segmental duplication ~ 4.9 Mya ago based on a molecular clock. It is also possible that the peak at 0.06 may be the result of biases in the assembly process such as under-collapsed contigs. Nevertheless, the detailed picture about the extent of duplications and its sharing with other legume genomes will emerge only once the sequence data of the entire genome will be available (Varshney et al., 2010b).

5.2.3 Gene structure, annotation and functional categorization

We aligned all TUSs to the soybean genome in order to predict gene structure and define exonintron boundaries in the pigeonpea transcriptome assembly (CcTA). As a result, 33,874 TUSs
were alignmed to 16,367 unique gene sequences of soybean. From this analysis, the structure and and putative order of 16,367 genes has been defined in pigeonpea assuming colinearity with soybean. These TUSs are distributed throughout the soybean genome with an average of $\sim 1,693$ TUSs/soybean chromosomes.

In order to understand relationships of pigeonpea genome with other legumes, a detailed comparison of the pigeonpea TUS was made against ESTs for other legumes as well as more distantly related plant species. As expected, TUSs showed higher similarity to the legume genomes than non-legumt genomes. As pigeonpea belongs to Phaseoloid clade containing soybean and common bean, the TUSs should show higher similarity to the ESTs of these three legume species than others. While 21.11% TUSs have similarity with soybean, similarity to the common bean genomes is 7.77%. In fact. Medicago and Lotus show higher similarity as 9.89% and 8.19%, respectively than that of common bean. This can be attributed to larger EST datasets analyzed in Medicago $(217,148)$, Lotus $(148,617)$ than common bean $(21,807)$. As expected, comparison of pigeonpea ESTs with monocot species like rice showed that the percentage of significance is much lower compared to any other legume species, despite the larger EST (Varshney et al. 2009b). Of 127,754 TUSs. 735 (0.5%) showed significant similarity across all the plant EST databases in this study.

In terms of understanding gene function, pigeonpea TUSs were analyzed using BLASTX analysis and GO categories of UniProt database. Putative functions could be inferred for 32,719 (25.60%) TUSs. Of these TUSs, $29,921(91.40 \%)$ could be assigned to three categories'molecular function' $(6,491)$ 'biological process' $(5,455)$, and 'cellular component' $(3,958)$. Highest number of TUSs corresponded to molecular function. Molecular functions generally
correspond to activities that can be performed by individual gene products. Molecular function describes activities, such as catalytic or binding activities, that occur at the molecular level. Within this category sub-category 'binding' accounted for 45% followed by 'catalytic activity' at 38% and 'transporter activity' at 5%. These categories have been recognized as more highly represented than any other classes (Zang et al.. 2004). Category 'biological process' accounted for second highest number of TUSs $(5,455)$. The broad tissue and developmental stages sampling procedure used in this study can account for this kind of abundance. These libraries were derived from developing tissues, and hence contain high amount of transcripts involved in development. These libraries were derived from developing tissues, and hence contain high amount of transcripts involved in development. Under this sub-category 'metabolic process' accounted for highest percentage (31%). It was expected that functional categories (molecular function and biological process) mainly involved with general cell housekeeping activities like 'binding', 'catalytic activity' and 'metabolic process' would show the highest level of expression. These categories posses well characterized functions in common plant activities (Coram and Pang, 2005).

5.2.4 Identification of SNPs

Genetic markers are important tools for understanding genetic variation and identification of QTLs for the trait of interest for deployment in molecular breeding activities. However, until recently a very limited number of genetic markers in the form of SSRs were available (Raju et al., 2010) and no SNP reports till date. Furthermore, not a single genetic map was published until 2010. One of the main reasons for this is the low level of polymorphism in pigeonpea germplasm. Therefore, it is desirable to develop a large set of molecular markers so that low
level polymorphism constraint can be tackled. An approach to develop genetic markers is the mining of ESTs or transcript sequences for the presence of SNPs (Varshney, 2010c). Although markers developed from ESTs/transcripts are less polymorphic, they have been found useful for assaying the functional diversity in the germplasm collection (Eujayl et al., 2002; Wen et al., 2010), trait mapping (Zhang et al., 2004) and comparative genomics studies (Stein et al.. 2007).

In several crop species, SNP markers are becoming more popular mainly because of their automation and less costs associated with genotyping (Kota et al., 2007). In case of pigeonpea, so far, no SNP report is available. Therefore this is the first SNP discovery study in pigeonpea that reports 7,453 SNPs for two mapping populations. Majority of SNPs, however, were specific to the given parental combination of the mapping population. This fact, once again, underlines the availability of low polymorphism in pigeonpea germplasm collection (Odeny et al., 2009).

For converting the identified SNPs into genetic markers, several choices are available for development of an appropriate SNP genotyping platform. These include GoldenGate assays (www.illumina.com/technology/goldengate_genotyping_assay.ilmn), KASPar assays (www.kbioscience.co.uk), cleaved amplified polymorphism sequence (CAPS) assays, etc. It is also important to note that as the SNPs identified are coming from exonic regions, they may exhibit low level of polymorphism in the germplasm collection. In summary, this study extends the existing marker repertoire to a great extent which will be very useful for pigeonpea genetics and breeding applications.

5.2.5 Candidate genes for FW

Although, FW is a serious production constraints, no serious effort has been made in past to identify the genes conferring resistance to FW. This is the first study that reports on
identification of candidate genes associated with FW based on transcript profiling. For about a decade, microarray based analysis was used as a primary tool for gene expression profiling (Schena et al.. 1995; Brown et al.. 2000; Cooper and Shedden, 2003). However, it has been shown that these microarray analysis provide low sensitivity in quantitative measurements, nonspecific hybridization and measures only known/ annotated transcripts (Git et al., 2010). Recently "digital gene expression" by next generation sequencing technology has been introduced as a promising approach which provides a digital record of numerical frequency of the sequence in the sample. Here we have demonstrated the use of Illumina sequencing technology to identify differentially expressed transcripts. Higher number of tags produced through technology allows a deep coverage in detecting low-abundant transcript. Keeping in mind these advantages Illumina sequencing was performed for two FW responsive pigeonpea genotypes. Expression values generated in the experiment were used to study gene expression pattern among FW responsive genotypes that are parents of a mapping populations. This method of sampling enables us to study expression profile in contrasting parents which provides more evidence for genes involved in stress as well as their pattern of expression (up-regulated or down-regulated).

5.4 Development of a Linkage Map

To develop a reference genetic map, an interspecific cross was used so that a larger number of segregating loci can be integrated into the genetic map. Usually SSR markers are co-dominant and follow Mendelian inheritance (Bechman and Soller, 1990). However deviation from the expected segregation ratio for SSR markers is not an uncommon feature in inter-specific crosses and especially F_{2} population. Significant distortion observed in the marker data may be attributed to several possible reasons such as the abortion of male or female gametes or the selective
exclusion of a particular gametic genotype from fertilization, owing to incompatibility, incongruity, certation, or zygote selection (Kreike and Stiekema, 1997). Percentage distortion observed in the present study is comparable with previously reported studies performed on interspecific crosses (Kianian and Quiros, 1992).

In the present study, the genetic map derived from an inter-specific cross ICP $28 \times$ ICPW 94 included eleven discrete linkage groups corresponding to the basic chromosome number of the genus $(x=11)$. Initial construction of a skeletal map with un-skewed markers and followed by integration of distorted markers helped in minimizing the possibility for spurious assignments of markers (Elangovan et al., 2008). The final map comprised of 239 marker loci with a total map length of 930.90 cM having average spacing of 3.8 cM between two marker loci. This is the first report on the construction of SSR-based genetic map in pigeonpea. Therefore this map should serve as a 'reference map' for other future genetic maps of pigeopea. Moreover as the SSR markers are derived from the BAC-end sequences, these markers and the map should be very useful resource for linking the genetic map with a 'future' physical map of piegonpea (Varshney et al., 2010b).

6. SUMMRRAY

Pigeonpea (Cajanus cajan L. Millsp.) is an important grain legume crop of rainfed agriculture in the semi-arid tropics. The Indian sub-continent. Eastern Africa, and Central America, in that order, are the world's three major pigeonpea producing regions. Being a legume, pigeonpea enriches the soil through symbiotic nitrogen fixation. A short day plant with a deep root system, pigeonpea tolerates drought, but is highly sensitive to salinity and water-logging. Diseases are major biological constraints to production. Genomics and biotechnological approaches have helped crop improvement in several crop species, especially cereals (Varshney et al. 2006). Similarly genomics tools will prove very useful to enhance the tolerance/resistance to abiotic/biotic stresses in pigeonpea. However, a very limited number of genomics tools in the form of molecular markers. ESTs (expressed sequence tags), and genetic maps are available for pigeonpea. A few microsatellite markers were developed in pigeonpea at ICRISAT. However because of the lower level of polymorphism in the cultivated pigeonpea germplasm, there is a need to develop genomics tools at the appropriate scale. Keeping all this in mind the present study entitled "Development of genomics resources in pigeonpea" was conducted with the following objectives- i) Development of microsatellite markers from BAC-end sequences, ii) Development of transcript assembly for pigeonpea, iii) Large scale identification of SNPs, iv) Development of SNP genotyping platform, v) Genetic mapping of SSR markers.

1. Development of microsatellite markers from BAC-end sequences

1. Two BAC libraries were constructed by using HindIII (34.560 clones) and BamHI (34,560 clones) restriction enzymes. BAC clones were sequenced from both insert ends to yield 88.860 DNA sequences with an average read length of 620 bp .
2. Clustering based on sequence identity of BESs yielded a set of $>52 \mathrm{~K}$ non-redundant sequences, comprising 35 Mbp or $>4 \%$ of the pigeonpea genome. These sequences were analyzed to develop annotation lists and subdivide the BESs into genome fractions (e.g., genes, retroelements, transpons and non-annotated sequences).
3. Analysis of BESs for microsatellites or simple sequence repeats (SSRs) identified 18,149 SSRs, from which a set of 6,212 SSRs were selected for further analysis. A total of 3,072 novel SSR primer pairs were synthesized and tested for length polymorphism on two parental genotypes of an inter-specific mapping population.

II. Development of transcript assembly for pigeonpea

1. Roche FLX/454 sequencing was carried out on a normalized cDNA pool prepared from 31 tissues produced 494,353 short transcript reads (STRs). Cluster analysis of these STRs, together with 10,817 Sanger ESTs, resulted in 127,754 pigeonpea transcript assemblies (CcTAs).
2. Comparison of the TUSs with the soybean genome showed similarity to between 10,857 and 16.367 soybean gene models (depending on alignment methods).
3. Functional analysis of these TUSs highlights several active pathways and processes in the sampled tissues.

III. Large scale identification of SNPs

1. Illumina/Solexa 1G sequencing was performed on four parental genotype of two mapping population of pigeonpea.
2. More than 70 million sequence tags were generated and wer used for identification of single nucleotide polymorphisms (SNPs). Sequence analysis of TUSs and the Illumina tags identified a large new set of 7,453 SNPs markers for use in genetics and breeding.
3. Differential expression of TUSs corresponding to genes involved in various pathways in response to Fusarium wilt (FW) was also identified.

IV. Development of SNP genotyping data

1. SNPs identified in this study have been used for development of SNP genotyping platform. The thresholds used in the selection SNPs include i) SNPs containing 60 bps flanking sequence, ii) frequency difference ≥ 0.5 iii) read depth ≥ 5. A total of 1,143 SNPs were selected for development of KASPar genotyping platform

V. Genetic mapping of SSR markers

1. Based on BES-SSR markers, the first SSR-based genetic map comprising of 239 loci was developed for this previously uncharacterized genome.

In summary, this study has generated i) sequence data interms of 88,860 BESs and 3,072 BESSSRs, ii) trancriptome assembly of pigeonpea containing 127,754 TUSs iii) identified a total of 7. 453 SNPs for an inter-specific as well as intra-specific mapping population, iv) developed KASPar genotyping platform for 1.143 SNPs, v) the first SSR-based gentic map based on an intra-specific mapping population (ICP28 \times ICPW 94). Large-scale genomic resource in the form of BESs, transcriptome assembly, SSRs and SNPs has been developed in an underresourced crop species by deploying two prominent NGS technologies namely Roche/454 and Illumina/Solexa 1G sequencing. These data have been used for both basic as well as applied aspects in pigeonpea genetics and breeding. It is anticipated that SSR markers and the genetic map developed in this study should provide a reference resource for construction and comparison of genetic maps for new mapping populations, finger printing and cultivar identification, assessment of genetic diversity and gene flow among Cajanus species. New genetic maps, to be developed based on polymorphic markers identified in this study, will facilitate trait mapping and marker assisted selection. Furthermore, genomic SSR markers identified from BESs and integrated into genetic maps provide a valuable resource for anchoring future physical map or
whole genome sequence to the genetic map. On the other hand the trancriptome assembly developed in the study will act as a reference for whole genome sequencing of pigeonpea.

7. REFERENCES

Andersen JR, Lu bberstedt T (2003) Functional markers in plants. Trends Plant Sci 11: 554-560.

Bainbridge MN, Warren RL, Hirst M, Romanuik T, Zeng T, Anne Go, Allen D, Malachi G, Matthew H, Vincent M, Elaine RM, Marianne DS, Asim SS. Marco AM, Steven JMJ (2006) Analysis of the prostate cancer cell line LNCaP transcriptome using a sequencing-bysynthesis approach. BMC Genomics 7: 246.

Batley JR, Mogg D, Edwards HO'Sullivan, Edwards KJ (2003) A high-throughput SNuPE assay for genotyping SNPs in the flanking regions of Zea mays sequence tagged simple sequence repeats. Mol Breed 11: 111-120.

Beckmann JS, Soller M (1990) Toward a unified approach to genetic mapping of eukaryotes based on sequence tagged microsatellite sites. Nat Biotechnol 8: 930-932.

Beckstette M. Homann R. Giegerich R, Kurtz S (2006) Fast index based algorithms and software for matching position specific scoring matrices. BMC Bioinformatics 7: 389 .

Berezikov E, Cuppen E, Plasterk RH (2006) Approaches to microRNA discovery. Nat Genet 38: S2-7.

Blanc G, Barakat A, Guyot R. Cooke R, Delseny M (2000) Extensive Duplication and Reshuffling in the Arabidopsis Genome. Plant Cell 12: 1093-1102.

Brenner S, Johnson M. Bridgham J, Golda G, Lloyd DH, Johnson D, Luo S, McCurdy S, Foy M, Ewan M, Roth R, George D, Eletr S. Albrecht G, Vermaas E, Williams SR, Moon K, Burcham T, Pallas M,DuBridge RB, Kirchner J, Fearon K, Mao J, Corcoran K (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18: 630-634.

Brown MPS, Grundy WN. Lin D, Cristianini N, Sugnet CW, Furey TS, Ares M, Haussler D (2000) Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc Nat Acad Sci 97(1): 262-267.

Budiman MA, Mao L, Wood TC, Wing RA (2000) A deep coverage tomato BAC library and prospects toward development of an STC framework for genome sequencing. Genome Res 10: 129-136.

Burns MJ, Edwards KJ, Newbury HJ, Ford LBR, Baggot CD (2001) Development of simple sequence repeat (SSR) markers for the assessment of gene flow and genetic diversity in pigeonpea (Cajanus cajan). Mol Ecol Notes 1: 283-285.

Cannon SB, Ilut D, Farmer AD. Maki SL, May GD, Singer SR, Doyle JJ (2010) Polyploidy did not predate the evolution of nodulation in all legumes. PLoS ONE 5: ell630.

Cardle L, Ramsay L, Milbourne D. Macaulay M, Marshall D, Waugh R (2000) Characterization of physically clustered simple sequence repeats in plants. Genetics 156: 847-854.

Chen M, Presting G, Barbazuk WG. Goicoechea JL, Blackmon B, Fang G, Kim H, Frisch D, Yu Y. Sun S, Higingbottom S, Phimphilai J. Phimphilai D. Thurmond S, Gaudette B, Li P, Liu J, Hatfield J, Main D, Farrar K. Henderson C. Barnett L, Costa R, Williams B, Walser S, Atkins M, Hall C, Budiman MA, Tomkins JP, Luo M, Bancroft I, Salse J, Regad F, Mohapatra T, Singh NK. Tyagi AK, Soderlund C, Dean RA, Wing RA (2002) An integrated physical and genetic map of the rice genome. Plant Cell 14: 537-545.

Cheung F, Haas BJ, Goldberg MD, May GD, Xiao Y, Town CD (2006) Sequencing Medicago truncatula expressed sequenced tags using 454 life sciences technology. BMC Genomics 7 : 272.

Cheung F, Town CD (2007) A BAC end view of the Musa acuminata genome. BMC Plant Biol 7: 29.

Ching A, Caldwell KS, Jung M, Dolan M, Smith OS, Tingey S, Morgante M, Rafalski AJ (2002) SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genetics 3: 19.

Cho RJ, Mindrinos M, Richards DR, Sapolsky RJ, Anderson M, Drenkard E, Dewdney L, Reuber TL, Stammers M, Federspiel N, Theologis A, Yang WH, Hubbell E, Au M, Chung EY, Lashkari D, Lemieux B, Dean C, Lipshutz RJ, Ausubel FM, Davis RW and Oefner PJ (1999) Genome-wide mapping with biallelic markers in Arabidopsis thaliana. Nature Genetics 23: 203-207.

Choudhury RP, Singh IP, Shulabhi V. Singh NP, Kumar S (2008) RAPD markers for identification of cytoplasmic genic male sterile, maintainer and restorer lines of pigeonpea. Journal of Food legumes 21: 218-221.

Christensen P U, Davis K, Nielsen O, Davey J (1997) Abcl: a new ABC transporter from the fission yeast Schizosaccharomyces pombe. Microbiology Letters 147(1): 97-102.

Cooper S, Shedden K (2003) Microarray analysis of gene expression during the cell cycle. Cell Chromosome 2: 1.

Coram TE, Pang ECK (2005) Isolation and analysis of candidate ascochyta blight resistance genes in chickpea. II. Microarray analysis of putative defence-related ESTs. Physio Mol Plant Pathol 66: 201-210.

Cordoba JM, Chavarro C, Schlueter JA, Jackson SA, Blair MW (2010) Integration of physical and genetic maps of common bean through BAC-derived microsatellite markers. BMC Genomics 11: 436.

Coyne CJ, McClendon MT, Walling JG, Timmerman-Vaughan GM, Murray S, Meksem K (2007) Construction and characterization of two bacterial artificial chromosome libraries of pea (Pisum sativum L.) for the isolation of economically important genes. Genome 50: 871875.

Elangovan M, Rai R, Dholakia B B, Lagu MD, Tiwari R (2008) Molecular genetic mapping of quantitative trait loci associated with loaf volume in hexaploid wheat (Triticum aestivum). J. Cereal Sci. 47: 587-598.

Emrich SJ. Barbazuk WB, Li L. Schnable PS (2007) Gene discovery and annotation using LCM454 transcriptome sequencing. Genome Res 17: 69-73.

Eujayl 1, Sorrells ME, Baum M, Wolters P, Powell W (2002) Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet 104: 399-407.

Eustice M, Yu Q, Lai CW, Hou S, Thimmapuram J, Liu L, Alam M, Moore PH, Presting GG, Ming R (2008) Development and application of microsatellite markers for genomic analysis of papaya. Tree Genet Genomes 4: 333-341.

FAO 2009 FAO stat Databases (http://faostat.fao.org)

Flinn B, Rothwell C, Griffiths R, Lague M, DeKoeyer D, Sardana R, Audy P, Goyer C, Li X, Wang-Pruski G, Regan S (2005) Potato expressed sequence tag generation and analysis using standard and unique cDNA libraries. Plant Mol Biol 59: 407-433.

Foo Cheung, Joe Win, Jillian M Lang, John Hamilton, Hue Vuong, Jan E Leach, Sophien Kamoun, C André Lévesque, Ned Tisserat. C Robin Buell (2008) Analysis of the Pythium ultimum transcriptome using Sanger and Pyrosequencing approaches. BMC Genomics 9: 542.

Frelichowski JE, Jr, Palmer MB, Main D, Tomkins JP, Cantrell RG, Stelly DM, Yu J, Kohel RJ, Ulloa M (2006) Cotton genome mapping with new microsatellites from Acala 'Maxxa' BACends. Mol Genet Gen 275 (5): 479-491.

Git A. Dvinge H, Salmon-Divon M, Osborne M, Kutter C. Hadfield J, Bertone P, Caldas C (2010) Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA 16: 9911006.

Gorodkin J, Cirera S, Hedegaard J, Gilchrist MJ, Panitz F, Jorgensen C, Scheibye-Knudsen K, Arvin T, Lumholdt S, Sawera M, Green T, Nielsen BJ, Havgaard JH, Rosenkilde C, Wang J, Li H, Li R, Liu B, Hu S, Dong W, Li W, Yu J. Wang J, Staefeldt HH, Wernersson R, Madsen LB, Thomsen B, Hornshoj H, Bujie Z, Wang X, Wang X, Bolund L, Brunak S, Yang H, Bendixen C, Fredholm M (2007) Porcine transcriptome analysis based on 97 non-normalized cDNA libraries and assembly of $1,021,891$ expressed sequence tags. Genome Biol 8: R45.

Greilhuber J, Obermayer R (1998) Genome size variation in Cajanus cajan (Fabaceae): a reconsideration. Plant Syst Evol 212: 135-41.

Gupta PK, Balyan HS, Sharma PC, Ramesh B (1996) Microsatellites in plants: A new class of molecular markers. Curr Sci 70: 45-54.

Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 13: 163-185.

Hansma HG, Vesenka J, Siegerist C. Kelderman G. Morrett H, Sinsheimer RL, Elings V, Bustamante C, Hansma PK (1992) Reproducible imaging and dissection of plasmid DNA under liquid with the atomic force microscope. Science 256: 1180-1184.

Han Y, Gasic K, Marron B, Beever JE, Korban SS (2007). A BAC-based physical map of the apple genome. Genomics89: 630-637.

Han Y, Korban SS (2008) An overview of the apple genome through BAC end sequence analysis. Plant Mol Biol 67: 581-588.

Hanriot L, Keime C, Gay N, Faure C, Dossat C, Wincker P, ScoteBlachon C.Peyron C, Gandrill O (2008) A combination of LongSAGE with Solexa sequencing is well suited to explore the depth and the complexity of transcriptome. BMC Genomics 9: 418.

Hong CP, Piao ZY, Kang TW, Batley J, Yang TJ, Hur YK, Bhak J, Park BS, Edwards D, Lim YP (2007) Genomic distribution of simple sequence repeats in Brassica rapa. Mol Cells 23: 349-356.
http://cropandsoil.oregonstate.edu/Gmendel
http://emboss.open-bio.org/wiki/Appdocs
http://plantta.jcvi.org
http://www.icrisat.org/what-we-do/biotechnology/LegumeSequenceDatasets.html
http://www.icvi.org

http://www.phytozome.net/soybean

Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9: 868-877. Huang X, Wang J,Aluru S, Yang S. Hillier L (2003) PCAP: A whole-genome assembly program. Genome Res 13: 2164-2170.

Hyman ED (1988) A new method of sequencing DNA. Anal Biochem 174: 423-436.

Ilic K, SanMiguel PJ, Bennetzen JL (2003) A complex history of rearrangement in an orthologous region of the maize, sorghum, and rice genomes. Proc Nat Acad Sci 100: 1226512270

International Rice Genome Sequencing Project 2005.

Jander G. Norris S. Rounsley S. Bush D, Levin I, Last R (2002) Arabidopsis map-based cloning in the post-genome era. Plant Phys 129: 440-450.

Jantasuriyarat C. Gowda M, Haller K. Hatfield J, Lu G, Stahlberg E, Zhou B, Li H. Kim H, Yu Y (2005) Large-scale identification of expressed sequence tags involved in rice and rice blast fungus interaction.Plant Physiol 138:105-115.

Katti MV, Ranjekar PK, Gupta VS (2001) Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol Biol Evol 18: 1161-1167.

Khrapko K R, LysovYu P, Khorlyn A A, Shick V V, Florentiev V L, Mirzabekov A D (1989) An oligonucleotide hybridization approach to DNA sequencing. FEBS Lett 256: 118-122.

Kianian SF, Quiros CF (1992) Generation of a Brassica oleracea composite RFLP map: linkage arrangements among various populations and evolutionary implications. Theor Appl Genet 84: 544-554.

Klein PE, Klein RR, Cartinhour SW, Ulanch PE, Dong J, Obert JA, Morishige DT, Schlueter S D, Childs KL, Ale M, Mullet JE (2000) A high-throughput AFLP-based method for constructing integrated genetic and physical maps: progress toward a sorghum genome map. Genome Research 10: 789-807.

Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12: 172-175.

Koster H, Tang K, Fu D, Braun A, van der Boom D, Smith CL, Cotter RJ, Cantor CR (1996) A strategy for rapid and efficient DNA sequencing by mass spectrometry. Nat Biotechnol 14: 1123-1128.

Kota R, Varshney RK, Prasad M. Zhang H, Stein N and Graner A (2007) EST-derived single nucleotide polymorphism (SNP) markers for assembling genetic and physical maps of the barley genome functional and integrative. Genomics 8: 223-233.

Kreike CM, Stiekema WJ (1997) Reduced recombination and distorted segregation in a Solanum tuberosum $(2 x) \times$ S. spegazzinii $(2 x)$ hybrid. Genome 40: 180-187.

Lai CW, Yu Q, Hou S, Skelton RL. Jones MR, Lewis KL, Murray J, Eustice M, Guan P, Agbayani R. Moore PH, Ming R, Presting GG (2006) Analysis of papaya BAC end sequences reveals first insights into the organization of a fruit tree genome. Mol Genet Genomics 276: 1-12.

Lakshmi MP, Senthilkumar P, Parani M, Jithesh MN, Parida AK (2000) PCR-RFLP analysis of chloroplast gene regions in Cajanus (Leguminosae) and allied genera. Euphytica 116: 243250.

Lander ES, Green P, Abrahamson J, Barlow A. Daly MJ (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174-181.

Liang H, Fang E, Tomkins J, Luo M, Kudrna D. Kim H (2007) Development of a BAC library for yellow-poplar (Liriodendron tulipifera) and the identification of genes associated with flower development and lignin biosynthesis. Tree Genet Genomes 3: 215-225.

Lincoln SE, Daly MJ, Lander ES (1993) Mapping Genes Controlling Quantitative Traits: Using MAPMAKER/QTL Version 1.1, A Tutorial and Reference Manual, A Whitehead Institute for Biomedical, Research Technical Report, Second Edition, January.

Lohithaswa HC. Hittalmani S, Shashidhar HE, Dhanaraj PS (2003) Assessment of genetic variability in some pigeonpea [Cajanus cajan (L.) Millsp.] genotypes using RAPD markers. Indian J Genet 63: 329-330.

Krause L, Diaz NN, Bartels D, Edwards RA. Hler AP, Rohwer F, Meyer F, Stoye J (2006) Finding novel genes in bacterial communities isolated from the environment. Bioinformatics 22 (14): e281-9.

Malviya N, Yadav D (2010) RAPD analysis among pigeonpea [Cajanus cajan (L.) Mill sp.] cultivars for their genetic diversity. Genetic Engineering and Biotechnology Journal Vol. 2010 GEBJ. 1

Manly KF, Cudmore Jr, RH, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping Mamm. Genome 12: 930-932.

Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9: 387-402.

Marek LF, Mudge J. Darnielle L, Grant D, Hanson N, Paz M, Yan H, Denny R, Larson K, Foster-Hartnett D (2001) Soybean genomic survey: BAC-end sequences near RFLP and SSR markers. Genome 44: 572-581.

Margulies M. Egholm M. Altman WE, Attiya S. Bader JS (2005) Genome sequencing in open microfabricated high density picoliter reactors. Nature 437: 376-380.

Mather KA, Caicedo AL, Polato NR. Olsen KM. Mccouch Susan, Purugganan MD (2007) The extent of linkage disequilibrium in rice (Oryza sativa L.). Genetics 177(4): 2223-2232.

Meksem K, Zhang HB, Lightfoot DA (2000) Two transformation ready large insert clone libraries for soybean: physical mapping of resistance to soybean cyst nematode and sudden death syndrome. Theor Appl Genet 100: 747-755.

Meldrum D (2000a) Automation for genomics, part one: preparation for sequencing. Genome Res 10: 1081-1092.

Meyer E, Davies S, Wang S, Willis BL, Abrego D, Juenger TE, Matz MV (2009) Genetic variation in responses to a settlement cue and elevated temperature in the reef-building coral Acropora millepora. Marine Ecology Progress Series 392: 81-92.

Miller NA. Kingsmore SF, Farmer AD, LangleyRJ, Mudge J, Crow JA, Gonzales AJ, Schilkey FD. Kim RJ, van Velkinburgh J, May GD, Black CF, Myers Mk. Utsey JP, Frost NS, Virk

SM, Sugarbaker DJ, Bueno R, Gullans SR. Baxter SM. Day SW. Retzel EF (2008) Management of High-Throughput DNA Sequencing Projects: Alpheus. Journal of Computer Science \& Systems Biology 1: 132-148.

Ming R, Moore PH, Zee F, Abbey CA, Ma H, Paterson AH (2001) Construction and characterization of a papaya BAC library as a foundation for molecular dissection of a treefruit genome. Theor Appl Genet 102: 1432-2243.

Minja EM, Shanower TG, Silim SN, Karuru O (2000) Efficacy of different insecticides for pigeonpea pest management in Kenya. Int Chickpea Pigeonpea Newsletter 7: 30-43.

Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30: 194-200 .

Mozo T. Dewar K, Dunn P. Ecker JR, Fischer S, Kloska S, Lehrach H, Marra M, Martienssen R, Meier-Ewert S (1999) A complete BAC-based physical map of the Arabidopsis thaliana genome. Nat Genet 22: 271-275.

Mullikin JC, Ning Z (2003) The Phusion assembler. Genome Res 13: 81-90.

Mun JH. Kim DJ, Choi HK. Gish J, Debelle F. Mudge J. Denny R, Endre G, Saurat O, Dudez AM, Kiss GB, Roe B, Young ND, Cook D (2006) Distribution of microsatellites in the genome of Medicago truncatula: are source of genetic markers that integrate genetic and physical maps. Genet 172: 2541-2555.

Nadimpalli RG, Jarret RL, Phatak SC , Kochert G (1994) Phylogenetic relationships of the pigeon pea (Cajanus cajan) based on nuclear restriction fragment length polymorphism. Genome 36: 216-223.

Nasu S, Suzuki J, Ohta R, Hasegawa K, Yui R, Kitazawa N, Monna L, Minobe Y (2002) Search for and analysis of single nucleotide polymorphisms (SNPs) in rice (Oryza sativa, Oryza rufipogon) and establishment of SNP markers. DNA Res 9: 163-171.

Nayak SN, Zhu H, Varghese N, Datta S, Choi H, Horres R, Jungling R, Singh J, KaviKishor PB, Sivaramakrishnan S, Hoisington DA, Kahl G, Winter P, Cook DR, Varshney RK (2010) Integration of novel SSR and gene-based SNP Marker loci in the chick pea genetic map and establishment of new anchor points with Medicago truncatula genome. Theor Appl Genet 120: 1415-1441.

Novaes GJ, Drost DR, Farmerie WG, Pappas GJ Jr, Grattapaglia D, Sederoff RR, Kirst M (2008) High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome. BMC Genomics 9: 312.

Odeny DA, Jayashree B, Ferguson M, Hoisington D. Cry LJ, Gebhardt C (2007) Development, characterization and utilization of microsatellite markers in pigeonpea. Plant Breed 126: 130136.

Odeny DA. Jayashree B. Gebhardt C, Crouch J (2009) New microsatellite markers for pigeonpea (Cajanus cajan (L.) Millsp.). BMC Res Notes 2: 35.

O'Neill CM, Bancroft I (2000) Comparative physical mapping of segments of the genome of Brassica oleracea var alboglabra that are homoeologous to sequenced regions of the chromosomes 4 and 5 of Arabidopsis thaliana. Plant J 23: 233-243.

Ossowski S, Schneeberger K, Clark RM, Lanz C, Warthmann N, Weigel D (2008) Sequencing of natural strains of Arabidopsis thaliana with short reads. Genome Res 18: 2024-2033.

Ouyang S, Buell CR (2004) The TIGR plant repeat databases: a collective resource for identification of repetitive sequences in plants. NAR 32 Database Issue D 360-363.

Punguluri S K, Janaiah K, Govil J N, Kumar P A, Sharma P C (2006) AFLP fingerprinting in pigeonpea (Cajanus cajan L. Millsp) and its wild relatives. Genet Resour Crop Evol, 53: 423431.

Quinn NL, Levenkova N. Chow W. Bouffard P, Boroevich KA. Knight JR (2008) Assessing the feasibility of GS FLX pyrosequencing for sequencing the Atlantic salmon genome. BMC Genomics 9: 404.

Rachie KO. Roberts LM (1974) Grain legumes in the lowland tropics. Advances in Agronomy 26: 127-132.

Rafalski JA (2002) Novel genetic mapping tools in plants SNPs and LD-based approaches. Plant Sci 162: 329-333.

Raju NL, Nanjappa GB, Lekha P, Jayashree B, Pande S, Byregowda (2010) The first set of EST resource for gene discovery and marker development in pigeonpea (Cajanuscajan L.). BMC Plant Biol 10: 45.

Ratnaparkhe MB, Gupta VS, Ven Murthy MR, Ranjekar PK (1995) Genetic fingerprinting of pigeon Cajanus cajan (L.) Millsp and its wild relatives using RAPD markers. Theor Appl Genet 91: 893-898.

Rego TJ, Nageswara Rao V (2000) Long-term effects of grain legumes on rainyseason sorghum productivity in a semi-arid tropical vertisol. Exp Agr 36: 205-22.1.

Ronaghi M, Karamohamed S, Pettersson B, Uhlen M, Nyren P (1996) Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem 242: 84-89.

Ronaghi M, Pettersson B, Uhlen M, Nyren P (1998a) PCR-introduced loop structure as primer in DNA sequencing. BioTechniques 25: 876-884.

Salimath SS, Bhattacharyya MK (1999) Generation of a soybean BAC library, and identification of DNA sequences tightly linked to the Rpsl-k disease resistance gene. Theor Appl Genet 98: 712-720.

Saxena KB (2008) Genetic improvement of pigeonpea-a review. Trop Plant Biol 1: 159-178.
Saxena KB, Sultana R, Mallikarjuna N, Saxena RK, Kumar RV, Sawargaonkar SL, Varshney RK (2010) Male-sterility systems in pigeonpea and their role in enhancing yield. Plant Breed 129: 125-134.

Saxena RK, Prathima C. Saxena KB, Hoisington DA, Singh NK, Varshney RK (2010a) Novel SSR markers for polymorphism detection in pigeonpea (Cajanus spp.). Plant Breed 129: 142-148.

Saxena RK, Saxena KB, Kumar RV. Hoisington DA, Varshney RK (2010b) Simple sequence repeat-based diversity in elite pigeonpea genotypes for developing mapping populations to map resistance to Fusarium wilt and sterility mosaic disease. Plant Breed 129: 135-141.

Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Sci 270: 467-470.

Schlueter J A, Goicoechea J L, Collura K, Gill N, Lin J Y, Yu Y, Vallejos E, Munoz M, Blair M W, Tohme J, Tomkins J. McClean P, Wing R, Jackson S A (2008) BAC-end sequence analysis and a draft physical map of the common bean (Phaseolus vulgaris L.) genome. Trop Plant Biol 1: 40-48.

Schlueter JA, Lin JY, Schlueter SD, Vasylenko SIF, Deshpande S, Yi J, O’Bleness M, Roe BA, Nelson RT, Scheffler BE, Jackson SA, Shoemaker RC (2007) Gene duplication and paleopolyploidy in soybean and the implications for whole genome sequencing. BMC Genomics 8: 330 .

Schmitt ME, Brown TA, Trumpower BL (1990) A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res 18: 3091-3092.

Schmutz J, Cannon S B, Schlueter J, Ma J, Mitros T, Nelson W, Hyten D L, Song Q. Thelen J J, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya M K, Sandhu D, Valliyodan B, Lindquist E. Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z. Zhu L. Gill N, Joshi T, Libault M, Sethuraman A. Zhang X C, Shinozaki K. Nguyen H T, Wing R A, Cregan P. Specht J, Grimwood J, Rokhsar D, Stacey G. Shoemaker R C, Jackson S A. 2010. Genome sequence of the palaeopolyploid soybean, Nature, 463:178-183.

Schultz JLD, Kurunam K. Shopinski MJ, Iqbal K, Samreen K, Zobrist K, Bashir R, Yaegashi S, Lavu N, Afzal AJ, Charles R. Yesudas, M. Kassem A, Wu C. Zhang HB Town CD, Meksem K. Lightfoot DA (2006) The soybean genome database (SoyGD): a browser for display of duplicated, polyploid, regions and sequence tagged sites on the integrated physical and genetic maps of Glycine max. Nucleic Acids Res 34: D758-D765.

Shoemaker RC. Polzin K, Labate J, Specht J, Brummer EC, Olson T, Young N, Concibido V, Wilcox J, Tamulonis JP. Kochert G, Boerma HR (1996) Genome duplication in soybean (Glycine subgenus soja). Genet 144: 329-338.

Shultz JL, Samreen K. Rabia B, Jawaad AA, Lightfoot DA (2007) The development of BAC-endsequence-based microsatellite markers and placement in the physical and genetic maps of soybean. Theor Appl Genet 114: 1081-1090

Sivaramkrishnan S, Seetha K and Reddy LJ (2002) Diversity in selected wild and cultivated species of pigeonpea using RFLP of mtDNA. Euphytica 125:21-28.

Sobrino B, Briona M, Carracedoa A (2005) SNPs in forensic genetics: a review on SNP typing methodologies. Forensic Sci Int 154: 181-194.

Sogin, ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR. Arrieta JM, Herndl GJ. (2006) Microbial diversity in the deep sea and the underexplored "rare biosphere". Proc Natl Acad Sci U S A 103:12115-12120.

Stein N, Prasad M, Scholz U, Thiel T, Zhang H, Wolf M, Kota R, Varshney RK, Perovic D, Grosse I, Graner A (2007) A 1,000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics. Theor Appl Genet 114: 823-839.

Steuernagel B, Taudien S. Gundlach H, SeidelM, Ariyadasa R, Schulte D, Petzold A, Felder M, Graner A, Scholz U, Mayer KFX, Platzer M, Stein N (2009) De novo 454 sequencing of barcoded BAC pools for comprehensive gene survey and genome analysis in the complex genome of barley. BMC Genomics 10:547.

Taylor KH, Kramer RS, Davis JW, Guo J, Duff DJ (2007) Ultradeep bisulfite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing. Cancer Res 67: 8511-8518.

Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and geneticmarker potential. Genome Res 11: 1441-1452.

Terol JM, Naranjo A, Ollitrault P, Talon M (2008) Development of genomic resources for Citrus clementina: characterization of three deep-coverage BAC libraries and analysis of 46,000 BAC end sequences. BMC Genomics 9: 423

The Arabidopsis Genome Initiative 2000.

Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of
progressive multiple sequence alignment through sequence weighting. position-specific gap penalties and weight matrix choice, Nucleic Acids Res 22: 4673-4680.

Tomkins JP, Mahalingham R, Miller-Smith H, Goicoechea JL, Knapp HT, Wing RA (1999) A soybean bacterial artificial chromosome library for PI 437654 and the identification of clones associated with cyst nematode resistance. Plant Mol Biol 41: 25-32.
van der Maesen LJG (1990) Pigeonpea: origin, history, evolution and taxonomy. In Pigeonpea. Edited by: NeneYL.HallSD,SheilaVK. Wallingford: CAB International 15-46.

Van Ooijen JW, Voorrips RE (2001) JoinMap 3.0, software for the calculation of genetic linkage maps. Plant Research International, Wageningen, The Netherlands.

Varshney RK, Thiel T, Stein N, Langridge P, Graner A (2002) In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species. Cell Mol Biol Lett 7: 537546.

Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23: 48-55.

Varshney RK. Hoisington DA, Tyagi AK (2006) Advances in cereal genomics and applications in crop breeding. Trends Biotech 24(11): 490-499.

Varshney R K. Mahender T, Aggrawal R K, Börner A (2007) Genic molecular markers in plants: development and applications. In: Varshney RK, Tuberosa R (eds) Genomics-assisted crop improvement. Springer, The Netherlands, pp 13-30

Varshney RK, Nayak SN, May GD, Jackson SA (2009a) Next generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27: 522-530.

Varshney RK, Hoisington DA, Nayak SN, Graner A (2009b) Molecular plant breeding: methodology and achievements. In: Somers D, Langridge P. Gustafson PJ (eds) Plant genomics: methods and protocols. The Humana Press, Totowa 283-304.

Varshney RK, Thudi M, May GD, Jackson SA (2010a) Legume genomics and breeding. Plant Breed Rev 33: 257-304.

Varshney RK, Penmetsa RV, Dutta S, Kulwal PL, Saxena RK, Datta S, Sharma TR, Rosen B, Carrasquilla-Garcia N, Farmer AD, Dubey A, Saxena KB, Gao J, Fakrudin B, Singh MN, Singh BP, Wanjari KB, Yuan M, Srivastava RK, Kilian A, Upadhyaya HD, Mallikarjuna N, Town CD, Bruening GE, He G, May GD, McCombie R, Jackson SA, Singh NK, Cook DR (2010b) Pigeonpea genomics initiative (PGI): an international effort to improve crop productivity of pigeonpea (Cajanus cajan L.). Mol Breed 26: 393-408.

Varshney RK (2010c) Gene-based marker systems in plants: high throughput approaches for discovery and genotyping. In: Jain SM, Brar DS (eds) Molecular Techniques in Crop Improvement. Springer, The Netherlands 119-142.

Vera JC, Wheat CW, Fescemyer HW, Frilander MJ, Crawford DL, Hanski I, Marden JH (2008) Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Mol Ecol 17: 1636-1647.

Vinatzer BA, Zhang HB, Sansavini S (1998) Construction and characterization of a bacterial artificial chromosome library of apple. Theor Appl Genet 97: 1183-1190.

Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93: 77-78.

Wang, G.-L., Holsten, T.E., Song, W.-Y., Wang, H.-P. Ronald, P.C. (1995) Construction of a rice bacterial artificial chromosome library and identification of clones linked to the Xa21 disease resistance locus. Plant Journal 7: 525-533

Wang J., Wong G. K., Ni P., Han Y., Huang X., Zhang J., Ye C., Zhang Y., Hu J., Zhang K., Xu X., Cong L., Lu H., Ren X., He J., Tao L., Passey D. A.. Yang H., Yu J., Li S. (2002).RePS: a sequence assembler that masks exact repeats identified from the shotgun data. Genome Research 12: 824-831.

Wasike S, Okori P, Rubaihayo PR (2005) Genetic variability and relatedness of the Asian and African pigeon pea as revealed by AFLP. African J Biotech 4(11): 1228-1233.

Wen M, Wang H, Xia Z, Zou M, Lu C, Wang (2010) Development of EST-SSR and genomicSSR markers to assess genetic diversity in Jatropha curcas L. BMC Research Notes 3:42.

Wicker T, Narechania A, Sabot F, Stein J, Vu GTH, Graner A, Ware D, Stein N (2008) Lowpass shotgun sequencing of the barley genome facilitates rapid identification of genes, conserved non-coding sequences and novel repeats. BMC Genomics 9:518.

Woo SS, Jiang J, Gill BS, Paterson AH, Wing RA (1994) Construction and characterization of a bacterial artißcial chromosome library of Sorghum bicolor. Nucl Acids Res 22: 4922-4931.

Woolley AT, Mathies RA (1995) Ultra-high-speed DNA sequencing using capillary electrophoresis chips. Anal Chem 67: 3676-3680.

Wu Y, Bhat PR, Close TJ, Lonardi S (2008) Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph. PLoS Genet 4: el000212. www.illumina.com/technology/goldengate genotyping assay.ilmn

Yang S, Pang W, Harper J, Carling J, Wenzl P, Huttner E, Zong X, Kilian A (2006) Low level of genetic diversity in cultivated pigeonpea compared to its wild relatives is revealed by diversity arrays technology (DArT). Theor Appl Genet 113: 585-595.

Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 15: 555-556.

Yim YS, Davis GL, Duru NA, Musket TA, Linton EW, Messing JW, McMullen MD, Soderlund CA, Polacco ML, Gardiner JM, (2002) Characterization of three maize bacterial artificial chromosome libraries toward anchoring of the physical map to the genetic map using highdensity bacterial artificial chromosome filter hybridization. Plant Physiol 130: 1686-1696.

Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review. Mol Ecol 11: 1-16.

Zhang WK, Wang YJ, Luo GZ, Zhang JS. He CY, Wu XL, Gai JY, Chen SY (2004) QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers. Theor Appl Genet 108: 1131-1139.

Zhu YY, Machleder EM, Chenchik A, Li R, Siebert PD (2001) Reverse transcriptase template switching: a SMART approach for full length cDNA library construction. Biotechniques 4: 892-897.

Table I BAC-end sequence characteristics

Annotation	RE	Genes	G + RE	TE	G + TE	NA	Totals
Total ends	14,659	20,579	2.572	327	148	43,644	81,929
Total sequence (bp)	9,088,580	12,758,980	1,594.640	202,740	91,760	27,059,280	50,795,980
Total unique clusters	6,670	12,022	919	201	44	31,877	51,733
Average cluster depth	2.2	1.71	2.8	1.63	3.36	1.37	1.69
Total unique sequence Total clusters with	5,131,626	8,897,905	764,163	154,620	44,218	20,029,073	35,021,605
SSRs	218	1,166	13	11	0	3,227	4,635
Total SSRs	406	1669	21	15	0	4145	6.256
SSRs/100 Kbp	4.5	13.1	1.3	7.4	0	15.3	12.3
Selected SSR loci	97	704	4	2	0	1974	2,781
Polymorphic SSRs	26	247	0	0	0	564	837
Average \# of alleles	4.88 ± 1.75	5.44 ± 1.73	na	na	na	5.79 ± 2.1	
Average PIC value	$0.52 \pm .21$	$0.58 \pm .18$	na	na	na	$0.57 \pm .19$	

${ }^{8}$ Total unique clusters represent the total number of sequence clusters plus the number of singleton (non-clustered) sequences.
${ }^{\mathrm{b}}$ Total unique sequence represents the sum of the nucleotide length of all unique sequence clusters.
"Three polymorphic markers are from BAC ends annotated as "chloroplast" and are not listed in this table.

Table 2 Distribution of polymorphic markers into different repeat classes

SSR type	Repeat classes	Number of markers synthesized	Number of markers amplified	Number of polymorphic markers	PIC value	Number of alleles
Compound		657	$626(95.28 \%)$	$227(36.26 \%)$	$0.08-0.88(0.58)$	$2-12(5.74)$
Class I	NN	639	$592(92.64 \%)$	$236(39.86 \%)$	$0.08-0.90(0.60)$	$2-14(6.55)$
	NNN	200	$194(97 \%)$	$66(34.02 \%)$	$0.08-0.85(0.60)$	$2-13(5.87)$
	NNNN	62	$61(98.38 \%)$	$14(22.95 \%)$	$0.28-0.81(0.50)$	$3-9(4.71)$
	NNNNN	10	$10(100 \%)$	$2(20 \%)$	$0.52-0.76(0.64)$	$5-7(6)$
	NNNNNN	43	$43(100 \%)$	$10(23.25 \%)$	$0.52-0.76(0.64)$	$2-7(4.4)$
	Total	954	$900(94.33 \%)$	$328(36.44 \%)$		
Class II				$97(98.11 \%)$	$219(22.18 \%)$	$0.08-0.03(0.53)$
	NN	1,006	$9-9(4.9)$			
	NNN	455	$451(99.12 \%)$	$68(15.07 \%)$	$0.08-0.74(0.48)$	$2-6(4.4)$
	Total	1,461	$1,438(98.42 \%)$	$287(19.95 \%)$		
	Grand	3,072	$2.964(96.48 \%)$	$842(28.40 \%)$		
	Total					

Table 3 Frequency and distribution of different SSR motifs

AAAAAG	$24(26.67 \%)$	30	30
AAACTC	$4(4.45 \%)$	30	30
AAAGAC	$1(1.11 \%)$	36	36
AAATTG	$1(1.11 \%)$	36	36
AACACC	$1(1.11 \%)$	42	42
AACCAC	$1(1.11 \%)$	30	30
AACCTG	$1(1.11 \%)$	36	36
AACTTC	$1(1.11 \%)$	30	30
AAGACC	$1(1.11 \%)$	42	42
AATCAG	$1(1.11 \%)$	36	36
AATGTG	$3(3.34 \%)$	$36-42$	38
ACACAG	$1(1.11 \%)$	48	48
ACACCT	$39(43.33 \%)$	$30-72$	44.76
ACATCC	$1(1.11 \%)$	30	30
ACCGTC	$1(1.11 \%)$	30	30
ACCTCC	$1(1.11 \%)$	42	42
ACTATC	$2(2.22 \%)$	30	30
ACTATG	$1(1.11 \%)$	42	42
ACTCTC	$3(3.34 \%)$	30	30
AGCCTC	$1(1.11 \%)$	30	30
AGGAGT	$1(1.11 \%)$	30	30

Table 4 List of newly developed SSR markers isolated from BAC-ned sequences of pigeonpea

'Marker name	$\begin{aligned} & \text { GenBank } \\ & \text { ID } \end{aligned}$	${ }^{\text {S }}$ SSR motif	Forward primer (5'3')	Reverse primer ($\mathbf{5}^{\prime}-3^{\prime}$)	Product size (bp)
Ccm0001	F1188374	(GA)7	agGcatgCangctttattgg	TCCAAAATTTCGTCCAAAGC	166
CcM0002	F1188505	(AG) $5 \mathrm{n}(\mathrm{AG}) 7$	gcctataamtagggectagg	agancaganactcgggcaga	237
Ccm0003	F1188508	(TTA)6	tgcagccaaattattttgttatgi	ttcaacagcatcagcactce	105
Ccm0004	F1188513	(TA)8	ttaaattgtcagccaaggge	taagaantttggaggtgcca	228
Ссм9005	F1188517	(AT)20	ggggatgacagtgtanctgga	ttggatcacanactagtaataganca	273
CcM0006	F1188554	(TA)8	gcaccaatatgcagtcaaca	tittggatcgatcangangc	280
Ссм0007	F1188572	(ta)6	cctaagangangcgetgtg	tgcttctacaatggacacgg	257
CcM0008	F1188611	(TA) 19	cGgtgatahgGgtcaatgag	camaattanagcctacttattitacga	182
Ссм90009	F1188694	(GGA)5	CCATGATGTGTCACGIGGTT	tgcgaggtgaaacttggtaa	189
Ccm0010	F1188854	(AT) 24	CCTICAATGAGGACttgtgttg	cgititcaattittatataatcggg	260
Ccm0011	F1188861	(CAA)5m(A)19	gatttccacgtggttgagaan	attgcaaccccatgttcatt	248
CcM0012	F1188879	(GA)6	agagcgagcantcacagaca	angatcctctaccgcagca	278
Ccm0013	Fl188884	(ATT) 5	tgatagtggatgctatanamagagga	GAttCtgtgggattitgtgaa	174
Ccm0014	F1188947	(AAAT)6n(at)7	agtgaggccganaatcctit	TTTCCTACTCCTTTGAGTCCTTTC	244
Ccm0015	F1188950	(AT)24	titcticattattggttgantatcaca	cCGgtgtgttcgagctattt	276
CcM0016	F1188985	(AG) 12	tcCaAtgttggattanagge	atttggancacctcattccg	277
CcM0017	F1188997	(A)20m(Aat) 5	CCAaAGGATGTGTCGTGATG	catccanagttcaataagagtttga	255
Ccm0018	F1189023	(A)17ntal 5	aagctgcctgatgcattitt	cagggaantggaganagctc	279
Ccm0019	F1189055	(TC)S(T) 0	tagagtcgacctgcaggcat	tagctcgggttcgaggtaga	210
Ccm0020	F1189064	(AT)20n(AT) 5	tagagtcgacctgcaggcat	aftggggcatgagtgatagc	268
CcM0021	F1189072	(TTA) 10	tgaatgitttccaggattitaca	gcgcanatatangagcceag	280
CcM0022	F1189103	(AT) 5 m(A) 10	acgigacacaccatgtggat	antccatgccaancaiatgc	173
CcM0023	F1189142	(AAC)6	gCCaActccaangggtacaa	atttggtgangtgggtggag	207
CcM0024	F1189144	(TA)9	gctgtcanaaggttcatcatttc	CTCCTCCTGCacacangaca	279
CcM0025	F1189149	(T)16n(TA)22	tagagtcgacctgcaggcat	ggatcaacagttaatggtganama	234
Ссм0026	F1189179	(TG)6	Caggeatgcangctittaga	afcacancaamacttgggec	269
Ссм9027	F1189191	(AT) 12	clangGgatagattcancla	accaagtcaaattigccaca	163
CcM0028	F1189231	(AT) 15	Cacccanactcacttcttcla	ganatgtcatglggtiantctttga	257
Ссм9029	F1189250	(AT)8	actittggagctcatggg	ganaacgtitcclaaccaaa	275
cemuesa	F1189258	(AAT)8	gcaatatcaattcaatggigga	tgacagatgcactctetcgitt	218
CcM0031	F1189293	(TA) 7	CTTCGAAGGCAAGAGAGAGC	gGattcacgcttagtgctge	222
CcM0032	F1189299	(AT)6	Cagaccacanactctigcca	agaacgcacagcanganaca	236

	Cem0033	FI189330	(TA) 18
	Cem0034	F1189336	(TA)17
	Ccm0035	F1189341	(GA) 7
	Сcm0036	F1189363	(aAat) ${ }^{\text {n (}}$ ($) 10$
	Ccm0037	F1189372	(ATT)6
	Ccm0038	F1189417	(GA)6
	Ccm0039	F1189463	(AT) 37
	Ccm0040	F1189488	(GA)6
	Ccm004I	F1189508	(Tat) 5
	CcM0042	F1189542	(T) 10 n (TA) 5
	CcM0043	Fl189544	(TC)6
	Ccm0044	Fll89547	(AT)22
	Ccm004s	F1189573	(AT) 5 n(TA) ${ }^{\text {a }}$
	CcM0046	F1189581	(TA17
	CcM0047	Fl189589	(A) 12 n (TC) 5
	CcM0048	F1189606	(GA)7
	CcM0049	F1189635	(TTA)6
5	Ccm0050	F1189653	(ATC) 5
	Ccm0051	F1189688	(AT)8
	Ccm0052	F1189710	(A) $3 \mathrm{3n}(\mathrm{AG}$)9 9
	Ccm0053	F1189777	(AT) 17
	Ccm0054	F1189784	(TA)8
	Ccm005s	F1189791	(AT)16
	Ccm0056	FII89800	(TG)6
	Ccm0057	F1189804	(aAat)6
	CcM0058	F1189812	(AT)30
	CcM0059	F1189813	(GAA) 5
	CcM0060	Fil89850	(AT)7
	CcM006I	F1189855	(TaA)5
	CcM0062	F1189859	(TA)24
	CcM0063	FII89867	(TG)n(TA) 5
	CcM0064	Fll 89930	(AT)7
	CcM0065	F1189944	(TAA)5
	Ccm0060	FII90016	(GT)5n(A)20
	Ссм0067	FII90029	(TG) 7
	CcM0068	F1190044	(GAT) 5

ctcantacaccactcanccca cggatangggagtggattga ttgtaggigctitgtggcaa gGGGGTGCTTTTAGGGAATA tcaanaccgtcaaaaatgaca atcactgtccgactcancce aggaataatgtttgctgcgg tCCGAGCAAAGGAGAAGCTA tgTgittrgcttitgatgge aactttganaactaaggattigattc aacgaccatatccagancgg tgcccatctgttaaancatca titantggatttgcatgagca actcangetttgtangcattatga tgtctttiggatganagtaggga tggcaacccttcacactaca CTCGGTTCATGGTTGGCTAT gCGattttgcagagictitgi aCCTTTATTTTGAGCAGGAAAA gcagcagaaagccctgtatt gGantgagatcattaantangGcaa
tcantrtatgtctetattggagttgc
cgtatctaattcagcaatatgatttit
tcatgcacgancantgtgaa
CaAtGTtGGCataggaacca
cCTTCTTCAATGTCAACAGTTCC gTtatgaaaacacgacactctcc tggaacaatgcctatggtga tTtGCATGTGCTTITTGTCC TCGCTTGTGCCTGTTCTTTA actCancctgcacctgtcct CATTTCTTTTCCCCTATTTTCTTTC CGTGCTTCTGAGTGCGTAAG tTGCTTCTTTTCTCGCTTGC cttggaangcatcttcaagc СССтСTTCTCCATGGTCCTT
tgcgtanaatatagtgangacaagi 280
tCCCTCTCTTTCTTGGACGA 278
gccgttgtaggatacganaa 259
aAagaggagcaatggggaat 256
AATTTGAGATGAAATTTGTCGAA 183
tacccgagatcatgaggacc 238
tTGGTATGTGGAACGATTGC 261
gacggccagagaaattttga 232
tgGCatccaatgictgctaa 252
ttgGgtaaccattggtctca 262
tGCCTCACAAATCTCACGAa 184
cagagcctaangcacttcgg 225
CTGCGTAATGCACGAACAAC 262
gGagGaggttattrttgttrtcg 100
gTtGGGGatGgGaAgagaat 160
tccaanatitcgitcaange 116
agGtaggggcatatggaagg 168
afggaacgaattcacctgga 162
tgantcattitctgttganggg 269
atgcctgcatccattagtce 277
CGCCAAAAACCTTTGATGAT 250
TGCATCATTGTCCACCTAACA 277
AGGAATGATTTTAAGGAAGAAATG 249
AACCCTTCAGACGCATTGAC 186
GCTTAAAACTTGTGGGGCAA 269
TGACGAGAAAGTGAATCGGA186
gCatTITTGGCCATTTGTA 164
CATGOAGGGACCACTTCACT 272
CAGGTTTTGTGTTTGTTGCTG 241
GCAAACTGCCCTCAAACAAT 218
AAATAGGCTCAAATATTTTCACTGC 280
GCCTTGTACTCCATCATGTTCA 178
TCTTATTTTTGTGCAGCCCC 274
TTTTGTTACACCAATCCTCGG 279
GACAAAGGTGAACTCTTGCCA 155

HLLDLVVDOLOVLLLIOLLOLLI IVVVOLLDLOVVOVOLIOOVIVDI．
 ODLOUVOLVVOOVVDOLVFV マVODJJJVVODVLDVJV10D VVODLOJVOLIVVOJVVODV

VVVVVLVVOLVLVVVIVOLODODLVV

 OVOVVVJOVOJJVVOJVJJV ODODVODIVマOVVOVVVDVV OLLOOLLOLVOLVVLVOLOOOL L〇VOL๑LLOLOLLOOOLVVLL LVDLOVOLOVVLVVVVVODLLVVOV VODJVOOVVODVVLLODLL マVOVマVJVJOVJว1VOJVJI VLIVVVODIDOLIVODVODL VOVDLDLDJVVJOVVOJVอ JV $\mathcal{O V V O \vee J O J \forall L D \perp V O L ~}$ VOVOLOLLLOVOOLLLOO マLOVวOLVOLLマVODJวマOO แ．OVOLDOVVVOOLVVVOOJ コロOVVวVวอวLLOVวLVวค LLDOODVLLDLVマJVODOO
VVVODVVLVOVOOVVVLOLVLVLOLVS
＊OVVOLLIVVIVVOLOLVOOLVV10 OLLVOOVVVVVLOVJOVOOLL コ）VVVIVODLLVルルLOLLIVV JVOVLOOLOVLDLVOOOJJ VOLVVVVOOLVVOLLOLLOL． 1．OOS」OLVOSLOVV $\forall V D 199$
VOLLVOVVOLLVLJVOVVDJJL VOVOVLVVVLOOVOLVOLJVOLLL VOLOLLLVVLLLVLLLIVDLOOVOLI VVOLVVOLVDLDOLVLVVVOLSLL マวVOLLVマOL）OVVOJLVVV） JJJVOOVLOJVOJLLJVOV

VVIDLLLOVVJOLVOOOV） गODODLIVJVOLOLVOOVIV J\＆LOLLOLDVVOLOLLLOLD マVOLOLLLOJVVVVVOVOVVJJ VJVVOODLLLVVLDLDOOD OLLLODVOOLOLLLLODOV VOVVVVOLLIVDIDVOJJVVOVV JVVOLDLLLLOOVJOOOLVV
 LOOODLOOOOLOVLIVVIV VODOLVVODLVODVLIVVLOLI
 OOVOวออOOVLVVVLVLJつO ODJVVLLDLODLVODLOVQ O．JVDVLOOJVOLIVIVOOL IVDDOVJOLOJVODLDVDV． LOOODLOLDOLVLVLOOLO OVLOOLLLLOVVOOLVOOD LVOVLLOVVLLLLOLOOLDOLLO VOLVLIJVVVVOLLOOVVOOD． DOVLLOOVOODLVDLDOLL VOLODVODOVVOLVLOVOOL LDODOLIOLVOLOLVマDLDL VVJOVVOLOVOLVODOLOLO DOLLOOLLOLVIDLLOLVJOL DLLLLVODLDLLVOLIVFOLOVV JOLVVVOOOLOVVOOVVVJI LVVVDVOVVVDOOVIVODJO
VOJLVVLLOOVVVJLOVVVLLVVVVJ JอУOLLSLOLSVVOVVマOJLL ODOOVDLLLVLOOJVLDVV
 LLLVLOOOOVVLVOOOODV LVVOVVDOODLOVLDJODV1 LVOJJOLIVVOLLOLVOOLO VODLDVVOLLLDOOVVOJV

L（VI）	1260611	5010w
H（VLL）	21606114	£010w
S（OLV）	¢9806 114	zolow ${ }^{\text {d }}$
s（oiv）	โE806114	1010w
$8(V 1)$	$8 \mathrm{c8061IJ}$	0010w
s（JIV）	S18061IJ	$6600 \mathrm{~W}^{3}$
01（1v）	E6L0611：	$8600 \mathrm{~W}^{3}$
$9(\mathrm{DL)}$	28L06IIS	L600w
S（ $2 \perp 1$ ）	LLL06IId	$9600{ }^{3} \mathrm{~J}$
$60.31)$	95206113	S600W ${ }^{\text {P }}$
si（V）	StL061］	p600W
LZ（LV）	ع0L0611 1	\＆600W ${ }^{\text {W }}$
9 （VD）	2690611	2600W3）
$9(\mathrm{VL})$	12906［1］	1600W93
9（VI）	\＆2906 1Id	0600W3
$9(V 1)$	ILS061］	6800Wフ）
61（1V）	29S06 114	$8800{ }^{\text {8 }}$
$9(\mathrm{~V})$ ）	LSS06II：	L800W ${ }^{\text {P }}$
8（LV）	EZS0611	9800w
9 9（V1）	2zS06114	S800W ${ }^{\text {d }}$
8（V1）uzI（ 1 ）	8th06ild	8800W30
$9(10)$	L6606［14	\＆800W
L（V．L） $491(1 \mathrm{~V})$	IL806 114	2800W ${ }^{\text {\％}}$
91（LV）	0L506 11］	1800w ${ }^{\text {N }}$
	sze06lld	0800W
II（ ）u_{6} I（ 1 （V）	Scz06IId	6L00W ${ }^{\text {d }}$
01（L）us（VI）	£S2061Id	8L00W ${ }^{\text {W }}$
6（LV）	S120611	LLOOW
sZ（V）	2S106114	9L00W
LOV）	98106 lld	SLOOW ${ }^{\text {S }}$
91（LV）	0ع106114	ャLOOW ${ }^{\text {S }}$
8（VI）	6210611 d	\＆LOOW ${ }^{\text {S }}$
6（LV）	01106114	（LOOW ${ }^{\text {（ }}$
$s(O V) u_{1 l(O V) u_{6}(V 1)}$	2600611 d	［L00W3）
$6(\mathrm{VL})$	9L006 11：1	0LOOW9
$9(\mathrm{OL})$	65006114	6900W ${ }^{\text {a }}$

$$
\begin{aligned}
& 5 \\
& \sigma
\end{aligned}
$$

LVVVOLLLLODLLLVOVOVVVLL VVVOOVOVOJOLOVVVOLOD 10วLLLOLOOV $\operatorname{LDOLDL~}$ LVOOLIOLDVOLVOJOVOL マLVOOVวVวVอOLVOLOOL VLOLLOJJVOOVVVOVVOJ VVOLVOLVOVVOLOLVODOLI VOJLVFVOOLVVJOLVVLVDJ コODLVVLOLIOVOVDODOLI
VODVVVLLDLLIOVVLLLDOVVVDI OJVIVOOVODVLOOOVOJL JOVVOLLVEVOLLJVOOLVOL LLLOLOVVวOOODVLVO） マOOVVDODLVOVOOV．1OL
マコL．JJVVOVOLVVVVOLVVJつ VVJVVVVJJLOLIVVIVVVVDVISJ VODVOLLOLVOLVDLDLVOI
 SIVOLVVVOODOOOIVLIVS VDJJOVVVOIJOOVVIVIDO VVVVDLVOLDVOJVOLDODL
DOLLOVVOOVLOLLLEDLOVOL ＊JVOJVVOLLLVJVOVJVVJつ VJVVJLVJVODLLLJOLVJV LVOODLOJVVVVOJLIVVO IVOVOLVLOLLDLODVOVLOOOLL VOLDLLVOLODOVODLLVDI LVV IVOLVIVVLLOLVODOJOJO LLVVOLLLDLOODLVOOD OOJVOODVLLOOLLDVVVD OLLLOLLLOUVLLDOVOVVV O）VVLDLLDVムLODLLכLOD」 JOOVVVJVVODLVVVOVOJV ＊VVODOOOLVOLVDLLLIV D）LכVVOVODLLLLDOLL

วЦ1OLOVLOLLOOOLปVVว ＊VOVDOLLODLЮLLODOLS OVVOLVVOOLVOLODOLLL VOVODVVVマVอOLVOLVO90
DLLLOVOVVマVマLOOVVOL．OD OLLOLOVOOLOLLLLOODV LVLVOLOLVDOOOOLOLO วOLJJVOLLLV．JJ1OLLS マ \forall OVVVOOOLVOJVLOVOL
VOLLOLLOOVLDLVVVDIVVVVIVLLI VOOLDVVOLЦLOOOVVO）V LOV．V VVODODLIOOVVOOL VLODOOLVOLDLIVOOVOL ルVOOVODLDVOVVOLODル マOLVVOLDOLLDLVOOLODL DI甘JVVI甘LDOL．）VDLDJOJD
マVVVLVJOLIOJVIVLOOJVOVOI VVVVOOOOVLLODVVOOIV） VLOOLLLLVLLVOOOLOOL VOLDOLDODVDDLIVVVOV マวVトOOLOJV．IVOLVOLOD JOOJVOLOOVILOOLLVVVD JOLVOL以OLLVOOVOJL วDЮ〇LOOLOLOLOLLOVV JIJVVOJOJVOJVLIDOLIV
マVOOVVVJVJVLLLJVLDVVOJIVVV VVODVODLDVVVOLVVVODS OLIDIOLLVVマOOLVODコ VLLVLLOOVVOOLVOOOVOD DVVODVVDVJVVDJVDOVDD LIOOOOVILLLVV．）VOOD V \forall OLLVOOVVVLLOMOVLVOLOL IVOODVODLコJVODIDVOVI JOOLVVJOLIVVVVJOLJVS ＊DOOLVVV
VVVOLJVJVLLODVLLV $100 \vee J V O L$

S（LVV）	tsoz6 11 d	ObIOW ${ }^{\text {a }}$
$9(01)$	Ez0z6IIS	6¢10W ${ }^{\text {（ }}$
9（V1）	09616113	8 E （0\％）
8 （VIV）	Et616114	LEIOW ${ }^{\text {S }}$
s（VJV）	LE616113	9¢10W5
s（JLV）	LE616113	¢flow
てI（LV）	8181611 T	¢¢10W5
6（VI）	£1816113	\＆¢10Wจ）
てI（1V）	10816114	て¢ 10% ）
1で」V）	8LLI6IIS	［［10W9
9（D）	LLLI6II．	Of towos
$9(\mathrm{VL})$	EILI6IIS	6210W ${ }^{\text {a }}$
6（LVV）uc（LIV）	EL916114	8210Wコ）
S（VVVDVV）	05916114	LZIOW5
IZ（IVI）	81916113	9210Wコ）
S（VLI）	19S16114	SZIOW5
zz（IV）	6tSi6Its	tて10w ${ }^{\text {a }}$
SI（IV）	2\％SI6IIS	\＆ 210% ）
H（IV）	LOSI6IIS	2Z10W3）
LI（V．L）	10S16114	IZ10W5
L（V）	L6vi6IIS	OZION³
IE（LV）	SEti6IId	6110W5
9（0．）	ELE16III	8110w
LILIV）	97E16114	LIIOW ${ }^{\text {S }}$
s（JVV）	662I6114	9110 W 9
sZ（V．L）	0LZ16113	Sllows
L（DV）	99116115	－［10W9）
$6(\mathrm{VI})$	LE116IIS	\＆110W5
L（V1）	02116114	て110W
$9(\mathrm{VD})$	61116114	1110W5
$9(01)$	81116113	0110W5
$91(\mathrm{VL})$	090161 HJ	6010W ${ }^{3}$
カ1（L）い6I（LV）	fe0l6IId	8010W3
S（LIV）	fz016IId	LO10w ${ }^{\text {S }}$
6 （VV1）	L0016IIS	$9010{ }^{\text {9 }}$
s（v30）	18606114	S010w ${ }^{\text {J }}$

JVVVODOVOOOLIVLLOOVV LLJJVVOVOLVJLVDVOJJ

 VVVVJJVVVJLVOVVOVVLDLVVVVJ VDLDLOLIVOLVLLVVJ） VODOVLLOOJLVODLLVVOL DLวLLLマJOวLOIVODOV VDOLDVVJLLルวOOVVJJV
 マววววLวบVVอVIVVVOLL マวOマLOLマママOLODOLOノ VVJDVVODOLIVOVDDVLOL
VVOLLDOOVVOVLOOLLOOVVV DLDVDLDLDVDLOLLDLDVVOL OJJOLOVJVOVOLVOOOVLL甘VDDLOJVOLIV $V D J V V O D V ~$ OLLOLDOLLIVVVODLLODD IVVVVOLVLJVODOJOLLOJ DOLOVOLOLILVODLVJOL
 マL） OVVDLDIVVVD）VDLOOLI LIOLVJJODOVVJVJVJVLI OOLIVOVVPOLDOVVOLL VVOOVLOOOVVLLOOJVODV
 マVOLLLDODOLLOVOJLVD ODOVLIDVODIVOVDOLVV） VOVVOLVIVOOVOVDVJVJコد OOLODLLVDODVVOVVOOVD VOLODVODDVVOLVLDVOOL VVOVLOLJOOLOJVOLOOL） VOLVVODOJVOVLLLIVLLDLVVO DOLOVVVOVVVOOLVOLDLVOVV LLOJLVVODLOLVVOJLVOD
LOLVVVLOOVOOOLVLIVVVVLVVVV

OLVODODODVVDVVILVVVS
マJVDVJVวLVVJVVOJDVDD
コVマJJODVOVVVVOLLLOLDV VวVVJ1）วVODOLVVOLDI DOJLDJVLLVLIVODLDIVS OOLOLLDLODOLLVLLVVOLL LLLDLDOVVJOLVDODV DJVLVOJVOOVLวOJVOJЦ
VOJHVOVVVOL）LOOVLJVVノ VOVVOVOLOJVVOJDIVVII
 コJJゆVDOLVVOVVVVDDL LココVLDDJLVマLLOJODLV マVOOJJVOLILLLOVJVV
 DLLDLDVODLDLLLLDODV VVDLODOLVOVVVOVVODOV
HLDLVOLLVDLLDODLVVVム LVODODIVOOVOVOLVLว DVVVVOLVVODLOOOLJDL
VOVLLLIVVOVOVLLOLVVDLLVVVDI LLOOLOLLVOJOLOJVVOV
マวVวLวOOLマVวVLDVวVวแ ODOODVJOVLOOLLIVOL JVVDDILVODLVODLVODVV V．LLDLLLODVVODIVJOOVJ マVOLVOVVOJVVOOOLLIJ LDLDODVOVLODODLDIVOI
VODVLVVOVLLVOLOVOLLIVVODI マVVOOOJOOOVVILILLVLIO JマOJV VOVLOOLOVOOLVOVOOJVO
VOJVLLOLVDOLVDLLLVVVJVO
 LマOODVOOLODVD．）LOVOVI

$01(\mathrm{VD)}$	£562611］	9 910W9）
$9(V D)$	S1626113	SLIOW ${ }^{\text {S }}$
SE（LV）	80626113	－ Llow $^{\text {a }}$
9 9VVVI）	67826113	［LIOW3）
L（LV）	2t826ills	2LIOW ${ }^{\text {a }}$
II（1）uç（01）	02826114	1LIOWJ
ャZ（1v）	80826114	OLIOW5
9（v）	t0826114	6910W ${ }^{\text {J }}$
6（DI）	86LZ6113	$8910{ }^{5} 5$
91．DV）	ttLz6114	［910W ${ }^{\text {S }}$
$01(1) \cup ¢ I(V L)$	velz6IIS	$9910 \mathrm{~W}{ }^{\text {a }}$
S（VVVOVV）	98926114	S910W3）
9（DV）	85976113	ャ910W3）
$s(V D 1)$	Lt976 H3	E910\％${ }^{\text {c }}$
9 （VO）	0592611 S	2910W ${ }^{\text {P }}$
S（DIV）	80926114	1910W ${ }^{\text {3 }}$
$9(V I)$	10926114	0910W5
s（LLIV）ut（LV）	t9s26114	6S10w
ll（IV）us（va）	pssz611］	8S10W ${ }^{\text {P }}$
S（IVOLO）us（V）S）	68SC611］	LSIOW ${ }^{\text {S }}$
$01(\mathrm{~V}$.	81926113	9 Slow
9（JI）	ELbC6114	SS10w ${ }^{\text {S }}$
L（OV）	85bZ6IIS	tS10w ${ }^{\text {S }}$
9（VJ）	Estz6IIS	\＆sIow
L（VLL）	Ltt 66114	2SIOW
9 （VD）	ZL\＆Z6113	1sIow
9 （L）．	00\＆Z6113	OSIOW ${ }^{\text {S }}$
ZI（V）ung（L）	812Z6113	6610W5
9（IV）	21226113	8\％10W5
	¢9126114	LDIOW
g（va）	8b126113	9610W
s（vov）	triz6lld	stlow
IZ（VL）	9802611 I	－tolows
8（VLL）ug（LVI）	t802611］	£blows
s（voruli ${ }^{\text {c }}$ ）	18026113	2\％lows
9（VLL）u8I（LV）	ELOL6IIS	Itlow

	CcM0177	F1192947	(ATA) ${ }^{\text {a }}$	gatatgccatttccettitga	tggganggactgaamgcaag	239
	CcM0178	F1192980	(AT)13	tCCaCaAantcgtacgetga	atgcttatgtcaggatigge	258
	CcM0179	Fil93016	(TTA)6(TA)I7	gCaAaAttgcactanaatttgitt	CCATCTTCGCCTGTCGTATT	189
	CcM0180	F1193106	(AAT)S	ttgtgataccatgtgcttctig	GaAaAATTTCTCAAAATTCTCTTCTCA	236
	CcM0181	F1193124	(G) $13 \mathrm{n}(\mathrm{TG}$) 5	tagttcaccgcctgtcctic	tgcagacgataameattcgg	278
	CcM0182	F1193170	(GTG)6	ttggagcancancaanatg	caagagcattigatccatga	202
	CcM0183	F1193187	(AT) $10 \mathrm{O}(\mathrm{TA}) 8$	gcccattitgtcatccctaa	ttcaacagttggatcgitca	236
	CcM0184	F1193228	(CA) 7	aAGCTtCaCCaccancatce	tataggtgtcecttcggetc	278
	CcM0185	F1193254	(TA)8	ttgatcatgactiatgcctittga	gGcttgctttgagttcctig	232
	CcM0186	F1193299	(AT) 18	angatttgatccatattttctgaca	cCacactanttaggcanatacga	201
	CcM0187	F1993316	(TG)6	gatttticactatanaagcanaatga	tttggcctcagagittacatga	247
	CcM0188	FI193340	(TG)8	GAAGAAAAACACATAGAAGGGGG	atcccagccgcanamgtat	173
	CeM0189	FI193341	(TTA)7	tgttanccgtgttganggca	atcgancaccanccanggac	221
	CcM0190	F1193392	(CT)6	tagttgcacactgtccctge	tgactcacanagitgctitatcti	190
	CcM0191	F1193400	(AT) 22	tCCGTTGCTICTAAGTGTTCAA	CCCAAGTtagggtganclaa	212
	CcM0192	F1193407	(TG)6	aCCAAGCCTTITCAAGTGGA	CCACCCTAGGACCCTACGAC	202
S)	CcM0193	F1193429	(TA)20	taat ${ }^{\text {a }}$ ACCACCCTTGAGGC	tGCanamacacatcctggaa	190
	CcM0194	F1193432	(TGA) 5	agGCatgighttgighttgitt	CCTTGAanactcttgitggaatc	204
	CcM0195	Fl193462	(AT) II	CAACAATAAAGCATAAACCACCA	tgacgtagattggatagttagga	223
	Ссм0196	F1193495	(CT)7	acaccgantgganatgangc	atttgagagcctagtgccga	197
	CeM0197	F1193525	(AAGAAA) 5	Gagtittangatggagggcga	tcticctcggantctatgge	274
	CcM0198	Fll93529	(AT) 9	tgcattitcancctitcgig	gGtcatgcagacacttccct	262
	CcM0199	Fll93620	(AAT) 12	tgacctcctcctcatggttc	ganggganggagggacgtag	200
	Ccm0200	F1193687	(AT) 15	agagtcgacctgcaggcat	CAATAAGCGTGCCATtTGTG	263
	CcM0201	F1193693	(AT) 13	gaggettgctgtgataccet	taggacatgtgacatcgega	273
	CeM0202	FII93742	(AT)15	ttCtCCCCagatttccacag	tgcactcanctittggcact	214
	CcM0203	FII93744	(AG)6	gGtttgagtcctggcatcat	TTGTCAATATGCACTTTTAAGGATTT	216
	Cem0204	Fil93761	(AAT) 5	tggcttagatatctccccactt	ttggigantgtcgiglggit	259
	CcM0205	F1193771	(GA)6	tgTCCanctcancccattca	tacccgagatcatgaggacc	233
	CcM0206	F1193834	(AT)21	tgccatattttggtttganca	cacaitacattagccacattgtca	157
	Ссм0207	F1193838	(TA)15	TTTTGGCGGTCATTTTAACC	tTagtcgggagcancactga	235
	Ссм0208	F1193892	(TAT)IOn(TTA)7	gCatctanatacanttaatattgtggg	atagggtggatctctggtgc	122
	Ccm0209	F1193903	(AC) 7	tGTGCTCTCCAAGTTGTTGC	trttgatantgccaamgggg	278
	Ccm0210	F1193935	(ATG) 5	cCanganagcaccccttgia	ttgagaamagcatttitgtgga	262
	CcM0211	F1193940	(TC)6	aATTCTCAATTGTAATCCCTCACTT	actggatgtgaggagtgcct	246
	CcM0212	F1193974	(GAC)6	CTCATGGAGTGACCGAACCT	afgttctaggattangggantgica	246

082	H1DVVOLVFOLVJIDHDOLV		$8(\forall 1)$	S9256113	$8720{ }^{\text {a }}$
$9 ¢ Z$	VVOOVDVOVOLIVLVOOOVJL	JOJIVLIVVVLOJL）VDJLIV	$s(\forall I \forall)$	L1156｜ld	LヵZOWフ）
922	LODODJVLDVVJOVVVVDIV	DVVJOLDLDVVVDODVOOLV	91（LV）	＊6056114	9% \％）N5
Itて	VOOLOVV	LVOODVVOJLLOLDVVDDI	$9(\forall \mathcal{)}$	L805611］	strow
812	LLIVDIVVDJVLIVOVVIVLDLDOLLL	IVVDLVODLLJOLDIVJOV	6（VL）ull（IV）	91056113	かtrows
9 V \％	LVVODLVLDIVVOLOOVVJOL	OVODOVLOLDOVVVวอOVOD	S（OL）us（DI）	65676113	
292	JODLVL）		S（VVVOVV）	6p6p6ilid	2rてOW－
601	IVOLOLVVLつつЦつOSVOVVVOL	LOOLOVOLVVOOOVVJVVOD	$9(\perp \forall 1)$	L1676113	ItてON「）
でって	OOLVJLJIVVVVOLDJIVLI	פ．JV＊LVコ）	91（IV）	10676115	0ヶて0Wコ）
592	Jopoplivjvololvo	VJvว）LDo	6（IVV）	65876115	6โz0W ${ }^{\text {（ }}$
¢81	วอJLIVOLVDOJVVVLDVOVIL．	VVJJV	9 （OV）［I（LV）	60876114	8 8Z0W ${ }^{\text {¢ }}$
LLZ	VOJOVLOJVVLDOJLVVOVDL	OLJVVVLV	Iで」V）	10876114	＜\＆z0w ${ }^{\text {¢ }}$
1s1	DOLVVOVIV	L）LLOODDLVVO9LOLVVV	L（J）	1sLt6IIS	9\＆z0w ${ }^{\text {c }}$
897	VJVJJLODOVVOVVJLVJVV	J0000LIVJVOLOLVOOVIV	OI（VLL）	9 9L＊6IIS	¢£z0W•
192	OLDLDVOJLVLLDLOLVODL	VOJOVL．OVVOVOLLJVOVS	6z（IV）l（JV）	L1L＊6 IIS	ゅ¢z0Wจ
8SI	LLIVOLSOOODLOVVOVDV1	OOOLOLLLOOLOOVLLLOD	$9(\mathrm{VD})$	SILD6IHS	£๕z0W•
LOZ		OJLLLODOOVLOVLOJOLL	9（v）	80Lt6113	て£z0Wง
£とz	LLOOVIVVOOOOLVVJOVOD	VIVV000V」LL．OOLODOD	s（LVV）	0697611 d	1\＆zow
012	OLOODLOVVLDOLDJVVDOV	V1OLOVVVOLOLOODLLOD	s（IVVV）	979p6114	0¢z0Wง
8 II	VVOLLLVVVVOOOJVVJJL	DJVJOLIVLLOVLLL．JLIJ	S（11．）	76576115	6zzows
162	OVDLVJVVDVLSIVOLLVVVOLIV	V DOLPLLLDLDODVVVDI	0I（VL）S（10）ug（01）	0esp6ilis	82zow
£9\％	OOLLLVOLOLOOLVODL	دLVLLOJVVIVLIVVLLOLODJJV	9（VI）	Lospolid	Lzzow
£0Z	マ VODVVODOLLVJVODVLDL $^{\text {a }}$	OJJLVVOLVVOVVVVOJLI	s（VVVOVF）	26t76 114	9zzow
¢91	LOVVOLIOLDVODLOLVD	LLLOVJVJOLLJVVVOOV	9（VJ）wol（v）	88tp6114	szzow ${ }^{\text {s }}$
$\angle 97$	．）VวLLJVJIV	LOLOOOLLLVOOLOLJVIL	L（iv．L）	12tp6IIS	ャzzow
£92	ODODLIVOVOLOLVODVOVD	VJVJつLDOOVVOVVJLVJVV	8（LVV）	90tr6113	£ $¢$ \％owง
501	VOLLIVJOLIVIVIVJVJVJOLI	ODLLLODLLODLIOLD	9（」V）	£LEt6IIJ	てzzowง
1\＆Z	LLDVDIVOLLIDLOLDLLVIVOLL	VVLOJOOJOVOLIVLLOVVV	LI（VI）	09¢t611］	Izzows
LLZ	VODOJLVJVOLOLVJVODVI．		s（VIV）	15¢t6IIS	0zzows
9SZ	マVLวVวVIV	LJVVว〇OLLLL．ODLODV1	$9(\mathrm{VD})$	£โ£p6IIS	6Iz0W9
SLI	マLLOLDDDVVODIVIVODOD	OVVLLDLDOLLLDLDOL	$s(V L L)$	2¢¢t6IIS	8120W ${ }^{\text {a }}$
501	VVOLLVOVIVOVJJOLOJOV	DJVVVOLLLLVJ．）VLODLD	9（VIL）		LIZOW
LSI	OLLLVVOLODOVVDVLLIO	VODVVJVLJVOOLDOVODOVV	$9(01)$	95076114	91z0wos
661	VJOOVOLOLIVV90LLJV	OVOLVJVOVJLJVVVOOSLI．	S（OIV）	t5076114	sizow
E11		VL．OV．）VOLLL．JVV．00001	$8(\mathrm{VD})$	820t6114	ャ120W ${ }^{\text {J }}$
£¢Z		IVLO以上．10¢OVOLOOD	9 （VD）	LE0t6 IIS	£120Wア

voolloolivvvjioivoli	O90vojovivilvivoioloos
LoponluLvvoluopav	マJJovvojvvvoloovvrov
vVivvivovoivoliovLovvvvoje	oojvolopjvivviolion
Diolivodionollivojv	Llivoluilioliojooio
ovoluopluliviooojv	voviovovoluoovvooos
vvoolojvolivvouvvoov	ooliolvojvolllijigvog
ovjlopllivojopyjuvv	OLILDOLOOOOVLIVOOL
	goijvvoophrvivjvjoje
vojuovvooljvolvvenvy	دivojopovjuispluvi
oonlulvjojvvvoovovi	voivijvoizvovvaleopvolu
voouojujojoljvivivy	VOLLJVOVJOLLLIVVVVVLLLLD
voluovoolvolopliovo	voovolooloojvivionv
vDoLovvoopovliovovv	
JVJDHLDOLJOLVV\％＊DOV	
oplopljvvovvvvojvivivov	jojoljvivavovajvonov
Houjvoliolojaiojvo	volllovvojvolvrvodoo
v＊oionjopvidovvijoue	vojelviopoviloonulus
Lovvvvovoliovojohio	OLILDOVOOLDLLLIOJOV
L．olvovilolivonisoue	Luvovvorvojugolivjol
oojvvovjolvavoluojvv	VV000ılıLı0，
	Oluluovvovoovoljovilovol
	vv＊vooulvouluv．juvv
Juvodivolvvvvollvvioll	Jovoovvoliolvjopiofy
VLOOOLOOLIOLOJIVOLD	＊Viplilumojliolion
マODVVOOVVDLLJOVOVVJ）	1วว）
ODLDISVVVOLOLLLOVVIOOD	oloullovojovoliovova
voljojvooghvvilusio	vvoivvioojvojvilojos
Jomjopviliovkivill	mooplovjolovovyvvos
dliviouvvovvojojuvov	วvomouvoviouvvovoiv
ovvvoojevoivvabovoov	vvolutajvavolopllo
govyvavourvyouvjiojvevs	vvoojliovovovoovvvod
ovvovvouvvavoolvool	vvoulujvojuevvoviv．
OLDOLDOJVVODLLIVOLV	Dllogovvvvovvooljoli
VOLOVVVOLLOLVOOLVVLIVOI	jvvonovvavoıjoju⿺𠃊
VOIVODVOVVODOLVIVOJ	Opviluvjliplouvivvvil

OOOVOJOVLVLIVIVOLOLOOS
VOJOVVOJVVVOLOOVVVOV อOJVOLOOJVIVVLOLLOOS

LLLVODLLILILLODODLS

OOLILVOJVDILLLDIDVOO OルムLODLOOOOVLIVOOL

OLJVFJOOVV VIVJVJJDL

OLVLDVOLVVJVVSLL．⿹OVVJL
（D）VวเวOLวOJVIVIOOV）
วVOLLOJVVOOD」LLLOD
LDOLIVDODILDOL

VOLLLOVVDDVOLVVVODDD

コ1．
LJVOVVOVVOJVODLLVODL

LOVVOVODVOLOOVLIDVDI
OルL．）

วขvวอvvวน $\frac{1}{}$

VOVLDLLIOODLLOLLOOL

DLDOLLLJVDODVOLDVOVS
VVOLVVLDODVOJVLLDJOD
I．）

マVOOOLLDVOVOVOOVVVDD

DLDODVVVVDVVODLOOL．

OVOLILVILOLOLIVIVVVOL

ャて（1）	2S196114	58zowº
S（OVV）	tol96114	E8z0w ${ }^{\text {¢ }}$
8（IV）	8\＆196113	z820W
¢（DLVJ＊J）	9 E 1961 HJ	1820W5
9 （VD）	£219611」	0820W
S（O．V）	9019611 d	6LZOW3）
9（VO）	t0196113	8LZOW ${ }^{\text {S }}$
8（LVV）	S609611］	＜LZOW ${ }^{\text {S }}$
9（3）	9L0961H	9LZOW3
L（IV）	15096114	SLZOW ${ }^{\text {S }}$
LZ（IV）	88096111	－$<$ zow ${ }^{\text {S }}$
s（LLJ）	2£096111	£LZ0Wจ）
$9(\mathrm{VO)}$	1865611J	2Lzow
suliv）	t66S6114	1＜ZOW3）
S（IV）ugiov）	L5856114	0Lzows
s（VVO）	S185611d	69\％0w ${ }^{\text {c }}$
OI（LD）+ z（LV）	LSLS611．	8920W
S（Div）	£ELS6IIJ	L9z0W5
9（JV）	00LS6III	$9980{ }^{\text {a }}$
$L(O V)$	E6956114	s9zow ${ }^{\text {a }}$
－ 2 （VL）	Et96611］	t920w ${ }^{\text {a }}$
L（DL）	L195611d	\＆9zow ${ }^{\text {c }}$
$1!(\forall \perp V) u g(L V V)$	86556113	29z0w ${ }^{\text {a }}$
zi（vi）	S6S56114	1920W9
$91(\mathrm{~V}) 401$（IV）	8SS5611d	09z0W0）
S（LL）ug（J）	97S5611．1	65zowo
9（Vว）	2¢5S6114	8SZOW ${ }^{\text {cos }}$
SI（OL）L（OV）	\＆2SS6113	LSZOW9
S（VVVOVV）	16756113	9szow ${ }^{\text {a }}$
9 （VD）	28t56114	sszow ${ }^{\text {a }}$
9（JVV）	0StS61Id	tszows
81（VI）	\＆1tS6113	£ ¢zow ${ }^{\text {¢ }}$
£て（1V）	60tS6113	て¢z0W ${ }^{\text {a }}$
9（IVV）	9LE561H	1Szow ${ }^{\text {a }}$
9 （V）	IEES61H	0¢zowJ
0101.$)$	6LZS61H	6\％20w

tGagGagtgagancanatatccaa
aticagcgattggatcatt
tGCCATGTGAAAAAGACAACA
tTGACTCATCACTTGTGTTITCAA TCAAGTITAAATGAAGGGTAGTTTTT tgGgatcaattrcataanttttaca tgtagaacatgagttatcgaatgga agCtiggGttcaangganca aAAAACACAAAAGATAAACATACATGC CACCAACATGCTTCTCATGC aACCATGAGTTATTGAGCGGA tCTtCGCGCTTATACGTTTG agtgtacceagcgantgagg tgGtgtggattatgatggattg tGGattTTGTGAGATTTTATGGAG taAattgaagcetigggcac GCTGAAACAAGGTTCTGGGA AAAACACTTTGCCTCGGATG TCACGCAAGAAATTCACAGC CAATTCCCCAAACCAAACAC tTTTTAGAGCATCCATCCCG ggcatgctaacatggcatta tgGgCtatagcgataccactt GCCTGCATCCTTITGTAGTTG tgantttcanaattagitgagttga titagcccccagatctgaca tacccgagatcatgaggacc aAACTITCCGGIATTGTGCG itaaacagttggatcgttgaaa aAAATTTAGTTGGTCCCGTAAAAA gTtgCtgancccattcttcg gCatgTtaggecacctittg atGanattgggcgiganagag ggGaggtggactacaaggaa aAAAGGTCACATGAAAGCCAA tTIGIGATTGACCGGCATTA
gGtggcagctccattaanaa aagGCTCTTTGATCAACTAACTCA gaatticaagtgagcattcce tgatgtggggtagagggtg TTCCTTTGAGCCTTTGCACT cacacaananccacantgacaa acceatagcaagcagantgc gTtCCCGGCTACCAAATGTA acaagicaaccacacgagca atgatatgcggggtagaggg tTCacattittatcattgcgga aAtITGTGGCAAAGTCGAGG CGTAGCCGGATCTTCTTCAC cCaAgGagGattccantgan atgGaaaaggtectitgtgg tTCCTTCTGAACAACGTACTCAA aCATGIGCAAACAATTGGGA CAAGCTITTGAGGTTCGACA aACGACtCTCCAGCATGAGG gagcctitccaacctgctc TCATTGTCTCTTTCTTTTCCATIT v100コJLIVDojvvovio tgTtCCCAAGGTTATCGACC tccgagancacacaanggtg caacaccacaacaccacaca tGTCCAACTCAACCCATTCA ttaaanggaggcctcatcca פOLLDLVVOLIVVOVOOOL tTttTtaAaatgattggiaacctiatga TTATTTTAGTTAGGGTCCATCTACCT CCGGACAATTTTAGGGGTCT gGGTtTGAGACTATTGGAGGG CCCTAGGGAATCCGACTAGC CTCGTGTCATTTTCATCCCA gTGATGGCCTCTTCATGCTI

$$
\frac{\stackrel{\pi}{\mathrm{Z}}}{\underset{8}{2}}
$$

 \begin{tabular}{c}
会

会

\hline

8

8

8

5

\hline 8
\end{tabular}会

$\frac{8}{2}$ CcM0285 CсM0286 Ссм0287 Ссм0288 Ссм0289 Сем 0290 CcM0291 CcM0292 CcM0293 CcM0294会 Ссм0296 CсM0297
Cсм 0298 СсмМ02989启 CcM0301 CeM0302 CeM0303 Ссм0304 CcM0305 Ссм0306 CcM0307 Ссм0308 CcM0309 Ссм0310 CCM0311 CcM0312 Ссм0313 CcM0314 $\frac{n}{2}$ CcM0316 CcM0317 CcM0318
FII96228
F1196256 $\frac{o}{2}$

	v．วvojuvojupujuvivoje
＊JoLlivojuviviovoivol	jololuholojivvvoivjv
	ovjiollovolluvvojosi
ooulvolvolvajovivoioul	دLLJomoliovvonjivg
Juvjoollivavovoliou	OLDVODVOVVJV\％OOJLLOL
ovolvilovolojomojuvv	วJV\％JLJVJJVIVOJOVOJV
JOLOOLOVLLOOOOLIOLL	100Lllopvojvovowoja
Lovolojolivovvojuivo	Lojivosoivivilvvojos
olvopovvajubvvoloivzvy	OLLLDOOOLIVOLOJJVLI
boovvoovvviolvvaizvor	
＊opvvorvovvosurouvivivy	＊แloloovvaplvjoovs
avovojvovovvajuivovjov	LOVOIVOVOLDLOOIVJOOL
VIVVLDLDOLOOLIOVJO9	vollovvovojuvvoluod
jojulovvjollolvvviliv	OODVVマLVOVLIOLIOVLLVJOL
D010LLIOOLOVDLVVJOLS	LVVOLLDJ．JV\％JLOLOOอV
	วuLvojulioivilujvo
Hovvjopoloplon山lov	OLVOJJVVDVDL．Llugo
SIVIOVJOVLLIDJOODOLL	
	VDOVvJojovvivoolisvo
LLLIVLLIVIVOIVJOIVOVODVLDJ	Lvoouniojolvivoovo
vVVODJLOLIVGIVVVVJLLos	ว）OLLDODLOLOLLJ＊
LHIDOLDODV30．Jvovov	OLLIJVJVOLllVOOJJol
VDIVJVVVIVIVDVJVOpond	JLOVVVOOOJVOVOJVJLI
Donvjoovvovivovouvyoi．	v1000LJJVvvojvvviool
IVJV6V\％JıVวLLJJVLojovol	Ivvolumuljopviluopiv
SLIVODIVOLVLIVOOLOLOD	Jvoliololvooujoviou
ovolvvovjolvoojuvojv	วvวLuL）วv＊ว9910LLJo
HLILVO09LLLO001วLL．	Slloojvvijuvolliovvolv
quvavovojovovovjurva	IVVOJLOLLOLLILJJoL
Dovvoivvoulumbouli	＊iolvavojulopojujus
jovivvoojuvivajovjll	＊วvLJVJV．Lloovojool
VFOJVIVIVOVJOLDJojo	OOVVVLLLILVVOLIVOLIIOVOIVV
L006700760000v600ivi	voplovolvodiojulioue
	vvooopivivojvojvovbv
ovivoolvovouliojovoo	ojulloollvvovjlios

joionhionojavyvoivjv פVวLOLLVบLLOVVJJDJI
 פLDVODVOVVJVマOODLLDI
 100LLLDVODVJVOLOOD
 マOOLDLLOOOL๖วแLI コVJVマวVマวOVDV
 VDLLDVVJVOJVVOLOODL LVマOLLOJJVマวOLOLOOOV DコLIVOJدLiSLVLLLJVO IVOJンVOVOLLLi！） VOOVVOJOOVVIVODLLIVD LVOOLOLODOLVIVJOVO OOLLDODLDLOLLDVO JLOVVVOOOJVOVOJマวนL V100OLJOVVVOOVVVLOOL VVLDOL．JOOVLiDOOLV JVOLLLLOLVOOOODVLOD JVOHLDJVVJつO191LIJ IVV）ว1OLLOLLIววロ1 ＊LDLVシVOOVLOOOJJJLLO サV1．JVJVOLLJOVOJDOL V9015VOLVDOLOJVLLOD DJOLLOOLLVVOVOLLOJ

9（LV）	185861IH	9580W ${ }^{\text {a }}$
£I（IV）	L2S8011d	SSEJW ${ }^{\text {S }}$
H（LD）	9L6861Id	tsfow
tofiv）	997861 Id	［580W3
s（VLL）	1258611］	2SE0W ${ }^{\text {cos }}$
9（IVJ）	90686 ［1］	1580W30
L（IV）	6688611 d	oscow
9（JVD）	£Z¢86IId	6ヵ¢0W ${ }^{\text {a }}$
$9(\forall 1)$	pz78611	80¢0w ${ }^{\text {a }}$
zI（LV）	8078611d	LDEOW
s（VV）	SLI86IId	$9 \mathrm{yc} \mathrm{W}^{3}$
	921861 Id	Strow ${ }^{\text {cos }}$
LI（IV）	9118611 d	triow
li（1v）	S5086111	£ ¢¢0W
9（＊）T9（0）	L66L6114	20¢0w ${ }^{\text {cos }}$
s（IVJ）	L66L611］	It\＆0W
七z（V．）	S66L6IId	0ヶtow ${ }^{\text {d }}$
9（LV）	966L6IId	6โ\＆0W ${ }^{\text {¢ }}$
$6(\forall 1)$	2L6L611d	8£โ0Wจ）
$01(1) u 9(1 \forall V V)$	0L6L6114	（E£0Wงว
II（V．L） l （ V$) \mathrm{u}_{0} \mathrm{l}(\mathrm{V})$	E26L61H	9 9\％0W
$1 I(\forall L L)$	216L611d	S¢E0w ${ }^{\text {c }}$
8（DL）	6L8L611J	－teow
zz（LV）	ES8L6 IId	EE£0W30
9（v．）	66LL611	2¢E0W0
Iz（vi）	28LL6II	1Eโ0W3
Lz（İ）	8SLL611	0¢\＆0W0）
$9(\forall D)$	6CLL6IId	6z\＆OW
	ze9L6IId	82¢0W ${ }^{\text {cos }}$
	\＄19L611d	（2¢0W3）
ll（V）	LO9L6IH	92¢0w ${ }^{\text {ch }}$
s（OV）ug（ov）	82SL6113	¢2¢0w
S（IVLI）us（IV）	－L6IIS	ャてEOW｀
$8(I V V)$	9EtL6IId	\＆ztow ${ }^{\text {cos }}$
IZ（IV）	81tL6114	2ZEOW5）
Ol（V1）	£L£L6IIJ	12¢0W

[^0]| SLIVJVOVOLLLVVLJOJLOOL vDojvilivvvolovvvvviliog | |
| :---: | :---: |
| | |
| vovoluvvvvovvilivodivgo | |
| v＊iJu＊vvojoojulions | |
| vv\％olivvojojvvivivjos | |
| vvovvovojulomovvieo | |
| osovvvilvvvolvavjovos | |
| Oovololloovvoljvivvoviviovo | |
| ouvvivilvvilooivovvvoion un | |
| OJLLLIOOLOOLOLOLOVI． | |
| joojvvovvvolvvovolja | |
| av．）ivvvenionamoivou | |
| | |
| วอวVวบL．JVDOLLOVOLSL jopolivoloovvviolioo | |
| | |
| Jvocolvvvoovi．oovilou | |
| jvoovilvojolvjuooiv | |
| vvoolvojuvonovovvjio | |
| Luvololuvvvviluogovvo voglovvollumogvoov | |
| | |
| น．） | |
| | |
| avboovivquivjuvjuiool | |
| 1．ojoivivjluivpziovvoon | |
| vovцolluovvoopaoj | |
| jovojovivvvoololivovv | |
| | |
| Julioivolvojululvoliol | |
| voovooovvvivvvvovavoll | |
| s．osjvovvvvovvvolis | |
|
 | |
| | |
| vooujuvghuovohoivovv | |
| vvoluvvvvooojvvoju | |
| | |
| vivvovosivvvijionileot | |

LIV）	80966114	26E0W ${ }^{\text {a }}$
	WE06［1］	16．0w3
£z（VL）	61566115	06\＆0W ${ }^{\text {a }}$
9（LV）	81 ¢66 IIJ	68\＆0W3）
S（JV）8（IV）	20¢66114	88 80W3）
ol（VL）ull（LV）	86266115	L880W ${ }^{\text {－}}$
S（VV1）	LLZ66IH	98\＆0W03
S（DIV）	59266114	S8\＆0W ${ }^{\text {S }}$
EI（IV）	Et26611］	58\＆0W＊）
9（VL）	szz6611s	โ8£0Wจ）
$0101)$	L8166115	28\＆0w ${ }^{\text {c }}$
Iz（V1）	2L166114	1880w
9 （V））	09166114	08\＆0W3）
$9(\mathrm{VJ)}$	6668611 d	6LEOW
$9(01)$	L6686 11 d	$8\left(80 W^{3}\right)$
g（V）	6L686［1］	LLEOW ${ }^{\text {（ }}$
$18(\mathrm{~V}) \mathrm{u}(\mathrm{VLD})$	Et686 HIJ	9LE0W
¢z（V1）	2168611 H	¢LE0W ${ }^{\text {S }}$
llvi）	E068611］	t（EOW ${ }^{\text {a }}$
$9(01)$	D6886 HI	£＜tow ${ }^{\text {cos }}$
8¢（LV）UZIL	L8886113	てLIOW？
L（L）	S98861Id	1Lf0was
9z（IV）	LS886 114	0＜80w ${ }^{\text {c }}$
S（JV）8（」v）	L2886114	6980W ${ }^{\text {c }}$
9 （VD）	0628611 d	8980W0
6（LV）uc（VI）	L9286［1］	L980W0）
8（LV）	0¢L86113	9950w ${ }^{\text {a }}$
$8(0 v)$	ECL86IIJ	S9¢0W
S（IVV）	01286114	b9t0wos
s（IVVVV）	E8986 IIJ	£9\％0W9）
9 9VO）	LS986 1H	2980W
6（VL）	$8 \mathrm{F986}$［1］	1960W93
II（IV）	fe986114	0980W0）
く（OVV）	t1986 11］	6S\＆0W9）
く（VOL）	88586 ［1］	8SE0W ${ }^{\text {P }}$
s（V1．1）	b9586114	LSEOW ${ }^{\text {S }}$

	CcM0393	F1199365	(AT)6
	Ссм0394	F1199377	(Aatis(at)s
	Ссм0395	Fl199379	(catis
	CcM0396	FIl99408	(AT) 7
	Ссм0397	FII99413	(atisnta)io
	Ссм0398	Fl199483	(GAA)S
	Ссм0399	F1199533	(TA)16
	Ссм9400	F1199995	(AT)
	Сст9401	F1199630	(AT)8
	Ссм9402	F1199652	(tGatgn(AG)s
	Ссм9403	FII99658	(Ata)
	Ссм9404	F1199672	(TA) 11
	Ссм9405	F199881	(tG) SniAG\%
	Ссм9406	F1199691	
	Ссм9407	FIl99691	(ta)(tgois
	Ccm0408	F119979	(ta) 8
)	Ссм9409	Fll99804	(tTA)
\checkmark	Ссм0410	Fl199822	(AT)30
)	Ссм0411	FII99828	(AT,21
K	Ccm0412	FII99866	(CA)7
	Ссм0413	F1199875	(tioctio
	Ccm0414	F1199883	(ta) 7
	Ccm0415	F199973	(atc)
	Ссм0416	F1200027	(AT) 7
	Ссм0417	F1200049	(TA122
	Ccm0418	F1200079	(GA)
	Сем0419	F2000102	(GA)34
	Cem0420	F1200129	(ATT) 8
	CcM0421	F2000154	(1)\%
	Ccm0422	F200158	(ttalio
	Ccm0423	F1200162	(GA)8
	Ccm0424	F200191	(gatis
	Ccm0425	F200211	(A)15(AT)8
	Ссм9426	F1200223	(CT)9
	Ccm0427	F1200229	(TC)6
	CcM0423	F1200285	(AT) 8

GTAGCCATGGTTITGGGAAA
TGGTTGAACACAACAGAAACAA
CGACATCACTCATCCGCTAC
TAGAGTCGACCTGCAGGCAT
TCATCTTGAATGTGTGCCAAA
AGGCATGCAAGCTTCTTAGG
AATTATAAACGGTTGAATTGAAAAA
CCGTTGTCCAATTCTCATCA
TTCATGGTCCAAAGATTAAAATGA
CAGCATTTGAAGGAGAAGCC
CACCATCGTIATTATCATCGTCA
GGGTGATGATTAACTCCITTCA
CTTCAGGGGTCACATAAGCC
TTGTCCATTGCACACACTAAAA
TCAAGTGGTTGGGCCTTTAG
AAGGGATGCAATCATGCAAT
ATAGGATGTGACATTGGGGC
CACAGTGGCTCATACTGCAAA
TCCCTGCGTATGATTTCCTC
CACAAAAATGACAAGGGAGTGA
ATGCACTAAGCTTTGCCGTT
ATGGGACCAAGAAGCTTTCA
CCAAGAGAAAAACGTTGTGAA
AAATTTAAAAAATACTCATGTCGAAGAA
CCCAAAAGTGGGATAGCAGA
GCTITGTGGCAACCTTTCAC
TTCTACGTITICAACATATCCAACA
CCACAGCAACAGCCAGATAA
GGGTTGCGACACACATIAGA
ATAGGATGTGACATTGGGGC
CACACTACACAAATGCCTCACA
CAATCGACTCTTGAGCATGG
TCGATGTTACAATAAAGACCAGATG
CTGGGACAAAGGCAGAATGT
ATAGACAGCTCGGGCACAGT
TTAAATGGGTTTGATTGAATTITI

TTCATITGTTCGTGCGTTGT 245
CATGGATTCCCTTTIGAAACA 251
aAtcGgccgtgagttatgtact 280
CATTCGGATTTGAAAATGAAA 106
CAATGATGTITCACAAAATCACC 228
TCTCTCAAACCCACAAACCC 117
TCGGCCTAGTCAGTCACCAT 247
TTTTATTGCACAATGGAAATTGA 244
TTGTCAACTTGAGTTAAACCAAAC 228
GCAGATCCCTAACTCCTCCC 179
CaAtganaanctaccctatcgiga 249
tGTCAGTTGAACCCTCCTCA 271
GatGCCaAGCGTCCTAAGAG 270
tTtTTAGGTtCTTTTAAAAAATTTGCAG 262
aAAGAAAATTCAAATAAATGGATACC 190
tCacattantitagatgcagatcca 172
GAAAGGTCCACATAGGTTCACAA 235
tGAAAACCAAAAATATCAAAATAAGC 254
tGTGCTAATGAGCAGGTTGG 210
tCGGGACACCAGTGATGTAA 267
GGTTGAGCCTTCTTGTTGGA 256
atgCacctgggatcanacte I77
AATGGAACGAATTCACCTGG III
cCgtgagtgitaatggactaatatg 139
TGACCTTAAACATTTTGTTTTCTTAAT 222
GAACAGGTCGTTCCAGGGTA 245
GCTTGTACTTATCTCAGTGAATAGATG 280
aAGCATGAATTAGGCTTGGC 176
TGATGAAACTTCCAGACGCA 264
aACATCAAGAAGGGTCCACA 268
ACGATCATATCCAGAACGGC 205
GGACTTCCTCCTTTGTGCCT 133
TCCTCGITTTTCACTTCCCA 189
CTATTGGTTGATGGGATGGG 252
TGGGGACTITTAGGTGCTITT 156
CTTGTTCCCAAAGTGGAACG 244

TTACTTAGAGTAATGTGATCCCTCC
TCCCTAGCACAAAGAAAATCCT
CCATAATCCAATCCAAATCCA
GGACTTCCACCTTACGACCA
TTGAAAGGAACTTTGGGTGG
TAGAGTCGACCTGCAGGCAT
TGCATGCTTTTACTTTTGCG
AAGCACCTCTTGCAGAAACC GGCATGCAAGCTTAGTCCAT TAGAGTCGACCTGCAGGCAT GAAATTGGGAAAGAATACATTTACTG TTCCACCCGAAGCATTTTTA TCTTATTITTACTTTGATTITCATGTG GTTCCAACGATGATGCCTCT TGACAAAATAATGCGGTCACA TGTCATGAGTGGCTGATCCT AAAGAGACAAAGGAAAGTAGGGAA CTCATAACTCACGGCCGATT TTGGTGAGTGTCTCTGCTGC AAAACTGCATTTATTTTGGGG CGCCTAAATCCAAGGCTACA GCCAAGGTTGAGCTGAAAAG ACGAGCGATACCACTCAACC CCACTTGGACTTCCACCCTA CATGGAGGCTCGGTTTCTT TTTGGCTGTGTGTGGAAAAG TAGAGTCGACCTGCAGGCAT tCAGCCTGATGTACTTTGCG gGCATGCAAGCTTCTTGTAA TGACGAATTTGGCAAAATGATA TGCTATAACTTTTACTATCAAACTCCA TACCCGACACCGGCTTATAG GGTCAATCTITACCTCAAGTCAAAC CGIGCAAATCCTACCCATCT GGCAACCTTTCACACTACACAA CCCGCTAATACCATTTCCCT

TGCCCTCTCATTGTCCATTT 196
GGGTTTAGGGTTTATAACCTTGTG 252
TCACTGTAACGCCATCGAAA 126
TGCACTATCAAGGGAGGTGA 248
AAACCCTGAATTCACATTTTTG 253
TTTAACGAGGCATACCCGAG 233
CTGCCACACAAGCCTATGAA 141
TGGAGTGTTTICTTTGTGAAACC 241
TCGGAGAATCAATTATGCAATC 260
ATCGATTTGCTCATGCACAC 234
TTIGGGGTATTTTTAAGATGTGC 238
GCAACCCATCCAACTCAACT 185
TGATGTCGTAATGGATATATTAAAAAG 161
CACGGATGCTATTGTTGCTG 199
CAAGCCAAAGTTTGTTTGAACT 261
TCAACCAAAATCCAAACCAA 184
TATGGAAGGGGAGAGAGAGG 231
TTCTGGATCCTTTCATTTTCTTT 255
CCTGAAGTAGCCAGTGGTCC 27
GTTGCAAGGAAGGAACGAAG 245
CACAATCTCCTTGTTTGGCTT 26
GGTCGATTCATGTTTGGAGG 156
AATCGGCCGTGAGITATGAG 255
ACCAAGCCTTTTCAAGTGGA 213
CCATGGTTAGCCTAGCTTGC 235
GATTAGGCATCAGGAAAAGCA 214
CGTACAAAATAATTGTCCAAAACAA 206
AGGCCACTAGTCATAAAGAGCA 230
TCCATTTACTGTGGCAGTGG 266
CAAAAGGCTTACTTCAGAGGTIC 267
TTTCAATCAAACGTGATAAAAGTCTC 248
CGTCGAACACTAATCGCAAA 179
CAAGAACTTTAACCTTAGCATTTTACA 268
TGCACTICTCACCACCAAAC 161
TAGACAGCTGGGGCTCATTT 143
TTGCAATGGGGTATTITTGA 263

VVOVJVVVDณ．JVVOIVLOOIVV）
 ふOJJVJJOLIVVVVDVLIV DL．JODJOJJLIVVJLIVV VHLIVODVOLOVOJLDODD ग．OOJJVDDVV1OLOVVVV1． LDVVODIVVVVOLLIOLOLDD V1ـLOOLIOVVJOOOLOOVV ODLOLOLVLVOLOLLVVVIVVJVVOL マOLLLIVLJVODODOLIOD LLLLOLOLIVJVOJVODOL goovvvvoovvovovvvood LDLVLIDVOLOOJDODLVVコ JJV．OMLLEJJV＊VJIIVVOV
 JVODO．）VVVDLOLOOJVDV OLIVVOOVV）OVLOMIVOSI D．）L．）LDLD．）LVL．OJ LOLVVVOOLOOOVLJLLOJ） LVOOVVOLOHOODOLLLـ OOLSOLIVOJOOVLLIOLIO
LVOLLIDLVLLIVODVLLLDODV JVOODVOLLDVOJLLLOVO
マVวLLコLOOVLOOVOLVVJVD） ODLJVVOLILVOVOVDVOLVIVVVVV VOVVVODLOVVVVOVLVVD．）LVOL
 IVVODOOLVVOOVOOVOVVV マVOJVODLDVOOLDVVVV）1
山LOVJVムVOLVVムVOODLVLL อVJVVOVOJIVIVOJOOJVV VVOVVVVOLVIVOLIVVJJVVVVVLVJ マVJOVVVวL9LVVJอVVVOJ JOLVOLDVVJVOJJVLDLJVV マVVJJVJJVJIVVOVOLODL VOVOLIDOLLVDVVOVOVDDI

L）JV＊D）JV＊O）	ti（viv）	Li\＆zozli	00s0w？
MOODOLVJVOLOLVOOVIV	L（VII）	Lvezozis	66t00 ${ }^{\circ} \mathrm{O}$
VVJVVวVLL．O．）JVVJL．OO9	6（LVMaL（IV）	£8zzozla	$8600{ }^{0}$
	L（V．L）	llzzozid	L600W
VOLIVVVOVLIVVODVSLLJOVV	s（VIL）	llzzozid	$9600{ }^{\text {a }}$
O¢LLJLVOOLLLOJV）L	L（VI）	99zzozid	S600w
LLJVVODO．LVVVVV＠IO．）V	Iz（IV）	eszzozis	p600w3）
		bozzozid	£600Wจ
マVVVVDIVVVVLJVODV9）VILLVVVV	Iて（IV）	86120 Z14	26t0w3
VVOLOVIVIVOOOODIODIS	（1．）${ }^{\text {（1）}}$	£ャ1て0で．	1600w
V1．） 100 LVOVOLJV9．）	（0．）VV）	て¢ız0z．	060wo
	II（VVL）	\＆llzozld	6800W
LVJLVLVOJOVV．）V．）VV．ODL	s（Iva）	slozozld	880\％
	OI（IV）	850z0zıs	［800W ${ }^{\text {c }}$
）．．）00viv．ouelivvoic．）	sz（V．L）	て6ozozla	9800 W 3
OLDOLDVLOLLLIVVIVV）	s（v．）I）	98610 Cl 1	S800 ${ }^{\circ} \mathrm{O}$
VJVVVOIVOJVOVVVLIVVVODL	S（IVMusiliviuzili）	6L61021］	p8t0w
OOOVODVOOOODV1LIOVOV	g（ov）	SS610z14	£850w ${ }^{\text {\％}}$
OLILOOLOOVLLIL Voosel	L（V））	sz610zld	28t0w ${ }^{\text {（8）}}$
	（tiv）	Cl610zly	1850W3
vLivoovvov．ovo．ovvoul	9（IV）8（．）V rus（．））	65810z1a	0860w ${ }^{\text {cos }}$
VVVVOODLJVIVOLLIVIVIOVILVV	$91(1 \mathrm{~V})$	－58102ld	6（tOW ${ }^{\text {（ }}$
IVOODVOLLOVODLOVOVI	9rV）	85810 Cl 1	8LtOW
IVVO．）VDo．ovvolilvvolev	$91(1)$ ¢z（V1）	68810 CH	LLDOW
	$8(1 \mathrm{~V})$	cosiozla	9［DOW3）
VVVOVOSLVVVVOVVOVOIVVVVI．）IL	（ V I．）	LSLIoZH	SLDOWJ
VVovvVJvovvovvovvoavoviovv	g（ov）us（lv））	9¢Liozld	
LOIVVOOOVLLLLODLDO！	9IVVmoriv）uoliv）	88910213	
VVVVV）OVIIOVVOL）VLIVY）ILVV	9 （OI）	94910zid	2LDOW ${ }^{\text {S }}$
VVVVL．）Vว）	で（1v）	£5910zld	ILtows
	L（VD）	L2910zld	020W3）
＊VIVLJOOVVIVOLIVVVILOOHL	H（1）	£8s10zl．	6950W ${ }^{\text {5 }}$
	S（IVI）	08siozld	8950w ${ }^{\text {a }}$
	8（IV）	8LS107td	［970W
VOVวL100L0VOL．OOO0VV	9（J）	sssiozld	9900 W
V．）JVVOLIVDVVVOODVV．）	9（IV）	tztiozla	S9p0W ${ }^{\text {a }}$

LJVVO）OVFODOVVLLSO
 Vวแ．）LOLIVOLIVOIVJ）！
 1）VVODO）IVYVYVOIS （DV）VV．OD．）L．OD．）IL

 V）LVIVOOOVV）
 （21）（oITviolitivvavvaiu d．ictiovioici．ivvivvol OOOVODVOOOODV 1110 VDV 0LI．00100V1LIVOOO！L
 L．）VIVOLLIVIVIOV．）IVVV IVV磁 011001101！ VVVOVOQLVVVVOVVOVQIVVVV．．）L LOIVVODOVLLLLODLOD！ VVODVILOVVOI．）VIIV！）IIV VวแL．）วVVOO！IVLIOOI VOL．OVLLOIV．）．）VVVV．）．）」 マ．）JVVOLIVOVVVOOOVVJJ

```
            *v000jonivLlvVJILDLJ oplijvvvojoivvzjvoov VDVOLOLOLDVJOLLLOOD vavovajolvavozaijoos OVDLDOLLVVLDIVOLVDIVAL vavolovavojvvaoollol avvoivvjvovjooniolal gloojvoluolugotivybuv vOLLDLOOVVIVOLVJいうol vopolliololvoovivivoivg oonooliv．jvoloıvooviv avvvojivvoveiviooood 10४JOVJOODJLDIVVVOVI
```



``` マVOLOLVVVOV．LJVJO9V！V momejoitavoiovioum OOVLOVJLLVOVOJVOOLJOV vojoliviovivojvvoolu Looivgrooluvoijojvv vLoolgvolvlloojuovo
```



``` LIOOJLIDOLOVGJJLVVV
voopyrvajivabolizvyavo
VVVILVDLDVVOLIVLVODLLIVVVVO
VOVVVVOLOVLOLOOLOLLDL OJVLVOLOLODOLVJJVVJO OVVVLOOLVOOLVOLVVDOJ
DOLDLLLJLVLOVVJOOVVVVJ VOOLDVVOLLLLODOVVOJV
VOOLLOLLVVOLOOLIVVVLLL VODLVLLLVODOLOLLLVOD JVVJOVVDOVOLLIOVOVVJJ VDVVOJOOLVVOIVVOLIVV
LLDOVODLLOVDJVOLDLI JOOVVVマวJJ1OLDVVVOLO
```


tatactcgagctccgccaac
tgtcaatttgaattaatggaatgaa
tgtaccatcctgatttticacaa
tcttcactitggigitatcgtea
tgtcagggatcagactgctg
cCCAGTGAGCattcaangGT
catcgettctagtgganatcg
cGtacanaatanttgtccanaacaa
tggtcattaangtttittaaattggtit
cCagticcgggactatgana
cCttcancttanccocttrcaa
gatgitantcceaccaaggia
ccggacaattithagggitct
taaccttitcgatcatcgec
ggcatgcaagictttaagtca
tgiatitaccattatgcagcea
mTCTCCancctccaccatc
tgcattggacgaagaacact
ggcatgcaagcttaagcaac
cgtagccagatcttcttcacct
gctegctgtaacaccccaat
cactccactccatgcaatca
tgttittganatagtcggagctt
ganaccatgiganccccatc tgcactatcangggaggtga
ggtataccgattggcagcat ataggatgtgacattgggge tgTtatitccacttccagacga tttgtggagtctttgtgacca anaatgacactttg tgtcttcatgt CCCTCGITGAACCAACTCTC ccatatatcttggtcattgantagtagg tagagicgacctgcaggcat gggactaanttrgccacacc CCAAAATCATTCCTGACTTTCA gCtCacaatgagttggagca

GATCCTGATAACCCTGCCAA 244
TTGGGGTAGTAAGGGTGTCA 275
AAGTTTCCTTTTGCGAGTGC 239
ACTCTTTAAATAATTCAATCCCCA 279
TGGTCAATCACCGAAGTGAA 130
GGACCTACTGGTGGTAGGCA 264
CCGATGAGAGCATAGGAAAGA 250
TGATGAATGTAACACCCCAGTT 164
AGCAATGACAACAACAGTGGA 239
TGGGTTTGATTGAATTTTTAAAGG 221
CGAGGTTGGAAACTTAGTCCC 258
TGGCCAAAGTGTAACGATTC 196
CTCTGTCTCGTGGGCTTGAT 262
GGTCTGAGTTTTGAGGTGCC 246
AAGAATCAAAATTTAGTTCCAAACAA 235
TIGCATGGATCCTICATGIC 171
THGGAAGCACTCCTAGCTTTG 279
CCCCTGCATTGTTAGATGCT 155
ATGCTACTCAAATCCGTGGC 200
TGGTGTGGATTATGATGGATTC 243
AATACGTACAAAATAATTGTCCAAAA 146
ATGCCTCGGACACTGAGACT 266
CCTGTTGGTTTCTCTTCCTCC 234
GCACCCTCTAGCTGTAACGC 280
CCACTTGGACTTCCACCCTA 254
TGCGTGTTTTCAAAAGTGAC 239
AACATCAAGAAGGGTCCACA 259
TCAAACATAAAGCTTGCGTGA 191
AGGAACGAATTCACCTGGAA 157
TITITGTGGATAATITTGTCCCT 208
TCTGCCTTTTAAGGGTCAATG 279
AATAGGGGCGGTATITGTCC 231
GGTITTGATCCCTGGTTGTG 159
GGACCCCAAGAGTTGATCCT 236
TGGGTTGGGAACGATGTAAT 231
ATGACTCGGGAGCATCAAAC 274

	CcM0573	FI204535	(CA) 6	CCaCCCtaggaccctacgac	accaagcctittcangigga	202
	CcM0574	F1204586	(AT)16n(TA)21	cactatcggangatttggttt	tttgittccactttttagtataccatt	226
	CeM0575	F1204593	(TC)6	CCTTTGCCCAAACAGGAGTA	ggagcgancantcacagaca	264
	Ccm0576	FI204713	(aAgata) 5	agggccactcttccetacct	CCCCAATATGTCCTCTTCCA	144
	Ccm0577	FI204832	(TA)8	tagagtcgacttgcaggcat	ccctgtatatcaancaccecc	196
	CcM0578	FI204862	(AG)6	TACCTTTTCCCCAGTGGTTG	gagtgangagtagggagggg	210
	CcM0579	F1204875	(GA)6	cgactcancccattcatcct	agccataatagggcetctce	280
	Ccm0580	F1204888	(TA) 18 n (T) 10	TGTtTTTGAGATGGACTTTGAA	cCaataagcccctigctita	195
	CcM0581	FI204919	(TA)24	atgittgaccgacacttagg	aAGATtCTCATGAAAGTaGTTCTTGG	258
	Ссм0582	FI204926	(tat)	ttggicttceattaggacac	ccaccaanttatgaccaantacc	113
	CcM0583	FI204939	(TA)21	agttggangcgattggataaa	atccctanaataggtcgattagatt	245
	CcM0584	F1204953	(CTT)	gangttccceattgtaagget	aggccacattgcttctcaat	170
	Ccm0585	FI204986	(TTA)S	tcatacceatccectcaitt	gCtGTaCtttcctcgegget	157
	CcM0586	F1205017	(GA)9	Caggcatgcangctitigta	ttttagancgggttgttcce	232
	CcM0587	F1205045	(Gtggca)s	angttccantccganccett	ttcctaccctggatttgga	221
	CcM0588	FI205096	(atail9	anaancanttattgcgiangattatca	acgttaggagcaangcgtgt	266
	CcM0589	FI205168	(TA)7	tagagtcgacctgcaggcat	ttittcatagacatatttcacacaatg	274
	Ссм9590	Fl205203	(atc) ${ }^{\text {a }}$	tTGTGACCTTCTTGGAGTGITTT	ggancganttcacctggana	165
	Ccm0591	F1205206	(AT)20	tggcatgcanatatatcatca	CCtCTtGatctitcacacatga	222
δ	Ccm0592	F1205217	(GAA)5	gcamgcttgtaggangccac	gCCaATCATGGTTCTCTTGAA	280
	Ccm0593	F1205311	(AAT) 7	ancatcaagangggtccaca	afaggganagggttctgcte	280
	Ccm0594	F1205393	(GA)9n(TC)9	GGCTtGgttctitcttgatg	AAGTCCCTGACTTTCCCCAT	185
	CcM0595	FI205395	(AT) 10	tgagggattiganttaggancaa	tgatgctatcgigitgtgaatc	227
	Ссм0596	F1205423	(A)13n(TA)6	gangtcattgantacancatgcaa	ttgggigttragggattgaga	235
	CcM0597	Fl205454	(AT)9n(TA)6	tcgictcatgcgaganttagg	CCCCAaATtGGTCAATCAAC	235
	CcM0598	F1205472	(ATT) 11	tgacanatgangat	tgcaatttcagtaatgggtgic	123
	CcM0599	F1205498	(GA)7	agcatiangggaggttcgat	gcctagcttgctccatange	231
	CeM0600	F1205512	(AT) $\mathrm{Sn}(\mathrm{T}) 10$	atgacgtgigcatttcggta	CCCTAAGCAAACCAAACCAA	269
	CcM0601	F1205517	(TG)8	aggangangctcgtgangca	agacgganaccacactcgit	279
	CcM0602	F1205600	(AT) 14	trtgctetatancaagggattca	tgctetanttcatgtcaaancce	216
	Ссм0603	Fl205603	(A)21(AG)9 ${ }^{\text {a }}$	tgagagaggatgtgtggtgc	gttgcacacactggcaatc	232
	CcM0604	F1205661	(TIATIS	CATGITTTACTGCAACTTTTATCATT	tgcatancacattggttggg	280
	CcM0605	F1205667	(TTA)S	CaccceagttutcaaaangGt	aatacgtacanatamttgiccaana	138
	Ссм0606	F1205697	(GT)6	tgrtgitttiggactgancca	afacceatanccatggagca	273
	Cem0607	F1205709	(AT) $17(A G) 12$	atgctctaccttgagggget	CGagttattangtggagtanatctigg	208
	CcM0608	F1205717	(CA)6	attgcctattaggggttccg	accaagccttttcangtgga	118

```
        vIVOIVJJOVVJOODVVDVD
```



```
J.JVVDLLL*JLVLOVJLVJVLLDVVV
            vivvoiomvjiomjojijve
        vOLIODIVJLIVOLOVIVDOLLL
```



```
            VOIVLIVVOJOLIVOLLlDOD
            *VY\forallVOLDI*VOIDSOOVOD
            OLOVVLOLUVOLOJOLLL
*vJJvvov*JvLlLI**VV*JOvvo
            H0.vวopovgonvju|u
            I**LLOLV*LDIDOJOVDL!
            JoOvV的LLJYVLOOLDOL
    *ODOLVOIVIVLDIDLVOLLOVI*S
*VVLLDLlJOLIVVOOVIVOVJVVV9
```



```
            jvmoivollivilovonivy
            L.OJvLODLLVVVLכJכOJV
        oolo|LLIVVLOMLLIVOIV\forallJ
```



```
            HLwomuojulivivLouv
            gvolvivonigomjojvivg
    *OOHODIVVLLIVFJLLLJV*DI
        v0JJvvJLLLIOLLLV*V*L)
            OLLOIDLODLDOOLVLIVS
            OOLVOHOHOHOOVOOV1
            HLLIVVOODIOHLLODLOD
```



```
            *OLכOHOVOOYvDDHLJT
            vy%vigoogivjogivjlvy
            vovvojv%Jv%Jv%Jlogol
```



```
            IvJJJVVIVJOLLoovJovs
            moullovjvjlvjujovg
```



```
            แLOLDOODIVOLVIJOOL
```

 JـM1JLDOOVVVODOVVV

 volionvodvivivojolloo ojovvolivvivojuvioon गอuviogolojvombus DOLVVVIOLVOOLOLLDOL」 vvociovjovoovioviovs Hovjolvoovologvojuv Joovivolivoovvvoloog ivJogvoolojvojigvovi ovarajolopopvroivvo opvVVOOLl！DLOVVVLOLDLIOV jvวlivivaivvalvvooovvvil．a． v．ojvioveonveivvybrajvvoi jvv＊วうollov＊vvojov
 VOLDVDJODIOVVIVDDILI
دـJJoLolovivbvovovvvvool LJVJOVVODJIVOLLLDOV
 1．） 0 ）
DLJYolvonvovolvvvelivva vojulivionovv＊olivolle ghlujvonoololivajv 1V100Jマoovoiolouv＊o ivoopvoijuvoulovovi
 govvonopliv＊on＊on VOVSLVVJVOLLVVJOM．）৷ マVOvOVvOLLOOVVOIV．S golvolvjvivvvjoloivolovv دloonivvevojuvvovvor vSuJJVVVIVOOJJVVV

9 （vo）	9silozis	H90w
L（VLI）	8zilozis	\｛t90w ${ }^{\text {den }}$
91 （VLung（0）．）	001LOzts	（t90w3）
s（ovv）	060LOzIS	（1090W3）
stluiv）	650L0zts	0690W ${ }^{\text {\％}}$
9l（iv）	z00LOzE	6¢90W3
g（v）	＋869071	8¢90W
lifiv）	\＄96907t	L590W
$81(1 \mathrm{~V})$	L06902ld	9¢90w
ol（iv）	tricozls	Sc90W
8（5）	2tL90ziJ	＋190W ${ }^{\text {\％}}$
61（1v）	50L90zid	โ¢90W
$s($ bov）	19990zid	2¢90W3）
$01(51)$	95990zt	1590W9）
IItıus（IV）	tis90zt	0¢90W3）
s（vıVV）	¢IS90zid	6290w ${ }^{\text {\％}}$
s（vov）	Lzt90zis	8290W5
OHOL）	H£902t］	L290W
$9() \mathrm{V}$.	szz90zid	9290W
S（OIV）	6079071：	5290w3
	80z90z14	เ290W3）
9（1V）	£¢igozes	¢290\％${ }^{\text {¢ }}$
9	zzi90zId	（290W3）
sitiv）	611902 ld	1290W3）
s（vov）	91190 zld	0890W
g（Jv）	ssugozld	6190W ${ }^{\text {\％}}$
9 （OL）	zs090zis	$8190 \mathrm{~W}^{3}$
014）9（IV）	18650zis	［190W ${ }^{\text {5 }}$
zichestuv）	15650zld	$9190{ }^{\text {93 }}$
S（Livv）	2t650z1s	SI90W ${ }^{\text {S }}$
s（OLL）	L0650213	－190W3）
6（V）I）	1885071	\＆190Wว）
（ 15 ）	H8s0zld	（190W ${ }^{\text {\％}}$
SI（vi）	1／LSOZIS	1190W0
	s9Lsozle	0190W0）
L（V1）	0¢LSOCIS	$6090 \mathrm{~W}^{3}$

	CcM0645	FI207207	[GA)6
	CcM0646	F1207248	(ATT) ${ }^{\text {a }}$
	CcM0647	FI207274	(AT)21
	Cem0648	F1207369	(aagana) 5
	Ссм0649	F1207461	(TG)6
	CeM0650	F1207523	(atc)
	Ccm0651	F1207537	(TG) 7
	CcM0652	F1207541	(AT)21
	Ccm0653	F1207637	(TC)6
	Ccm0654	F1207725	(GA)6
	CeM0655	F1207731	(GAa)S
	CcM0656	F1207739	(ATh6
	CeM0657	F1207756	(TTC)6
	CcM0658	F1207804	(TG)6
	CcM0659	F1207827	(TG)6
	CcM0660	F1207856	(ATC) 5
N	CcM0661	F1207876	(Aat) ${ }^{\text {a }}$
c	CeM0662	F1207885	(CAl6
3	CcM0663	F1207906	(GA)6
	CeM0664	F1207977	(A) $3 \mathrm{~m}(\mathrm{AT}) 13$
	CcM0665	F1207981	(GA)6
	CeM0666	F1207996	(TTC) 7
	CcM0667	F1208037	(AC) 7
	CcM0668	F1208061	(TA)28
	CcM0669	F1208083	(TTC)6
	CcM0670	F1208134	(TTA)9
	CcM0671	F1208169	(ATC)5
	CcM0672	F1208208	(AT) 12
	CcM0673	F1208212	(AT) (iAG)9
	CeM0674	F1208238	(AAAT) 5
	CcM0675	F1208256	(Tat)S
	CcM0676	F1208260	(TA)19
	Ccm0677	F1208286	(AT)7
	CcM0678	FI208312	(GAA)6
	CcM0679	F1208320	(TA) 17
	Ссм9680	F1208353	(TC) 9

acaccagccaanctgctttt	CAAAAGGGGAGGTtGTCTCA	159
ancatcantccggttccana	gagcagacgaagatgcacaa	280
tccggatacancatittatgaga	TTTTGTTTTTGTTGTTGATATGTGA	130
CaAGgGtggagcatcaattt	tcttggtgggacattgtgaa	240
ttgcatangggtangtatatgaanaa	gGagcatacatcaangattattcaac	279
agCGTtTtigtggagtcttte	cCaagaangcacccettgta	254
a cacggcangtataccgga	tcggtgatatctgaccccat	252
cgtcgetctattitacatcgg	tgccactacatttcgggttt	253
ggacggtcangttangctaa	gacaaccatggaggitcgat	278
tgtccanctcancccattca	taccegagatcatgaggacc	233
ananttcgatitcgigtcgig	tcgcattaaataaccatgitgc	146
agancgrggcgtagctianat	agccetacctagcactganca	226
accteititgigectrgate	tcgtccaatcttgctettga	143
ggaggtangctacamggagce	cCCaAaAGgCItcaagtge	253
accangcctittcangigga	gcttccttgcctactaggg	122
tgtgtancgtcttgganagg	cCaAGAaAGCACCCCTtGita	240
cganattatgagatatattgttggg	gGgtgantcctittgantge	245
tttgectantaggggtttcg	accangccttrtcaagtgga	118
atcactgtccgactcancce	tacccgagatcatgaggacc	236
ctracancactaggitccegtg	Cgigicattttgttccegat	255
ccttggttcaacacttcggt	gcactcctcaattcattccaa	176
tccaancctaggaganagcc	tcacgiccagtctictctgg	187
Cactttgtgcctgcttgtge	tittgatantgccaaaggg	135
ttettetcgectiticttge	CCGGItCttgcttctitgag	179
attrtgcatgcctgagaggi	cagattgcaccatitgatcct	123
TTCTGGATCCCTITCATTTTTC	CTGTGACACCCTTCTACCCC	217
tgaccticttggagcgittt	tgaccecamganatcacctc	259
atccacacctccanatccaa	ctctgtancgccacgganat	132
tgaccaccanccattaccaa	catgcaccagaccagaatca	272
ggtggantttggaggatgig	tcctgcattanctaggggaca	269
CAAGTGTAATGACGTGTCGGA	aamancgtgianttgatttgctatt	265
ttctgactttcceantgect	taacttgatccgetgettce	180
tattgengtiticcectoc	gCagagcaagatggtgttea	110
gCaAGCTTCCCTAACCTGAA	tgaggaggcgaggitttaga	258
caccttacancattcgecct	angacatctctcctattgagcce	252
agtGctcacttccactcgat	ccaattcanamagcaacatca	109

	СсM0681	F1208359	(TAT) 5	aggittgacantggcagagg	aAtcgattagtggcancagg	166
	CcM0682	Fl208401	(AT)7	agtanggangggggcgtaaa	tgtgcttgactggcactagg	222
	CcM0683	FI208427	(GA)7	CCTITCACACTACAATAAGTCTCACAA	tcCanaatticgtccaange	109
	CcM0684	F1208563	(GAT)6	gigcctcttgittctgagcc	tCATCATCCTCGGTTCTGTG	129
	Ссм9685	FL208588	(TA)16	gttcagtggcgeatcttcat	gccagattatttiagggigce	253
	CcM0686	Fl208610	(AC)9	ATtAGTITGGTGTtCGGGCA	tgcatagtctctccccaantg	201
	Ссм0687	F1208616	(tTa)6	gcatgatattgcttggittigg	CGTGACtGTtCGtggatgag	276
	CcM0688	Fl208624	(TAT)	gcaganggcgrgittcatct	tCanctcctgantiatcccttanaa	235
	Сем0689	FI208659	(TG)6	accangcctittcaagtgga	tcgitagaaggetcctttge	132
	CcM0690	FI208686	(AG)9	tganaaccatctggcameaa	ACGTGTTTCTGGGGTGTCTC	250
	CcM0691	F1208695	(AT)24	acgacccagctggtcactac	gCagctcgcagatgangitt	238
	CcM0692	F1208701	(AC) $5 \mathrm{~m}(\mathrm{~A}) 10$	gCttcatttgcctactagigg	CaAanggitticaggatgcaa	213
	Ссм9693	F1208712	(a) 184 AaC 5	tttccailiticatttcetgaca	tgatgitgcttggantataaggg	233
	CcM0694	FL208714	(A) 22 (TA) 10	ctcagggacgaattrggtgt	CaCCGaatttactgttcacattit	275
	CcM0695	F1208731	(AT)29	ggggactcctgatgitanaaa	acacaittgctatgtggctana	276
	CcM0696	F1208740	(TA)8	aggtggantatcttttggttggt	tccaatanatacantanttcgancg	199
	Ссм0697	F208747	(AT)8	gagtacaccectacaccctacaa	CTGGCaCCCTGTTAaAATCA	188
	Ccm0698	F208758	(AAT) ${ }^{\text {a }}$	СтCttcttettgtccetcge	gcagttctggantacctcec	188
	CcM0699	FL208758	(Tat) 5	agttitgagtttgcgcgitt	tccaactatttattggtccaganag	180
	CcM0700	F1208764	(TA)22	gcaacagtgacamtgggata	tganaactgatgatgcacce	178
	CcM0701	FL208792	(AT) 3	tcanagtctangacacatangGattga	ancatclanaitacaicatccg	280
	CcM0702	F1208811	(A) ln (atarg	CaAgacaccattctgttcge	agagtgggatggatgactg	267
5	CcM0703	F1208813	(AT) ${ }^{\text {(}}$	a accccaantacttccccag	gCCCTCATCCATTCACAGAT	256
α	CcM0704	F1208833	(AC)6	anggtcacttcangctceca	CAAAGGGAGGTGAACTACAAGG	279
	Cem0705	H208838	(TA)8mag ${ }^{\text {d }}$	tcttcgtctacaccecttgg	CGGttganttgttanaattigatg	218
	Ccm0706	F1208854	(TTTA)5	ttcatrgcangtccatgacc	tgctcccaataggagantgaa	249
	CcM0707	F1208910	(AT) $5 \mathrm{n}(\mathrm{A}) 10$	agcgggatanccgctatttt	GTGGGGGTGATGAATTTGAG	271
	CcM0708	F1208931	(A) $11(\mathrm{AG}) \mathrm{S}$	tgatatggantggacamanca	afcgangtganatganagggan	145
	Ссм0709	Fl208942	(TA) 11	CCCTCACTTGGTtCCATAAGA	agGgttcttcceccanctaa	280
	Ccm0710	F1208967	(TTA)15	tittattaggcatatcaagctatttit	afcaicanccacanatangagga	276
	Ссм0711	F1208979	(AT)9	TCCTAGAAATCCTCTGCCCC	tganttcagatgtgangatgatga	260
	CcM0712	F1209040	(CA)8	CatcactcctgtganaicgC	tTCaCCTCCCCattacctitt	242
	Ccm0713	F1209083	(GCT)6	accangtgatgcaatgtgga	agacattgittggacctgge	261
	Ccm0714	F1209093	(TTA15	agCtteigettcgicctgat	ggangggcgttacacaaaaa	146
	CcM0715	F1209127	(ac)s(at)	CAtagggiccticcgittica	tgcaattgtcaccaggatgt	234
	CcM0716	F1209142	(TA)6	CAAGAGACCCCAAATGAGAAA	tTtcaacaggcataatcatacaana	235

VOLLDLVVDVIIVVJODOVLDVIVO JVODVVVOVVOJJJVDLİ

 JVOVDJVOLVOOLLVDIOS MLLDOVLDOLLLLDOD פVOJLDVOJVLLLVODLVOS
วV．）LOLVOLJLOLVOLVIVLDLOL

 JDODLVV19LLOVJVDOJVV マVODOJDVVVVVOVVDVVOVO マL）JVVVJJVVJOOVOJIVS V1910つ1つ0つЦLVVOVVDJ マJVO1001001VOLLL10LLLOLJVVLLLJVVOLLLVOVOLDO ODJVOLDVJJVVOOLIVLIL VOLDOJIVVVVLJVJ100つ1 OOLOLVOLOLIOLLVOLOLOL OLVOVOOOLVLOOOSOVLV

 פ〇HLVVDVマDVVVDVVJJJI
マVOLLOVLLOLVLHIVVODJL JV．JVODOOLIOLV．JIVOLIV แVOVOVวLLLVODOVOVVV VOOLDVVOLLLJOOVVOJV IVOLJLOLLOODOVVOLO VVOJOLVDJLVOLOLVILV VVJLLOVJLVOLLOOVODVVVVD DOLVLLLLIVOJVLVOJVSLVVVVS OVVOLOVOLDOVVJVOJOIL LLLIVOOLLVODJOLOV ODIVVVOJOLVOVDILOJVV VOLLLOVVOODLVLLDOL VVVLIVOLVOSIVIOOIVVVOLLL VODOLVVLOOLLOLJOLOL OLIVOOLVOLOLVVOLOLOL LVDLLLDVODODLLIOS DLDOLVLIVILOVVOLLLOLVVIVVV

JVVVVOLVIVODOJOOVVOL DJJVVVLOVVOVVOJVVVDIDI VILVILVOVVVVOLOL」MOVV） DDLLLVDLOLVODOVOJV OLJVVJOOOLVODVOVOLV1 VVVOLILLVVOOOODVLルL LOOODI＊）」110L10．Lル！ VOVOVVVODILIVODODLOV IVVOLOOVVJOVVJJOVJIV DJJVDIVLOLLLJVDLVVVVVII マVVVODOVVDOOIVOIIVVS JVIVVOOIVJVJOVJVOOJI OVOVVOPVIVOL．）JVOOD9 VVVLIVODLJVODLDOLOOD פOVVODLV．）VVVVDOLVOV） VJLLILD」VVOJ．LLOLLOL
つ）JVVV1．IV IVV1．）9OLVVVO！ OOVOVODL．）1V．VVOLOLOLD1 VOVVVOVOVVDVVVOVOLIDLDOI OLIDOLVVDLLODVOLLIODL
1．001LOVOLつOOOOLIV1）L

JVDOVL．JJVOOV1．）
วแ1ว）ทVวOO101L1ว010
VOOOLIVVLILOJVAIVEOLI
V010LLOLOIVIV．）VODIVIVLIVOLI
อวVวVVVOL．）VOD．）VVว1ว1
LOOVODLLOLLLOOMLLV
OOVVVVDLJJVLVIVV．）OLILOV
OJVVOOOLOLL．OOLOOVLV
VVVVOOLJVOODOLDLLV）
＊วVวLLDLOJVO）VVวJIV

VOVJOOVIVJL）VJJOLVOV
OLL．）JVVOLOLOLLDOLOD
1．0้เทマว0000011．010

01（IV）	2586021］	ISLOW ${ }^{\text {S }}$
S（Div）	L8L60ZIS	ISLOW ${ }^{\text {a }}$ ）
L（V1）	28L60213	OSLOWJ）
LOL）	09L60z14	6plow ${ }^{\text {a }}$
$9(J V)$	0zL60zIS	8VLOW ${ }^{\text {d }}$
6z（Iv）	01L60zId	（tLOW ${ }^{\text {S }}$
cz（iv）	z0L602IS	97LOWJ
EICOVms（vo）	6L960213	StLOW3）
S（VIVV）9l（VVI）	6L960213	－t ${ }^{\text {dow }}$ ）
cı（LV）	8L960Z1）	〔ャLOW ${ }^{\text {¢ }}$
sI（VI）	99960 IJ	でLOW5
1t（IV）	6\％9602ld	ItLOW
8（VI）	0¢960zld	0tLOW ${ }^{\text {d }}$
L（IV）	11960z1s	6\｛LOW5
L（IV）	10960214	8［LOW ${ }^{\text {S }}$
LI（IV）	9156071才	LELOW
g（vVIV）	pos60zld	98LONO）
s（olv）	66p60z13	SELOW
£Z（V1）	68p602ls	－¢LOW ${ }^{\text {chen }}$
s（IvV）	08p60zld	£โLOWכ
sivele	LSp60zld	z\＆LOWง）
$9(0 v)$	15560zld	IELOWO）
g（v）	LEv60zld	0¢LOW3
L（VD）	0¢b60zt	62LOW3）
$01(1) 9(\mathrm{~V}$ ）	12p60zls	8てLOW
6（IV）	50p60 21 s	LzLOWJ
$9(01)$	z8560zls	9てLOWコ）
9（3）	LLE60Z7］	sclows
01（LIV）	29560zld	vZLOW
6（V））	8sf60zld	£ 20% ）
8（J）．）	0vi602l－	zZLOWง
61（LV）	01560zls	12LOW3
S（JV）	99760 Zld	0zLow＇s
61（V1）	80260Zld	6120WJ
$9(\mathrm{VO})$	s0z60zt	81L0W
8（VL）	69160Z1］	L140w

CcM0753	F1209923	(ATAA)S
CcM0754	FI209979	(ATA)6n(AT)S
Ccm075s	F210016	(GA)6
CcM0756	F1210065	(CA)7
CcM0757	F1210079	(T) 10 nm TA) $5 \mathrm{n}(\mathrm{A}) 10$
CcM0758	FL210104	(AT)6
CcM0759	F1210127	(TA)8
CcM0760	FI210130	(AT)24
CcM0761	FI210143	(GA)6
CcM0762	F1210153	(TA)7(T)12
CcM0763	Fl2 10167	(AT)8
CcM0764	FI210167	(GT)7
CcM0765	F12 10172	(TA)23
CcM0766	F1210233	(TGA)6
CcM0767	FL210276	(TA)6
CcM0768	F1210321	(TC)6-T) 12
CcM0769	F1210347	(TA)8
CcM0770	F1210384	(TGA) 5
CcM0771	F121042I	(TC17
CcM0772	F1210422	(AT) $15 \sin ()^{3}$
CcM0773	F1210461	(TA)8
CeM0774	F12 10469	(AAT)8
CcM0775	F1210476	(ATT)10
CcM0776	FL210476	(GCG)5
CcM0777	FL210558	(AT)6
CeM0778	F1210611	(TC)8
CcM0779	F1210617	(AT)6
CcM0780	F1210710	(TA)25
CcM0781	F1210725	(CATC) 5
CcM0782	F12 10759	(TTC) 5
CcM0783	F1210759	(AT)26
CcM0784	F1210799	(TA)17
CcM0785	F1210851	(AT) 9
CcM0786	F1210853	(ATC) 5
CcM0787	F1210863	(AATA)5(AT)10
CcM0788	FI2 10909	(AAATA)G

tGTGATGGTTTAGACCCAAAGA AGTATCGGGGTACGCAATGA GGTGCTTTGTGACAACCTTTC AGCATGCCCAACTGAACTCT TGCCTGCATGAATCTCTITC CTCAAGCTTTGTCATCTCCAA GCTTGGAAATTGTTGCTTGG CCATAATCCAATCCAAATCCA GGTGATTIGTGGCAACCTTT TGTITTTCCTICTCGGCTTT CAACGCCTTTAAAACAAACCA TCGGGGAAAATAAAAAGCAA AATTAACCATCCGGGTAGGG AAGAGTCCAACCATCCTTCG TTGAATGGCATATCTGGTGG TGTGGTCTTCTCGGCTTTTT GGAAGCATCGTTCCAATCAT AGCACCCCTTGTAGAAACCC aCGCCCTACACATTCGTTTC TCCAATTTCAGAGTTTGGGAC tTgGCCAAGTTAAATTGATTCAT TGTATGTAGGCTCAACTGCACC GTGGGITTIGCATTGTGATG GAAGGTGTAGATTAGCGCCG TCATTTAAAGTGAATGAGAGTTGCTT CAAGCTTATTGAATTTCACCTCC CAAGCTTGGATACGTATTCTAATGAA TGTACAAAATGAACACCAATTCA CAATGGATACCCCTCCACAC TTGCCTTGTTAGCAGCTGTG GTTGCTTCGTGGGCTTGATA agrcanggantrcacgccat GCATGTGTTTTTACTTGAGTCGTC TGTGAATCCAAGAAGAAAAACG TTTTGGTTACCTGGTCAATAGG TGGCTIAGATATCTCCCCACTT

CCAACCAATGACTITCATATCOT
CAGCCAACTAACAAACGGGT
14
CGTCCAAGACTCCTCAGAGC 106
TGCATGCATTTATGAGTCGAG 267
ACGCCTTCCTAACCAGAAAA 274
GTGTTICGTCGCAATTCCAT 277
TTGCATCCCCTTGTTCTCTC 256
TGACGCCATGGAAATACTGA 142
CACATAACGGCCACATTCAG 228
TTCGGTTGATGTCCATTTGA 155
ATGGAGTGACCCACCACATT 149
ATGCTCTCGCTGGAAAGAAA 230
TGAAAAAGGATTGAGCCTGA 245
TCGGTCTCACATTGACATCAG 225
TCAAGAATAATTTTCAGTATTTCCCA 214
GGCATTTCATCTTCTCTGGAA 117
TGACCAAACTTGCTTTGCTTT 256
TCTTGGAGTGTTTTCTTCGTGA 244
ttcatgitgiancaanccaattca 276
GTGGGTGTGGCTAGTGGAAT 264
TTCACTTCCATTACTTCATTCCA 188
TTGGTCCTTTGGGCATTTT 102
CAATCCCTCTCATTCTCCCA 219
CATCACAATGCAAAACCCAC 277
TGGGTTTGGAAAGTGCAAAT 278
TCATGGAATGTCTTGATAAATGG 201
TTGAATGCAAAGCCAGTAGC 277
GCTITCCCTATCCCATTGGT 251
GTCGTTGTGAGCCCTCTCTC 211
TCAATTGAATGCCCTCAACA 200
AGGCAAAGAAGACTTCACGC 265
GATGTCATGCCTAATTGGTCC 280
TGGAGGCGATCTCTTTCTTG 277
AGGAACGAATTCACCTGGAA 118
GCAGTGCACCTGATTTTCTG 229
GGGATCATTTGGTTAATGTCG 275

AGGCACCGTCTACGATCAAT
CAAAACAAATTTTTCACACAAACA
GCCGGAAAAATAACAGACGA
TCGGTGATATTGAATTATGGCA
TTCTCTCTATCTCCCTACCTCCC
TGTTGCATTTTAATCAATTATGCTT
AATACGTACAAAATAATTGTCCAAAA
GAGGCCAACATIGTGAGGAT
GCCAATTTTAATTCGCAGGA
TGTTTAAACCTTCGTTGCATCA
AGGACGAGGAAAAGCAAGTC
TTCCACCCTAGGACAATTCG
GTGACAATGCAGCACATGAA
ATGACCACAAACACAAGGCA
ACTTTTTCCTCAGCATATGTCC
AAAATCCTTTCTACCAAAACTITTACA
CATTTTCCTTGTGCAGACGA
CCTTCCTAGGCATGATTCCA
TGTTTTCCATAGTATCATCTTGTGC
TCGGCCGTGAGTTATGTACT
ATAGACAGCTCGGGCACAGT
TTGGTCGGTCCTAAAACAGAA
GATCCAATCGACCGTGAGTI
CAATGCAATTTTTCCCATCC
TCTCGTCTACCACTACTTGCACA
CGAATCTGATCGAGCTCTCC
AAATACAATAATTCGAACGAATAAACA
GAAAGGTGTGTACAACAATGGG
GCTGCACAAGCCTCCTAAAC
TTGTGTAATGACGCTGGTCAA
ACTTGGACATTGTTTTTCGGG
CCTCGCTATCAAGGAAACGA
AACCAGTGAGGCAGTGACAA
TTGCATCACGTGGAAGACTC
GCTCACCAATCTTACTCGGC
TGCAGTTTCCCTCAGCTCTCA

OJVOLLIOLLVLOLEOLLLIOL JVOJVOLVIVIVOJVODODO VLIVOLLIVIVLLIVJVOLVOOOLI LOOLVVIVOVDHODLVOOL VVOVVOOOVDLOLOVVVVD．
VVFVVOLIVOOLOVVVLOVVOOVIOL

マVOJVOVL．JVVOVOOIVJOVVV VVJVOJVVOVOVVJVJOVOLI
甘LOOV VOLOOOVOLLIVJVDL OJVVDVJJJOVIIIVOOJVVI
LOユЦJVOIVVIVVVVOIVOIVOVV JVVVVOVOODOVJLIVOJIS
 VODOLLIVIVDIVVVDIVVOJ HLLLODOLOJVOOVLOIVVOI VLOLDVVLOLLLLOJODOD
 LODLVJOOLVOHLOLVOL VVOOVVOODIIVJVODVIOI วอOVLLOOJVVト．OV10．）V
マVOLVVVJJVOVムDVVマJOOL פOHOLVVVODVVSLVOJJV LOVJVODVDVODODIVマVOV ＊LLullou）vvodolvvivy OVJDOV」LOVVVOLDOVODJ LـLELOVJOJJLOVVJODVV
 OJVODLJVOLLIVVOLDJI วOOLDOLVVJVVOVVVODVV VVVIVVJOJOOLVOVJO』．） JIVVVVJOOLVVOOVODLJL

LLOLOVOVOVOOLILLLILOV

90LLLLLOLVLOVVJO9VマVマJ
VOVVIVOLOVVLLOVVOLIOOOVDV

VOLLIVLILVODLOJJLLJV OOLLL．）O．LOLVVVOLL マVVDJVJIVDJVO）LLLIV マวうivouovvyovvolovoi JJVVOOV．L．JVOVOV．OOJLI LIVJl．1010001LDOLDOLV VOOOVVVOVOOLLVVDIVOJ VOOVVL）OบOVVJVVOIIOก VJJVVOVVVVJVJLDVJIVOVDI ODLLVLLOLDLLOLOLLDOVV VOJVDIDILIDIODVVVVOD DOOH1LOOLJV）IVVVV

VOLVOOJJVLLVOVLVOVLOV．）VOL JODOOLIVJVOLOLVOOVIV IVOLVODODLOOLIDL
 I．LIVVVOVDOLDODVOVOJ マIVOOLLDIOOOLONJVVVO OLLLIOLLODLLV．）OV．）OLS V．）IV．OOVOOLOVOVFDLOO！ SVOLLIOOOVVVVVJVVO． DLOLLIVVIVLOOVONVOJVO． LLODLDV．）VEDLVVVDVODI OLDLLILOHVLOOOOOJV
 909V．） LODVVIVLDOOLLOODJIS L．）VOVIIIDOODOVVOVDI VOV．ODOVVVDOVLLDOVV．）

 OルนLLLOLIV190909．）V LLITVVOLVVシJLOD．OLOO DLLODLVLLVOOOLVJLOOL SJLLLJOODLDLDLLOL
VVFVODOVOVVOVLIVVVLLVOOL

0Z（IV）	981 ¢しで土	0980W ${ }^{\text {W }}$
Lz（V）uş $\perp \mathrm{V})$	991 ¢ では	6S80w ${ }^{\text {c }}$
o（VVI）	StıEIzld	8580 WJ
$9(\mathrm{~V}$（）	｜も｜モıで：	（S80W ${ }^{\text {a }}$ ）
60151	¢£ı£ıで」	$9580{ }^{3}$
（C．JV）	9L0¢ıで」	SS80W ${ }^{\text {S }}$
9（01）	s90¢IZİ	ES80w
¢（IV．）	zs0¢ızİ	¢¢80w ${ }^{\text {c }}$
zilovv）		2580W ${ }^{\text {c }}$
OL（L）usz（LV）	286zıでd	IS80w
9 （VO）	£96てIてİ	OS80W ${ }^{\text {c }}$
llivi	Ss6てIZI」	6780W5
8 （DV）	Es6zIてld	$8880{ }^{\text {cos }}$
L（V．LI）	8¢6ZIてIS	LF80W3）
$9(\mathrm{DL)}$	0¢6ZIZIS	$9780 \mathrm{~W}^{3}$
Slliv）	か06zızld	Strow ${ }^{\text {S }}$
6I（VL）	z88ででは	H60W5
SI（IV）	E98でてld	\＆780W ${ }^{\text {c }}$
zidivous（iv）	$0 ¢ 8$ Zıで」	をt80W9
sivVvovv）	sz8zızı	1680W ${ }^{\text {c }}$
MIVOSIVVO）	て18Z12ld	0ヶ80W3）
$91(\forall 1)$	s08zızı：	6880w
9（V））	S6Lzızı	$8880 \mathrm{~W})$
L（VI）	z8Lzızıs	（¢80W ${ }^{\text {¢ }}$
g（IVV）	\＆sLzızls	9880W ${ }^{\text {¢ }}$
S（OV）ug（OV）	zsLzızıs	SE80W
OI（LV）	6\＆LZİで」	t\＆80W゚
61（V1）	1\＆Lzızıs	โร80Wフ）
$9(1) 1$ ）	ャてLZıで」	2¢80w
$9(31)$	01LZIZIs	1880W
L（JV）	zl9zizls	0¢80W ${ }^{\text {¢ }}$
\｛ $1(1)+1(\mathrm{VLI})$	zs9zızld	6280W5
6（3）	t9szızld	$8 \mathrm{880W}$
S（LLIV）\＆I（LV）	ttczizlu	［280W3）
8（LV）	£¢szızls	9780 W 3
8 （DV）	LZtZIZl．	Sz80w

	CcM0861	F1213189	(CA)8
	CeM0862	F1213295	(AT)6n(A) 10
	CcM0863	FL213380	(AAT)8n(ATA) 5
	CcM0864	F1213384	(TA)9
	CcM0865	F1213390	(TAT) 10
	CcM0866	F1213427	(AT) 9
	CcM0867	F1213462	(AT)21
	CcM0868	FL213477	(AT)9n(A)11
	CcM0869	FL213514	(TA)5n(TG)6
	CcM0870	FL213624	(T) $10 \mathrm{n}(\mathrm{AT}$) 15
	CcM0871	F1213641	(AT)28
	CcM0872	FI213660	(TA)22
	CcM0873	F1213665	(GA)6
	CcM0874	F1213682	(T) $10 \mathrm{n}(\mathrm{A}) 13$
	CcM0875	F1213721	(GA)9
	CcM0876	F1213790	(TTC) 7
	CcM0877	F1213810	(CA)6
$1 . J$	CcM0878	F1213859	(GA)8
	CcM0879	F1213867	(TTG)5
	CcM0880	F1213902	(TA)6
	CcM0881	FI213982	(CA)8
	CcM0882	F1213987	(TA)15
	CcM0883	F1213996	(TA)S(ATIS
	CcM0884	F12 14000	(ATT) 12
	CcM0885	FL214010	(TA)35
	CcM0886	FL214016	(TA) 5 m (T) 10
	CcM0887	FI2 14043	(TC)10
	CcM0888	FI2 14092	(TG)6
	CcM0889	FL214100	(AT)7
	CcM0890	F1214119	(TAT)8
	CcM0891	F1214157	(TTTA)5
	CcM0892	F1214168	(TA)6
	CcM0893	F1214234	(TTC)
	CcM0894	F1214271	(TA) 11
	CcM0895	FI2 14285	(AT)8
	CcM0896	F1214293	(TTG) 5

AGTTTCCTAATAAGGGGCCG
AACCACTTATGCATGTTGATGT
CCAACATITGACTGACAACACA
TGCAGGATGGGTTCTACTCA
ACGGAGAGCACTTTGGACTT
GGAGGCAAAGATCTTCATCG TCCTAACGAGAACTAATCCTIGC GATCGACTTCTGGGTTCTGG CCAATTITCCTGAGTGGGAA AAAAGATAAACATGCATACTGCAAA GGGCCTCCTCCATCAATTAG TTTITGTTTTTATGGAAAATTTCTG TGAGAACAAAGGCAATTCCA TCGGCTTGCTATGTTAACCC GGTGTCTGCAGCAAGCATAA TCAAGCTTTGGAGGATATTTCT TAGTGATGGTGGGTCCCATI GTGCTTTGCGACAACCTTTT TACTCAAGCTTCCTCGTGGG AAGCTTTTGAGCTTCTGAAGGA ATCACCAACATCCCCATGAT GCCATATTTGACCATATTAGGCTT AGGTTITTGCAACATTTATITTAGA TAAATGGGTTCGTGGGTGAT GGGTTAGTGGGCCTTAGCTC CGCTTGGAATCTTGGATTGA CAACCTTAGACGGCTTTIGC ACCAAGCCTTTTCAAGTGGA TCCTTAGCCTGTTCCTTTAAATTG TTCCGCCGATAAATGTAAAA AAAGTTCAAACTCATGGCCG TGATGCCTTATGTTGTGCTG TTTCTTTGGAAACAAAAGCCT AAGAGGTGAATITTTCTTTTCCG CGTTGACGTCGCACTTTATC CAAGCTTTGTGATTTGATITGC
aagggaggtggactaccagg 147
tGAACTTGTGATGGTAATAGTTGTGA 243
gGCaatccatanccatgtce 171
CCAATTCACCACCCCATTTA 214
TTTAACCGTGTTCAACCTTGG 172
AGCTGCACGAGATTCAGTAGG 228
AACTTTTCATTTGCAACAAAGTGT 175
tTGGagGanccaaaattacaca 269
gCattactcttgcganancga 169
tCTGTCAAACTTTTGAAGGAGATI 202
CACACACATATTCAACCCCC 257
tCGTCCACTTATACCACATAGCA 274
TTCTTTGCCTATTGCAAATCTTC 185
GACACCCAACTCATCGCTTT 268
AAGAAATTTCATGGTATTCTCAAAA 205
CCATTTTTCCTATAACCCCGA 209
tGagCaAaAtCTTGGGCTTT 227
CTGGCACCCTTTTGATGTCT 168
GCAAGTCGATAAAAGCCGAA 208
TGAAACCTTCTTGGACCACC 271
TCACCAACGATGAATTGTGAA 279
TATTTTGCAGCCTTGTGCAG 265
TGGCCATTAAATTTATAATCACG 253
GGTGTGAAAATTTAAGAAAAAGGG 177
GCCCAAAATACACGGCTAAA 188
CAGTTTTACTAACAACCGATGTAGATT 277
ACAGAAGGAACACGGTGGAG 165
TCCCAAAAAGCTTCAAGTGC 234
TCTCTCCGGAAAAGTTGTCG 259
TGTTGCTCGTTATTATGCTGG 231
AACAAACGGCCCAATATGAG 271
TGGAAACACACAAGGGTGAA 115
AAAAAGGCCAAGAATGAATCAA 259
TCTACCCAAGCTGGGTCATC 248
AGCTTGACCAGCACTAGGGT 278
tCCAAGAGCACCTCTCAACA 119

	CcM0897	FI214432	(AT) 10	ggggctgtcatattggtgic	CCCACTTTAGTCCTIGAATTIGA	259
	Ccm0898	F1214440	(aAat)s	tcattaanccectggancct	gccaamaagcgcctaataga	280
	Ccm0899	F1214455	(GA)7	gctitgtggcancctttcac	Cagattgggcacattictga	145
	Ссм0900	F1214508	(tTatig	tggganactgttattgcttgg	atatgccatcattrgctcec	123
	CcM0901	F1214527	(AT)8nta) 5	gitanaattgancantancetganagt	tcatcgittcggacacagtt	251
	Ссм9902	F1214549	(CTI7(CA)6n TA)26	atgggcacccataggtantg	ttgaacactictiganaacatctta	279
	CcM0903	F1214577	(TTA) 10	cgggagctcgaameattang	ggggtcaaaggttggaamaa	229
	CcM0904	F1214581	(TA)9	gantactcangetitcgttgtctg	tttcanggagcttgctiggat	111
	Сс90905	Fi214603	(CT)8n(TGISmant)8	anatcatgtgtcacaggeca	gttggtantttcccgctgaa	244
	CcM0906	F1214612	(AT)20	ccaggccatcatagcagtt	tatggattrtggcaccatga	217
	Сс M0907	F1214671	(T)AOCT) 5	gactcatgaggttgicttce	tgctttatggcancctitca	245
	Ссм9908	F1214674	(AAT) 5	attgcatanccganaggitg	atgactccaccaacacgica	149
	СсМ0909	F1214688	(GA)6	afacagggtgtagtggctcg	tcaattgggctattittgcc	207
	CcM0910	F1214738	(TTA)7	angGganagggitctgctet	afcatcangangggtccaca	280
	Ccm0911	F1214741	(aAatis	gGatatggcccgitctactit	tttcggggacganattttta	260
	CcM0912	F1214749	(TG)6mGA)7	atctccccangtgtgangca	tgtgattgittgcatagattaccat	269
	Cem0913	F1214755	(AG)6	ggganatganagtggagcaa	tgattggagggtcattgiga	150
	Ccm0914	F1214850	(AT) 12	acaccttggtggaggacttg	anaacctcccacctcacaan	275
	Ccm0915	F1214826	(TA)8	Cabagcanamgtancctttitagtce	tgtctgtactaggetggtcec	161
Γ	CcM0916	F1214851	(CT)6	gGafatgggatgtgttrgic	CGAATtGGAGAAAGTGGGAA	110
	Ccm0917	F1214860	(attits	gCtitiaanatgitittccgea	tgaggattancgacagtgtgtg	279
	Ccm0918	F1214876	(AAC)6	ganacctcgttggcattgit	cagcggaaganttgttagce	139
	Ccm0919	F1214904	(AG) 9	tgcceataaggceatanctic	tttgattitgtttcetgcce	255
	Ccm0920	F1214908	(AT)22	ttgcaaccaacaatgcaagt	tCCTtTAGGAtCAaccgigaa	254
	Ccm0921	F1214957	(TA)7	caamtganactctccgacce	ggcattggaggatagganca	193
	Ccm0922	F1214972	(AT) 18	cgtcgcatanctittgatgg	ttctaanattgcctgatttgaca	215
	CcM0923	F1214992	(AC)6	cccatcacttancccaacaa	gangtttggaggctgagcac	200
	Ccm0924	F1215019	(TA)6	tattgggtaccaanagccea	cacatgggcacactigagat	167
	CcM0925	F[215036	(TTA)8	atagGatgigacattgggec	ancatcangangggtclaca	262
	CcM0926	F1215137	(aatcag)	agatccatttcacclactcg	tCCtCCagatccettcctit	237
	Ссм0927	F215139	(Ta)6	accaatgiacacctctcgge	ttggctgattigiattctcga	171
	CcM0928	F1215150	(TTA)9	agcacctgtancaccccaat	aAtacgtacanamtanttgtccaana	155
	Ccm0929	FL215185	(AAT)6(TAT)S	ggggtcattggtacaactce	tttgactgcgattcangcat	276
	Ссм0930	F1215203	(ACP 8	tgagaggctgcataggtgag	gTCantcattgttcaatttgagtc	230
	Ccm0931	F1215208	(TA)24	ccatangcatcgtgtccaga	ggcatanangccattcacana	280
	Ccm0932	FI215228	(AG)6	ttcttteatggccgaganct	anaggatatgittcccanacga	247

	Ccm0933	F1215264	(AT)23	tgacanccattritatgttgtggi	ccttggcatgctacaagatt	241
	CcM0934	FD15303	(AT)6	ttggancaatgcctatgatga	cctgcaamacangctcacaa	160
	Ссм0935	F1215377	(TA) 10	tganactctgantctgcctcaa	tgcagttganaaccanatatcaa	156
	Ссм0936	F1215381	(TC)6	taggecccctccatarttt	CTGTCCAACTCAACCCGTTT	280
	Ссм0937	FD215471	(CT) 6	itatcagatagantgccttgcata	ttgGcttganagattgganaa	163
	Ссм0938	F1215571	(AT) 13	agcacttgcccccactacta	TTAATTTCCTTTAAAAGITTGACAGAT	214
	Ссм9939	FL215597	(T) 1 Im TAAS	TCACTTTTACTTTGGTATCATCCCT	attttggtccactitanaancg	200
	Ccm0940	FL215621	(ATT)19	cccaatccaacatagcgict	gGaaattgtctgaggigagga	242
	Ccm0941	F1215650	(ATC) ${ }^{\text {a }}$	cGtttrgiggagictitgtg	tcacctgganttcagangca	150
	СсM0942	F1215656	(TC) 5 m TC 15 mfCl 7	agGtgganatccanctticct	gGgggagtgagagtgagaga	263
	CcM0943	F1215717	(CT) Sniters	tgeattgittggatggagag	gGgatcggagatagataaga	279
	СсМ0944	F1215749	(aAtit	tttangtggtganggectcg	ttgtgtccancanttgacga	218
	Ссм0945	F215763	(AT) 2	agaactettcgaccaaggea	Cacattianttganagttattgagca	135
	Ссм9946	F1215791	(AG)12	agtgagagagtgcaggcgit	tgtggaanaggcatgittga	248
	Ccm0947	F1215852	(CT) 9	CTCAAGCTIGCTtTGGAGGI	acgecctanatcggtacctt	252
	CcM0948	F1215944	(AT) 4 4n(AG)5(A) 1]	gcacaggicacgtctgtacc	CATTTTCCCACCTITCCTGA	221
	CcM0949	F1215949	(CGC) 5	atcagaagcticccgetgia	cggtgctatctctgtcecte	226
	Ccm0950	F1215949	(A) $10 \mathrm{~m}(\mathrm{AG}) 14(\mathrm{G}) 11$	CTTCTTCACCACCCATTGCT	ttcagaancagtgancacactgan	188
N	Ccm0951	F1215969	(ATt) ${ }^{\text {d }}$	agaccaaggaggattccgat	gattctgtgggattitgtgga	208
-	Ccm0952	F1216072	(TA)20	gccatgcctitiganttigtt	tatgcanctccctgacceat	253
	CcM0953	F1216092	(ata) $10 \mathrm{~m}(\mathrm{AAT}$) 5	tcacceaganatancactggan	tggttcatggcanatcaat	280
	Ccm0954	F1216103	(GA)7	cangetitttagcatacgacga	gacaggtctaatggcggtgt	236
	Ccm0955	F1216136	(A) IIm(Aat) 0	CTCAACATCAATCCGGGTCT	gCatggatgcacatganaic	249
	CcM0956	F1216271	(AT)16	agccccanctcanttatcaaa	ttcettgcggtttgagctat	224
	Ссм0957	F1216286	(GA)	gtacagatcgecccaggtan	atggctcatggctcataggt	225
	Ccm0958	F1216291	(AT)6	tggttggattgcatgttgtt	caancccactcanccccata	249
	Ccm0959	F1216314	(CGG) 5	tcggaggatgattccacttc	CCTCGGCTTCTCCTCCTC	122
	Ссм0\%0	F1216318	(AT) 17	tgciticcanattracagatcg	ttgatanatcantcgacatataaanga	251
	CcM0\%61	F1216340	(TA)9	angcttactgctcgttggaa	acgtggagtgatcaccaana	260
	Ссм0962	F1216360	(TCT) 7	aggacticctcctrtgigic	agCattganggccanttgat	221
	Сем0\% ${ }^{\text {c }}$	F1216391	(AAT) 7	afCatcangangggtccaca		281
	Ссм0964	F1216408	(T) O (TA) ${ }^{\text {a }} 6$	tggctitattaatattgttctcgitte	ttgagaactaatcgcgatacca	164
	Ссм0\% ${ }^{\text {c }}$	F216411	(AT) 6	aAacgitiaagccatgatttit	ttgttgcttgatatccaaggig	273
	Ссм0\%66	F1216459	(TC)6	cgttctggaccettittgaa	gGtittaggtgctitgtggc	180
	Ссм0967	F1216478	(TG)6	accaagccttttcangtgga	cCaccctaggaccetacgac	203
	Ссм0968	F1216498	(AGA)6	catggcaatgganggatct	tttggggattctcatcttgg	184

	CcM0969	F1216506	(TTG) 5	cccanccgigagtgcttant	tttgecangatttggactgacc	276
	CcM0970	F1216537	(TA) 16	itaanatcacatcttacganacataan	aggacatacgitccaaanttga	187
	Ссм0971	F1216574	(TA)6	tggaccattgagagaangg	tcangagagaccctatggca	257
	CcM0972	F1216601	(TA)15	actttggctcaggecataga	ttgganaatcattgtgantgc	200
	Ccm0973	F1216602	(GA)6	taggtgctttrtggcaacct	ggcccgitccaatacactaa	256
	CcM0974	F1216621	(AT) 13	cgtcttacagacgatctgcatc	CaAaganacagacatgatanagagaga	161
	CcM0975	F1216641	(AT)SGGT)7	gganacanatcctanatiatcaama	aacacacaacttccatgggtt	137
	CcM0976	F1216647	(TtC)	gCangatgtcceanacacct	TTTTCTTCAAACCTCaAaAtCCa	194
	Ccm0977	F1216670	(ATKin(AT)7n(AT) 14	taactgccetanctgcccac	cgtgtagtatatatgtgcagcce	219
	CcM0978	F1216682	(TTA)15	ttggctangttattattgantgtgitt	ggtatggaagcgicaaaagag	280
	CcM0979	F1216692	(CA)7	cagacgatgaanctcccaga	tganamacacatagatagggg	178
	Ссм9980	F1216716	(GAA) ${ }^{\text {a }}$	ttccatcagggtagaggacg	angtacgcaccaaaccctig	243
	CcM0981	F1216723	1AT)	gagggtgatttgatcglagt	aCtCttgetcttggttccea	255
	CcM0982	F1216736	(AG) ${ }^{\text {a }}$	tctigcatacaatgaanangatca	CTtTtGtttctitgegtcce	154
	CcM0983	F1216769	(ATT) 5	ccatgggtacctgcacttta	atccacggacattcgianata	259
	CeM0984	F1216920	(TTA)18	ittocitggiggeacataga	gGatgggcgttacacanama	273
	CcM0985	F1216928	(AG) 5 n(tals	tcttcgeccatccttcatac	gganganacaanaggccaca	235
	CcM0986	F1216991	(T) $10 \mathrm{~m}(\mathrm{AT}$) 7	gattaitgganttgtcgettca	cgcgggtacccaattagtct	134
-	CcM0987	F1217027	(ATG) 5	ccaagaaagcaccccttgia	tggagtctctgtgacatcttgg	243
∞	CcM0988	F1217035	(AT) 11	ctttgaatggaacagcgan	ttgtccectttggaacttag	237
	CcM0989	F1217073	(TC)8	CCATCTCCCTCTTCATCCAa	ttatcgecagticancacctt	234
	Ссм9990	F1217135	(tTaA)s	gccagcgicattaccacttt	CGGTTCTCTGCTITGTCTCC	269
	CcM0991	F1217201	(AT)8	tgcatccaatctagctgge	TTCCTITTTAAAGTTTGTTITTCCA	271
	CcM0992	F1217213	(AT)20n(G) 11	tggtctianacaggececta	TITCTGACGGAAAGTAGCACC	260
	CcM0993	F1217222	(AT) 6	tgagcctcatcatccaaatg	tggcatccatgcatatcaac	276
	CcM0994.	F1217264	(GT)	tgccaameatticaacaatca	tgigtggctgancatctgct	190
	CcM0995	F1217274	(AC) 7	gGactittggcetctigatg	cgcattgttagagggttrgg	242
	CcM0996	F1217333	(A) 121 TA 18	ccggattataaagataaggtgce	afccacacgcttggagttct	277
	CcM0997	F1217374	(GA)8	agtggatggtgitggagagg	tcCCtctaggectcacacac	198
	CcM0998	F1217450	(TG)7	gccgetcatgctatgctaat	CCtGgGcagttccagtttag	265
	CcM0999	F1217492	(TTA)6n(A)10	CTCAAGCTITTACGCTTTTTAACT	CAGATGAGCTGATtCCAAAGG	238
	Ccm1000	F1217521	(AT) 0	TCTGGTTTGGTCTGACTTGTTT	tctgttaangggacaattcatgC	280
	Cemlool	F1217542	(TTA)9	ttttaantggttcaganattgigc	agggcgagactitgtctica	252
	CcM1002	F1217552	(AAT) 5	trtaatggattccgcgagac	ccaggancanamacganacg	263
	CcM1003	F1217553	(GTT)	tTgCCTITTGAGATTCCCAC	aCAagcantccgitgctacc	175
	CcM1004	F1217577	(atg)	tItGgTGAtgctttgctitg	atatgcttgcaacacaagcg	243

[^1]

tgancaangitcatattgctcctt	afgatagccanatanamagagagaga
CAAGAGTTCTTAAACGATCGAAA	aAAGAATTTTCAATCTAACGGTTG
TGCTTTATGGCAACCTTTCA	GGCCCGTTCCAATACACTAA
agcgictcgagatgganaia	GGAAAATGCTTGAGGAGAGG
ancctiagttggtgatagatttcaga	ACCGTCAAGTCCCAAATCAC
CAAAGAATGCCATGAaAGCA	CGTagCtGtagagcgitgtce
tTITTCGAATta tcacanamtaggt	TCCAACCTGACTTAAACATACGG
gGGAATTAGGCACGCTGTTA	tGITTTGGTCTCTCCTTAATCAAA
atgcgicgigangganamata	tTGCtGttacatttaggaggatagg
AGATITCCCCATTCAnGCCT	gTGAtaCgGttgggitclac
GGITTTAGGTGCTITGTGGC	atgccacatancgitcggat
agagganaantgrgccitcg	gCtCCCatgiatgitggicc
TTTACCGGATCCATCAACAAA	GGAATGCATGATAGAGTAAACGA
ancagctgccttcagantcc	aAGACAATGTCAAGCACCCA
tCagcteccctangcteanc	TITTGATAATGCCAAAGGGG
AAAGGGAAAGGGITCTGCTC	tcataggitcacaagtcttganat
GGAGAAGGGTAAGGAAGTGGA	GGTITGATGACAGGTCCGAT
ataggatgigacattggggc	amCatcaagaagggtccaca
tGancanagagictcceacaan	tCaCtCtCagcgaanaiagc
CCAGCTTAGAAGGCTTGGTG	ccatgattagcccacactga
TTTGAGTCCAATACCCITTGITT	Gatgtacceatggaccacct
AAATTGAGAACCCCTGCAAC	ganaccanaacatgtgcaanga
TTAATCGAAAGGATGGTGGC	gtaccaacaccacctcgacc
ataggatgigacattgggec	aacatcangaagggtccaca
gCtgccgctangacantcte	tCgtantgcactctitiancacaa
agagcgagcaatcacagaca	afgat
Caggcatgcangctttgtag	tTtGanatagancctcccea
GGAGAACATCACTGTTGCGA	gccganamattancagacga
AAGTCAAGTTGAACCTITGGCC	TTTAATCCATCGACTCACAATTT
tGAagCangganclantgan	TTTCTCGAAAAAGGCAAGTGA
gCtggttgagangangcacc	AGGTTGTTACCGCGTTTGIT
CCTTTCacanaattccangtgc	CATCTTTTCATTAAAAATTATTCCCT
gGtgtacctitgggtcacca	agcctcatcaccaacatcct
trttaggtgettrgiggcaa	AACGGGTCGTtCTGATtTtG
CCCTGGAGTGAAAGGATTTCT	gccogantganttaagcana
GATCCTCATCAGCAAAAGCC	aACAGCCAGAAAAGCCTTGA

CcM1041	F1219060	(AT)9
Ceml042	FI219165	(TA) 17
Ccm1043	F1219167	(GA)6
CcM1044	F1219191	(ATt) 7
CcM1045	FI219229	(AT)6
CcM1046	F1219233	(AGA)6
CcM1047	F1219244	(TA)I3
CcM1048	F1219249	(TA)7
CcM1049	F1219311	(AT)6
CcM1050	F1219341	(CA)6
Ccml051	F1219381	(GA)7
CcM1052	F1219400	(TA) 13
Ccm1053	F1219413	(CAISICT)MAT)21
CcM1054	F1219420	(TG) 7
Ccmios5	F1219561	(AC) 7
Ccm1056	F1219565	(ATT)
CcM1057	F1219637	(AAT) 7
Ccm1058	F1219644	(1TA)8
Ccm1059	F1219680	(Catis
Ccm1060	FI219705	IACl6
Ccml061	F1219706	(AC) 10 at) ${ }^{\text {antate }} 21$
CcM1062	FI219787	(TA) $12 \mathrm{n}(\mathrm{TG)6}(\mathrm{TA)} 7$
CeM1063	F1219843	(TGG)5
Cemi064	F1219851	(TTA)8
CeM1065	F1219859	(TA) 11
CcM1066	FI219874	(GA)6
CcM1067	FI219900	(AGT)6
CcM1068	F1219934	(CA)6
CcM1069	F1219941	(TA)9
CcM1070	FI220030	(TA)6
CcM1071	F1220072	(GA)8
CcM1072	F1220105	(TAA)5
CcM1073	F1220134	(GT) 5 n(T) 10
CcM1074	F1220139	(GA)8
CcM1075	F1220192	(AT) 17
CeM1076	F1220196	(TC) 12

JLLVOLLJVIVDLLLVOLVOVVVOLVV $\forall V V$ VOVVVOLVVOVDLLVSLVIVVOL OLJVDOLLOLVVDLOVVOVVDJ OVOLVOOOLLILOLLOVODV VOVVVLODIVOOLVOIVDVOO ODLVOVIVOODLLOOLLDLL LVOLLODVVVVLLLIVDLLLLOVVOL VOLLIVDVOIIVJIVVOLIOJ L．JVLIJVJJVOOLVOOJVJO マVOVJLLDODVOLJVOJVO DJLOMLLOLVVVVODLIV วЮОЦЦVJOЦLOLLOVDO DOLIVDDLL．L．JVOL．）VVVVO VOLVOLVOVVOLOLVOVOLIVVDL 9〇LLLVOLOLVDOOOVDV VDLIDOVDOJVVVVJJVOIV VOLDOVODOVVOLVLJVODI VOJJVODVVODVVLLDOLOL DLIDVDIVVOLVVOLVJLIDS VOLOJDJLOJLIVIVVVVO ＊VVVVLIDVVVVJVDVVVJルLDЩ19
 VDOLLIVJVDLVVJVVJVVO！ L．）IVDIJVVO）JVVOIDODI ＊VOJVVLLIVJVOLLLOLVLLLOL VOJLVVVOJLVVOJLVVIVO） JLOLLLVLLIVOVOOVVOLLVVVOL VVOLIDODLOJJLLVLVV VOVDVVFDDLJVVDDLLVOD VOLLDOOLVJVOLIDOVVOL
LLVLLVVOLLLDLVLDOLVODLDL VODDLOVOLVVDVVOLDVOD OOLLVOOVVOLLOLOVJOOV JOJLDJJVILLIVLLVOVOD JVVVVOLVJVDOLVODLVOD

JJJLVJLOVVVVILJIVJJLOD
 OOVVOLLDIVVOVDOVOOL LOJVOLDLIOVLVOLDJอ） LDODJVJLIVOLVDLOJVVD JVวJวLVวLOVวLDJVVOJV LDDDLVVVODOLODIVVILL ODVVVOLOLODVVOOLLL
LJLVOODVVDLVVLDOVVIVVVVV LDLODJILVOOVFDVOVOOD JVOVLDVVOJLつDJDLOOVV DVVJVDLIVOLODODLOL L．）10LVVDOVVVVVDLODOD
 ＊LLDLLLODVVODIVODOV VVOD）LIVVOVVOLDODVIL ODLLVVOVOOVI．）OOVOML LLOJLOOOJVLVV．JIIVVO．）
L．OLIVVVOLVLOVVIVOOLVVOLLVVV LIVLLIOOVVOOLVOOOVOO LOJOLDLLLLVOLLV） VOVDLOOLDOLLOLVISODL JLVVVVJOVILOOVVODIVOD VVOVOLVOVODOLLIVVIVOOO

 VOLLVLOLODLIOOVLIOIVOLL LVODOVOŋLJJVOOLDVDV1． OLDVOML．ODOOVVOLIVL JLODLLLOOLLOVOム．） L．） 1 LILHDIOJIVVVDIV） LVOOOVLOVVVOOODVODVV LOLOLVVVOLVJJLOLDOD ＊VVVODIJVOLうOLVVVDVVOL LDLOODJDIVV．）LVDVVOL VODOLV）LDVOLLOVVLOVODI

zてz	LVV000191VOLOOJIVVVV	VVOVVLVVOVOVOVDLDJoiplvo	6．1V）uzı（ ${ }^{\text {（ }}$ ）	$16612 Z 1 \mathrm{~d}$	8011w	
807			s（vov）	\＆l6izzld	［VINO）	
691	OOVVVLDOOVVOJVOVVVVVOL	OOLLVOVVOLOOLOLLOL	SICLOI（VI）	696 Izzls	9bllws	
L£Z	OOLVOJLOOV	OODLOVOOLVVVLOODLVJV	（12）	sbbizzld	Stliwo	
881	VOLODLOODLLOOLDOVIV	マJVLIOOOOIVLLIOJOVVV	$9(\forall 1)$	£ท6IてZ15	せいW3	
LOZ	VOOJVVV1VVVVOJJLLLJVLI	VOLVVVDLLOLOVIVVV\％JVว）		806IzZls	\＆かlwo	
9 pz	VOVVOJJLLDOLVLLDVVว」	IVOJVVIVJVIVOLIV ${ }^{\text {L }}$ VVVOIVVDV	LI（IV）	2681zZIA	でいW゚	
102	マVVVJLVJVOJOVJVVODL	VOLLJVOLVVOLVOOLLIVOLOVV	S（0．D）	1681zzld	Itilw	
012	＊ODVOLOOVOL．LDLVVVVDO	دเマ）	8（LIV）	8¢8izzls	0ヶ11W9	
002	วvอv์vวu．	LOVVOLJJOLVVVOVOOOV	9（OLV）	0＜lizzld	6\＆11 ${ }^{\text {a }}$ ）	
8 ± 2	VOVVVVJOVJ）L9LVJOVV	L．OLVVILVIL）	S（D）us（V）	L1くızal	8\＆\｜W0）	
LZZ		VOLLOOOOLSLLLLOLIOLI	S（IV）uL（IV）	$9691 z \mathrm{IH}^{\text {d }}$	LE\｜WJ	
z0で	VODLOVV		9（V））	s8912Z1d	9\＆11W	
912	ODV＊LLLVLLLOVOOV OLIJV	LJOLLOLVVVISVOIVVVLIVIVVG）	てI（ \downarrow ）	8L91zZIH	¢¢11W	
¢81	VOLVOIVOVVOLSLVOVOLIVVOL	L．LLLVDOJJOVLDJLJV	てI（IV）	ql91zzid	D\＆\｜Wつ	
OEZ		LLLOOJVVLILL．OVOVVLD！	\＆I（IV）	0991zzld	£๕\｜Wง	
$6 L 2$	マว้วอ⿺𠃑OOOVVOVVวIVJVV	OLLJOLJ」MOOVVVOOLV	L（VILL）	£r91zzld	てとıWจ）	
672	OOODLVFOLOLOLVLVVIVJVVV＊O	＊LJVOLOOODODLISVOVVV	9（IV）	LE91zzt	1£！Wつ	\checkmark
192	LIDJVOOLIVOLODLVマVJI	IDOLDLLOOOVVOOVVVIVJ	9 （VJ）	£191z2ld	0¢11Wง）	λ
912		LLOLOLVLIVOVOJDOOD	1¢（IV）	0091zzıd	6て11wa	N
LLZ		OJJVOL．）9L．LOIDILIV	61D）	08sizzld	82IIW9）	
201	VOVVVOVOJVIVפLDVVOOVVว）	VOVVVOLVVVVIVVVVILVOOSL	S（IVVV）	8LSIzZIS	LZIIW゚	
て£て		HLO．JVJHL．LVVOVJOODV	610L）	6ftizzly	9てIIWJ	
$9 ¢ 2$	OLOLVOJVV）	VOVODOVOLVVOVO）VDVVVV	8（LIV）8（VIV）uL（VLI）	10ャ1zZlı	Szilwo	
St1	L＊OJLV＊Vวうวv＊วosv＊วv	Ovo）．LVIVVVODIV．）OJVV	si（VI）	00vizzld	จで1Wગ	
て£Z	90つ1VJVOVLLLILJOVVว	VOVOVVVVOODLDVOLLLEILJ	s（VVIV）	c6aizzld	〔で1w	
$8 L Z$	VJOVOVLIVVVVVOJOSoLv	VODOLIVLIVO＊．）VVLVLOVVOOL	s（VIV）	88£ızzld	zてIIW゚	
612	OOLVOLJVJVOOLDOOLOVI	OVOOLOJOVIOLVOVLOOOL	ャて（1v）	09\＆ızzı－	さてIしWゝ	
1 11		マJV\％LOOJVVOLVV．OOJV＊	9 900］	85£1zzıd	0¢IIWO）	
でて	＊OVVVJOVVVOIVVVJOLLL	LOOOOJVLJLLSLOVVOOL	$9(*)$ ）	9て\＆ızzld	6111W9	
912	JLIOVVVVOJOVVVOLLVOV	マVOVVJ）JVOVOVLL）OV ${ }^{\text {VVOLI }}$	S（JLI）	£6zızzld	8111W9	
082	JLOOLDLSOOVVVO9OVVV	＊JVJJLOOOVVDVVJIVJVV	L（IVV）	09 azzad	LIIW5	
LLZ	OLVVVVOOVOLVVDOVLOLLSL	DLELLDOOOLLLOIVO	$6(51)$	pscizzas	9111W	
カャて		LLOOJVDLLOOLLLOV	9 （V1）	61zizzu	SIIW	
092		L．LOLVVDOVVVV＊JLOO）！	01（1）8I（VI）M01（V）	1811zzld	か111W9	
LOZ	JOL LILIVLDJJOLSOV	OOLDJLLLOHLLIODOV＊วV	S（VVO）	scilizzli	flliwos	

$$
\begin{aligned}
& \text { Luvonvovioulu.jvvos }
\end{aligned}
$$

vLoJLOVDOLVVJJLIOJ
OJJOLムVLOLLLVDJıv9
vvopivojovvoovivovovo
voollivvvvovojoiovzs
LـLVVOLlojLOLIVVDOL
oploovvojuvioluval
＊VJLLJLVIVLIVVJJVVJODL
แนDル！
＊VV＊JVLILVOOLVOJVVIJIVVIL
vวovvvวloogviogolivg
LOL \forall OLLLDIVODLVマVDOOL
マOLママJVマコวJVマVOLIOOL
VDJOLLJVLLLLOLDOLDL
JLOOLDLLOLVJJVVVVOL
VOJOLJVDOOOVILLOVJV）
DODL\＆VLDLDLDOLVOJVV
VIVOLODLVVOLDJJJVVDI
JJOOLV，VVLOLLLVVVLLL
シJDV $\angle \perp \forall \forall J \forall V V O I V L D \forall \forall D V V O D$
VวJЦLLODLIVOVJLLLDVL．OL
＊JVOODDOVOLVLOLVコ」

> *VOLOVVVJVVVJOLLIVVJD LLLVDDVODVOVDVVDVLIVVVLIIVG LVOOOOLDLDOJVLLLJV
> VJVVVVVOLDLVJLLVVL.OOL.
> OOLレVOVVLOVVODOVVOVVJ」 VJLLOOVVJJLLOOVVDOVV
VOJOOLOLVOVOLOLOL．JV
DVODVLOVOVOLVOLルOLOLL

1VV101＊OO1201000VV00 IVOJLVLDODOVOLLLODV マOVVVDOLOLLJVOLVOVOD VOOOLOLLLOOLOOVILLI LLODVODLIV $\forall \vee \forall O) O D O V$ LLLILVLLVODOODOVOLOV マวマอวนปทว）

 マJVOJJIVOLVOLLJIDI

JLLJIVDOJOVVLOVVLLLDLL

 IVJDOVODLJOVODLDVOVL IVJODVDOIJJVOJIDVOV1 LJLDJLJOLLVVVOOIV） VOOVODOV $1.109 \vee V \vee J J 0 V$ OOLLLOOOLLVVLOLLOD L．J．）V准DOLOOL．LYOLOD IVOOOVOOLOJVOOLOVOV1 ODLLOLVOOLLDLOVDI VOLLココロLWOVVDOLV！
VOLLOLLOVIVOVOLLLOOVIVDVOL JLIJOVLOOOLLLLDOLO日
 VL！ODOLDODVVVVOLIOVV ＊LVOLODOLLLDOVVJOLVJ LDLVODLOLLOLVOOLVD） DOLOLLDVDLVVVODL1091
 I．VVDDVV VLOOVOVOOODLVVVLLOJ9 マDDJVVLIVVVO）OLLIVJD
 LLLDVOIVDVOIVIVLO）JJO

6（1V）	z80¢zzld	\＆811w3
S（IVVV）	190¢zzis	［811W3
S（IVI）	6b0czzid	2811w0
9（VD）	Ltoczzlis	181160
L（L）	zeoszzld	0811W9
6I（V）	8zoszzi．	6LIIW5
01（1v）	zloszzid	8 8IIN 3
ャて（1v）	966 zzzla	LLIIW）
9（LV）	£L6zzてld	9LItw
oz（V1）	9z6zzzld	SLIIW ${ }^{\text {c }}$
9（LVLO）bI（IV）	9z6zzzl	
で（V）	c16zzzld	Ellw
$9(J V)$	168zzzı．	てLIWN）
L（LV）	1882zてls	1LIIW）
L（VI）	sc8zzzid	0LHW5
6（V）Mustiv）	9z8zzzld	$6911 W^{3}$
$9(V 1)$	98LzてZli	$8911 W^{3}$
L（VO）	か0Lzzzis	L911W
6（1V）	219zzZIs	991 （W3）
s（VVI）	06Szzzld	S911W3
	t9szzzla	＋9\｜W
Scoivi	89ャてZZIs	\＆91／W0
zz（IV）	60tzzzls	2911W
S（LLIV）	Letzzてl	1911W
9 （VD）	12\＆zzてls	0911W3
$9(\mathrm{VO)}$	sı¢zzz！	6SIW
s（vouvi）	11\＆zzzld	8SIW？
	£szzzzis	LSIIWJ
（İV）	cozzzzid	9SIIW3）
L（IV）	z6Izzてd	SSIWN
tz（IV）	88 IZてZld	カSIW゚
SOLI）	08Izzてld	\＆SIIWア
$9(\forall \vee \vee 1)$	1sizzzld	zSIWJ
L（VL）	s60zzzls	ISIIW0）
L（VI）	ctozzzls	OSIW
g（vo）uzi（vorgi（vi）usilv）	0ヶ0zてZİ	6t11N0

TGAAACACCGTAACTCGAGAA		
TGATTTCCATCAAAAAGTGTGA TTTCTTGATCTGCCCCAGAC AAAGATAACTCTGGCAGAAAAAGA		
ACCTCATGGCAAGCTTTGTT		
tggCtatitaatccttttgitgg tCCaATTCCCTTAGGCTGTG		
gCtTTCAAAATTAAGAAATGTTGGT rCITCatctgcatctgigge		
TITAAGGCCCCGTAACICCT		
TAGAAACACCCTTGTTGC C		
TCATTTGCTAACCCAAATTCC tcaangantccgantcccac gagaancttctcactcagttgcag		
TGTGAAACCAAGAAGAAAAACG		
CAACGACACATGTCCTCCAE		
TAAGGTGTTTTGGGCAAAGG		
gCCanttcatantgtgitganaa gTtCGGCATtTGTGTTCCIT		
CCCCICTAGGAACCACATCA		
AGACTTGCGCTCATAGGTGTT		
TTCTCCCCAAATTTCCACAG		
TGAtGGTGAGTCTATGTCTGCC		
TICACGGCCAACTATTTTCA		
GGTTCCAAAGCAAGTTTCCA		
GATTCAAAAGATTTTTGGGGG		
GACACAATTGCTGATCAGGTC		
ATTCGTTCTITCATGGGTCG rCCCTGAGAAGAGAGGCTCA		
AAAAGTGTTACCTTATITTCAACAAGT		
AATCCTTAACTAGTACCGGCAGA		
CCTCTCatCCAACATTAGCATC gTtTAAAGGTAGGAAAACGTAACAGT		
GCAGGCATGCAAGCTTTACT		
TCGAGTGCAATAAGTCAACCA		

AAAAATTGTGAAACACCCGA GaAACACCGTAACTCGAGAA TGATTICCATCAAAAAGTG AAAGATAACTCTGGCAGAAAAAGA ACCTCATGGCAAGCTTTGTT rGGCTATITAATCCTTTTGTTGG TCCAATTCCCTTAGGCTGTG GCTTTCAAAATTAAGAAATGTTGGT TCITCATCTGCATCTGTGGC IIIAAGGCCCCGIAACICCT TAGAAACACCCTTGTTGCrC
 GAGAAACTTCTCACTCAGTTGCAG TGTGAAACCAAGAAGAAAAACG CAACGACACATGICCTCCAC TAAGGTGTTTTGGGCAAAGG GTtCGOCATTTGTGTICCIT CCCCICTAGGAACCACATCA agactigcgctcataggigit CCAAATTTCCACAG TGATGGTGAGTCTATGTCTGCC acgoceanctatitica GGTTCCAAAGCAAGTTTCCA TCAAAAGATITITGGGGG GACACAATTGCTGATCAGGTC CGITCTITCATGGGTCG rCCCTGAGAAGAGAGGCTCA a AATCCTTAACTAGTACCGGCAGA GTTTAAAGGTAGGAAAACGTAACAGT TACI
TCGAGTGCAATAAGTCAACCA

AGAAGTGAAAGAAATAAATAATGGGT 199
ATGGTGGGAGATGCTAATGC 280
GGTTATAATTCCATTGGGGGA 263
TTGAAAATTTGGCGAAAACG 255
AGCCACTCACGCAACATCTA 130
AAATCTCGGGCACAGTTCTC 186
GTTATACGACGGATGGCGAC 252
GAGTGAGAAAGTGGCCAACC 182
AAAATTACATCAATATCGTTTGAACTC 190
GTTGCTGCTGAGAGTTTCCC 241
GGCAGTITTCGAAAGAACCA 102
TGCTTACAATGGTACATTTGGC 263
TTCGGGAGTCGATTACGTGT 227
TCGGTGCTGAGAAGAGGAAT 267
TATAGGTGTGCCTTCGGGTC 199
AAGGAATGAATTCACCTGGAA 121
GTGAAGCGAAATCCCACATT 266
CTGGAGCAAGCACAAGATCA 115
TTGGGCCAATGTGTTGTIT 259
TGTGTGTTTATGGTCCTGATGA 218
ACATGTTTCACGTGGTTGGA 232
TCATCTAGTGCTGGACACCCT 276
TTTTTGGCATTCTTITTGGA 229
AGCAAGTCATGATGGTCACCT 101
TTTTGAACTTGGGAGATGCC 273
CCATGTGAAGCGATTTTCCT 258
TCAATCTCTTGCCACCAATG 192
TTCATGTAGAACGGCAGAAAAA 187
CCGGACAATTTTAGGGGTCT 169
CTCACCGTTACCGTCACCTT 264
CATTATTTCGGTTGTTTCCTATCT 277
GATATGCTCACATTTTATGTCTTCAA 159
TGAGAACATCACATGGCATAAA 279
GAACAGCCCGTTCCAATTT 278
TCTAGCGTCCGAACATTCCT 230
CGTGTACAAATITCATCGACAA 188

```
            I*OJVVOVOLOLOJOLOLOL
\forallJVVODVLOVOVLVLVVVODVJVVVVD
    L&OLOLOVODVLOOLJLOVLLL
        LJVOLLLVOLVVV\forallOLLLVVVOOL
            IVOOVJLDLLVOJVOVDJJ
            Hว)LOL&OL&OVDD\
            O\PerpOVV&OLLLVOOLIVO@D
    VOLLOLLOLLLLOLVOVVVIVOLLL
            *L)LL&OLODOOL&OOVOD
```



```
            JODLIV\veeLJV\forallJVV\veeVOLOOL
            \forallJVVVVOVVOJOVOLOOVVO
        VOVLODVVVVLVOLVLIVOODOL
            IVOLOOOLOOV1OJLIDOLD
            OLOVODIVOLIDOLDIODL)
            VLOJVVIVOVODVDOOOJVS
            ODLOLLDJLOODJV\forallVLOLI
            LDOLVVOLLIDILVIVDJJ*)
            \forallVVOLLDOLVDDLLDVJVVOL
                    OOLOLOLDOOOODIVIVDV
            LOLOOLODOLOLLOOJLVV
            JJOLOJVVOLLLLLODOVVD
            LOVOOVOLOLOVVVVJOLLL
            OLLLV\LLODIVODLOLL
                    JLVOLOLVVOOVOLO)OD
                    DODOLV1ODOLLOVVVOLS
            VOVOJVVOVVODVOV\veeJOOV
    \forallVOLVOLOLOLIVVVLVVVDOVIVVV
        DOVVJVOVVOVVLOVJVVJVODV
            OJVJOLODOVVOVVJIVJVV
            VOLVOVVLVVOOLJVOOOOD
            VIOJVJOJJVOVLLIOOOVD
        OLLOVVVIV\forallOLLOLVVVV\forallJJL)
            \veeวOLOJLLLVVVVOJLOOVD
    VOLDIVVOOOVVLIVODVLJILDVV
        VOLIVVOOLVVVOLVJDVOVVJ
```

VOLVOJOLLLOVVLODVDLOD
VODOVOLOOLVVDLOOVLJV JLVOOVDODLODOLVLLDVV
＊\forall VIVOLIOVOLOLVO）V VOV วอLDLOLDOLJOLVOVOL OVJDVOVJVVOVODDIVVVJ VVJLLOVDOOVVJVVLLDLVJVVV VOVOJVVDLLOVJVVVDVJDI

วอLVLV1OLOVVVOVDLOVOVVOD OOOLLLJVVLVOJVVOLLODL DOLIVVOLDLDIVOODLDI VVIVVDLVODOLVVVVODOI VLLDLLLOOVVOOLVOOOV
 VOODVJVDVVOVO．IVVVDJ
 VVOOODLOODILLLOLDV．L VOVVOODVIVOLVVOVVDLVVDL LIJOLLVOLVDOLOOOLOL．）
JコLDLOJLLDVDLLVOVIVOD VVVOVVJIOOLVDV．）JVO．」
 วコวJV．L．LJOOVวVDLOLD
 つuV）V コ以ルニDOOLLDLVDD
 IV \forall JJLVDDLODV．ODVDVJI JODOOLIVJVOLOLVDOVIV OJLOOLOOLOJVVDLLIVコ LOLOLOLDLVJODLDLOLV
VIIVIDIJJV1OLLIJVODOVVVVV OLLLOLODVLLLVDOOD LJJVVOJOVOLOVDOIVDL 1900コつLOIVOOVIVJLIV）

$81(\mathrm{VL})$	6L6tzzld	9¢Z（W9）
L（JV）u_{6}（LV）	296vzzls	SSZIW0）
LI（LV）	668tてZld	＊SでWア
g（VI）	268tzzld	〔¢Z1W゚
5（0）0）	で8tzzld	zsziw
6（V）3）	てL8tzzud	ISZIW゚
8（1V）	6S8bてZld	OSZIN゚
	s¢8tzzld	6ヵてIN゚
$9(\forall 0)$	てZ8tzzus	8かてINか）
LIVVVIMS（IVI）Mg（IVI）S（1．OL）	6SLャてZIH	＜tてiNs）
If（V1）	9SLbzZls	9＊でおフ）
（VOLJ）	p69tzzld	stziwos
S（IVV）	Sbstzzld	巾でいか）
9（VO）	9ssbizls	£tでW？
6I（IV）	1estozls	でではNo
G（LIV）L（IVV）	tzstzzls	Itてiwos
If（1）ug（VO）	lostzzas	0ヶでWア
	S6tozzls	6\＆Z1Wフ）
$01(18)$	LLDtozid	8\＆ZIW゚
s（OLI）	てLtozてld	L\＆ZIWจ）
If（IV）	lıttzald	9๕zIW゚
si（viv）	－ttozzls	S£zIWગ
9（ID）	LZbtzzas	ャ¢ziw
（IVV）	か1tヶてZls	โ¢Z1Wง
9 （VD）	sottzzas	て\＆zIWગ
9（VD）	Ls£t CZIJ	1£z｜wコ
9（1VV）upl（V）	6sてゅてZIs	0¢ ${ }^{\text {c／w }}$
$8(\mathrm{VL})$	szztzzls	6zziWs
90iv）	1てZャてZls	szziNo
8 （VLL）	1てzもてでs	LZZIW
9 （1V）	61てtzzld	9zZIW5
	912ャてZld	szziw
8（Lロ）	Z6｜tzzly	ャてZしWง
L（VD）	L81tzzls	\＆zZIWコ）
9JVO）	9 91tzzld	てZZIWง
s（Jiv）	toltzzls	IてZIWフ）

CGCCATGGAATTATCGAGTT
TCAAACATAGGGGTTTCACGA
GAGGGCACAAGTCAAAGCTC
TGGAACGGGTCATTCTAAGC
AACGTCATCCTCGAAAAACG
CGATAACAAAGCCTTGTCCC
GCATATCCTGCTAATGTCGATT
CCTGGGATTTGTAAGCCTGA
TCGTTCGGGACAACACATAA
ATTTGAAAATTGATGCCGGA
GGAAAAACAGCCACCAAGAA
TGAAAGTGTCCCAAAAAGCC
ATCCACGAACGAATTTCACC
TCTCCATCTTCCACCACACA
CACCAAAAAGCGCCTAAGAG
TGCCCCCACTATCTAAAGTTTC
CGTCGTTGCTTTCTTTACTTTG
AAAAACATTTTTCTTCAAGATTTGG
GTAATACGCCGCCTCAAAAA
TTCACAGGTITGTGTGCTCG
TTGCGACAACCCTGTCAATA
CCATCCACCTTCTATTTTCAGG
TTTTTCATCCAAACACACATGA
ATATAGCATTGCCCTGTGGC
CATTCACCAAACAGGCCATT
CAGTCCTGCTTAAAACCGATG
AAACCCAAAAGICAAACCAA
GGCTCTGAAAAGCCAAGAAC
GGACATGITACATCGGGACA
CCAATGTCGTTTGAACTCTCC
TTTTCCCCTCCTTCITGTGA
GAGGCCAACATTGTGAGGAT
CCATTCCATAAATTGACCGAG
ACAAGCAATCCGTTGCTACC
CTTTGCTTGCTAGATCCCCA
TGCATTGGTGGTTAGCAAAAG

[^2]

TGCTTTATGGCAACCTTTCA TGAAGGAGAATTCAAAGCCAA ATAGGATGTGACATTGGGGC TTGTTGTTGTGGCTGTGGTT Catgcagtgcctaggctagaa GGTGCTITTTGGCTACCTITC gGGTGTtGagatgTtagagatcg AGAGAGCCACCTIGGTTGAA GATGCCACTCGTAGCCAGAT CCCTAGGGAATCCGACTAGC CACTTTGTGCCTGCTTGTGT CCAACITAACTCATAAGGITGTCTGG GAGCGACAGGAGGAGIGTTC TCACITCCAAATCCAGGAGC TAGAGTCGACCTGCAGGCAT GCCCAATACAAAAAGTGATCC TAGTGCACTCAGCACCCAAG CGGGCTCATTAATTTGTTCA TGGGAATTCTGGATCTGTGA AAGCCTCATCACCAACATCC TGCTITCCCTTTCTCCTTTTC TCCAAATATGCCTACGATCCTT AGGGCCACTCTTCCCTACCT GCATGCAAGCTTGAAGAGAA GTACACGTCCACCTCCACCT GGCCTGGTCCTAGTTITGTG GCATTGGTCCGAGATGAAGT CCAACAGGGTCAAAAAGCAT AGGCATGCAAGCTTTATTGG TTTTGAAACTGAAGCCAACTGA AGAGTCCACATCATTCAGGGA CAAGCGAGGTTTCTCACTCC TGTGTGTGGGTGGCTTTTTA CCTTGGCTTCTTTCCCTTTT TAGAGCGCTGTCCTTGTCTG GCAGATAGCATCCTGGGAAA

ancacatancggccagatcc	231
gGacgaggacgggtatcat	276
afcatcangangggtccaca	259
ACTTTCTGAACTGCCGGAGA	175
CAAGAAACCGAATGCATCAA	212
CAGACTCAGGCACTGTTCCA	145
agcattcatcatantcatcagaca	195
Catacattcacacttancactcttttc	259
tgGtatggattatgatggattga	252
tganctatcaagggaggtgga	270
ataitgccanagggggagan	128
trggatggagtitigititica	278
TTCGCGTTAGTGTGGTTTTG	211
tttgagcaanaggagtgance	219
ttgcteatgcacacagcata	205
cgcangtgcgiglattittg	206
tgtagctgcatggcaitcac	225
cgTanataccccticacgga	182
gGCangcctacccatantca	177
ttgtgantcttccgtatgge	270
afatganclacactcggacc	257
taatcacacttgcacgcaca	169
CCGGaCaATTITAGGGGTCT	263
gccattatagcagcagccte	234
ATTGGGATtGGGTAGACCG	159
CTGGCCAATTTGACCTTGTT	238
CGATGAAACTCCCAAACACA	254
aAaACGCaCaiantantattccte	261
afttganatctcggecacag	198
atggancgattrcacctgga	208
tTTCATTTGAGATGCCCTCTTT	115
CGaattcantacgggctgit	231
aCAAAAATTTGGGGCTTTCC	104
tTTTATCAAAATTTAACTGTGAACCG	273
acGangattgccatgaiagc	99
tccacacaancacacacanaa	107

GGACGAGGACGGGTATCAT 276
AACATCAAGAAGGGTCCACA 259
ACTTTCTGAACTGCCGGAGA 175
CAAGAAACCGAATGCATCAA 212
CAGACTCAGGCACTGTTCCA 145
AGCATTCATCATAATCATCAGACA 195
CATACATTCACACTTAACACTCTTTTC 259

TGAACTATCAAGGGAGGTGGA 270

TTCGCGTTAGTGTGGTTTTG 21
TITGAGCAAAAGGAGTGAACC 219
205
CGCAAGTGCGTGTATTTTTG 206

GGCAAGCCTACCCATAATCA 177
TTGTGAATCTTCCGTATGGC 270
257
TAATCACACTTGCACGCACA 169
ACAATTITAGGGGTCT
GCCATTATAGCAGCAGCCTC 234
ATrGGGATRGGTAGACCG

CGATGAAACTCCCAAACACA 254
AAAACGCACAAAATAATATTCCTC 261
atiganatcicgggcacag

ITTCATTTGAGATGCCCTCTTT
CGAATTCAATACGGGCTGTT 231
ACAAAAATTTGGGGCTTTCC

ACGAAGATTGCCATGAAAGC 199
TCCACACAAACACACACAAAA 107

GTACTGCGGTTTCAAGACCC TGAGAGTITTGTCCTTGCATGA CCTGAGACAGATCCATGTTTACC CTAGCACTCCAGAACGGGTC TGTGTTTGATTGAATTTTTAAAGG GCATGITGTGGATGTITCAAG TCATACTACACTTTTTGACACTTCACA TAGAGTCGACCTGCAGGCAT GATTCTGTGGGATITTGTGGA CGAAGGGAAGAACTCCTACCA ATTCATGCACACACATGCCT ACGCCATTCTAACCACCTIG AATTTGTGTCTCCATTCCLO GCACATGCCAGATCATTTTG TTCATTTGCTTCTGCCACTG TAGAGTCGACCTGCAGGCAT GCTTTGCGGTAACCTTTCAC TTGTTGTGCTGAAAAGCAGC TCGTCGAGTAAATGCAGCAC TGAAGTCATTGCACCTTGACA TGCACTATCAAGGGAGGTGA agaganattgatgccaiangact CCGGACAATTTTAGGGGTCT ACCAAGCCTTITCAAGTGGA aCATGTAGCATIGGGTGGGT AGTCAAGGAATTCACGCCAT TGCTAGGGAGAAAACTCGGA CAGGCATGCAAGCTTTGTTA TCTAGCATCTCCATTAAACCATTT TCATGCATACTGTTCATCGG ATAGGTGCTTTGTGGCAACC GGAAACACCAGGCAGAAGAG CCATGCATAATGGCCTTACC ACCAACTCCCACAATCTCCC TGGAAATACCGAGCTATTTGGT TAGAGTCGACCTGCAGGCAT
gCtgGCatcccaacacttat 240
CACACCAAAGAAAAGGGGAG 257
AGGGATCAATTGTGAATGTCG 250
ttgTaggtgctitacggcaa 275
GCCCGTTCGAGAACTATGAA 231
CATTCGCCACTTACAATGAGT 280
AGAAAACAAGAACTCAAAGTAAACAA 274
AATGGAACGAATTCACCTGG 111
TTGGATTAAGGATGATTCCGA 209
CCTTCCCTTTGGCCCTATAA 250
GCCATGGAAATACCGAGCTA 253
CCATAATCCAATCCAAATCCA 261
TCCTCGTCCCGCTTAATAAT 176
CGTCCCACATTCACTCCATI 268
GTGATGTGCTGCTGTGTGTG 165
tGTTCTTAGAGAAATGCTAGCACAC 280
ATAGACAGCTCGGGCACAGT 138
GACAGGCACATCCACACAAG 271
GGTTCTGTTGCAGTGAGCAA 220
AAAGTGGCTAAACCAATTGCATA 280
CCACTTGGACTTCCACCCTA 255
ITTCTCITCTTTCTCGCCATC 186
TGTGAAACCAAGAAGAAAAACG 227
GCTTCCATTGCCTACTACGG 123
CACAGGGTACACGCAAGATG 165
GGTTGATGTCATGCATAATTGG 278
CCTGTCTIGCACCTTAAGCC 112
AATCTCGGGCACAGTTCAAG 188
aCACATATGACATTTAGCAAATAAAAA 280
IGCATGAAATTTAAGGAAGAACAA 273
CATCTCTCAGGACCCCAAAA 129
ATGTATGGAGCAGAGCAGGG 221
TTGAATTCCITCTATTGGAAAAGG 224
AACCCCATAAGAAGATTTATGACTTT 260
ATTCATGCACACACATGCCT 251
CAAAATAAACATGCGTGATAATGA 219

TGCACTAAACAAGTCCAATGAAA
CAAATTCAATCTCAATTTCACATAAA
GACGCAAGATGTTGCTGAAA
TCTGTGTGACATCTTGGAAAGG
TTCCCATGTTTCAACCTTAGC
GCGGATCGAGAAGCTCTATG
TGATGGATGAAAAAGGTACGAA
TTTTGCTTGCTGATGTTTCAA
TCCTTTCAAGCGGAAAACAT
TCTTCTGAAAATTTCTICCACGA
TGAAAAACTATAAGATGAAGTGTGAGA
TCCACACATCTCCAACTITTCA
AATTAGGGGATTTAAAGTTATTCACA
TTCTTTTTACATCATCTTTACCATTTT
CCCATCAAAGGGGCATATTA
TGCATGTGCAAGAGTTCATGT
GGCAAATGTTTTCTCTGGAATC
TCCCAAGTGTATCCCTGGAG
ATGACCCTTGCTCACCACTC
TGGATCGACCTGCTCTGATA
AAAGGTGATGATGATTTAGTATGACA
TITCTTGTTACTCGACAATGCC
CTCCCCCTCTAGATTCCCTC
ACAATAACACACATCAGAGTTCAAA
CATTGCAATATCTAACTTTGIAGGG
CAAACGAATGTTAAAATGAACGG
TTGCCTAAGTGTCATGCGAG
GGGGAGTTCCTTTCACCACT
AACCTITCTCCCCTTTTGGA
TTGGTGTTGATGAATCAGTGG
TGGGTGCATGTGATAATTTG
GAAATTCAAGCATCCCTTGC
GGTTATTTCACGGGCTTCAA
TCATATTCGAAATAGGCGGC
TTTTAACACAAAGAAACATACCCA
TTTGAGAGGCTAGACGCCAT

agCtCattccceacattgettGCCanctantctigatctiga	
agcagatgctgcagagicaa	
CaACCTAAAAGGCaAGGCAA	
acceatggangattittgea	
gGgattcagccatattgeag	
atanttgcgteacgitgeac	
atggctentcceattagcac	
antcanctcggccattcttg	
CagGeatgcangcttanaan	
aggattitggitctgacgiaa	
tagcteictiacatgicceattt	
tagagtcgacctgcaggcat	
gcatgcaagctitigagaga	
Cattetitgcctattgcaaatc	
anctatgcagcatcatgaga	
agCacacagiacggaangetc	
acgaggatganggganamea	
TTTTTGAATGGATTGATGATATTC	
TCTGGATTCCTTTCATTTITCTTT	
tTTTAACGGGatCAATTAAATTCTG tCTICTAACAAAGGAAAAGACAATGA	
atttgcctatancgcatggc	
CCATtGTtCgGanccaacti	
anaAtCagtatattcgacactgagana	
gCatgcaagcttgggtatct	
gGgTta \Catgcaantagtcce	
CGTAGGCTITTTGTITTGCC	
tgtttgctggtgcattagaga	
TTTITACTCTTTTTCTGCTTACACATT	
tgcccagantaganagatccc	
CCTCATCAAGTTCAGGCTCC	
tTCCCaAatttctancaantacce	
TTTGTTTCTCTTTAGAGGGCA	
	tCattitgagcttgiggctg
	ttcatgcacacacatgcct

$\begin{array}{lll}\text { CcM1365 } & \text { FI227823 } & \text {（AT）20 } \\ \text { CCMI366 } & \text { FD27825 } & \text {（AT）16n（TA）} 7\end{array}$
 E
 $\frac{\infty}{\frac{\infty}{6}}$
E

苞 $\stackrel{2}{5}$ $\stackrel{a}{\stackrel{a}{s}}$ $\stackrel{\infty}{\vdots}$ （ATT） 6 （TCi7tTA）S （AT）31 $\stackrel{8}{6}$ $\stackrel{\text { E }}{\stackrel{y}{\Sigma}}$ （TA）9 （AT） 9 | （TA）9 |
| :--- |
| （ITA） | （ITA） 8

（TTA） 10 （TA） 20 은 （TA）2I $\stackrel{\circ}{2}$交志 （T） $10 \mathrm{~m}(\mathrm{AAT}$ ）IS
（TA） 6会 （AG）5n（CA）5 $\stackrel{2}{2}$ （TAA）7n（TAA）II
 8
5
5

5等为登 F1227920 2794 \begin{tabular}{l}
a

$\stackrel{y}{2}$

\hline

8

$\stackrel{8}{4}$

\hline \multirow{2}{4}{}
\end{tabular}会 둥 ＂ ＊ in

 $\stackrel{\stackrel{2}{\infty}}{\stackrel{1}{\alpha}}$等 N笕 웅胥迹
荡品䒾 F1228507
会苞为 CcM1367 CcM1368 CcM1369 $\frac{8}{2}$ E $\stackrel{m}{~}$ $\sum_{\substack{N \\ ~ N ~}}^{N}$ \sum_{0}^{∞} CcM1377 CcM1378 CCM1379 \sum_{0}^{\sim} CcM1381 CeM1382 CeM1384 CcM1385 CcM1386 CcM1388 CcM1389 CcM1390 흔 CcM1392 CcM1393 CcM1394 CcM1395
CcM1396 CeM1397 \sum_{i}^{∞} $\stackrel{8}{2}$

[^3]| CcM1401 | F1228730 | (AT) 17 |
| :---: | :---: | :---: |
| CcM1402 | F1228810 | (TA)7(TATG)7 |
| CcM1403 | F1228925 | (GA)7 |
| CcM1404 | F1228991 | (TC)6 |
| CcM1405 | F1229002 | (TC)8 |
| CcM1406 | FI229007 | (AGA)t0 |
| CcM1407 | F1229015 | (TTA) ${ }^{\text {a }}$ |
| CcM1408 | F1229055 | (AT)6 |
| CcM1409 | F1229073 | (TA) $5 n(\mathrm{TA}) 5$ |
| CcM1410 | F1229083 | (AT)6 |
| CcM1411 | F1229103 | (A) $10 \mathrm{~m}(\mathrm{~A}) 19$ |
| CcM1412 | F1229118 | (ATC) 5 |
| CeM1413 | F1229155 | (AAGAAA)S |
| CeM1414 | F1229202 | (AT)10m(Ta)20 |
| CeM1415 | F1229218 | (ATC)6 |
| CeM1416 | F1229231 | (AT)II(ATA)!5 |
| CeM1417 | F1229275 | (GAA)6 |
| CcM1418 | F1229283 | (AT) 4 |
| CeM1419 | F1229291 | (TA)6 |
| CeM1420 | F1229298 | (TTC) |
| CcM1421 | F1229312 | (GTCIS |
| CcM1422 | F1229325 | (TTA)7 |
| CcM1423 | F1229404 | (TA) 11 |
| CcM1424 | F1229406 | (AT) 27 |
| CcM1425 | F1229436 | (AAT)7(AATA) 5 |
| CcM1426 | F1229449 | (TC)5n(TC) 7 |
| CcM1427 | F1229464 | (AGC) 6 |
| CcM1428 | F1229466 | (AT) 31 |
| CcM1429 | F1229493 | (TCA) 5 |
| CeM1430 | F[229554 | (A) $12 n(A G) 6$ |
| CcM1431 | F1229574 | (AT) 19 m (TGA) 5 |
| CeM1432 | F1229586 | (TA)6 |
| CcM1433 | F1229648 | (TA)8 |
| CcM1434 | F1229683 | (CA) 7 |
| CcM1435 | F1229687 | (ATA)5 |
| CcM1436 | F1229730 | (TA)19 |

TCCCCTACCAAGAGGAGTTTC
CCAACACGAGCAACAATGAT
CTGCCTCCATTGCATTCATA
ACCCTTACGTGGTTGGAAAA
TITTACATTGACCCAAGTCGG
AACGGTAAAGCAGCAAATCC
AAGGAACGAATTCACCTGGA
TTGGGGGAGTTGTTGAGTGT
TGTCAACTCATGACACATTTATTTTT
TCAAATGCCAATTTTTCAAGA
TCCATTTGACATGTAAACAATGAAC
AACATCAAGAAGGGTCCACA
TCAAATTGGTTAGGCTTGGTG
AAAAGATATGATTGGTTGTCAGTG
TGCCTTGGTTATGTGCTTTG
AGCTGCACGAGATTCAGTAGG
AAATAATGGCAGATCCCTCG
AACCTCCCTTGAACCCATCT
CCAACAAGCCATCAAGGTAA
AAATTCTTCCTTGAATTTTAGTGATGT
AAGAATGAAGAAGAGGGGTCA
AACATCAAGAAGGGTCCACA
CAAGATCAAGAAATAATAAGACACGA
CGITTAGCTCCTCTITTGCG
GGGTGTGCAACCTTTGTTCT
CGGTIAAATTTACAAAATTCACATT
AAGACATCTCTCCTATTGAGGCC
TCAATTCAGGCATCTTGAAAAA
CCAAGGTCACTTCAAGCTCC
GAAGCAAATTTCGGGTTCAA
GCTTCCTTGCCTACTAGGGG
TTGTAGGACATTGGGAAGCA
ATCCAACGCTCAAAAATTGC
GCTTAATCTAATTTGTTTTCACTCCT
AACGTTGCGTCGGTTTTAGA
TTCATGGGGCCAATGTAGTT

GCAGGCATGCAAGCTTATTT
ATTCAAACGGCGTAGCATGT
TITAATGGCCTTTGCACCTC
GGGCAAAAGITGGTGTCTTG
AGGCATGCAAGCTIAAGGGA
TTCTCTGGGGGCATAAATTG
GTCTTTGCGACATTCTTGGG
TGGCTGTGGAATTTTGTCTTC
TTCATAATTACACAAGTTGTAGTGGA
TAGAGTCGACCTGCAGGCAT
CTTTCCACGGTCCAGTGAAT
ATAGGATGTGACATTGGGGC
AATTCGTTGAGGCAAGTCAA
GGACGAAGATTGTGTGAAGAGA
CCTTCCTTGCAATATCCAGC
GGAGGCAAAGATCTICAACG
CAGCTTGAGGGGGAGTGTTA
TGGGAGTGTAACACCCTATGC
CCCCAAGACTTGACAACACA
AAATGACAGGCACACTCGGAA
TGGGGTAGAGGGTGTCACAT
ATAGGATGTGACATTGGGGC
TTGGGATTGACCTTCCAAAG
TTACGTGCACCCGGAATACT
GATGATATCTCCGACCTGAATTG
TIGATCCAAATCAAATGAGGG
CACCTTACAACATTCGCCCT
CGTAACATTCCTTTTAAAACACAAGA
TGAACTATCAAAGGAGGTGGG
GGTAGCCATGGCAGGAATAA
ACCAAGCCTTTTTCAAGTGGA
TGGAGCATCAACTTCAACGA
GGTCGAGATCGTGTTCGATT
ACGCAACGTTGGAAGAAGGAT
TGATGTTTGCTTGGTGCAAT
ATGTCCAACCCCCTCTTTCT

CcM1437	F1229769	(TA)7
CcM1438	F1229781	(Tat)8
CcM1439	F[229815	(tta)s
CcM1440	F1229833	(AT)6
CcM1441	F1229861	(TA)5n(AT)9
CcM1442	F1229912	(AT)!2(T)!2
CcM1443	F1229957	(ATC) 5
CcM1444	F1230046	(AT) IS
CcM1445	FL230065	(AT)7
CcM1446	F1230122	(AC)S(AT)/4
CcM1447	FI230144	(AT) 10
CcM1448	F[230149	(TTA)IO
CcM1449	F1230155	(TATt)
CcM1450	F1230183	(CT) $5 \mathrm{n}(\mathrm{TA}) 12$
CcM1451	F1230185	(TA) 11
CcM1452	F1230260	(AT)14
CcM1453	F1230268	(ATT)21
CcM1454	F1230275	(Tat)
CcM1455	F1230278	(C)13CTIS
CcM1456	F1230413	(AT) 13
CcM1457	F1230443	(ATG)7
CcM1458	F1230452	(tTal9
CcM1459	F1230453	(CT) $12 \mathrm{n}(\mathrm{TC})^{5}$
CcM1460	F1230498	(ATT) 9
CcM1461	F1230506	(TGT)S
CcM1462	F1230540	(AT)6
CcM1463	F1230611	(TA) 7
CcM1464	F1230618	(AAT) 5
CcM1465	F1230635	(GT)7
CcM1466	F1230638	(GAA) 5
CcM1467	F1230645	(TG)6
CcM1468	F1230710	(angatals
CcM1469	F1230754	(AG)7
CcM1470	F1230868	(TAT)
CcM1471	F1230868	(AT)19
CcM1472	FL230895	(AT)8

CTCCAATGGCACGGTTATCT
AATCGGCCGTGAGTTATGAG
GCTGAAAATGGTCCTTCCAA
CTTTACTGCACCATGCCTCA
AACCTTCAACCAAAATCCCC
GCCTTTAGCAACATCACACG
AAAAGTCAAAATTGGCAGGC
CACCCCTTGTAGAAACCCAC
TTTGGCGGACATCTTTGAAT
TCAGGAAGACTAATTTCAGCCA
CAAGGGTTGTTGAACCATGA
TGTGTITICGCATTTTGITGA
GCTGCGGGATGAGTAGTTTTT
AAATGTGACACCCTCTACCCC
TCAACGACTTGTTTGTTTTACGA
AACTTTAAGGTTTTCAAGGGCT
TCAGACAGAACAACGGCAAG
CAAACTTTTGAAAGAGATTAGTTCTCA
TGAAAAGAAACACAATCCTTGAAA
TAGGACATGTGACATCGGGA
CGAAGACATTTTCTTTTTGAAGC
GTGCGTCATCCAATACGTCA
AAAGGTAAACATGCATACTGCAAA
TGACCTAAGAATGTACAAAGGGG
CCAATGCCAAAATAAATTTGAA
TCCCTAACCTTTGTATTCACTTTTG
GGCAGATTGAAGTCTGAGGG
AACTATTCATAATCAATTTCTTCAAGG
AATTTTCCATCAATGCCGAG
AAAGATCATCCACCACCACC
AAATGGATTCAATTATTCAAGAGTGA
ACGGGATGATGTATTCCTTTT
GGAGTCTTTGTGACAATCTTGG
CAACACAATGAAAAAGTAAACATCA
ATTGCTTCGTGGGCTTGATA
ATCCCAAATCTCCAGCAATG

GTTTGCACCACAAGTTTCCC
ACATATGCTCGCAACACGAG
TGGTAGCCTCCTCGCTCTAC
TTTATGGGGATTATTAAAATGGAAA
CGAGAAAACCCCAAAGTGAG
GAGTCGACCTGCAGGCAT
TTGGGCAGATTAAGAATGGG
GGAGAGTITICTTTGTGAAACCA
TCTCTTTTAAAAATTATCAAACGGTAT
GCAGGCATGCAAGCTTATCT
GGAACCAAAGAGAGCTACTGC
GTGCACCATTGGTTGTTTTG
GATTATTGTAATGACCTTCCATGA
TTGGATTAAGGACATGAATGTAAA
GAGGACCAAAAGTACAATTAAACCA
CGATAGGGGTTGTGATAAAGC
TGAAAATTTTAGAGAAAGAAAGAAAAG
CAATAATTAAGTAGAAAGGCACAAAAGG
CCAAAACACAACATTTCCCC
GAAACTTCCGGTTTCGGTC
CAGATTGTCAAAGGAACCATTAT
GAAATGGTGCAACCAATTTTCT
TGTCTGTTAAACTTTTGAAGGAGATT
TACGATCGTTCGTGGGTGTA
ATCCTCCTAGCGTCCCATTT
AAGCAAGGTTCCAAGCTTCA
ACACGCAACCTACCCAACTC
TGCAATTTTCGAACGTTTAGAT
TGGGATTAAGAAAAATGAGAGAAA
ATTGTGATTCAAGCTTGGGC
TCGACTTAAAAAGATCAAGTTCAA
GGCCCAAAAATTGGTTATCA
CCAAGAAAGGACCCCTGTA
TGTITTTGCAAAGGTTTCCC
TCTGCTTCAACGGACACTTG
CGTCTTCGGATGAGGAAGAG

[^4]| | CeM1509 | F231801 | (T)10n(ATT) 5 |
| :---: | :---: | :---: | :---: |
| | Ccmisio | F1231808 | (AG)7 |
| | CcM1511 | F1231889 | (A) $10 n(A T) 7$ |
| | CcM1512 | F1231917 | (T)12n(TA) 10 |
| | CcM1513 | F1231959 | (Cat)s |
| | CcM1514 | F1231991 | (AG) 7 |
| | CcM1515 | FL232036 | (GA)6 |
| | CeM1516 | F1232057 | (AG)9 |
| | CcM1517 | FI232079 | (AG) 10 |
| | CcM1518 | F1232085 | (TA) 18 |
| | CcM1519 | F1232089 | (TA)18 |
| | CcM1520 | F1232125 | (AAC)6 |
| | CcM1521 | FI232145 | (TA)6 |
| | CcM1522 | F1232171 | (AT) 14 (TA) 6 |
| | CcM1523 | FL232177 | (AAG) 11 |
| | CcM1524 | F1232185 | (AT) 14 |
| N | CcM1525 | F1232278 | (AT)16 |
| 3 | CcM1526 | F1232316 | (CT)6 |
| | CcM1527 | FI232350 | (T)13(TAA)5(TTA)5 |
| 1.5 | CcM1528 | F1232371 | (AT)16 |
| | CcM1529 | F1232390 | (TCT) ${ }^{\text {a }}$ |
| | CeM1530 | FI232393 | (AT)9 |
| | CcM1531 | FI232395 | (AT)39 |
| | CcM1532 | FI232427 | (CAT)6 |
| | CcM1533 | FD232439 | (CT)8(AT) \&(TA)6GGA)7 |
| | CcM1534 | FI232442 | (GTG) 5 gn (GTG) ${ }^{\text {che }}$ |
| | CcM1535 | F1232452 | (TA)6TG) 6 |
| | CcM1536 | FL232499 | (GT)8 |
| | CcM1537 | F1232502 | (AT) 17 |
| | CcM1538 | F1232534 | (AT) 17 |
| | CcM1539 | F1232595 | (AT) 20 |
| | CcM1540 | F1232617 | (GA)9 |
| | CcM154! | F1232621 | (TA)9 |
| | CcM1542 | F1232698 | (AT) $18 \mathrm{n}(\mathrm{A}) 10$ |
| | CeM1543 | F1232716 | (GT) 9 |
| | CcM1544 | F1232842 | (GTG)5 |

CCCCTAGATCCCTCCATGAT	TTTCCCTTTTCACCCAAAAA	213
CaCaCaiatcgTgatttranttg	CGTCAACTTATTTTGTCTTGCATC	168
tgcagatgattggtgtggat	tcatcattatcangtgttcgetg	219
atactcgccggggatanat	gGatgitaatacccaccecg	280
agatgiaggaggagceatgagc	gaccccaanacctcattcaa	240
hacctiatcctgccetccac	agttacttgacggggctitt	111
gCtTATGAGATTGTTTCTTCATGAGT	ttacggcatgagctgtgane	274
taAataggaggcagggetga	TTCTCCTCCCCCTTACTTGG	189
taatgatcaacgcactccca	tccactctgcaatgcaattt	157
cCtgccaccattgagttict	tTtGccatcaancaacang	114
CAAAAGTTGATtTttgGcce	gCaCCanatcttangctcge	271
cCCacaaggagangatccaa	tCTtCCattigtccetcgac	211
afcancctgacatcatganamgat	ttgcccttagcctitggtatt	235
tganatgagtctaccaangctiacte	ttgatctatgcaccaagaactitt	207
agcgcgttanaatagccaga	CCAGGTCCCTTTTCTTCTCC	209
tgatatctaccaaactittanaggaaa	acaitanamaganagcacanamagt	226
CCCTGATtTCATITTCTTTTGG	tCGTCCCCATTTTAAACTAATTG	195
tcaangccanctittctcctic	acggagatgcanagganatg	253
CCTCCangccanggtgtatc	attctcganamgcatccgaa	201
anatcccatacagttatcantgattt	Catggatatggtaaattictagge	154
acggagataggctcagacga	atgcatttctctgacaccec	272
CaCcGatctiacctagcgaa	CCGTTAGTAATtTtCgacgea	253
taccetcgtgcaggtacaca	CCACCCactcatcatticct	212
Catcatcatcanacctcanacc	tcgcatitagtccatatantgtca	165
tGaactitgaatctantggttgga	cgatganattcaacacacacc	253
gattggttggtatcgatcgt	acaanaccaaccaccacctc	209
tggacancctiatccaaggaa	ccatantccantccaantcca	237
gGgaggtggactacangGaa	CCCtagggantccgactagC	260
gactganaggttanacanttancanaa	tttgatatganttttactcattatcg	148
afcancanacangcangGgC	tcangtanatgantagctcatcgan	204
Cttcaccaactcgccaanat	gacaantitattcgatggacce	154
GacgGtggagatgitcctgt	aCCTCGTtCCTTCCGTCTTT	189
a amgttaattatgctttggitatgatg	gcgaccanactettgttcct	107
CTAGTGAAGGAGGCTCACCG	ttgaganggatanggtacgiacaga	191
CCTCCTCCATCAACAAGGAA	tgCatgctitagtgctttgg	220
attgggcctcttcaccttct	gtcatgctcgagagagacce	192

	CcM1545	F1232872	(actatc)s	gattcctctcacgaggtcca	ttgcatclatttgatcctga	202
	CcM1546	F1232978	(AT)24nt TG)5	tgatcaangactatganamagttcaa	acacagacacacagacacagaca	136
	CcM1547	F1233006	(CA)6(TA)7	gGafagagcaangtgatatccg	tagggctctitcatgatggg	268
	CcM1548	F1233020	(GA)9	cagaggcaactaattgggga	taccetgitttigctcccang	141
	CcM1549	F1233021	(TA)27	tatgttganatggccaancg	tgcaanctigatttgtgcat	279
	CcM1550	F1233038	(TTG) 6	atgcttgcatgtttgggttt	caggtatgtggancagtggan	134
	CcM1551	F1233069	(AT)28	tggttgcgtgtatgganaat	acatttccagcacgttgaca	256
	CcM1552	F1233107	(TC) 10	ttcanacaccacagcgtagc	gctrcacagangangacggg	161
	CcM1553	F1233109	(TC)8	attggcaactttctgcaacc	Gctcttcganagagacgutg	273
	CcM1554	F1233119	(TCA)6	aggtgGaatgcttttgcagt	ggtccettiagcgancatga	228
	CcM1555	F1233136	(CT) 5 n(CT) 5 nk TC) 14	GTtCTCCTCCCCCTTACCTG	taatataggggcatagggggt	205
	CcM1556	F1233143	(AT)8	ganaacacantaggtanacatacatge	agatattcattrattigatgittigtca	216
	CcM1557	F1233144	(TA)14	gGataahgggctitctceit	agtgcaatagggcaagcatc	242
	CcM1558	F1233147	(TAT)6(T)14	gCatcggatatgtgitcattct	acgcacgganttangtggac	148
	CcM1559	F1233176	(AC) ${ }^{\text {(atat) }}$	tgccanttttgacttganaaca	tgcttgittgggantanggc	260
	CeM1560	F1233255	(AT)6	tTCAATTTATTCATTTATTTCCCAA	ttccacamaatanaccaanagaa	224
	CcM1561	F1233265	(AT) 17	tCCAattTttccantittgattit	TTCAAATGAGATTAGTITTCATACGTG	242
	CcM1562	F1233294	(CA) 11 (TA)18	TTITAATCCTTTTTGTTCTTTTCATGT	tttcanatancgtanatttggataanc	233
	Ccm1563	F1233370	(TG)5ma)lo(ati) 5	tacgatcgitcgigggtgta	tGacctangantgtacaanggge	165
	CcM1564	F1233373	(TC) 7	ggcccacatatgatgccta	TITtaggtgctitgtggcaa	169
	CcM1565	F1233424	(TA)23	tCCTCCTTTT TGGGATGTIC	tggagcttgagccatctgia	279
5	CcM1566	F1233437	(AAT)8	ttgtaagggaccanaagaggt	ttcaatttaatganacgangtatcana	253
	CcM1567	F1233440	(TG)6	taccgattgttcgictccti	tgcattggacgangancatt	223
	CcM1568	F1233441	(TA)8	tgcagctagtagagggttcaca	gGgGagattaggcacctctaa	189
	CcM1569	F1233447	(GAA) 5	accgcanamtcanattcacc	tcgtcaangtgtgatcctgg	238
	Ccm1570	F1233662	(TA)14	tggittatagatgaanaanttanccaa	caantittcanctcanccattg	280
	CcM1571	F1233722	(AAGAAA) 5	GGAGGGCCACTCTTCCTTAC	ttgtaggacattgggangca	161
	CcM1572	F1233752	(TA)7n(T)10	actettggagttattrgatccet	anatttcantgatccaaccg	209
	CcM1573	F1233902	(TA) 12	aggacctgatggcagcatta	CTCGTCGAaGGCTTGGAATTT	196
	CcM1574	F1233902	(A) 4 (TA)8	tcttggagangttgttgggan	tTTATGTCTTTAAATATTATCCCCACT	251
	CcM1575	F1233908	(TaC)5n(T)II	gaggganalagttggagagg	Catgcanamgtantanamgacanatca	254
	Ccm1576	F1233979	(GTT)	tcttgcactcanagacacgg	tTgatgithectictegigg	100
	CcM1577	F1233991	(AAT) 7	CaAGAaganamacanactcgtcan	tgcganacagtgtgaggang	184
	CcM1578	F1234002	(AT)25	cGtagccggatcttcttcac	tggtgiggattatgatggattg	257
	CeM1579	F1234004	(GT)7	gGgaggtggactacaiggaa	tctccaattccgtttaganagc	170
	Cemis80	FI234035	(TA)9	Cagttgantcgttganattigatg	cganacacctaagggcatgt	270

	CcMis81	FL234083	(TA) 10
	CeM1582	F1234124	(AAT) 5 (TGTI) 8
	CcM1583	F1234155	(GA)18
	CcM1584	F1234160	(AT)24
	CcM1585	F1234162	(TG)6
	CcM1586	FI234195	(TA)9
	CcM1587	F1234239	(T)IOn(AT) 10
	CcM1588	F1234332	(TC)5m(A)18
	CcM1589	F1234336	(ATG) 5
	Cem1590	F1234354	(AT)9
	CcM1591	FI234360	(TA)8
	CeM1592	F1234385	(AG)8
	CcM1593	F1234392	(AT) 7
	CcM1594	F1234417	(TA)7
	CcM1595	FL234469	(TC) 7
	CcM1596	F[234470	(TA)G6TG) 3
	CcM1597	F1234487	(TA)26
N	CcM1598	F1234499	(G) 1 (GA) 10
	CcM1599	F1234518	(TC)SAT)S
\cdots	CeM1600	F1234544	(CT)6
$<$	Cemi601	F1234750	(TA)24
	CcM1602	F1234782	(TA)18
	CeM1603	F1234858	
	CcM1604	F1234882	(TC)6
	CcM1605	F1234972	(TA)37
	CeM1606	F1234982	(AG) 7
	CcM1607	F1234984	(AG) 12
	CcM1608	F1234986	(ATA)S
	CcM1609	F1234996	(AT)26
	CcM1610	F235025	(AT)16
	CcM161I	F1235053	(AT)22
	CcM1612	F1235064	(AT)20
	CcM1613	F1235102	(GA)6
	CeM1614	F1235119	(CT)8
	CeM1615	F1235124	(AT)23
	CcM1616	FI235251	(TA)6

TGCATGGGTGTGATTCAAGT CCAACACCTTTCCTTAGCCT GCCTATAAATAGGGGCAGGG AAGACGATCTTCAGTGGACCAT CAGATCTGACCCAAAGTCATGT CAACGGTTGAATTGTTGAAA GGGCATITGCCTCCACTAA TTTITGTCTATCTCTCCCCATCA GACCCCAAGAAAGTACCCCT CGTCCATCCCCAACTAATGT CCTAACCGAACACCTAAATGATG CATGACAGCTTGCACCAAAT TCCCCCTTCCTAAGTTICCA TTTCATACAAGAAATGTTACATGCAG CTCATTTCAGAACGGGTCGI aGATCCAAAATTCACCAACCA GAGAATGTGTTTTTCTTTCTGACTTG GCCATGGTTGAGGATGTCTT CGACACAAATCCAAAAAGCC GTGGTTAGGAAACCTGCCAA GCTTGTTTGCTAGCACAATGTA TGACGATGTCGTCCTCAATTT AAACATGAAATACATAGAAGGGGG TGATAGGGCCCCTCCTTAAT TTGCAGATTIGATCTATGCATTAAG AAGGTTCTCAGCTGCTCCAA ATAATTAGGGGCATCAGGGG GACCTCTCAACGGGCTACTG TCATGGGAAGGACAACTICA ATTTACGCTGCCATGTGTGA AAGAAAAATTCCTAAACCCGTG tGTGACATTTGACTGCATGTTT TTTGCCCCTTTACCTACGTG CCTCACACCAAGGTGGTACA TTCAAAGTTTGCATTATCGCT ACGACTTAGCACGACACCCT

ПТСTTTTTGGCCITTTCTTTTT 267
CCTAACCAAGGATGACGTGG 202
GGACCTCCTCCTCTGGATTC 165
TCCACTCACTAAAACCTCACCC 253
CCCTCTTTCCGAATCAAACA 214
AAAAATTCCTCCACGACACTTC 240
GCCACCTAAAATCTATTTATTGACG 272
GCCGTATTCCTGTCATGTCC 225
tTIGTGAAATCCAAGAAGAAAACA 215
TIGTCCCAACCGGACTCTAC 223
GACTTTGTGTTGGACAGGCA 189
tgccaatgccanctaanaca 265
tgcacatitgigtcatgigg 151
titcatgcanaatcancattaaaa 137
GGITTTAGGTGCTTTGTGGC 271
CACAAAGATTCAATAATGACACCA 270
agaganccaanaticccgatt 241
GGagCtGGCTCTTATCATCG 255
CaAagctganaaggtaggatt 280
tgagggaggantcaggaaga 238
CCCACTCTCTATAAATAGATCCATCC 232
CCCAAGACTTGAACTCGAAA 248
AACGATGAAATTCCCAGACG 180
atcccgatcagancgancaa 253
TTTGTGTTGTAGTGTGTCTTTGC 239
ttcctgagaggattitgtgg 162
GITCTCCTCCCCCTTACCTG 172
GCTGCATGCATTCTHTTCTTT 256
aAtacattgggggagggact 207
ACTCTGTCTGAGGCGTTGCT 151
ggangatcgtccctacgaca 250
tCACTGGAGTATCCATCGCA 243
ATGGCGGCTAAGCATACATC 133
GAATGCTCCGAACTTGTTTCA 249
GTTCTCAGCCGAGAGCATTC 237
ganttcatttgitattacagattican 222

	CcM1617	F1235258	(AC$) 5 \mathrm{n}(\mathrm{A}) \mathrm{II}$
	CcM1618	FI235293	(GA)7
	CcM1619	F1235358	(AT)18
	CcM1620	F1235377	(ATT) $1 \ln (\mathrm{~T}) 10$
	CcM1621	F1235381	(AT)7
	CcM1622	F1235382	(TA) 26
	CcM1623	F1235399	(GA)6
	CcM1624	F1235433	(TG)6
	CcM1625	F1235448	(TTC)12
	CcM1626	F1235486	(AT)15
	CcM1627	F1235535	[TAA) 5
	CcM1628	F1235548	(TA)22
	CcM1629	F1235573	(TG)6
	CcM1630	F1235613	(GA)9
	CcM1631	F1235628	(AAT) 5
	CcM1632	F1235712	(AT)26
	CcM1633	F1235714	(AT) 7
	CeM1634	F1235728	(TCT)7ntical5
v	CcM1635	FL235732	(TA)20
	CcM1636	F1235737	(AT)6
v	CcM1637	F1235743	(A) $10 n \mathrm{mTTA} 5$
6	CcM1638	F1235748	(TA)5n(AT) 5
	CcM1639	F1235782	(AT) 8
	CcM1640	F1235797	(TTG)6
	CeM1641	Fl235806	(GA)5n(A)15
	CcM1642	F1235865	(TC)5nCT) 5
	CeM1643	F1235962	(GTT)5
	CcM1644	F1235980	(TA)19
	CcM1645	F1236013	(A) $1 \ln (\mathrm{~A}) 12$ (AAT 5
	CcM1646	F1236030	(AT) S
	CcM1647	F1236063	(TC)9
	CcM1648	FL236124	(TAA)5
	CcM1649	FD236202	(T)13n(AT)22
	CcM1650	FL236214	(AT)12
	CcM1651	FL236262	(AT) 7
	CcM1652	F1236394	(GA)7

GACACACGGGCAAAAGAGTC	GGAGTTCTTTCAGACCGCAA	237
TGAGTGAGAAGGTGAAATCTTAGAG	AAACAGAACAATGGCAAGGG	229
AAAATTAATTATGCTTTGGTTATGACG	CCCTACTAACTTTGCGACCG	130
ATGCCGAGGAAACACTTTGT	GGAGTGAATGCTCCCITGAA	254
TTAGTGGCATCCCTCTTATTTTT	CGGAATTGGATTTAGGAGGA	279
TCCGGAAGATTCCTTATACCG	GGGTGATGATGTGGCAGTCT	279
TCAGAGCGAACAATTACAGACA	TACCCGAGATCATGAGGACC	92
TGAACTTTCAAGGGAGGTGG	CACCCTAGGCAAACCGACTA	265
TCATCCACCTCTTTCCATCC	TCAAAGGTGAGGGCTTTGTT	261
TCGAAGAAAATGITTATTTATTTGATG	AATAAATAGAAAACACAAAAGGTATGC	235
TTCAACAAAATAGAGATGAAAGTGA	TCCTCTCTITTAAGCTCCCTCA	276
TCCCTTTAAATTTTCCCATATATCA	TGTGGGGTAGGAAATATCACAA	273
CATGGCAATCAAACTITCCC	TTGCTCCTCCACTTATTCTCC	231
TGTGCCCCAACCTTAAAATC	CCACTGTGACCCTTTCAGGT	280
AGTCATTAAACCCCAGGACC	GGTAGCCAAAAAGCACCTTC	278
GTCGCGGTGCTCAATAAGAT	TTCCTTGCCACAGATATGGA	174
CGATGCAATCTATAATCCATTTG	TGAATTGATTTTGGAGCAATTT	222
GTGTICACAAGTGGTGGGTG	CGAACACGGTTGAGAGTTGA	236
CGTGTAACCCGTCAACAAAA	TCGCTAACAGAAGGTATTTCTCA	275
TCTTCAGGCTGGACCACTTT	CCTTATGATTTGGCCGGATA	136
AAAGGAGTGAGATGGGGTCA	CTTAATGGCCACTGCAAACC	280
tGTagantatgagTtattgancgana	TGAGAATAATTAATGCAATGGAAAA	276
AAATAGAAAGCAGAAAAGGTAAACA	CAAATTTTTGAAAGAGATTAGTTCTCA	207
TGTGGTGGGTITTTGAGTCC	CAAGCAAACCAACCATCTCC	248
TATGGGTCCCCCACTTTGTA	GACAAAAATTTAAGCTTAGAAAAATGA	213
AATTTTTGTGGGTTAGGGGG	GGGAGAGAAAGAGAGAGGGG	229
CTGACTTTGTTTTTGTGCTTCC	AGGGGGAGATTGTTGAGCTT	109
TCATGATGAATCTCATTTAACCA	CACTGGTATCGITTGAACCCT	265
ATGTCGTGCATCAAGCAAAG	TGCAGGAAAATAAAAATGTTGG	222
TGGATGCCACGTGAAAGTTA	TTTTTGGTGTTGTGCATATGAT	262
ACACGTCGAATGTTCTGCAA	CATCATTCTCAGTGCAGATGG	251
TGAGATTTTATAAGGGAATCACGA	AATTTGCAAAGCAACCTAACG	243
TCCCCTAATAAACCAGATACGC	TGAGAAGTGTGTCTTTCTCCTATCA	278
TCTGTCAAATTITTGAAGGAAAT	AAAGGTAAACATGCATACTGCAAA	195
TGTGTGGTAGTTGCCTCCTG	TTTGACCTCCAAACAAAGCA	229
TTGGACTTTATGGTGTGCGA	GGCACCAATGACTTCGTTIT	120

tCCATGCATTGTGTATGTCG CGCTCGAGTCTCAACAGACA TTGGAACAATTGGGGATTTT TTTTGAGGAATTGITTGGGC ATCGTCCCCATTTAAAAGCC TGTAAATAGGTGTATGGTCCCTCA TTGCAAGCTTAATCTGTGTATTAAGAA CTGCACATTTCCTGCAAAGA TGGTATGAAAAGGCCTACGTG TCCCTTACCCAAGATTTTGAT AAGAGTGTTTTTGTTGGCGG GGCACAGTTCTCAGGACACA TAGGGCCCCTCCATATTETT CGTCCTTCGTTTTCCATGAT GATGTITTGACGGAGCCATT ATCGTGTCGCAAACATTCAA tgGTCATACGGTTTCCATGA TGTGTGTAGGTGGGACTTGG AATTGAGGCAAGTAGTGTCTTTTT ACGATTAGGCACGATTTTGG TCCTTCGACATGCCTTTTCT TTGAAAAGGATTCGTCCTCG TCAATITATITGCGGGCCTA CAATGTGATGTTCTCATGGTCA TGGATTGGATTGTIGAAGCA GAAAAACCATGAGATCTAACCCA CCCTCTTICTTCCCTCTCTTTC AACGAATCAAATCTAATCCATTCA AGATCCCCGAACCAAAGAAC TGAATAGAGATTATTTATTGACCGGA CGCCAGAAAATAACCGCTAC TCAGCTATGACAAAACTTCCCA GGGAGGTGGACTACAAGGAA GCAAGGACCITTAAGIGCCA GCTCAAGTAGACTGGTAAAATTGC TCGTTTCAAAATGAATTATCCC

TGCATAGTCCTTAAAAACCCA 204
AGTATGTTTGGCAGCACTTGT 138
TCACATCCACATTCACATCG 275
ACCCTCCACCAAACACAAAA 212
TTTTTGTCCCAAGAAAACTTGT 197
TGTCTGAACTATTTTTCAGTTCAGTTT 149
GGATCATCCCTACCTCGGAT 240
TCACTCAGTTTCACTGATTCGT 254
GAAGGCCTTTCTTTTGCCTAC 185
CCACATAAGGATGATCCAAAAGA 114
TTGCAGATACCAACCCCTTC 264
AAGATCCGGCCTAAGCAAAT 198
GTCCAGCTCAACCCATTCAT 273
CGATCAGTTTTACTGGACGC 261
TTTTGGCGTTTCTTTGTTCC 157
GGTTGCTGGCTAAAACTGGA 140
TTACACAGGTAAGAAAAAGGTATCG 136
CAGCAGAAGATTTAGGCACG 204
CATTCCCAACCCACCTACAA 240
TITTTCCCTCTCATTTCAAACC 186
CCCTCCACAAGAATAAGAATCC 162
TTTCATTTTTCTTTAGAGACCTTGA 270
CATAACCATTGGTCCCCATT 279
TTGTTCTTGCCGTCACTTACTC 244
GACTCCTTTTCCTTTGGATTIG 273
TTGCAATCGGACTGTACCAA 231
AAATTTGCCCACGTTTGAAG 194
TTCTTTATGGTTATTCAATTCATCCA 279
TTACCGAAAGGCTTGCAAAA 256
CCAACCTAAAATCACATGAGCA 187
CCAATTTTATTAAGATCTCTCCTCTCA 258
ATGTGAGGCCCTTTCCTCTT 266
CAATTTGCCTACTAGGGGGTC 142
TGTTGCTITGTTTTGATGGCT 262
TGACTTTGGGTTTGATTGTTCA 240
GCAAATTGAACATTTGCGG 239

	CcM1689	F1237470	(ACCTGA) 6
	CcM1690	F1237485	(TA)14
	CcM1691	FL237486	(ATA) 5
	CcM1692	F1237505	(AT)27
	CcM1693	F1237545	(TIA)7
	CcM1694	FI237550	(ACC) 7
	CcM1695	FI237576	(A) $14(A A T) 9(A) 17$
	CcM1696	F1237609	(AT)6
	CcM1697	F1237641	(TGAG)5
	CcM1698	F1237648	(AAC)6
	CcM1699	F1237666	(TA)7n(TC)8
	CcM1700	F1237708	(CT)12(AT)27
	CcM1701	F1237736	(TC)8n(TC)5
	CcM1702	F1237763	(AG)6
	CcM1703	F1237809	(TC) 7
	CcM1704	F1237810	(TA) 11
	CcM1705	FL237830	(AG)29
	CcM1706	F1237831	(TTC) 5
N	CcM1707	F1237852	(TC) 6
	CcM1708	F1237872	(TC)8
(N) ∞	CeMI709	F1237886	(CAA)6
	CeM17IO	F1237887	(CCA)5n(CCA)5n(CCA)5
	CeM171]	Fl237889	(TATT) ${ }^{\text {S }}$
	CcM1712	F1237911	(AT)18
	CcM1713	F1237925	(TG)5n(T)11
	CcM1714	F1237955	(ATT) 5
	CcM1715	F1237956	(TA) 10
	CcM1716	F1237974	(AAT)8
	CcM1717	F1238009	(CA) $5 \mathrm{n}(\mathrm{T}) 10$
	CcM1718	FL238020	(TA)6
	CcM1719	F1238047	(ATA)6
	CcM1720	F1238061	(TA)32(GA)13
	CcM1721	F1238114	(TC)
	CcM1722	F1238115	(GAA)6
	CcMl723	F1238135	(GA)6
	CcM1724	F1238138	(TGA)5

ACAAACACAATGCAACACCG
CCATGGTCCCTTCCAAAAT
GGACCTCTCAACGGGCTACT
AGTATAGGTGGCCCAACACG
CTTTCTTITTCTTTAGAGACCTTGAT
GAGGGCATAATGGGAAACAA
TTCAAGTCCCCCGTGTAAAG
ACTTGTGTCAGATGTGGCGT gGCatctcacaangcaanaga GGTTGAGTGGAGACATCAGC CGGTATTTAAGCCCAACTCG CAGTTGGATTTACAAAATTCACATTTA
CTCTCTGTCTTGCCTCAIICC GCTITGTGGCAACCTTTCTC CCTCCAAAAATTTCGTCCAA GGTCAAAGGGATATGGCTCA CCCAAGGTGAAGCATAAACC GCAAGATGTCCCAAACACCT GGCCATTCCAACATAAGCAT AGACCCCAAAAATTTCGTCC AAAAATCAGTGCTGCTGCTG ACAAAACCAACCACCACCTC GCAAGAATTATTTCATTCACTGCTT AAAATTAATTATGCTTTGGTTATGACG TGAAACAGATCTGCGTAGTGTC AGGGGAATGATGCATGGTAA GAGGGTTCTTCCCCCAATTA AACATCAAGAAGGGTCCACA GGGGTCTAGATTTAACACCTTTTG ATTGACGCTTCCAAAACGAC TCATTAAACCCCAGGACCTAA TGGCTTAGCTGGTTGGGTAG CGACTTTIGGCIATTGGGAC GGATTCTAGCCCACAACCAA GGTATGGGTGTAGGTGGTGG GCAAGAAAGCACCCCTTGTA

ATAGGCGAAGGACAGCAAGA 262
CTCCATCAATGGCGAAACTT 221
TTTTCACATCAAATTTAAAACCAGA 267
GCGGGAGCTAGAGATGTTTG 149
AATGTGACACCCTTCTACCCC 201
CGAAACCCCTACTCTTGCAG 223
ACGGTCGTGATICTCTCTGG 268
ATTCGAAGCCGAATCTTCCT 276
TGACATCATTGAACAGAAGCAA 155
TATGTGCTGCAACCAGTGCT 236
CGITTATGTCCATGTCGCAC 275
TCCACAACTAGGCCCAACTC 274
GAGAGAAAGGGAGGTGGGAG 149
ACGTACAGATCCAGAACGGG 226
GGTTTTAGGTGCTTTGTGGC 134
TTTTCTCAAAAATCCCCCAC 219
TGACGTTGAATCTCCAACAAA 244
TCTTCTTCAAACCTCAAAATCCA 194
TGCCTCACAACACTCAAGAAA 280
AGGTGCTTIGTGGAAACCTT 121
GAACACCATCCCTATCACGC 209
ATTGGGATTGGTTCGTATCG 263
TTCCCAGTAACATGGCAAAA 264
CCCTACTAACTTTGCGACCG 130
CCCAATGCCCATTATCATTT 176
TCGTGGGTGTACGTTGATTG 235
CACGTCAAGAAAAGAAAAAGGTG 144
ATAGGATGTGACATTGGGGC 261
TGTCATTTTTCTAGTTATGGCTTTTG 263
TTTTACATTGGCAACCAATCA 267
GGTAGCCAAAAAGCACCTTC 279
TCGACCATCTCAAATCAATCA 256
AAGAAAACCCCCTGATTGAA 261
GCTCTAAGGTTGGGAGACCC 260
CATCACTCTCGCGCTCATTA 204
GGAGTCTTTGTGAAAATCTTGGA 244
※

tggacaacccatctititice	CAAGGAGTTGGATCCACGAT
TTTTGCAATTGTTAAAGITCGG	ITTTACTCTTGAATTAAAAGTGAGTGA
aAGCAagGTGCCTCTITCAA	AAGAGGAGGGAAGCTTCTGG
tgcctaggactggantttgg	aCCCTGTGGCTITTTCAGTG
TCCGGTtCTtGTtTCTtTGA	TTCTTCTCGGCTTTTCTTGC
gtaatcagattccccctcce	gCactitaaattcaatggitagatca
ATtTAAGGGAAGGGAGGGGT	TTTCTTTTTGTGTTCTCTTATTGCAT
CCATAAGCAAACCATCCCAC	ttgcantgantitagagttattittc
CGATtGgattgttgagatitga	aAAAATTTGAGAAGTTCATCTATGC
tCCAACGTagcgaggagati	tgtatacactiggcatgcataata
fgatgtgttacatgatgaggttg	tTCCTTCGCCITAaCCAaga
TGAAGAGAGGAAAGCAGGGA	tttcantggictiggettce
tCaAtGGTtGatitgiteanatg	cCagatgtgttcaccaatga
tiIaAtTTCAATGGItGGatca	tgtanaacatgagttattgancgga
tggancctcatcaancceac	TGGAGICTTTGTGACATCTTGG
CGTangatccitagcccgtg	CCTGCCTCTGGTAATCAATCA
CTGTGCTTCTTCCGGTCAAT	AGTGGGATGCATGCTTAGAGA
aggcceancanagttganaa	tcgcgagggagataaggata
CACGAAGITGCTITTGGACA	GGTTITTGCAAGTTGGGAGA
atg ${ }^{\text {atgeatanggattggac }}$	tGatgiagancatantttattgancgg
gCctcggananctatagggg	TTGAAAGGGAACTTGAGC'aga
tGatcGTtanaggitcctgig	tCtCttananatttgcagatatantca
gGaagcanatcananagagatitt	TTCCCCTCCTTGTCTCCTA
agttggaccgatganattcg	AAAATTTGACAAAAATTGACAATCA
tCAtGgagiatacanattcctcatc	TCAAAGAGGTATCCAAGTCCC
ttggtcgcagctilitaggi	TTTGATATCTGCACTTGTTGATGTT
GAAAGCACAAAAGGTAAATATGC	tTTGTCaAaCtttrgantgagatt
cataanacacggataccccg	tTCTCCCITTTTCTAagTtTtGTacc
cCatcaccaccaanancaca	ttaatgatcggaccacaacg
tTGTGAGGCATCTTTTTGAGAA	ccaccagatcagttcagticag
tITtCACACCCTCTCTITCTGA	CGGAAAAAGTTATGTCTGCG
tgcacatgcatgatgtcaat	gGCCTCCTCTTCAGATCACA
CTTTCTCCAGCCCTATGTGC	tTCCAAGAGTTGCTGAACCA
CGICAAGAAAATAGAAAAGTGAAAGA	tGagagagitcticcccean
GGATGAGGCATGAGAAGAGG	atGTIGTtCCGAaAGCCATC
afgatgctggctggitcact	GCTAGCCTGGGAATTTATITITC

CcM1725	F1238155	(AT)15
CcM1726	F1238202	(Tat) 5 ntta)6
CcM1727	FI238224	(TC)5n(GA)5
CcM1728	FI238241	(TG)8n(AT) 8 (GT)8
CeM1729	FI238248	(AT)6
CeM1730	F1238253	(TC) 22 (TA) 56
CcM1731	FI238324	(A) 11 (CT) 5
CcM1732	F1238336	(TA) 15
CcM1733	F1238368	(AT) 30
CcM1734	F1238388	(TC16
CcM1735	F1238409	(ATT) ${ }^{\text {d }}$
CcM1736	F1238427	(CT)9
CcM1737	F1238447	(CT) 5 n(TG)5(TA15
CcM1738	F1238450	(AT)28
CcM1739	F1238461	(ATG) ${ }^{\text {d }}$
Cem1740	F1238497	(TA) 12
CcM1741	F1238543	(tatis
CeM1742	F1238567	
CcM1743	F1238579	(CaAl6
CcM1744	FI238621	(TaTC)10(TA)15
CcM1745	F1238653	(GTT)6
CcM1746	F1238693	(TA) 24
CcM1747	F1238722	(GA)5n(TA)21
CcM1748	F1238751	(TC)S(TA)7
CcM1749	F1238753	(CT) 13 (AT)!2(AG)9
CcM1750	F1238772	(TA)39
CcM1751	F1238780	(AT)6n(TA)12n(AC)9(AT)20
CcM1752	F1238790	(GTA) 5
CcM1753	F1238797	(catis
CcM1754	FI238800	(TA)6
CcM1755	F1238814	(aAat) 5
CcM1756	FI238823	(AT)6
CcM1757	F1238838	(AT) ${ }^{\text {a }}$
CcM1758	F1238871	(AT)16ntala
Сем1759	F1238933	(TTG)5
CcM1760	F1238933	(T) 100 (TA) 5

235

	CeM1761	F1238937	(CT) $17(\mathrm{AT}) 21$
	CcM1762	F1238965	(A)10n(TA)5
	CcM1763	FI238968	(AT)7n(TA)S
	CcM1764	F1238977	(A) $12 \mathrm{n}(\mathrm{AAAT}) 6$
	CcM1765	FI238980	(AT)6
	CcM1766	FI238995	(TG)5n(TGA)5
	CcM1767	F1238998	(AT)6
	CcM1768	FL239013	(TA)7
	CcM1769	F1239114	(AG)6
	CcM1770	FI239143	(AT) 23
	CcM1771	FI239193	(ATA)16n(ATA)5ntAAT)5
	CcM1772	FI239254	(AT) 12
	CcM1773	F1239303	(TA) 0 (AT) 11
	CcM1774	F1239382	(AG)6
	CcM1775	FL239386	(AG)7(AGAA)5(AG) 5
	CeM1776	F1239466	(ATAA) 5
v	CcM1777	F1239467	(AT) 21
5	CcM1778	F1239478	(AT)16
	CeM1779	F1239479	(AAT) 5
U	CcM1780	F1239488	(TTA)6
	CeM1781	F1239501	(AT) 2
	CcM1782	F1239538	(AG)6
	CeM1783	FL239539	(AT) 5 n(TA) 6 n(TA)9n(AT) 5
	CcM1784	F1239594	(AT) 12
	CcM1785	F1239598	(AT) 22
	CcM1786	F1239616	(TA)7
	CcMI787	F1239627	(TG)9
	CcM1788	F1239667	(AAAT)5
	CcM1789	F1239671	(TAT) 5
	CcM1790	F1239692	(AAG)7
	CcM1791	F1239700	(ACACCA) 7
	CcM1792	F1239700	(ATC) 5
	CcM1793	F1239708	(A) $1 \ln (4, A) 5$ (ATT) 5
	CcM1794	F1239718	(CAA)S
	CcM1795	F1239750	(TC) 7
	CcM1796	F1239757	(AT) $9 n(\mathrm{~T}) 11$

AGAATGTGAATTATTGAACGGAA
GAACCAAAAGAAAGAAAAGGCA
AAAAATITTACACTAGCAGCCAA TTGCTAGAATGAAAACCCGC AAGGGAAGTGATGCATGGAG IGTITAAGCCTATGCAAAAGGA TTCCCGATCTTGAITAGCGA TACCACGTGTCATTGCCCTA TGAGACTTGTGCTTGGATGC GCCAATTATATTGGTTCAAAGGG TCAGGTCTTATGAAAAGGGGAA CATCAATCTGCCACATTTGC TGGATGGATTGACTTITAGTCATAGA atacagGacccaggacacca TATAAATAGGGCCAAGGGGG GCCATTCAGATTTCAGGCAT TCTTTTTCTCTTGCTGCGGT AGAAGGAGGAAGCTGACCAA TGGGCATGACTAGAAACTTGG ATCCAGTCGATGTGTGGTCA AAACATGCATATTGCAAATTITATT AAAGTATAGGAAATTAGGAACTGTTGA CGTAGCCGGATCTTCTTCAC ATGGCGGACAAAAACAAAAG CTGTGACACCCTCTACCCCA CTTTTTGGAGTAAGTGAATCGC GCTTTTCAGTCGGCTITTTG GTCCACTGGATCGTTGAGGT CAGAGCACACGCGTAGAAAA CGGAAAAGGAAATTGCTGAG CGACGACGACTACAACGAAA TTTCCCACTGATGATGCTGA TGCGAAATTTTGTGAACTTTG TAAATGAGCATCCAGACGCA TAAATAGACGGCTTGGGCAC GCCACTCTCGCTTATCATGC

TTCCAAACCTAAGTTATGCATTAAGA 201
GTCCAACTTGAGGGGGACTA 280
TGATGTCAAAGTCTCCCACG 265
TCAGCTCGAACAAACATTGC 112
TGAGGATATGTGTGTGCATTTG 203
CCITGAAAACTCTAGTTTGAATCAAGT 252
GAATCCAATGCATCAAGTGATTT 280
TGAAAAATTGGAAAATTTATTGGA 252
TGATTGGAGGGTCATTGTGA 239
TGAAAATGGGAAATCGCTTC 267
TTGTTCGAAACTTGACGTGC 249
GCACCAAAATTTTCTTTGGC 242
TGGTGTAGTGAAATCATCTTGGA 244
GCAGGTTGGTTIAAAAAGATGAA 121
CCTTGAGCGAGGTTTCTCAC 225
GCTTTGAAACGGCAAAAGAG 212
TITTCTCAGTTTCAAAAATTAACATCA 190
TCATGAGTATGTGTTGAACGATTT 181
AATTCGGCGCAAGAAATATG 270
CGACACACCCTAAACACGAA 255
TGTTCATTTATTTGATGTCTGTCAA 208
GGTGITGCTGACCCTGTIIT 165
IGGTGTGGATTATGATGGATTG 273
TTGCTGCTTGTTATGCATTTTT 254
TGGATTAAGGACATGAATGTGAA 167
GATCCCTTCCACTAGCACCA 190
ACCAAACCTAGTTCCGCAAG 275
TTGAGCACTCCAACAATTTGA 210
GAAGGGAAGGAGGGACGTAG 164
GCTITCTTGCCGTTATTTGC 208
CTCTCTCGTCCACGACTTCC 176
AGCATTTGTTCAATGAGGGG 148
CAGGAACATGAGCAAAAAGATG 272
ATTGACAGGAGGAGGCACAC 152
11TAGGTGCTTTGTGGCAA 155
CCCACAAAAGTCAATTTACTCCA 265

VVOLLVOVOVLVLLOLLVJLVVO	LOJJVOVODVOOVLLJVOJV
VVVOVVOLOVOOLLVVJISL	1001VVOL \forall VVODVVOLDL
LJOOLDILVOOOLVLDLIVVV	JOLVVJVJVOLVVJVVVVJOL
OJLVOLVOVOLVVJOVOLL	OOLVLOOLVVLLIVV
LL）VVOLVLOVOOLVLVOLOVOLL	VJDV $10 \sim O L$ LIVVVVIVVV
	LVVOLVVJVOLOOLVODOLI．
＊OVVV＊OJLLOJOอLLIV	JLVLOJVLLOLOJJVODJコL
JOLLOVIVJVVVVVOJVODJ	LVOVVVVVDOJOOLIOVVDL
LIVOVJOJODLIOLVLVOJ	VVVLJVVVVODIVVODODS
OVVVOVOLLDVOVOOOOLOO	■．）
VVOOOLDLLLOOLOOVLOLL	
VODVVOLOLLJVVVOLOLLIVIVDL	J〇LVJVVV19OVVVVJDJVVV
OOJVVLVVVOOOLVLOOOH	マJVLDDOVODIVVVVDVOD
VOLL）VOVLOLVVJVVLOLJLLVOL	L．วLDJJIV
JJVO）	VJVOLVVOVVVVVJLOLSLLIT
VVOVJVVVJJVVVDLVVJVVVVS	OOJVVOLDLDOVVOVOLV
OODVOLLLVDLLVILDJVDL	
	VODVLIOLOLVVOLLJLJOL
1OLコL	OLO以
OOLOLVOLOLOOLLOOVOL	マVOLVV＊．）VVVDOLVOLVVVJVV
HVOLLLODLVLLLOVLOOOL	OJLVOLVVLOLVOLVJVOLJ」
LLLLOOVOVVOLLVVOLVOVDVLI	OLDVOOVLDVLISLVVOOLDIV
วОอLLLLOLLOVVLOVVODL	VVOVJLVVVVOLכJอVVวJอ
	コVOOOOVOLOLOLVVOJLIS
LVVJOVVJV\％VV\％DJLJVJOV	O9．）
	vวOJVLVOJVLIVOOL30山
SLVOLVVOOSLVOLOOLLI	VODOOVVODLOLLJVOLLJV
VJLVVJVJつVVDovovooov	LLLVODODLLVVJVVODLL
วOJLOJLVJJVDLJLDVOVV	OVOLVLIDVOLOJJOOJLV
HVDJJPOJV	VVIVDLLJVDVOVLL．ルLIJIL
OOPOSOVVOLVVLOLSLLVI	OVOOLIOVIVVJLOOOOOLL
LLLVVOLVOOVLODVVLOVVOLI	マVVOLOVVJVVV1OLOJคLVVVOL
LLOVODLIVOOVVOVOLOL	
JVVLVJOLOVOJLODOJVVV	OVLOLVマJOJOJJマVOLOVL
VOJVVOOJVIVOOJLJVOV	
	マVODVOLVVOVVLOLLOOLLLLI

1091マVOL \forall OVODVVVOLDL
 OOLVLOOLVVLLIVVOL）LVVVOD
 マOVOLDOLVDODLI． LVOVVVVVODODOLLOVVDI マVVLJVVVVOOLVVODOODI OOJOVOLOLDOVVOVOLLV
 VOOVLLOLOIVVOLLDLDODI

ว1）VOLVVI VODLSIVVVI JVOOOOVOLOLOLVVDOLLD
 OOJVLVOJVLIVOOLOOL เILVOOOULIVVDVV VOLVLIDVOLDOJDOOIVV
 avilutiontur

$9(\mathrm{VL})$	¢6S0tzly	2881W
L（VIVV）	aLSOnCIH	1581W
9（LIV）	s9s0ヶてli	$0 ¢ 81 W^{3}$
$9($（VI）	9590 ¢ 214	6881W
$9(\forall 1)$	LZSOnCl1	$8881 W^{3}$
9（IV）	00S0ャ2ld	L281W ${ }^{\text {c }}$
$8(\mathrm{VL})$	＋5t0tzlis	9881W ${ }^{\text {¢ }}$
$5(0)$ ）	2Storzld	Sz8IW
L（JV）	8050ャ21－	－281W
9（01）	t8\％0ヶてld	โz81Wง
L（J）	8 ccorcld	2781W ${ }^{\text {c }}$
L（IV）	ozzotzls	1281W9
かl（LV）	sozotzld	0z8iW3
Dl（VVI）	2610tcld	6181W ${ }^{\text {a }}$
01（VL）	tSiotzld	8181W ${ }^{\text {c }}$
LI（IV）LTJV）	Eviotald	L181W ${ }^{\text {c }}$
ti（LV）	66000 Zld	9181Wコ）
zH（V）	$8800 \div 2 \mathrm{ll}$	S18IW
8（LV）	8LOOpCld	F181W
で（1v）	99000211	โ181W5
Iz（IV）	t50002lid	2181W
titiv）usiti）	จ666Ez14	［181W9
gevplug（vD）	8L66EZ1H	0181WJ
$L(\forall 1)$	\＄966EZld	6081W
LI（V．）	2¢66\＆zld	8081 WJ
9（IV）	8Z66Ecli	L081W
S（IVV）	sz66¢zld	$9081 \mathrm{~W}^{\text {P }}$
6（DLDLV）	£166Eटl．	S081W
9（0IV）	$0 \angle 86$ ¢z1］	D081W3
L（VIL）	0L86Ez14	โ08IW？
S（OD）	6¢86czla	2081W ${ }^{\text {cos }}$
$82(\mathrm{VL})$	8286¢zlı	1081 $\mathrm{W}^{\text {a }}$ ）
て1（1）us（JV）	0186Ez1	0081W ${ }^{\text {（W）}}$
$6(\mathrm{VL})$	66L6EZIS	66L1W ${ }^{\text {c }}$
s（vol）us（\％）3）	E8L6¢Zld	86LIW9
$L(\forall 1)$	28L6EClJ	L6LIW ${ }^{\text {S }}$

volevvovoovivololoviojivo VVDOLOVOLLLLOVOOVOVVOV VVOOOLOLLLOOLOOVLLL OVOOLLLOOOOLVOLIVV） OLOOODLIVOVOLLDVODI OLOOOOVDLOLLOOVว
 DOLLOVOVOOLVOOVVLJ JJVOVOVOLIVDOVVJDOIV
 OJOOLVOLLLLVVVIVVVVLLLI VOLVLDJVVVLVJOOLVOVVDI
 ODLLOVDDJVVLDODID VDIVVDLOVVJVVVFVOVVDLLI LOOVOLIVDOLDVLOVLVLLIDISOV VVIVOJVLLLIVLOLLLOVOLOLV， VVOVVVOVVJJVOLOOVVOVJVV LLVLLLOVVODLOJJOOS LOLLL！IOIIV）วv）วท！ DOLJOLLLLOOLVOOLOLV JOODOIIVOVOLOLVODVIV DコLコVVVVOJIVV ママVリLLOOVLIOLOLOOVLLL SLVOVLOLLOLVOLDVVLDVOOLOD JOLVOLSLVVVIVVLVDLDLLLLL

VOI＊ODLOVVOLVOVOL LLLLOLVVLOLOLLIOLLLVVVVJ マ ทวVOLDODLDLVVOVLDVOV）
 OVVVVLOVHDVLVVLOLODOOVOLI OOLLLLVVOVOOLIVVOLLIVVS マVODVIVVOVOVLLLVコวગวอ

JLLJVOOVVマVVJJOVLOD JـVOLOIVOVVLODLVVムDOLL VVJVOOVVOLOVOLLOOVOJ

VOOMOLVOLJVVVOLLL199
HLLOLVOVOVLOLLIOOOVDVVLL
 LOLVVVVOOOVOOVVLDOOL OVIVOJVOJOVVOOOLVVOV OVVVOOOVOLOOLLOVOVOL VLLLLIVOOLIOVVODOD IVOLLOOVOVOVLLDLLLLLL） IVJOVVVOOIVLIVJOOOLS LJvวvvVวOอLOLVOVVOD OVOOLVVDLIOOVOLIVLOVVLVLDVV OVOOLVOJVLLVLLOOOOL VLLOOLVJJODLVDVOOVVコ SLVVVVOLVVJOLVOOLVJS JOODODLOLVOVLDJLVV DIVDVOLOVVVVJVIVOVVVIDDIVLI VOLLVOOLLLכวOOLVO VODLIVVJLLLOOLLOO ＊VLDLVOLVOLVVIVマVVVOOVOOD VOOL．JVVDVO．OVOOLVVV）
OIVVOLLLLIVLLOLIVVDJVJ VJVJJLSODVVOVVJIVJVV JIVVJIV OVLVVODOVIVODOLIDODI
DDLLOLOVFLIVVOLVVOLLVLLOVOL LLLOLVOLOLODIOLDOOLL J甲OLiVVOVVOOLVVVOOLV

LJOLVVVVIVIODVOLIVVVIL． VLLOOJVOVODLOLOLOOL O99DOLVVVVL）LつLIVLOOL山LLOVVOOOLOLLOLLOL JOVODVOJOVVVVLIVJIOV
วอLLOV LIIVOLOVIVOVOLL L．LVLIVOOOLLOOJVDDL

	CcM1869	F1241671	(TA)8
	CcM1870	F1241680	(AT)14
	CcM1871	F1241707	(TAT)6
	CcM1872	F1241727	(AT) 10
	CcM1873	F1241751	(A) $10 n(T) 10 n(C A) S$
	CcM1874	F1241752	(GTG) 5 gntGTG)5
	CcM1875	F1241776	(TA)6
	CcM1876	Fl241805	(GAA) 5
	CcM1877	F1241839	(CACTCT) 5
	CcM1878	F1241946	(ATTT) 5
	CcM1879	Fl241951	(A) $13 n$ AGA 6
	CcM1880	F1241982	(TA) 7
	CcM1881	F1242007	(AT)6
	CcM1882	F1242058	(CCA)6
	CcM1883	F1242060	(GT)6
	CcM1884	F1242073	(AG)8
	CcM1885	F1242080	(TA)30
	CcM1886	F1242083	(TAA)24
0	CcM1887	F1242106	(AAT) 6
	CcM1888	F1242127	(TA)37
S	CcM1889	F1242165	(AT) 20
N	CcM 1890	F1242175	(AT)13
	CcM1891	FL242182	(AT)6
	CcM1892	F1242185	(TA)42
	CcM1893	FI242200	(GA)10
	CcM1894	FI242263	(TA)8
	CcM1895	FI242267	(AG)12
	CeM1896	F1242276	(CAG) 5
	CcM1897	F1242278	(AG)7
	CcM1898	F1242288	(AG) 5 n(GA) 5
	CcM1899	F1242307	(TAT)S
	CcM1900	F1242314	(TGA)S
	CcM1901	Fl242340	(CT) $12 \mathrm{n}(\mathrm{CA}) 18(\mathrm{TA}) 19$
	CcM1902	F1242350	(TC)6
	CcM1903	F1242379	(ATA) 1
	CcM1904	F[242419	(GAA)6

TCTTTCTCCTTTGGCCATTTI TTCCCAACAAGGAGAAGTGG TGGCAAGATATTTTGGTATTTCC ATTCTGTCGGAAACCCTGAA GGAATGATGCATGGAGATGA GAGACTCGGATACGGAACCA TTGATTACCTTCAAGTTGTTGITCA GCCGTGTTCGATTGTTGATA GAAGCTTCTGGAACTCGGTG TCAATAAAACAATGGAATCAGAGG GGATGTGCCAATGGTCCTAT TCGCTITCAGAAATGTITTTGTT CCCCTCACTTTTTGTHETT aCCATCACCATCACCTCCTC CACAAATGGTTTTCAAGGTGC AGTTGCCTTCTTGAAACTACCA CCCACAACAAACAACAACCA CATGTATGTTCCCTGTATTTAATTTG CGTGGGTTTTTGACATTTGA TITGGTICCAGACTTAGATTTGTG TITTAATGCTCAAATTAATGAACAA TGATCAAGAATTGGTCCAAAAA AATGATTCAAGGTGCAAGGG CTGCAAGTGACGAGATTCCA CATCGACTCTGCAACGAAAA TTGCAAAATGCTGCTAGGTG GAGGAGAGGAGGCAGAAGGT CGCAACAACAACAGCAAAGT TGTCCAACTCAACCCATTCA ATTGCCTCGATGAAGGTGAC TCAGCAATGCACATCATCAA ACCTCAAGAAAGCACCCCTT aAGTCGGTTCATTTCATCACA AGAACGGGCTATTTCCAGGI AAAATCAACCTTCTCTTGAAACA TGCAAAAGAACCAAAGAAACAA
ITTTTAATTTTTGGTCCTTGTTG 267
tcagtccaatganaccacca 209
ttcccattcttcaaggtcaa 280
ggcatacctcacccactcat 134
CATGGTTGTTCGTGGGTGTA 231
ACAAAACCAACCACCACCTC 278
AACGATTGTTGAAATITAATGTTG 276
AACGTAGGGTGTGAGTTCGC 155
GCAACAAGGAATCGGAAAGA 239
GCGGATGAAGTAGAAAGAATGTG 150
TCAAGGCCCAAAACATTTACA 169
TCCTTCTATTTTACACTTCAATAACGA 158
TTTGAAGTTCATIGGGGACA 217
TCTAGCTGGCGACATGITTG 168
TTAGAAGGCTTGCTTTTGCC 218
CATAAAATTTGGTGGGTCGC 279
AAGGAGTATTTGAATTTGGGCA 254
agGCTTTTGTACCACCGTGI 273
AGACGCTAATGCTTGGAGGA 203
CTTCTAAATCTGCTTGGCATI 211
GACTTGGTGGGTGAGGGTIA 156
TGAATTAATGAAATGAAGTATCAAATG 253
CCATCCAATCCAATTAAAGGC 206
CTGACTTGATCCCTCCTTGG 197
GTGTTGTTGGTGTTTGTCGG 180
GGGTTGGGATACCCCTTGTA 158
GTGTCCAGGATTGTAGGGGA 272
TTTTTGGAAGGGAGGGGAT 140
TACCCGAGATCATGAGGACC 230
AAAACCCTACGCAGCAACAG 264
AGAAGCCCTGACTGGTGCTA 256
GTGAATCCAAGAAGAAAAACG 212
TACCGCCGTGTAAATCTGGI 256
CGGCAACCTTTCACACTACA 218
tttcagaanttcgaggacga 264
AACGGAGCAACCAAACAAAC 262

GGAGAAAGGGATTGAAAACAA
ATCGTTCGTGGGTGTACGTT
TCGAAACTTCGCTTTGAAGAA
TGGAACTGTGAATTACTTTGCG
GGAGCACATATTTCAATTCCTTTC
CAIGCTCACCTATGAAACTCG
AAGGTGGTCAACTAAATTCATGG
AAACCATICCAGCTCACCAC
TGAAAAGGCAATAACAAAGTGGC
TTGGGCTTTAGGCTTTCTGA
GTGTGACACCCTTCTACCCC
TCTCGTGTTTGATTTTTGTCG
TTTTACATTGGCAACCAATCA
ACCTTGAGCCCACTCCTCTT
GCTAAGGAGGATTAGGTTGTCG
TTGGCCGAGAACTCGTTTAT
AATTGAACGATTGAATACTTGATG
GGGGACGGGGATGTTAATAC
CCCTAGGGAATCCGACTAGC
TCTTTTGCCTACTAGGGGGTT
TGGCAACCCTTCACACTACA
CCGTTAAAGAAGGCGTGAAG
TTAGAGATCAATTTGAAGACCTTTTT
AGGAGGGAATGAGGTGTGTG
GTTCAACCAATCCTGCACAA
AGCCAAACACCGTGAAAAATC
AATGGTGATTTITCGGAACG
TTGGTTGATATTGTGATGATGC
ACGAGCGATACCACTCAACC
CTTGGGGGCTTTTTCTTCAT
TGGCTAGAGAGCATTTATATGTGTG
CCACCAAATTATGACCAAATACC
ATGCTCGCTTGAGATTGGTT
GACCATGGTGACAATGCAAG
TGTGCGGATGACTTATAGGTTG
TGTGCCATGTGAATCAACAA

TGTGGCAACCTTITACATTTTT
AGGGGAATGATGCATGGTAA
TCCAACGCAAAGTAATTCACA
CGACATTTTCCAATGAACAAAA
TTATACTGGTATCATTTGAACTCTCC
ACGATATTAAATTGTATTTTGTGTTGA
TCGCAAAAATTAAGAAGAGATCAA
CATGCAGGTATGTGTCTCGG
CTTGGGGACAATGGTCAAGT
TGTAGAACATGAGTTATTGAACGGA
CTTTCTTTTTCTTTAGAGACCTTGAT
ATATTGGGGCGTTTTGAAGG
ATTGACGCTTCCAAAICTIAC
TTGAATGTTGAAGGCTTAGGG
CAAACATATCAAAGCAAGGGC
AACAAGATAACTAGCATGGAACAA
TGAATCTTATCCTACCAACACACAA
AGCTGCAAAGTTAAGCTGCC
GGGAGGTGGACTACAAGGAA
TGAACTATCAAGGGAGGTGGA
ATAGAGAATCTCGGCCAGCA
CCACCCTTTTCACTGTGGTT
TGGAATGTTAGTAGCAGTGAGATTG
ATTCGCGTGACAAATTTCAA
TCTTAAACCAGAACGACCCG
CAATGAAATTGAATGCACCG
TCAAAACTTACACATTTTACAAGGA
AAAATGACCTGGAATCATTGG
AATCGGCCGTGAGTTATGAG
GCAACCTCATCTGGCTTCTC
TTTATTAAAACTTTGCAGACTTGATCT
CCAGTTGGGAGTTGGAAGAT
ACACTTGCTGGCTTCACCTC
TGTTGTAATTCTAAATTGTGGTCCAT
TCAGAATCAGGCACACAAGG
CGCACACAAGCTATAAGCCA

 vosiovvoulumoovvajv avolopollivgivavojuvHแכOLOOVOLLOLOJ VDLVOOOOLVIVILIDIDOL jvวlolluวvoolvooodv JopIVILGIVVOOLLLLOL juvogvolvolvovojojvi

 OOVOVDLLODLOVOVVVDVDVF

vOLDLLIVVOOVVODIVVIJLI
voluiviovoiguvaivguvvvooval

 OLLVOVDVDLLOOOLOLכコ ＊ VOLLIDODOVVLOVOOLOV oollvjolvolvojvvolo vyvojvvevvovojomiove
＊ODLLLLDLDEIVVVOIVODI vojvLugollvjovvavivoli
vvooloivvvolvovivjojvv L．L．DODVVOOL．LOMLVGD vLDLOODLODLLDJLVOJVL gevjollujvvoolioli． Lonomolovavjeovajov olvolvojvolvojvooivy
 JコJovvovvajovvvololl
 voovvorvavoolvovvoju ojvvตovojoviojovjigv vvvojvolvilvvvojvojuvi SOLOVJDIVJVVDOOVVOVV

SOLDLOLVVOLVVVIOVVVJVVOLI IVOLDLLEDJOOLLIVOJ

 IVOJLJLIVOVOLOJOLIL Loovjojoplivjulvvilv
 DOLVVVDVVVOOLIVDJOLL
 VDIVVOVDIDVIDJJVOODO
VDLOMOLLLIVOLDIJLIVLD
＊Ovavivivolulvojlivilvvvon vogoovivivooiviooivos HLIOLDIDVVDOIDLLOM
 VOLLVVLOOVOV＊IVLLLVOLOOLIO OLOVVODOODVVVDOLLIV olvoovvojvvajoovioiv
vovvovaivol．ovvooivolu
 HLOLIVVODVOOLILOOD

 voluvvavisvovivivourgiojv v．Jv．LDOOVVVOOVOOLう vVLDOLVODLVDIVVODOOV gทvovojogovvvjivvo ＊＊LJojovvijoonivvova DOOvVVVOLDLDLVJOvVDI
 vovojvvovvvovvvovivooi vOOLOOVODOVVDIVLJVVOL L19vjojvLogovojvvvjv 9VOJLLVVVDODLLDOLL gJvDOOODLLLIVVOLOVVI LLLVOVOLOVVJJJJJVJVS

$S(V \mathcal{L}) \mathbf{u g}(\mathrm{VL})$	66107 ClH	9L6IW9）
$8(21)$	691btald	SL6IW ${ }^{\text {ch }}$
9（VJ）	6ZItocld	－ L6IW $^{\text {a }}$
S（LVV）	Slitozld	\＆L6IW³
L（IVV）	soltozld	てL6IW ${ }^{\text {c }}$
8（VIV）us（VIV）	L606tcls	1661N＊）
s（VLL）	290btてld	0 （6IW5）
zz（LV）	6S0ttcls	6961 W9
$9(\mathrm{VD})$	8E0ヶtてİ	8961 W
S（LV）u0itv）	9z0trad	L961W ${ }^{\text {（ }}$
LZ（IV）	£L6Etてlı	$9961{ }^{\text {W }}$
bで $\forall 1) u c(\forall \vee L)$	tS6etzid	¢\％1W9
LOL）uc（0）	186Etzid	p961W0
01（IV）8I（JV）	E06Etてİ	\＆961W ${ }^{\text {a }}$
$91(\mathrm{LV})$	6s8ftcld	2\％1W9
$8(\mathrm{VL}) \mathrm{m}_{0} \mathrm{I}(\mathrm{VLD})$	ze8etzid	1961W
Iz（IV）	188を切	0961W9
$9(\nabla \vee D)$	c9letzld	6¢61W9）
$9(\mathrm{VLI)}$	01LEtでi	8¢61W0）
9（1））	089Etてld	LS6IW
£て（IV）	v 29 ¢tcld	9561W ${ }^{\text {a }}$
9z（IV）	009Etでd	S¢61W ${ }^{\text {a }}$
9（VI）	t8setzld	＊S61W ${ }^{\text {（ }}$
6I（1V）	t－Sctzld	\＆¢61W ${ }^{\text {¢ }}$
9（IV）	98vをャZ1s	2S61W ${ }^{\text {（ }}$
S（VILL）	95ヶ¢ってlı	1S61W ${ }^{\text {（ }}$
$6(\mathrm{VD)}$	¢¢も¢bてld	OS61W ${ }^{\text {c }}$
Stapl）	8\＆ャ¢ちてİ	6761W ${ }^{\text {a }}$
if（V）L	＊8¢£ちで土	8＊61W ${ }^{\text {（ }}$
S（VI）LSI）	198£ちてl」	（\＃6｜W5）
0I（IVI）	ISfetclid	9661W ${ }^{\text {a }}$
$9(91)$	0SE\＆ロでI	St6IW
S（VIL）	8\＆¢¢ロてい	－\％61W9）
s（Vili）	6zE\＆ャでd	\＆¢61W ${ }^{\text {a }}$
9（IVI）	9Lzをもてld	2061W3）
S（JVV）s（LVV）	8£て£もで」	（1661W ${ }^{\text {a }}$

OOLVOJOJVOOVIOLIOLV1 volluvvoolloviojvlioj JJวL．jOOVDLLOVVJIVJL I．Jovvvoolijvvivvvvogvo

 10LJOLLJOLOVODLOLIS volivjouvvjujvajuiol
 oulolovodionullojov IVVOOSIOLLLOLIVマOOOL oljulojlooolvvooljav JLLLEIVJJ0010010010 マVIVJVDLOLOODVOJVDOD
 OOLOVVOLLOLOLVLVDVVJVOD LODLIVJOOVLOLOLOJOVV VOLVOOOLVVVVL）LDLVVVVVDL VJVVVVODLOJVDVODLDL JLVOLLOVLVDLLIVOLVOVVOLIVV マVVVVOOOOVLIOOLIOLI LLOVJOVVVOJVOVOOLVVVVV VVVVJJVJVVVVOLOJVVLLIVVV
 VDJJVVJVOJVODVLOLVJV
 マVVOLJ191000）VLLIVJว OLOVODIOLVVLODLVVOD JLJVVDJOJJJVVLVODLV1 LDOOODLDLVVOVVวLDDV VVOVOLVOVOVVVODOOLLV
 วLOJVOJVJJVVJJVVVVDV コJVDJOLVVOVVVOVLOLVOJ L10010LVLOODL1LOOOLO VVOLVOVVOLLLLOOOL）LつL

LVOLLLVOLLLOLLLJVLIVVVODL JIVVVOLVOLLJVVOLOJOVOD
 HLDOLDODI甘LLOOLOOV SOOLVVVOVLIVODLLOL OVVVVJJLVOOLOVVVJVOD マOLVOJJVVLVOOOLLLOO LـVLVOLLOOJOOOVIVD） OVOOLLLLVOVDOOLVVOOV コ）JJVJIVVVOVVDLJJVOL
マOVVJVVOLVVOVVVVOOLVVDV

VOLOVVVVLVOVVVIVOLDVVDLVVOL
LVOLLOVOVOV．LLDLLL．LLI JVVOJOVLOOVOVLDOVODL
 VOJJVOIVOVODVVVIVOVILI 1000LDLOOLLDLODLOV OJJVVOJIVVVLSLLIVVOI
 VOLVDVOVODLLOVVVVLJLLI LVOVOVVLVOVVVV OLIVVOLVDDV JL．IDOLIVDOOLVOOVVOI VVVOLIDLIVOVLLDODVVOL
 VOJDLJVOVOLDIVVOLIVDI DODOVVVOVVVOVODOVVOV ODLDLIVLDVOLVVLVOLOVOVVOLVV OIVOJLLLOOLVODOOVLI VJVOLVODOOLJJVVVIVI ว） VOJVVDDJViVODJLJVDVO פLLวบวLOOLLLDOルル DOOOLLOOVLOOOVIVOLDI OLVVOVOVVVวOOLOLVOO

0I（VL）	L66ttocid	て10zW ${ }^{\text {a }}$
S（IV）uç（0．L）	066 tb 2 l	110てW9
S（VVVOVV）	066tozld	0102W
9（IVLI）	$0<6$ ¢tald	600\％W3
£z（1v）	6\％totald	8002W9
（IVI）	156 tt cl 1	L002W3）
S（IVVV）	926 tocld	9002W3
$9(31)$	¢16tozld	S00zW9
2100）uL（L）	968 切でい	boozwos
$s(\forall O L)$	66 Ltb Cld	\＆002W3
1I（1V）	－8Ltocld	z00\％${ }^{\text {NJ }}$
$9(V O)$	8LLtbtal	100\％${ }^{(1)}$
9（＊IVFV）	LLLttてla	0002W ${ }^{\text {a }}$
$91(\mathrm{LILL}$	09 tazal 1	$6661 W^{\circ}$
L（ViL）	Lletocals	8661 W
	zoltozus	L661W ${ }^{\text {a }}$
9（1）	58906711	9661 W0
9（1V）	¢89ttで」	¢661N
	8L9tticlid	5661W ${ }^{\text {P }}$
$9(1 \mathrm{~V})$	959ttilu	\＆661W
$9(V I L)$	199ptzlu	2661W
tz（V1）	8 battzld	1661 W9）
91（L）uャを（LV）	$809 t \square$ Cli	$0661 W^{\text {P }}$
	08stotid	6861W ${ }^{\text {\％}}$
81（1V）	costozls	$8861 W^{\text { }}$
$9(01) u_{01}(1)$	18ttozld	L86（W）
6（1V）	8totozld	986［W3）
0ICDV）	¢Ettozld	S861～3）
zZ（IVI）	62totals	5861W ${ }^{\text {¢ }}$
	01totocls	\＆86（W）
L（OL）	165 加てl－	2861W ${ }^{\text {W }}$
L（IV）	88¢切で尤	1861W
S（OLD）	98Ettてld	0861 W ${ }^{\text { }}$
	9SE切で」	6L61W ${ }^{\text {a }}$
$91(1) u 9(01)$	¢6zttold	8L61W ${ }^{\text {（ }}$
tI（IV）	012ttas	［L6INO）

$$
\begin{aligned}
& 5 \\
& 5 \\
& 8
\end{aligned}
$$

JVVJDVVODVVIVOOLDODL JJVJOVVVVVJJDV100VVV9 IVOLJVDLLOLIJLVVVVOLL） OVJVOOJLLDLVVLOVODOO วOVIVVODOVVODIVVVOOI LIVODVV 1 ODOJVVOVVDVJ HVOLOVV
 MOLVVVLLOLIDOIVVVJVVSI ODJVVDVOJIVIVODOVJVV L〇VVVOVVVOVODOLVVODS VODVLVODOIVDIDVVDVOD マVVマDIVVOVODVODIVวJอ JOLVIDOLDOLVVDIOOVOD
 OLЮOLLLOLOLLLOVVOL OOLDOV 19 OOVJVVVOOL VOOLLOLVOLVVVOIVLDVOOL DDLVDOLIDLOOVLDVJOSV マVトVODLJVVDOJJIDIVVD SLOOODVOLIVLIOVVOLVLVVLI マLDVOVIVODLODODOOVV1 VOVLLOLLLODVVODOLDDL JVJVODOLLVOJVVマVOLV） LODVLDLDVVVDLOOODLSI อOVVวODIDVวOOLVIวVวV LIOJLVVOJJOVOJVVVLI LOOVLLLOVVLDOOOJVVDIL VJJJVVOLOVVOJLOL．JVOL แLOIVOOLLOJLLDOL ODOLOVOLLLDLDLJVLDHDI VVVOOLVマVLOLLDJOOOVJ V0VVOOVOLVVOOVOOOVOL OVVOLIVODLVOVVVLLLLOOL JVOOLOOLVVVODVDLLOL VVJVVOLLLVOVVVOODLLOI

SJLVLLLLOVDVLLVOLOIVVOLOJ JVJLLVIODLVVFDVVODOVVV

LLLLVLJLLUVJOVVVVOJD JVVマวJJVวOVVODLJVJLV OLDODOVVOODODVIVVVIV
 อ）DLVOJ．LLLOOOLVVI JLLLOVIVOLOOVVJOIOOL OVOLL．O）V \vee ODDLOLLL！ マVVVLODODOVOODVODVIV LLLDOLVวOLODLวอวเวท マ $10101010 L L V L V \vee 0010011$ OVOOLOOLLVLLOVDLVOVVDV HLLVDDODLIVVJVVDOLI ODODVOLOOLVVIVDOIVDI

 IVOVVวOHVVOIOLつO90 OOLムODOLOLOVOLVOLVD JOLVLDOLVOLIVDVOOLL

 L．O0）L1LOOLIVOLVODL VJLVVOLVVIOOLODLODOL LISOOIVJOOLLOLSLLIVO
VDLVVVVOLVVVOLIVIVODVVLOVVV LLOLIVIVJJIJJJ0000VI LLOVVOLLOLIVODLVOD LIOODLDVOLLLSLOODVS วVDLLLOVVODO101ルLO マVJJOLJJVVVODVL10D19 コ）VトLLILVVOLOODLLLLI LコJLLJOVILOJDOVVOD LDOLDルTVVVOLOOOLOL

$0 ¢(\mathrm{VL})$	¢E85tzld	8 802W ${ }^{\text {a }}$
S（IVV）	t6LStてlis	（tozW5
$s(V O 1)$	LELStてld	9ャ0てWง
zI（LV）	0ELSbてld	Stozw
6（IVL）	6ZLStzid	trozwos
S（0V） $\mathrm{u}_{6}(0 \mathrm{OV}$ ）	8zLStzld	
9 90VO）	SILStzas	2tozw
S（LVO）	colstzld	150zW
$8(\forall 1)$	zocstald	0 0\％${ }^{\text {Nas }}$
$L(\mathrm{VO})$	9895tzid	680zW9
S（OV）uoz（ OV ）	099stzid	880zW
9 c （ıV）9（JVLV）	LE9Stald	＜E0\％W3）
$11(\mathrm{~V} 1)$	EZ9Stてld	9¢0zWナ
LOL）	L09StCla	¢cozw
9（0LDLVS）	685sbてld	ท¢0\％Wง）
ごUV）	tScstcild	£ ¢0\％${ }^{\text {º }}$
L（LIV）8（＊IV）	sisstzid	て¢0zWつ）
91（LV）	10sstzis	1\＆0zW9
9（1））	260stzis	0¢0zWจ
S（LD）	でtstals	6 60\％W
L（VI）	IEtStzid	820 W5
61（1V）		LZOZN•
9（3）	1825tzls	9 \％0zw
L（DV）	99750 Zld	Szozw
If（IV）	602stzai	ャzozw
6（VIV）	0 OZStてli	¢zozw
S（LVV）	0tzstald	とz0zW
L（IV）	8SIStald	120zW ${ }^{\text {（ }}$
9（．）．）	201St2lis	020zW ${ }^{\text {a }}$
L（LD）	6ilstald	610zW
L（VD）	p01stald	$8102 \mathrm{~W})$
9（VD）	1805tzld	L10zW
9（1）	Drostcls	9102W3
91J\％）	crostzis	Slozw ${ }^{\text {S }}$
$9(\mathrm{DL})$	goostzle	t10zwos
9（JV）	66600 Cl	\＆10zWง

JIOVLVIVDDLOLLOLOLDOVS
JHVOVIDLVVVOVVJVLDOLIDLDS OOLLYマDLLOVVOOVLLIVDJ

VOOLOLLDLOLDVOLLLVJI LOOVDDLDJVDOVIVVVD） OJOLILLOLOLLDOOVOL

 DVOLIVJVOV LLDLIVOLLOVVV） LOOOJVLIVVVOLOVOOOLLI
 OOVVOLLIVOVOOJOLLLL JOVOLLOOOVJOLVVDVOV1 DLDOLOVVODLDVLOOLVV1 วODIOVDLLLOVVVVVODJL VDLJOVวODVOVLLODLOV VVOLODOLSVLIV LLDOLDOLVODLOLJル）
VOLOVVJVIVVVVIVVVDVVVDJOL LDVOOLVOLLVOVOVOVLVVVLJLL 100VLDDDVJJIIVOIVDOD DIVVマVDIVVJOIVVวV）DO DLOLILVOLVOOLLOIVOL

 JJOLDVVDIVVJVVVJJOVV VDODVIVVDIVDVDOLIOJVO
VOLVODIVVVLOVODLLJVJDV
VVVLIVDDLIDOVOIVLIVVODL VVVOLVJOVVVOLVシIIVVLLJVVV
 OפLLOVOOOHOLOVVVOV1 マIVวLIVวOLVวว1ววอ上
 LLIVVOVJLLIVOJOVVVVOJ

VOLIVVVVOLIOJIVVOLIODI
SVVODIVVVV LIVVVDVVOJLI JอマIVOVวLODLVวVDIDOD

JOLLVJOLOLVLLVVJOVVD1 LIVOOILIIVOOIDOOLVDL

HLOLLLVOLOLOLOUルル
 LL．JLVLVOJL．OJOOOODV1
 VOLVDL．DLJVJVOJVVVDI
 マVVVVJIVDVVVVJJOL90コ Vว1VJVマวOJDLJOVLLOL） อコО10LルOOLVマつ10Щ）
د）
VOLLDVODLVOVIVODDIDL
IVววเวแววเマルルマV1OVOD』 LVOリOLLLOOVVOVOLOOL VOOLLVDOOVDIVVVVVDLI DOLVOVLIDVODOLLOLVVJL OVJDOOOJVOIVJVVVLIOV

DLJLIVODJVVVIVVDVOJOL欠OOLOLVOOLVDLLIV） VOJ？VIVODOLDIIVOVOOL
SLVOHIVLILVLIVOVOVVDVOO\＆
JJJVDVDLLIVIOLVOLIIVJJ マVJOVVVOLVJVVOOVOLDL วอJVOLVVOOVOLכLOLLL MLILVVVLIDVOLVDOILDOL

 マIV 1 LLDOODOL $\forall \vee \vee \vee O D ~$ DLDOLDLOLJILVODLVVD） JLOVVOLLOOOOLVVLL
 OOVVJLLDVLDOVJJVOJD

$8 ¢(1$ V）	2099bClid	\＄802\％${ }^{\text {cos }}$
\＆I（LV）	L8990 21 L	［802W ${ }^{\text {cos }}$
S（IVVV）	9899 tcld	2802W ${ }^{\text {c }}$
L（VI）	9999pzid	1802W ${ }^{\text {（ }}$
s（VIV）	sc99tzad	080ZWD
＋て（1V）	2299pzid	6L0zW0
8（L）	－6S9bてld	8L0ZWJ
9（OL）	¢6S9bてld	LLOZWS）
zz（iv）	6959bてİ	9L0zW）
S（IVV）	szs9tzald	Slozwos
Lovpuzi（v）	9159bてli	－LOCW
zi（vi）	c0s9pzld	\＆LOZW
OI（VI）9（V）	26t9bてld	てLOZW）
01（V1）	9pt9tald	1L0zW3
（1．）	－ft9tzld	0＜0zW3
$9(\mathrm{~V} 1) 1(1)$	60t9t2IS	690\％W9
	c9E9pてld	890zW
$9(V 1)$	0¢£9tてld	［902W）
$L(\forall 1)$	21E9tzla	9902W5
$91(\mathrm{VL})$	1ヶて9ってい」	s90zw
8（VJ）	Liz9bてlis	prozwo
8（1V）us（ov）	80z9tzis	¢90zW
$s(V 10)$	8039 vClH	＜90zW
L（OL）	1919pてld	1902W
M（ V）uız（LV）	£E19tてlı	0902W ${ }^{\text {c }}$
8（LV）	zZ19tzld	6S02W
$8(01)$	9809tてls	8502W
9．J．）	0L09tald	［s02N3）
L（LV）	sco9t Cl －	$9502 \mathrm{~W}^{5}$
$01(\mathrm{VL})$	L609t 21.1	Sc0\％W30
II（V1）	Iz09b Cl ］	ャ50\％Wง
	\＄66Stid	
S（01L）	＊66Stてlu	てS0zW
S（VLI）	656Stzin	1502W0
（L）	106Stozis	0s0zW0
6（LVL）	¢68Sbてlu	6002W

aACAAATGGGAGTGATtCGG CTCGCTTCACTTCTIGACCC TGTCATTTAAGCTCCTCCTGAA
TCAATCTATCGGTTGAATTTACAAAA
TGAACTATCAAGGGAGGTGGA
AACAACCTATGACGCCCGTA
CACCTTAAATGTTTATTTCGAATTTTG
TGAGTGCTGGACAAATCTGC
TCTTCCACTCCTTTTTCCCA
CGGTATAAAGCTCCTTGACCC
TGGGTTAATTTTGTTTTTATGTATGTT
AGAACATGAGTTATTGAACGGAG
TGATAGGAATATTTCGGCGG GGGCAAGAAATTTGIGTGGT TCTTCTAAATCTGCTTGGCATI agGTCACAGCCCATTTTGTC TGAACGGTTGGATCATTGAA AAATTGATCTTTTGTGAGGGTCA AAACATCCGCCAAACAAGAC GAATCCAAATAATGGGGCCT TTCGGAGAAAATGTITATTTATTTGA GCGTTGAGAAGCCTCGAA CCACAACAGTCTCAACCACG ACAAGGTCGACGAGGATGAC CATGTCATTTGGTGCTGAGG GAACCICAACCACCAAGGAA TCGCTTGTGCCTGTTCTTTA TGCCGTCCCTTACTCAAGTC TGGAATTGAGATGTGGATGG CCCCAAAATCTGATGGAAGA TCCTTGCCTTGTCCTCAATC TCAAGAACAACAATTGTCTCAGG CTTTATCATATCATTATTTGTTGCG GTGTGGGGCTTCAAAGAAAA CACAGTTCTCAGGCCACAAA GGTITAGCGTGCTAACCATCA
gatctgagagantggctcgg
GGTGTAAACATCGTGTTTTTCATAA 179
CCCCTCTCTTCGIGACTITG255

TTTCTATCGCACAAACAAACAAA 186
AGAAGGCCTTTCTTTTGCCT 158
TGACGTTATTTGATTTTGAGGG 227
GGGGAGTTGGGTTAGGAAAC 266
ATTAACGTCTCCGTTGCTGG 237
CTGTTGACCAGTGGGTAGCTT 195
CAAAGGGATCCTTGGGAAGT 274
TTAAAATAAATTTTTCATGCTGTGA 231
TGTGCGTGGGATGATAAAAA 279
CCTTTGAAATTGAAGGCGAG 193
CTCATCCTCCATTGCCATCT 235
TTTTGTCATTGTTTCTTGGTTCA 207
ACCATAATCCCTCCTCACCT 176
AAAGTTATTGAGCGGTGTACCA 228
CGAGGGGTGTATTCCCAGTA 157
TGCATTGATAAACCGTGTGG 258
GAAGCATCACATCCTACCCG 237
CACAAAAGGTAAACATGCATACTACA 233
TTCCACTTCTGTTCCAACCC 261
TCGCTCATCAGATGGACAAG 224
AAGCCATGTCCACACAACAA 196
TCAAATGTGCCTAGAAGGAGTG 241
TGTTGAGGIGGCACAGTCAT 182
CAGGTTTTGTGTTTGTTGCTG 221
TCATGCCTCCATAACCAACA 170
TTCCAAGGTCACGTTATCCC 259
TTGCGAAGTTAACACTACCACA 116
AGTGTGGGTTGCAAATGTGA 235
TTTCCAACACAAACCTCGTG 187
AAAAAGTGATGGATCGATATGAAA 251
AATCACCTAATAAATTCTTGTTGAGAA 248
GGTGCTITGTGACAACCTTIC 104
ATGGTCCCCCATGTTATTGT 132

	CcM2121	F1247668	(TA) 12	CaAtgGgaggicattttattitt	tTCATGCAATAATtantcaggacan	143
	CcM2122	F1247679	(AT) 16	tgancggttggatcgitaan	ttagacgattattiatticagcaana	185
	CcM2123	F1247712	(TA)6	gGGCangGacgagatigtta	TCATCTCTAGTGGGGTtCGG	249
	CcM2124	F1247724	(ATA)7	gGatcaacttggatttgcgt	taatctgccccaactcgat	257
	CcM2125	F1247736	(AT) 12	tgtttatcgattcatccgith	agttacaccgatgccettt	171
	CcM2126	FI247774	(atale	cctgggagccaacacatant	gTgGgatgacatgcanacag	236
	CcM2127	Fl247777	(CA)6	titaganggcttccattgce	aCCAAGCCTITITCAAGTGGA	130
	CcM2128	FI247783	(ATA)IOn(TAA) 6	ctcccagtctcacagangcc	AaCCTCAAGGGAGGTTATTGC	212
	CeM2129	FI247785	(TC)7	gGctetgittgggigittgi	agcattiggangceatcantgt	246
	CcM2130	F1247830	(TG)6	cattccacttttggancggt	taACAGGACCTTGGCCTtTC	270
	CcM2131	Fl247836	(TC)6	GAAATCTCGGGCaCagttet	tgGaganggtgctttatgge	149
	CcM2132	F1247888	(GA)7	gacgatgcanticcticatgt	tCatttitcaanttitagagttgctti	115
	CcM2133	F1247900	(TA) $2 \ln (\mathrm{~A}) 12$	gcGgGgtangtaaatcecte	tgtctrganatatgggatititg	265
	CcM2134	F248016	(Ta)7(atal	tgganggattgictatgitcaaa	GCCACAAAATATGTGTCAACTTC	125
	CcM2135	F1248029	(TC)6	tacccgagatcatgaggacc	atcactgtccgactcancce	237
	CcM2136	F1248051	(TC)6	tacccgagatcatgaggacc	ccatcagagcgancantcac	194
	CcM2137	FL248056	(AT) 30	tgGagtacgtggatccettc	TTTCACACCCCangttrtca	210
	Ccm2138	F1248130	(TA)21	tcatccaccttactiagtggana	trtacagatacctcatgantaccea	119
	CcM2139	F1248147	(AT)34	CGagtttgggagttitcaattc	tggatganagttgttgagctig	261
	CcM2140	F1248150	(T)15n(TA) 5	tcatcgatatticataganacagtgta	tccgcanagatttctatcea	260
	Ccm2141	F1248156	(TA) 11	ttgancccacaccctaggan	tcacatctatatanattatgagcaacg	276
	CcM2142	F1248177	(AAT)7	ttttggiatgttcagacagctataaaa	CACTAGTGTTATTTTAGCCCTTATCA	255
	CcM2143	F1248198	(AT)27	tccaacctaccctgagancaa	CATIIGTGGAACCAATATGGA	279
	CcM2144	F1248214	(GA)6	ggtatgggtgtaggtggtgg	CATCACTCTCGCGCTCATTA	204
	CcM2145	F1248332	(CT) $\mathrm{n}_{(\text {TG) } 5}$	gctcaggatcgttgganaat	agCtCantcatcgcagtcct	191
	CcM2146	F1248356	(GA)6	atangGcatggggatttagg	caacccaccaattaganccc	184
	CcM2147	F1248445	(TTC)6	tcatticgiggttgettacg	CaAtgaggctetggaangac	126
	CcM2148	F1248469	(AG)15(AGAA)6	tatanataggggcanggggg	cCaacanttatccccacace	242
	CcM2149	F1248494	(TA)22	tgiacagggctgtaggttcg	tcattitgaccctittiagattce	235
	CcM2150	F1248527	(GA)6	GGTtTTAGGTGCTtTGTGGC	ggccgttgtcatttcagant	270
	CcM2151	F1248562	(TA)14	agatcccatcacccettacc	ttcantgattgggtcgitanaa	190
	CeM2152	F1248567	(CTT) 7	CAAGAGTCAAGCTTTGGAGGA	cCCtcacatgangattggct	102
	CcM2153	F1248569	(ATT)8	atccatgatctiggcctgag	GGagtgantgctcccttgan	280
	CcM2154	F1248574	(AT)6	TCAAAGGTGTTCAAATCCTCG	tCaCtcgcttanttrttggea	171
	CcM2155	F1248581	(CA)6	CtaAGcaicgtgcantggaa	tcttgctcaccatcatgica	280
	CcM2156	F1248629	(GT)6	tcangggaggiggactacaat	ccctagggatccgactagc	254

972	OOLDOVVLVOLLLODOLL	VVVVVDLOVOLOVLV母OLIVOOS	$01(\mathrm{VI})$	0L16tClH	761（\％）
981	ว）องทLOLLOJVJVOLOLV	LLLユLLVVIVDLLOVOODV	L（VILI）	SSI6tzld	16IzW
tLL	JLOPLVDLVOLVLLSLVDLLDOL	＊VOOLOLVOLV＊V＊ODLJVV）	8（1V）	ZSI6tZIS	06I2W3）
811		LOJJVVODIVOJVVLVOLSJ	$9(\mathrm{VI})$	LII6tてlı	6812W3）
て¢Z	OLDOLDVLODLODLVOJVV	OLVOLLIVVVDUSLIVOLLOO	9 （DL）	tllatzld	$8812 W^{3}$
2SI	ODOOLDVVVOODVLOVLIODL		L（LV）	9806tcld	L812W ${ }^{\text {S }}$
191	JJVODVOLVJIVOVOJOJVI	H1OVOVLLIOOVILIOLJHODLIV	9（VO）	29060211	9812W0
981	OLOLLLOLOLILIOLLLOOD	JJOLIVOJOLDLLOLVOVL	01（I）9（LV）	tr06t $21 . \mathrm{s}$	S812W ${ }^{\text {c }}$
O¢Z	LHIOOHVVOOJVLIVODLLL	VODVVLVVVVVLOVLOJLLLLVVSVSL	9（LV）	St06tzis	カ81てW0）
2ti	マVLDOVOLVJVOIVOIVVVVVOL	J09JOLVLDOLJVOLVJVLI	$L\left(V_{1}\right)$	8206 ± 213	¢812Wフ）
SSI	VLOอบL．	マVOLJOLOLLDJJVOVVOL	01（O）	¢206tてld	281\％Wつ
S\＆z	マVOLOV V ${ }^{\text {V }}$	อVVVOLVOLOVOJOJO10VD	9（LIV）	8006t2ld	181\％Wつ
£ 2%		マVVVLOLJOOJV ${ }^{\text {VOVLOJJV }}$	IE（1V）	\｛006t 21.1	0812W0）
0zZ			LVIL）	0006ちてld	6LIてW）
tsz	LJOLJJVOLVOVOVOOJJIV	JJVODVOLV LVOVOJJJVL	$9(01)$	SL68tてld	8LIてWフ）
92\％	OLIOOVLLODLODOLLLOL		LI（V）	896802l：	แLてW）
LSZ	OOOV ${ }^{\text {SOVOVOLVLIOOLSOV }}$	VVODOVILVOOL＊OOVOLV	$9(1 \mathrm{~V}$ uzilı）	S168tzld	9LIてW3
L92		VVVOOVVVVIVDIVVJVVLOOLSV		18887 CH	SLİW ${ }^{\text {S }}$
＊61		マVVJJOLLJLLOOLOV	Soll	8L88vてlid	＊（I2Wง
SLZ		LวL）	$8(\mathrm{VL})$	1588tてld	\＆LIZW）
LLZ	VOLVOOLLSLOJOLIVVJL	OLVOLLVVVOLIDOLVODL	$0 z(\mathrm{VI})$	$8588 \pm$ てld	てLIzW）
112	IVODLLDIVJVOVVVOIDIVLIVVJ	マVVJLVV1DOVVDL．JVVJV＊JVVV	9（IV）	£E88ャてLH	1LIてW
SSZ	LVJLV9VODODIVOJLL	LIJIV	S（IVIL）	9188 p Z7s	0LIZW）
\＆12	VマVV1วOLVIOJOVOJIVO）	OLVLOLVOLJVOVODLIVVVVV	L（V1）	86L8t 2 H	6912Wง
802	JJvวivวอv＊วulov＊วJiv	JUVVLILVEOVOVVVVJ）VODS	£（V1）		8912W ${ }^{\text {a }}$
622		VOOVVวvLJVOOLOOVODOVV	L（10）	08L8tてH	491\％W
sez	DJLVLLIVJJVVJVOLOLVIVVVV		$0 \mathrm{I}(\mathrm{VI}) \mathrm{ug}(\mathrm{OL})$	L9L8tてld	9912W3）
L9\％	VOOLVODOOLIOVIDODIVI		$9(\mathrm{VI})$	\＆SL8tzld	S912w ${ }^{\text {cos }}$
181	VVOLLVSLOLIVOOLOVVVVVOVVV	VVJVVJJJıOLVVJVOLVVOL	6（V1）	ャ¢L8tてla	ャ912W ${ }^{\text {a }}$
652	VOJ90090V19VVOLVOLVL	＊OOOVVOLLIOVOLVOLSIVV	ol（LIV）	92L8tてld	¢912w ${ }^{\text {a }}$
071	マVOODLOLLJOLSOVLLL	IVVVVVOLכวVODOODLLL	（i）1）	¢ $2 \angle 8 \mathrm{t}$ てH	z91zW5
$8 £ Z$	L000）V L001．Lulovogov	ODOLVOLIOLOLLODVV	OI（VI）	\｛ZL8tてld	1912W3）
$9 L Z$	3OVVOVVODVLIVOV10IVSOLI	OVVOVOLOVLIOVVVDLIVVLLL＊JV	silvJVi）ugl（VLV）lus（VIV）	zZL8ャで1	0912W3
211		VOVVODLVVVJVODOVOJIS	S（OVD）	£128tでJ	6SICW3
	＊VVVVSVVOLVOLLVVVVODLSVV		9（VI）	8598tてld	8SIZW0）
8 ± 2		JVOVLLOJLSLVJOLVJJJ	$91(1)$ LI（LV）	fe98tcid	LSICW

TGACGTGCATAAAAATTGGG	AACATGAAGTATITCAACCTCAACA	280
AGCTGGAGGACTACGTCGAA	TITCTCACGGCTTGCACTC	139
TGTGCATTTAAAACGGAGGA	gGTTGCTACACAAATTGCACA	169
ACTCACGTTGGCCACTITTC	CAGTGACCATGGGAAAACCT	146
GAAAACACAATAGGTAAACATACATGC	TTTGAGGAGATATTCATTTATITGATG	225
CCCAAGCTCACGGAATTGTA	TTTCGGATTGGCTGTCTTGT	274
GGCCATACTGCCACGTAAGA	ACCAAACCACAACGACACAA	114
CACAAAGTGCCTTTTGTACGTT	AAAGAGCCACTGATTGGTGC	228
CGGTTGAATCGTTGAGAATTG	AAGGAACTTTTAATGTAATGGTGAA	214
TTTGGAACAATTGGGGATTT	GTGCTCACCCCTGGTCATAG	276
TTTACTGGTTCTGTTTAGGTTTAGAA	GAGAAGGGCAAGCCATGATA	221
GGATAGGGGTGATCTTTCACA	CCATGAGTTATTGAGCGGAG	280
GCCTCGGAAAACTATAGGGG	CGTGGATC ITGCACTIGAGA	257
GCCTTCAAACCCTCATUAAC	CGTGAATTTGGTTGAGAAGC	274
TGAACTCTTGAGTACAATGGTTTTG	GCCATAAGGCCCATAAGTCA	121
CCTAAAGGCACGAGTTGCTC	GCTGAAAGGGGITCAACAAA	265
CCCACGATTTTTCTTTTGGA	TTGGCTAAAAATTTAAGAGGGA	257
AACGTCAACTCTTAATCCAACTG	CTGCTGCTCCCATTTATTCC	234
CCAATCCTTGGATTATGTTCCT	TGTTGAAAGTGGGGTGTAGG	280
TTITCCCTCTCTITCTCCCTC	TTAATTTCTCCAAGGTGCCG	161
ATTTCATCCCCCTTGAGCTT	tGgacaacantgcttcatge	253
ATGTGGAAAAGATTGCGTGA	CCATAAATAATGATAAAATGTGCG	194
GGGACAAATGCCCTGACTAA	GGGTCGGTCCGGGTITTA	260
GCATGTTACCTTCCCCAGAA	TCTIGGGGTAGCAGTTTTCAG	158
TCAACTTCCAAAAACACATTTCC	CCCATACTTGGTGAATCCAAT	272
CCATTAAAATGGTCATTAAAGTTTTT	TGCCATGCCTAACAACGAT	277
TTGAATGGTTGAAGTGGTTCC	TATTCCACCACCCCACAACT	173
AGAAT;GGAGGGAAAGGGAA	GCTCACAATTTGGCATCAGA	145
AGATTCGATGATGTGTIGCG	CCCATCACGGACCATTTATC	202
TGAAATTCAACATTCACCATGAG	CAGTTTGATCGTTAAAATTIGATGT	185
AAAACATGTCAATGTGCCGA	TCATICTTACCATTGTCATCGC	270
CCGCTAGGTTACGGATTTGA	CCTCTTCAGGCTGTCCAAAA	139
AGTGTTAAGGCCAAGCAAGC	TGAAAACCAAATCGATCTATTCCT	250
CCAACTGCATTTAACAAATTGTACT	TTTAATTTGACGGTTGGATCA	200
TGAACTTTCAATCTAATGGTAGAATTT	GAAAAAGTTGCTTCTAGAGTCATTTG	167
TCGATTCAAAAGAAGAAAAGCC	GAATGAAGTATCAAATCATCTTGGA	278

V 10 VVOTIVOOODVVOOLS
OVVOLOOVOOJVVVOLJOLV
VJVIVLLJOVOOLOOOJ1LL
IVVVวOOJVOVLDVVJOJIV ๑VJVวOLVODVLOOOLLL マVOLIOOLODLVVפLDVOQ VOD．JVVOLIVLLOVOIVJVVVVLOL VLOVJJVJVOOLOJVOOVOV LDVJDIDOLIVIV VVODIVV
VVVVVOOVVIVOJVVVOVIVOLIVSL IVOLOLOOLOLDOOVVVDDD
LLVOOVVVLOVODOOOVLOL

9OLユLOVOVOVDLOLDJJ1
JOLOVVVVLIVVVOIVJOLODL
LDODIVVVVJLLIVIDOODI JIVODVVOOOOVIVVODIOV

VVOLOOLVOLLVDOLVOOL
LOLVOLLILVOOVVVVVLLOLLLIDLL
LIVOD110）LOJOLDLJVV

DLDOLILDVVILVOLLVLOOLLSI
 JODOLOOLVOLIVLJOLJIV VDOLODVVJIOOJVIVVOLI
JODLIVVVVVLOVOVODVVVVO
 LOVODLVVVILVOJLLLL
 วVว1วЦLDOVOJOVOL1O
JDL．DLLVSVLVVVLVVVLLDVOVVOI JLLLVODLLVLLOULVVOLVOD פVVOLLDOVOJVVJJVOVV）
IIJOLSOLJVVVOILJVIVVOVOL
LOJOJLVLVOLVマVVLLIVOVOD LIOOLIODVVOLVOOOVODV

VOVOVSVOOOVVVVJVIVVVOVVII OロLOLOLLLOOLLLODIV か）MLIODOLLIOLOLJVL VVVOLOLIVVOLOOJVV）
 マJVVVOOVOJPOLVDJVVLV VOLVODLLODLVVOLLLVLI VDLVOVVODVDLOOOLVVOL VIVOOVVLDD）LJVVVD） JOODDVOLLLVJIVJLDLV マOVOLDODVVOVFDIVDVV دLOVVJVVOJOLVODLLOL HODLVODLIวJ）VVOOLIV LOODVVOLVDOVIOLVDJLI
VVVVOVOOVOVIVVVVOVVOOVDI LLOVDLOOJVDOLVVOJLVS LOODLOLLDOOOVVVIVO9 JLDLVOJOVODLDOVDIVVV IDJIVOOLLOODVVOLIDVV

VวO）VLDLLOOLLDOวL JOLOOLIOOVVODDVDLVVI
 1．ว）VOLIOVVL9LOOLOロL
DOIVシJIVIVJVOLVJVVVVVIVVVO JOLIVDOLVOLVOVLODLVVV） VOLIOLODLVVDDOV100LI OLVOJOVVOVOษLLVVVVDL マVVวJอVVVDIVVפJIVVOS LLDVODODSVLVVOLLVVD）
VVOLVVOLLVVOLVVLOLLIOLOL JOOLDOVVV0．OODLOLVLV

LDVVLODLVVVVVLIVVOVVVOVOLIL DLLLEDLODJJLVOLVOL OIVLLOOLDOJOLLOLDOL．

L（OV）	IzIISCld	ト92\％Wフ）
S（OLL）	801Iszle	£92\％${ }^{\text {a }}$
8（IV）	$06015 z 1.1$	z92\％Wフ）
$s(V L) s(V L L L)$	c801stad	192\％${ }^{\text {（1）}}$
8I（LV）	csoiszli	09\％てW0）
S（LVIM0I（LLV）	tholsali	6sczwo
Lz（IV）	1101szls	8S（ZW）
$92(\forall 1)$	zoolszld	（szzw
zı（V）u9z（V．1）	2860scld	9SZZW ${ }^{\text {S }}$
（VD）	tr60szle	sszzw
L（IVV）	¢160szla	tszzwos
$8(01)$	I260S21］	£szzw
S（VLL）	L880SZIS	zszzw ${ }^{\text {cos }}$
$8(V 1)$	0880521．	1szzw
	6L80521－	0szzwos
$9(01 V)$	SL80SZ1s	
ti（V．）	6980SZIS	
S（OIVLJV）	scroszld	くャでWか）
｜E（IV）	tolosald	9ヵでW ${ }^{\text {a }}$
soov）	92loszld	spcewo
IE（＊．1）	soloszld	
S（LD）	colosald	¢もくてW゚
6z（IV）	＋690SELS	ででてWコ）
てl（vo）	6190SZ14	Itçw
L（V1）	08soszid	0bでW9）
L（V．LL）	slsoszin	6\＆zzWง
$8(I V V) u_{01}(V \vee L)$	89S0scl－	8ะ\％てWフ）
¢Z（LV）	¢9s0szld	L\＆zzW•
9（JLL）	Izsoszis	9\＆zzWગ
II（OV）	8 ISOSZl－	sezzw
LE（LV）و（JV）	28t0szla	ャยzzWจ
$9(\forall 1)$	8\＆toszld	¢ยสzWจ）
s（OVV）	82coszld	てยz（W）
II（V）us（VL）	如0．0szlu	1ยz\％Wจ
LI（ \perp V）	s6loszid	0¢ZてWフ）
S（15）	q910szid	6zzzw

TGATGCAACTTAATCCAATTTTT
AACTGCCACGTTGTTTGAAAT
TGCGCCATAAAGAAAAGTCC
TTTAAATTTTGCCAAGCAACTT
GATTTTCTCATGCACACAGCA
TGATTAAAAATATCCTTCAATAGCTTG
ATATGTGTGTGTACGCGGGC
AGCATCCTCATCAAAATCCG
CAGGCCGTTCTAAATCCAAA
TCAAACCAAGCATAACTTCCTT
AATGTGACACCCTTCTACCCC
CGTTACGATTTTGAAACGGG
ACGAAGTGAAGGAGCGGTTA
TGCTCAGTAATTTTTAAGCCTGA
CACTTTTCATATTTATGATTGGACA
ATTGAGCGGGGTAGGTCTTC
CTCACCCTGTTCGATTGGAT
GAATTCATTTGTTATTACAGATTTCAA
TCTCTCCCTCTTTCTTCCCC
AGGCCGTCACATCAATAACC
CTGGTATGGGGCACTTCATT
GGCATTAATAAGGCGTGTTC
TTCGAAAGTGCATTGGATGA
TGCGGCATTGATTTTGAGTA
CCCAAAGAAGTGCAAGGCTA
TTCCGGATTCCTTTCATTTTT
TTCATGCAATAATTAATCAGGACAA
TAGATITTCCACGCCCTACG
AACGGATGATTTTCTTTACATCG
CTGGATCCCTGGCTACAAAA
AAATCAGAGAAAGACATGAAGCA
GGGIAAAAGAAATATAAACCCCAAA
CCTGTCGTGTCGTTGTTGTT
GAGICATGCTCACCCCTGAT
CAGTGACCATGGGAAAACCT
TTTCAACCCTCTCGATTTGG

tCAACATACGATGAAAACAAAGC tgcacttangagttgcatttgg gGaccaanttagattittanccetc tgCCCGATATAGAATTTGCC agatcangtgtgigitigantgig maAtGTICCTCGGTTTCGC
 TGAAAAGCAAGTTCCATTATGC CTITCTITITCTTTAGAGACCTTGAT CCTTCATCCTCGGAAGACAA tTCantcatttcctacacatatcaga tigGItcGGTAAATTAAGTTTGAA tTTAAGAGTTGGATTGTTGGAATTT tCTCTCTCCGAACTTTCCCA тССТСТTICTACTCACCCTCTCA GAACCCCTGGATGCCTATAA
 gCagcactagiacagittgcatt tcttagagtgcgggctigat ttgGttgacceacacangan CTCAAAAACCTTTCTCCCCC CTGACCTTTGCAGGACTGGT tancatcaagaagggtccec caatgggaggicattitattitt trCATCGTICACCAACATTCA tTTAAATTCAACGATTGTGTTGTT gcagcattagcanaagctcaa tCagGGTtTTTCGTTAATGTG CGTCCTAATTATCACGAGTTTACA gGtagagaccaantggagcc VDO1910LLIVJOVOLVVDI acgTCTTCACCGGCATAAAC

CcM2265	F1251144	(AT) ${ }^{7}$
CcM2266	F1251146	(TG)5n(T)I0
CcM2267	F1251152	(Tatt)
CcM2268	F1251161	(Ta)6n(A)10
CcM2269	F1251228	(AAC)6
CeM2270	F1251231	(TA) 18
CeM2271	FL251321	(T) $10 \mathrm{~m}(\mathrm{TA}) 5$
CcM2272	FL251368	(TGA) 5
Ccm2273	F1251411	(GA)6
CeM2274	F1251435	(tal6
CcM2275	F1251474	(TTA)6
CcM2276	F1251499	(GA)7
CcM2277	Fl251552	(ATta) ${ }^{\text {a }}$
CeM2278	F1251553	(AT)6
CcM2279	F1251563	(AT) 20
CcM2280	FL251581	(ATGT)9
CcM2281	F1251708	(TC)9
CeM2282	F1251731	(TA)13
CcM2283	F1251867	(AG)8n(AG)21
CcM2284	F1251893	(TA)6
CcM2285	F1251894	(TTA16
CcM2286	F1251934	(TIAT)5
CeM2287	F1251959	(TG)7
CcM2288	F1252005	(AT)6
CcM2289	F1252028	(GA)6
CcM2290	F1252032	(AAT) 1
CcM2291	F1252064	(TA) 12
CcM2292	F1252070	(AT)23
CcM2293	F1252096	(TA)8
CcM2294	F1252109	(C) 5 Sn(AC) 8
CcM2295	F1252132	(TA)6
CcM2296	F1252147	(TA)21
CcM2297	F1252170	(TA)8
CcM2298	F1252173	(GATGTG)8
CcM2299	F1252212	(TA) 5 n(AT) 5
CcM2300	F1252230	(A) $13 n(A) 1004 \mathrm{GA} 5$

マVOOLDJOVVDVVOOVIV

LILVDPOPOVDODVOVVOV
つЦЮL $\forall \forall \forall L L D L D O L \forall \forall \forall O \forall \forall D \perp$
マVVJVJVVVVVOOLVVOLVLODI

VVODOVJVLLVOLVLDODJつ

VVOVOOIVLOODVVIVOVODI
OOLLVDIJVVOVOJOLL
DLVOOLDJLLDLJVDLDD
JVวV $ว$ VVJVOJJVOLDLO

マVVVJVVVOJOLOLVOD)L
LODJJVOLLLIVODLVOLVV
ว09LOLルフOLODVLLIDO
VVVVOJOVDODIOVSVVVVV
VOLIVOOOVLLVDLIVOOLI
VOLOLDLLLVJLVOOOLD
VOVODLLLLVVLOOLVVVLVVVLLVVO
LOVVOLVVDLLDVLDLOVVVVOLIJ

DOOLVJLLOLVOJVLVVOL
כODODLVOVDLOLVDOVIV
VVLODODOLDVJVVVOLVDD
OOLLVOVVOLZVVLDJVVOVV
VVVDIODOMIVIVOVIVVVVV
山VOVLLOOOVVLODOOOV
VOLVVVVOLVVVVOJVLLLLIVVOV
コLLOOOL9LOOOLOOVVV1
VOLLVOつLOVLOVVVOOOO
マLOOJOVLLOOVOLDOVVO
OOVOVOLIVLOOOOOJVV10
L.JVOLVOJLLVDVOJOVDOV
OOLOVVOLVVOOLVVVJOL

L（LV）	1908szld	9โ๕zWจ
9（IV）	6008s2ld	¢ระzW
pl（1V）	z00¢szad	
$8(V 1)$	S66zstaj	โโยzWગ
£l（VIV）	s86zszld	zโ\＆zW
s（VLL）	LL6zszld	Iโ\＆z\％${ }^{\text {a }}$
zl（ $\perp \forall 1)$	\＆16zscld	0¢๕z ${ }^{\text {a }}$
s（ovjug（V）	806zszld	6z£zw
て¢（V1）	008zsclu	82¢z\％${ }^{\text {a }}$
L（L．O）	s08zsta	LZ\＆て＊${ }^{\text {¢ }}$
	08Lzscld	9\％£zW）
$6(\mathrm{~V} 1)$	s9Lzszld	szezwo
$8(\mathrm{VO}) 8(\mathrm{VLI})$	6ャLzszld	カて¢てwフ）
$01(1) 4_{61}(\mathrm{~V}, 1)$	trlzsal	£ 2 （\％${ }^{\text {a }}$
siovius（JV）	s0Lzszld	で๕てWง
901）uc（vi）	829\％szl	1て£てWゝ）
$9(1) 01(1)$	6£9z¢zld	0て£でかつ
9（3）	£6¢zszlu	61£zWง
ul（ ）＜l（ 1 （V）	68Szszld	81\＆\％W0）
$9(\mathrm{VD})$	985zszlu	＜1\＆てWง
$81(1 \mathrm{~V})$	¢tszszld	91£てWフ）
$5(\mathrm{OOL}) \mathrm{uc}(\mathrm{OL})$	scszszld	Si\＆zWง
LI（VL）	scszstld	
	26ヤZSZlı	£1£てWจ）
L（IVV）	0ャtてSてld	て1£てWง
	9ztzszla	11\＆\％${ }^{3}$
9（LV）	\＆てもてらてld	01\＆\％${ }^{\text {a }}$ ）
s（Jvoz（IV）	90pZSZld	60\＆\％Wจ
$\left.1 z(V)^{\prime}\right)$	66EzSZld	80ع\％W5
$8(V L) 401(L V) 8(D)$	LLEZSCIS	LO\＆ZWナ
	ILEzszid	90\＆ZWナ）
$9(J \vee) u_{6 z(V L)}$	£⿺𠃊zsてus	S0¢CW ${ }^{\text {c }}$
（0．01vo）	197zszas	ம¢\＆\％WJ
	6szzszld	¢0ヶzWจ
$L(V V D)$	6Szzszld	zoczwo
$9(3)$ ug（10）	1ヵzzscla	10¢ZW

OOOOVOVVDVOOLLLLOLL マวVLวVวอคロLLOVIVววว1 VJVOJODVVVVJV V VVVOD マVOLDLDDVLマOLDOLODJ DODLLLDOOLLOVVVDLDLV OVVODLDLLLDOVDODLOL コอVODVOLVOLVDVOJJJVL
 دLVVOL．ODLLVLVVVVVDLLO VVVVVOOOVVOVLODLODO1 OOJVODLLDOLLOVVOLVVV 1010LLวVวOOLOLVOOLI VVマVOLODOLOOLVDLJV マวマVOLO甘O甘VOLLDLLVOLV VVOVODVOLVVLIVVIVVODIVOLI วVマVวอ） VODVวLLOLLLiVマVOOLLOL VVOJVJLVOLJOOOVLルコ LOLVLDVDODLODOLVJVVVV
 วOL）LLODLLLLOVOOL
IVOLVOLLLLVOLLLVVIVVIVLOOOL マVVOLOVVOOOLOLOLIVO）
DLIOLIVVVOLLOV LIVOLLLV VVDLLOJ．DOLVVOLDVOD
マVODLDLつLOVJVVVVDDDVV
 IVVIVJOJOOLOJLIVOV

VVOLVVOVOVVVDLVVVヲOVVVVDVV OJJODOVLOOVVLOJOLマ』
OLIVJOLLLOVVVVLVOOVVVVOL
 L）Vวコ10JLOODVVJOVL ＊JLIVVVVJIVVVVOJVפDIVว VOLLVマVDVマDOVJJOVO！

 voooplivvjvvoollizg jolvavvojugivolojova LIFDLLIVVVDLIDIEDOLL gvovoivvovojovooja jvovvolvojloojvvojvv VVOOLVLJJOVDLLLOLDOL LOOOLOVVOVOLOODVOROL
 govvajojujvvavoivvov
 vvollivgovvvoolojvovo LLLVLLLIVJLODVDDOL＊ jepolvaoivilooooluvv
vovojvovvievvojuvıuวLi VDLIDLODVFOVOJLOLVD luvvoliojivoplloojv vDvollogoluvvovojvs OLDLDLlvVIVOlllojoolu vilvvoloivioulonoooLlu vVvOvvoviovLuvvoovvovvivoj
 10ццJVJVVv90vojopiv jogololojvovioivvojv
VVVVIOOLIOVIVVIDLODIOVOLI v＊วLovvDisolvvoolioo

DLDMLDLDIVVOIVFVIVVOVILL LIVOJVOIVVOLOLOLOODS oDivolivovvajvoivioovo Oljogivoolloljivvoll voplvolvvoloovioolliol LـVOLDIDLLLIVJVDLHO
OJVVVODIOIVIVLLILVVIVDIOLL

fl（V）uL（IV）	691tscld	てL\＆ZWง）
$91(1 \mathrm{~V})$	0slbszld	ル¢\＆てWつ
$5(\mathrm{VL}) 48(\mathrm{OV})$	scitscld	0＜\＆でいつ
S（OLOLVD）	911tscla	69¢zW0
9（V））	z01tscld	89\＆zW9
O¢（V1）uEIOL）	680tscla	L9¢zW9）
$9(\mathrm{VD})$	0s0tszly	99を\％Wจ）
LOVD）	zzorsてİ	s9czwo
9（VOL）	z00tscla	จ9をておง
S（L）L）	E96Esてld	โ9をてWง
$9() 1$.	£16escid	て9¢zWง
8（v）rifv）	898EsZld	19\＆てWコ）
S（VLI）	198EsZld	09¢てWフ
L（LV）	858Eszid	6S\＆zW9）
てI（VI）	LS8ESCld	8¢¢zWจ）
01（LIV）	6v8ESてIJ	LS\＆zWフ）
L（VL）	1Z8Eszl	9¢\＆zW0）
S（LVV）	c8LESClJ	¢s\＆zW0
	p9LEszle	ts\＆z ${ }^{0}$
g（VDL）	HLESSZH	〔¢\＆zWจ）
LI（V）ulliv）	9198szld	てS\＆zW）
S（OL）L（VL）	00965 zld	15¢zW）
LILIV）	09seszle	os¢zW）
L（JV）	91sEszlid	6ヵ¢ZW9）
$9(V L \perp) u L(L I V)$	plteszls	8ヶ¢zW）
$9(V 1)$	6Sbescla	LDEZW）
oz（VI）	Leveszla	9v\＆zWจ
II（LVV）	60¢ESくてJ	Sotzwo
9 （OD）	zzeeszls	ャャ¢zWง
9（1V）	t9zeszli	£จ¢zW0
6（OLOLVO）	8\＆zEszld	で¢ ${ }^{\text {cho }}$
8（V1）	Izzeszla	It\＆zW9）
9（OV）	L8IESZ1	0ヶ¢zwo
9（OLV）	E8IEsてld	6โ๕zWจ
$91(\mathrm{~V})$	28IEsZld	8££zWง
（If（IV）	coleszld	＜ยยzWง

TTGGAACTCCTCTTTGGTGC
TTGGTGGTGGTGATGTTGAC
AACATACACACACAGACATACACACA
TGCTATGATITGAGGAACCAAA
GAGGTCCCAGGGGTCTCTAC
TTGCTTTCCTTTGCATGTTTT
TTCGATGACAGAATTTAGGTGC
TCATCGTCTTTCATGTGGGA
ATCGTTCGTGGGTGTACGTT
TGTAACACCTGGTGTGATTTGC
TACCTGGGTAAGCGGAGTTG
GGATCTGAACACAATTCCTGC
GGGGACTGACTCGTCCACTA
CAGTCCAGAACCAGAACCCT
CGTAGGTTTCCAAGCTCGAC
TCTCACTTCCGGTGAGAAAAA
CACATCAAAAATGTAACGGCG
GTTTCCCTTTTCACCCAAAA
AGGTGCTTTGTGGAAACCTT
CCCTAGGGAATCCGACTAGC
TGCCCAACAGTGGGGTATAA
ACAAGGGGAAAAGGGAAAGA
TGGCCATTCCTTTGCATATT
CCAAGGTCACGTTACCCCTA
CTTACACCAATTACAAACTCTATTTGA
CAATCAGAAAACAAACAAGACCA
TGGCACCACAAAACTTGATT
ACAACCAAAGAAGGCAGCAT
TTGCTACCTAAAAATCTAACTACCGAAA
CGGGTTGTAAACGAATTAGTGA
CACAGCAAGCACAACCAACT
TCATACACCCGTAGCACATGA
CCCTTCATAACGGAGGTCAA
CCTGGACAATTTTAGGGGIC
TCAATTGGAAACAAGAAATCCA
CGGTGAAACTTTTCCTACGC

GGAGGTGGTACCAAACTTCCT
TGAGTTATTAAGTGGGTAACTTIGC
CAATTTTTCTGGATCCGTCA
GGGGCCCTTATGATAAATTCTT
CAATTTTCACAACTTTATCAACACA
TGAAATATCAAGGGAGGTGGA
CCGGAAAAATTGCCTATTGA
AGCTTTGGGCCTCTTCTITT
TCTAAAGGAGAATGATGCATGG
CGACTCAACCTTTCTITAACCC
AATTTGCCCATGTTTGAAGG
AAAACACATGAAAGGGGTGC
CTCAATTCTCCATGTGCAGG
ATTCGCGAGTTTITGGAGAA
TTCATCATTCACCAACATCCA
TTCTCCGTGAATGATATGTGTTG
ACGACGATCTCATCGATTCC
TCCACTITCTICAATTGCCCC
GTACAATTCTCAAGGCCCCA
GGGAGGTGGACTACAAGGAA
TGAGATTTTGCCTTTGGACA
TGGAAACGATTTCCTACCACA
CGACTTTTAAGATTTCGTITTAGAG
TGAATCACCAITTTGTGTGGA
TGTGGTAATCTGGTGAACGAA
AAAATCGTACGTGAGATATAAGAAG
ITGAGGTTGATGCATTTCACA
TGAAAAAGGCTACACCCACC
CATTTGCACCCCCTAACATT
GGATTCACTAGGTGGAACCTCA
CTTTCTITTTCTTAGAGACCTTGAT
TGCAGTCACAGTGAAAACTGAA
GGTTGTTGGTGTAACGACCC
CCCCATGCAACCTTACAATC
CCAAGATCGATGCTTTGACA
CATGACATCTTCATCCACCG

CcM2373	FI254204	(CAA) 5
Ccm2374	F1254229	(AT)24m(AG) $6 \mathrm{~m}(\mathrm{GA}) \mathrm{S}$
Ccm2375	F1254309	(TG)7n(TG) $10 n(\mathrm{TG}) 5$
CcM2376	F1254348	(CT)6
CcM2377	F1254354	(ATC)8(Cata)9
CcM2378	FI254387	(TG)6
CcM2379	F1254391	(TC)10
CcM2380	F1254506	(T)10n(AAT) 15
CcM2381	F1254593	(T)IOn(ATT) $5 \mathrm{n}(\mathrm{CA}) 5$
CcM2382	F1254662	(TAA)S
CcM2383	F1254694	(GA) 3 (GAAA $^{\text {5 }}$
CcM2384	F1254722	(AT)8
CcM2385	F1254730	(GA)6
CcM2386	F1254743	(TCT)6
CeM2387	FI254744	(AT)16GT) 22
CcM2388	FL254797	(TA)8
CcM2389	Fl254867	(TC)8
CcM2390	F1254874	(Tat)5
CeM2391	F1254895	(T) tact)6
CcM2392	F1254995	(GT)6
CcM2393	F1255019	(TG)6
CeM2394	F1255036	(TC) 12
CeM2395	F[255041	(TTA)8
CcM2396	F1255047	(GATGTG)6
CcM2397	FL255060	(A) $\mathrm{O}_{\mathrm{n}}(\mathrm{CT}$) 7
CcM2398	FL255202	(TA)20
CeM2399	Fl255232	(TA)9
Cem2400	F1255247	(TTA)5
CcM2401	F1255257	(AT)IO
CcM2402	F1255286	(TA)30
CcM2403	F1255319	(ATT) 5
CeM2404	F1255369	(GA)7n(TG) 5
CcM2405	Fl255460	(AT) 11
CeM2406	F1255466	(AT) 10
CcM2407	F1255572	(TA)23
CeM2408	F1255588	(GTT) 5

$$
2 \leq 7
$$

区

CGIGCAAAATAATTGTCCAAAA
CGGCAAATTCCCAGTAAGAA
TGGACTATAGTAAAGGACACTGAATTG
AATAGAACCAACTCTACATTGAATTTT
TCATAGGGGTGAAAAACCAAA
GCGTAGAACATGAGTTATTGAATG
TGGTGAAGCATGTGCAGTCT
TTTAACATGAGCGCAGATGAG
GCCAAGACAAGTCAAAAGCC
TTGAGCGGTGTAATACTTAGTAAAAG
ATGTCCAAGATTGCATCCAC
AGGCAAGAAGCTGCTGAAAG
GTGCAGTTGAGGAGGAGAGG
CAAAACTCAACCCAAAATTTTATT
TTCTTGAATTTTCTCAAACGAAA
TTGTGGCAACCTTTCACACT
TGCATTAACGTGCACTTGCTA
CTGCTGCGAAGACCATCTAA
TCACACTTCAATGTGCCTCA
CATCAGATCCACCACTGCAT
CGGTACAGGTAAGAGGGCTG
GATGCATTTCTCCGACACCT
TCAAGAATAGGAAGTGATAAGGAAA
GAAAATGGAAAGAATCGGCA
CACATGATTATTGAAATTTTCGTTTC
TGCAAAATAAATGAGGGGAGC
TTGGGAGAGGGAAGGAGAAT
CCCTATCAACCAAACCCAGA
ATGCATGCCCTCATCAAAA
TTGCTTTCCTTTGCATGTTTT
CATCCATCCTTTCCCAATGT
TCATTTCTTGATTTGATTTACATGC
TTTGATACCACTGCGTTTCG
CTTCGACTCTGACTTTCCCG
CCCCCTTTCCTATGTTGTTG
TTGACAATCCTCATTTGCCA

TGAAGGTTGATCCAAGGAGG
TTTTCTTCCATTCATTTTCTCTGIC
GCAGATGAAGTGGTCAGGGT
ACCAAATCCTTGCCTCTGTC
ATAAGAGGCTGTGTCCGTCC
CGTAAAGATTTTGCCTCGGA
AGGTGACTGCATAATGAGACAAA
AATTGAAACAGTTGCGTCCC
CAACTACGCGCGTTTTGTAA
GGTGTGTCCGGACCGTTAT
AACAATTTGATGGCAAATGACTT
AGGAAACTGAATTGGCCCTT
GGCTCTGAAAAGCCAAGAAC
ATGGGTGGTGAACTCACGTT
TTTAGGTCGATGGCTGTCAA
GCTTGGGCATAGTTCTCAGG
TCGGCCTGCATTTTAATTTT
CAACTTGCTGCGAATCAAAA
CAAGGCTCTAAATTTCGTCCA
TGCTGCAAGTTACCAAAACAA
CCAAGACTCCTTAGAGCTTGAAA
AGTGGCATTTCATTCGGTTC
AACCTCTTCCCACTCAACCA
CACTTTTCCTCCTAACCGCA
TATCCACGGATTTTGGTCGT
GGAGGCACATAGGCATAATAAGA
TGCCTATTAACGCTAGTGCAGA
TCACCCCAATTGCTATGACA
ACCCTTACTTCCAAGGGCAT
TGAACTATCAAGGGAGGTGGA
AGGTGGGTGCTTTTGAATTG
TGTCGATAATGTTTGAACCACTG
TGCATGCATGAACCTCATTT
ATAACCGGAAACGACGATGA
GCATCAATGATTGGCTTCAA
GCACTTCATCTTCCGGTACAA

[^5]CTGCCTCCATTGCATTCATA
TCACACTCGTATTTTAGGACAGG
AGGCACCACGAGCAAATTAT
ACTCGCTGTCTCTAGCACCC
TTTTTCTTCTCAATTGCGTITTT
TTGTGGCAACCTTTCACACT
ATGATGGACCATGGCTITCT
CAGCCATATTCGGAGAAATCA
TGGTTCTTCCATGCACCTTA
CACCCCAGTAAGTGGCTTGT
GATGCGTAATTTGTTTGGGG
AGCCCTTGTGCAGTTATGCT
CTGTTATCCAACCTGACCCG
TATAACTGGTGGTGGTGGCA
CCAGATGTGTTCACCAATGA
AAGGGGGTCGACTATTGATT
GAAGCCTTCCTTCCAAGGTT
TGTTTGTCTGGCCTGTTITG
CAATCCAACCCAATGTTTTGA
TTCCCAGTCCCACGTTAGTC
GTTGTGTGGGCAGTTTTCCT
CCCACCCGTAGAATTTTTCA
AAATATTTTGGAGGACCAAAGCA
GACATGTTTGCATGTTAACCCT
AGAACGCCAACTTCATGCTT
TGGTGTCAATGAATGGCTGT
ACCTGCAGTATCCGCAACTT
AAGGTCACTTCAAGCTCCCA
AAGTGTTAGGAGATCAATITTTCG
TGCTTGAGTTACACACTTTCCAA
AGCGGTGAGAACGTTGAACT
CGAAGGAAGATCACTAGCCG
TGAAAGGTAGCCAAAAAAGCA
TTTCCCTTTTCACCCAAAAAA
GCCAAAAAGCACCTTCTTGAT
GCACCCTTGTACTATCACCGA

TTTAATGGCCTTTGCACCTC
ACCTCCACCGACATTCAAAA
AGCACCATCAGGCAAGAGAT
CTTCGAAGGGAGAAGAACCC
GGCTTACAATTAATGTCAATGGAT
TTTCAAAATGGGCCGTTCTA
TCCATGATGCATGATTTGAAG
AATCGGCCGTGAGTTATGAG
CCACAAATTAGGGAGGAGACT
TCAAAGTGGGAGGGTAGTGG
CATCTCAGGGATTCTAAATTTCAT
CAACGAGTTATATATAGTGGGAACTCA
TCCGGTGTACAGTGGTGTGT
AGCTTGGGTGCGGATATAGA
TCAATGGTTGAATTGTTGAAATG
CGATAAAACATTTAGCGGCAA
AACGGACACTTGTAATGGGC
TITGAATTTAATAGTGCAAGAAGATCA
AGCGCAAATGGAAGTTGTTT
ACGGCCTAGTTTCGTCACTG
CCAAACCCCACTTTICTGTT
GCTTTCAAATTGGGACGAGA
IGAACAACAACTTCAAGGTAATCAA
GTGTAACGATCTGGCAGGTG
CGGCATTTTGGTCAAGATTT
TCCAGCATAGCAGAATGAAAAA
CGGAGATATTTCATCCGAATAAT
GGGAGGTGGACTACAAGGAA
TTCAAACTTCTTITAATGTGCGA
ACGCTGCTGCTACACTCTTG
ATCAAGCTCTCCATGCTCGT
CACATGGAAACACAAAATACACC
AAAGGGAACAAATCGTATTCAC
CCAACCTCTCAGCACGGTAT
CCCCAGGACCTAATAATGTTAAA
GGGTGCTTCAACTCACCTACA

CcM2445	F1257060	(TTA) 5
CcM2446	F1257108	(TA)6
CeM2447	F1257109	(TTA)8
CcM2448	F1257145	(AG)7
CcM2449	F1257153	(A) $10 n(T A) 5$
CeM2450	FI257222	(TC)6
CeM2451	FI257284	(AT) 11
CcM2452	F1257316	(ATG)6
CcM2453	F1257332	(TA) 12
CcM2454	F1257376	(AAG)
CeM2455	F1257386	(AT) 16
CcM2456	F1257443	(GA)8
CeM2457	F1257452	(TAT)\& (TGT)9n(TGT) 5 n(TTA) 8
CeM2458	F1257476	(AAT) 5
CcM2459	F1257513	(CT)5n(TG)5(TA)S
CeM2460	F1257603	(TA)H0n(AT)9
CcM2461	F1257604	(AT) 22
CeM2462	F1257641	(A) 1 ln (TTTAIS
CcM2463	F1257642	(AT) 11
CcM2464	F1257649	(AG) ${ }^{\text {(1) }}$
CcM2465	F1257679	(TC)8(AC) 6
CcM2466	F1257749	(ATT) 5
CcM2467	Fl257822	(AT) 12
CeM2468	FL257834	(AT) 24
CcM2469	F1257855	(AT) 7
CcM2470	F1257870	(AT)6
CcM2471	F1257920	(ATT)6
CcM2472	F1257931	(GT)6
CeM2473	F1257969	(TA) II
CcM2474	F1258061	(ATA)9
CcM2475	F1258066	(TGA) 5 n(AG) 5
CcM2476	F1258116	(AT) 7
CcM2477	F1258145	(AAT) 5
CcM2478	F1258204	(AT) 6
CcM2479	F1258216	(AT) 5 n(AAT) 5
Cem2480	F1258297	(AT)\|2n(TA) 18

Catcantatacttanaggttcanca	tgGtagcaatgitcgettanttgac
GCCCATTCTGGGCTACTAAA	CAAGCACGCTTAACTGTGGA
CCGTCCTATtGTGTTAGTTCTCC	TTACCTTGCAATGCACGAAG
aCCatTCTTICCCCCAaAAC	GCTCACAAACATGAGTCITICAA
tGTagancatgagttattgancgan	attgggtcccagtttgattg
tgctanaattggatgaatgitt	TTICTTCTCACTTGATATCCTCCA
GTCGTTTCTCAGGTCCCAAA	gtcceagcctgancaacatt
gTCantaactcgccecaana	TTCTTCGTTGCCCATCCTAC
tGgTGCCCTCCAATTTCTTA	gTaancaccaattittgttacatca
AAACTCTCCCTGTGGTCGAA	agtacaacgccetcatggac
GAAAGGCTCCAGCAAAAGIG	GCatcattcttctgtgggat
Ctgangcaatggaggttggt	acaccgiantcattcagcec
cttggctcatggitggetat	gangGgcgitacaccaaana
gGancCatcggttgancatc	taagantcgancgeanccet
tTCCGTGTCAATCAAACTCG	CTTCCAAATGTGTGGGTGAG
gatctgagcttccaccganc	AAGCGCCATGTTTTAGTGCT
CGagcctitctattataccacce	actitganactanaiaggatctetce
gGCaCaCCTTTTATGCCCTA	Gangtcccattttggtgagga
CTactCccattgccacccta	tggagangttggagaccatgt
tGCGTaCATGATCTCGITGT	gattrtcatgcangcaatacct
anccccaggacctantantgit	gGtagctaanaagcacctic
taAataggggcaaggggtg	Gaggittctcactctcccec
tCCaCCICCATCaCtGGait	tgcatgcangacacanatca
tTttcatcatcacactcggaa	tgcccactcattatcantcaa
CCtCGGaagagattgcagit	tgatganttgggangcanca
ttgitaagtcanaigacgatgicc	gGantganacattcanagcana
CAaCCCCagagttgcctcta	agGgctetaggcacaatcac
CAAGTCATCTTATGACCAGAGGG	tcagggtcantacangancanaan
Catgatgacatancacgiggc	GGTCATTAACTCGATAACTITTGTI
CCCATGTITTCTGTITGGCT	tTttgcacccatttgatcct
anagGgancanatcgtattcac	gataggtagccanaaagcacc
atcaaccacaagagctgcct	trcacatcttggitgatgcc
GGAATGTCCTTGCACCAGTT	GGAGGCAAGTTCGTATGGTC
anacatatcgangcanggGc	gGaggattaggitgcaatacg
CTCGATtCTtGGagcganac	acagcantgacaccaantcg
aAATCCCACCCCATTCTCTC	AGGTCTCAGGGTCGAAGGIT

주
 \％－

 高 $\stackrel{\circ}{\circ}$ N 会 告 ò a F1258783 F1258870 F1258879禺 $\bar{\Omega}$ 就会气㐅 合 픔荡资 葉登 $\frac{0}{3}$ $\frac{2}{4}$ N会侖 운 $\stackrel{y}{2}$ 륜先 CeM2483 CcM2485 CCM2488 CcM2489 CcM2490 CeM2492 CCM2493 CeM2496 CeM2497 훈 N令己范 CeM2506 CcM2508 엉 CcM2S10 CeM251I \sum_{0}^{0} $\frac{m}{n} \frac{\pi}{N}$ $\frac{n}{n} \frac{\infty}{n}$

TCTTCCCCCAAAAACAAAAA	TCCTGAATATGGTTAAITTATGGAC
CCAaCGagacccttgttitg	ticanttictcancgcagga
CCCGATATAAACGAATCCCC	gatancanacggggcagita
gCtitanganggagggceac	TCCTCGGAGTGTATGGCTTC
acggcancctaatcctcctt	gGTCTGCATtCCattaacatca
GCGATTCATTTTTGGCTGAT	tgitcgrangganatatgacgg
tTCACACAACTTITGCGGAC	TTGGTGACAATGGTAGTAATGAAAA
gGgaggtggactacangGaa	GCTTGTTTCGTTTTGAAGGC
CAACGGTTGAATCCTTGAAA	CATGGTGCATTCATCTTGGT
CCCGACTAAGTCCACCAAAA	AACGGCTCAACGGATAAACTT
agangggitcanatgacactangta	AACCGATITAAAAGAAAGGGIAA
TTATTTCTTGCAGATITTCTTGC	CaAatcgatgtgagaittgagg
agantctcggccagcagtta	tgGggattitaggtgctttg
ttggctttgttgttganagc	aAaAtatattgttgggacttcttatca
CGacteaccetctgettcte	tatcgitgtgcanaggacca
gTgGatigctigggittge	ancanaccetccaccaanca
Cacatcantatacttanaggttcanca	tgGtagcantgitgcttaatga
TTCCTCAATGAaCCaacctg	tTCTAATGTGACACAagccacc
CGGCAACCTTTCACACTACA	agancgigccattctggitt
taccettcgeancancanca	CTGAGATAGTCCAGCGGCat
aAGTCTCTTAGATGAATTGCTTCG	GGACTTTGTGTGCTITGAAGG
TCTCATCGCCTTCTCAGGTT	gCagcatagctgantgcana
tTCCCTacgacacgitctce	AagGcgigattangtggigc
tCTATITTGTTTGTTTTCTTTCCA	GTatggtggggtatgcgagi
gCctatanataggggcaggg	tGgatangcggagctganct
a ${ }^{\text {accegtanatanttctictcaca }}$	AAATTCGTTGGAATCTTTGCT
a ${ }^{\text {agctectcaccagCattg }}$	tanacancganganagcgca
tgi ICCCCTAGATAAGCTCCA	TTGATAACTCACTGCACCACTTT
tgitttccatcaanaccaagg	cCatigcaatactitgagtcca
gGtcgettgagaattiactice	tgittgttaccatgcceana
gGCCTATAAATAGGGGCAGG	CAattatccccacaccctig
aAagGtaancatgcatagtgcaan	aatatahatttganggagatgitcatt
tgtagancacgagtiattgagtgga	gGaAGACTTACTCTTGGAATAAACAAA
AAAATGACCTGGAATCATTGG	trggitgatattgtgatgatgc
afagGanamatctcgcagca	tTgatcgatgancacangagata
agGagtggccanagttigaa	tCCTATGGTGTItGAagGCa

	CcM2553	FI260872	(A) $14 \mathrm{n}(\mathrm{A}) 10$
	CcM2554	F1260922	(AC)6
	CcM2555	Fl260992	(GA)6
	CcM2556	F1260997	(A) $14 \mathrm{n}(\mathrm{TA}) 22$
	CcM2557	F1261011	(GTT)7
	CcM2558	F1261023	(TAA) 10
	CcM2559	F1261037	(GTT) 5
	CcM2560	FL261052	(AT) 2
	CcM2561	F1261107	(AC)6m(AC)8n(AC)6n(CA)5
	CcM2562	F1261110	(AAT) 7
	CcM2563	F261135	(TA)6(ATAA)5
	CcM2564	F1261182	(TCC)S
	CcM2565	F1261220	(TTA)10
	CcM2566	F1261257	(TC)6
	CcM2567	F1261265	(TTA)8
	CcM2568	F1261290	(TA)23(TAGA)6
	CeM2569	F1261463	(TA12I
2	CcM2570	F1261464	(TC16
	CcM2571	F1261486	(AT)8, AC)6
σ	CcM2572	F1261501	(TG)6
Σ	CcM2573	F1261505	(TC) 7
	CcM2574	F1261506	(AT) 7
	CcM2575	F1261567	(GATGTG)6
	CcM2576	Fi261578	(TG)6
	CcM2577	F1261622	(GT)7
	CcM2578	F1261626	(ATA)6
	CcM2579	F1261651	(TA)IO
	CcM2580	F1261718	(T) 2 (ATA)5
	CcM2581	F1261726	(AT)6
	CcM2582	F1261785	(GA)6
	CeM2583	FL261821	(AGAA)5en(AGAA)5
	CcM2584	F1261836	(TCTT)S
	CcM2585	F1261862	(TA) 10
	CcM2586	F1261872	(AT)10
	CcM2587	F1261874	(TA)7n(ATTIS
	CcM2588	F1261881	(ATAA)6an(A)10

CACAAAATGCAAGCAATGGA
ATGGCCAAGGTACTGGGTTI CATGTTITGTGAGGAAGCGT CAAATGGATTTGACCAAAGTAAGA TTTCTCCAAAGTGTCATGCG gaCtCATTCGGGGCTCATAA TTTCCATCTTGTCCTCATGC TTTGCCTTTAGATTGACCCG TGTATCAAAAACTGTAAATTCAACAA AACATCAAGAAGGGTCCACA GTGAGAGCCTTGTGCACTGA TCGTCGTCGAAGTCTTGTTG CTITCTTTTTCTTTAGAGACCTTGAT CGACTCGGACACAATTCTCA CTTTCTITTTCTTTAGAGACCTTGAT GGATAAAGGGCTITCTCGCT TAAAAGTGTAACGACCCGCC ATCAAAGAAACCACAACGGC TTGCTTGAGAGCTACACCCA TCCATGTTGCATGTTGGTCT TTGGGAAATAAGATCATTAGGGA AACCCAACCCCATTGAGACT TGAATCACCATTTTGTGTGGA ACCAAGCCTTTTCAAGFGGA AAGGTGTGTCTGTGTGTATGTTCA TTGTGTTACAGITICACTAAAAGACC CTTAACATGGCCCGTGAAGT CTCCGTTGTGGTCCATCTTT AAATGCCTAAAAATCCAATCGT GGTGACTCAACTATTICTCCGC TCCCTCGGCAAGTTAAGAAA GCAATCACCATCCCCAAATA CCATTACATTCGGGCTTGAT GCTCAGGACTCCATTTCACC CGTACACCAAATAAAGTAAACCCC ATTCCAAGGACCTCAAGCAA

AAAAACTGTAGGCATATTAGGGC	30
TCACCAGCAAAGCAAAAGTG	131
TTCCCTCCCTTCTCACTTCA	179
TGCTGGAAAGAAGTTTTTGGA	210
TGACACCACCAACATGGACT	265
AAAAATGTTTGTGCATTTTCAA	255
CGGAACCACACACAAAACTG	181
AAACCTAAGACACATGGGAAACA	272
TTGGAAGAAAGAAGGACGCT	274
ATAGGATGTGACATTGGGGC	259
GGCTTGCACTGAAGCAGTTT	267
GGGAGGAAGCGAAAGCTAGT	242
CCATGTGAGCTCCAAATTCA	265
GTGGCAACCTTTCGCACTAC	131
TGGATCGACCTGCTCTGATA	230
GGGCTGTGTCTCTIGCAGTT	235
GGGCTGACGTtGTATTTAGTTG	242
CCGATTGTTGTTCACGAATG	242
CATGITAGGCCACCTITGGT	176
GGTCCCGAGAGTTGACAAAG	213
AGAAGAGGGACATTGTGAGTGA	180
GCCCTTCTCATTTCTTTTTCTTC	260
TTATCCCTAACCTAGGGCCG	240
CCACTTGGACTTCCACCCTA	213
AAAAAGATTCAAATTATCTTTGCTG	227
TGCAACACATCAGCATAAACC	276
CCGGTATTATTTGAACCCTGC	139
AAAAATGGCGGATACCAATA	269
TGATTATCAATCCCATTITCTTTT	159
TTATATITTCCGCGAGGGAG	127
TTTGACGTGGTGAGAGTGTG	200
CTGGTGACCAATGCTGCTAA	232
AGCCTTTCGAGAAGCTGTGA	121
TTGGATTGTTGCAATGACTGA	205
CCTGCAATAATTCATTAGATGTGC	251
TTTGAAGGGGAAATGGAAAA	278

tCACCAGCAAAGCAAAAGTG 131
TTCССТСССТТСТСАСТТСА 179
tGCTGGAAAGAAGTITTTGGA 210
TGACACCACCAACATGGACT 265
AAAAATGTTTGTGCATTTTCAA 255
CGGAACCACACACAAAACTG 181
AAACCIAAGACACATGGGAAACA 272
tTGGAAGAAAGAAGGACGCT 274
ATAGGATGTGACATTGGGGC 259

GGGAGGAAGCGAAAGCTAGT 242
CCATGTGAGCTCCAAATTCA 265
GTGGCAACCTTTCGCACTAC 131
GOOCTGTGTCTCHIGCAOTT 235
GGGCTGACGTTGTATTTAGTTG 242
CCGATTGTTGTTCACGAATG 242
CATGITAGGCCACCTITGGT 176
GGTCCCGAGAGTTGACAAAG 213
AGAAGAGGGACATTGTGAGTGA 180
GCCCTTCTCATTTCTTTTTCTTC 260
240

AAAAAGATTCAAATTATCTTTGCTG 227
TGCAACACATCAGCATAAACC 276
CGGTATTATITGAACCCTGC

TGATTATCAATCCCATTITCTTTT 159
TTATATITTCCGCGAGGGAG 127
TGACGTGGTGAGAGTGTG

AGCCTTTCGAGAAGCTGTGA
TTGGATTGTTGCAATGACTGA 205
$\begin{array}{ll}\text { TTTGAAGGGGAAATGGAAAA } & 251 \\ & 278\end{array}$

	CcM2589	F1261902	(TA) $10 n(A T) 9$
	CcM2590	F1261910	(GA)6
	CcM2591	F1261925	(TA)19
	CcM2592	F1262019	(GA)16
	CcM2593	Fl262022	(TA)6
	CcM2594	Fl262032	(TGT) 5
	CcM2595	F1262092	(AT)14
	CcM2596	F1262172	(AAT) 5
	CcM2597	F1262182	(AT) 19 n (AT) ${ }^{\text {S }}$
	CcM2598	F1262190	(TA)S(AT) 5
	CcM2599	F1262198	(A) $1 \ln (\mathrm{TA}) 8$
	CcM2600	F1262334	(AAT) 7
	CcM2601	F1262339	(AT)18(T)In
	CcM2602	F1262360	(AT) 7
	CcM2603	F1262410	(T)10n(AT)5
	CcM2604	F1262497	(CT)6
	CcM2605	F1262506	(TC)8
	CcM2606	F1262526	(TAT) 5
N	CcM2607	FI262538	(ATA)6
	CeM2608	F1262548	(T) $12 \mathrm{n}(\mathrm{A}) 11$
	CcM2609	Fl262590	(AT) 24
- へ	CcM2610	Fl262592	(GT)8
	CcM2611	Fl26261]	(TA)9
	CcM2612	F1262653	(ATT) 5
	CcM2613	F1262667	(CT)6
	CcM2614	F1262698	(TTA)7
	CcM2615	F1262745	(AT)8
	CcM2616	F1262877	(TCT)6
	CcM2617	F1262938	(TA)7
	CcM2618	F1263062	(TTA)5
	CcM2619	Fi263093	(TC)12(TA)17
	CcM2620	F1263127	(GA)16
	CcM2621	F1263134	(AC)7
	CcM2622	F1263138	(AT) n (TC)S
	CcM2623	F1263207	(GA)II
	CcM2624	F1263230	(A)10(TA)8

CGATAAAACATTTAGCGGCAA	AAGGGGGTCGACTATTGATT	279
AGAGCGAGCAATCACAGACA	AGCAAGAATCCTCTACCGCA	280
GCAACTACGCGTGTTITTGTA	CACAATCTAATCCCCCACCA	273
GCCTAATGCCTTCTCACTCC	GCACCGTTCTACCACCTCTC	162
CTTGATCCATCTTCGCATGA	GGGAGTACATTAGCATTCCCC	136
GTGATAAAGCCCGCAACATT	AAAATGCAACAACGGTCACA	148
CGCTCTGAAACCATGTCAAA	AAAAACTATATIGGTGTGAGTTGAAA	225
TCATTAAACCCCAGGACCTAA	GGTAGCCAAAAAGCACCTTC	279
TGAAAGAGATTAGTTCTCATATGTGGT	GTAGAAAGCACAAAAGGTAAATACG	221
TCTCCTCCCAATTTAAGGGG	TCAACAATAAAATTGTGTGCG	253
GGGTTTGCTTCTTTGTCTCCT	TTGTTCACACACACACAAACCT	258
GAGCACTTGTTCAATACAAGACTCTAA	tGcatanaicacgttgcatana	211
CCGGTTATCCTTATTCGGGT	CATAAGACCCCCAATCCTCA	271
ATAAAATCCCCACCCACGTT	GCACAAAACCAAAGGCTCTC	258
GCGTAACCATCTTCCTAACAGAA	AATGTTCCAAAAGTCATACAGATTC	280
GTGGTTAGGAAACCTGCCAA	TGAGGGAGGAATCAGGAAGA	238
TCTCCTCCAGACTCCTTAGAGC	CTTTGTGGCAACCTCTCACA	113
CTTTCTTTTTCTTTAGAGACCTTGAT	IGGATCGACCTGCTCTGATA	227
CCGTTGATCAATCATCTTGG	ACTGCCCGCCTCTACTCTTT	134
TTTTGTAATGGTTGAGTTAGAAGAAA	AGCACTTTCCAACAGCAGGT	111
TGAGTAGGCAGATTCCATTTGA	CAAGTGAGGGTCGAATTTCC	190
GGGAGGTGGACTACAAGGAA	AAGGTCACTTCAAGCTCCCA	271
tCCGTACTAGGTTCTTGTTCTTGA	GGCTTGTGGCTTTATTGCAT	228
TTITATGAGAAAGGAATGAAGGATG	TGAATGTGTGAAATGACTCTCG	114
GGGTTTAGGATGCAGAAGCA	GGTTGAAAAGGAAGAAGACGG	164
TTTGATAATCGTGAGCGGTG	TCCAAAACTCACCAAGTAAAAGC	217
AGAGGCCATTGTTTGGTTTG	GCATGAGGGTGTGTTGAATG	180
TGAGAAGTGGCTAAAGCCTGA	GGGGGTGAAGAGGTTATGGT	149
CAAATTTCATCGTAATTTTTGAACA	TGGATTAAATCGAGAATATTGAACA	150
TGGCGCACAGTTATTAAACTT	GCTCTTAAATGACAAATTGTGAGG	208
CGAGTTATTAAGTGGAGTAAATCTTGG	TGGAGGAACCTCAAATCCAG	262
CAATTCAATTCACTTGACAACAAA	ACTAGACTCCGCCAAAGCAA	102
tGCCCGACATATCAATAGCA	CTTITGGGCTTCAATGTGGT	110
AGAGAATGGCAAGCCACAAT	CCGGTCAAAGCGAACAATTA	259
TGTGGGTTTGAGCCAATTTT	AACGGGTCGTTCCAAATTC	280
TCCGGTTCITGCTTCTTTGA	CAAAAACAAAATTTGGAAGCAA	248

Ivvivvojoivjlievivovos	Luıว
	vopulsovvavvvvaloje
ivjovopurvopllile	qJovvivopopovarvolu
LoLojuivoplolouno	HoDionojviovolvvvos
jvioooivavopivvjuovv	vovopolvjvvvolopovav
LLoolvolulouloooloo	vojovovvalvvajvvivods
voluvojovvolovvojuol	juvoovolvaivovojojvi
vvooivvolliolvoooovv	vovvjuvooivovoovvvil
วuvoovolvolvovojojvi	VVOVLLIODVLLLOLJHOOLTVLIL
voivovrvajivajvjovovilil	Johojlurlivilovovvoivod
دวumvoovouvvoojav	LovvojviovLulivolivojvvov
Jovvooolollionlogviv	Sovvvojiojllivvvajol
ovvvovolioivivvvoovvvol	LoLJovvoluvoloplull
goopvivovopivvilvilvivioovo	LuvVivooonovovoonion
Jovijvojuivvogovajo	vvvovijvoniogvooovvol
movvoiomojuvovioivov	avvopvovzujomolvjoiv
vodevvallojvoovvvool	jolovovvovvovvogjoo
Joolovolliogvoplovvo	Jlıjoovjlooliojvico
Solivojvvilivvvilojvve	volojvivomvacheivas
IvJollonlovjlojuvod	VOLDLOLDLJUVVLVOVVOLLL
ivjovovavvjoolvyjovy	LOOVOLLOLIVVVL．）V10000L
vooopivvilvovivvvjivvvol	H10VODOIVHOHLOLOO
دLכวvวojvvoวviojvali	vovopvvonoplivvajuivy
＊Vvivvviloljolivioivojvill	oluvovolojutovoivo
VDounvvolivilovolionl	H．JLVIVILJכoooigo
DJivooojlivavi．jojvvi	oovvoujvvooivvvvoviva
＊VVOOIVLLLOOLVOVVOVOD	vvvolloovovilool．jvovvos
voluvojuvoluvvojusi	Livivoujomonoovivo
2vอiousliogloovooll	
SOLIVOL9OOVOOLLLOLV	vocolololivovivfriovje
Hoivolojoplivoovios	ovaryjvomjumplovol
	ovvvovjuolojopjvivo
อ\％\％volvarvojuvarojol	อolouıovoollı．jvjvv
．vแoumonıvolvojoov	oljlojuvovopojolvliv
L．Loivojvilvvivivivvjosiov	Oojvilolluvivvvoljuvon
johlovvoliopuvjuliv	

VODLIJJVVJVVVVว10） VOOVVIVODDDDVVマVOLЦ Ц10O1500）V1DVOLVVVOD VOODVOVVILVVOJVVIVODJ OOVODVDLVJIVDVDJJJVI VOVVOJVOOLVOVOOVVVDL VVOVLLIOOVLLLDLOLLOOLOVLLL JOLODLLLVLIVLLDVOVVDIVOD ทマททว）

LOLOOVVLLOVDLLOLLIL LIVVLVDODOJVDVODLOD LVVVOvovvvoวooIvoวiv コOLDVOVVOVVOVVวฺว1อD OLIVOOVOLODLLOVLDO

LODVOLLOLIVVVL．）VLDOOOL H10VODOIVLIOLLOLO）
 L．DLVELVLLOJOODLDJ OOVVOJJVVOOLVVVVOVIVJ

 OVVFVJVOODHLOOLJVOL OVVVJVOLIDLOODOJVLVJ ODLO．LJOVOOLLLLJVJVV OVFLOLLLVIVVVOLOLIVOD DJLLLODLルマJOLDLLL

$9(1$ PV）	8Stasid	0992W03
	01069 It	6S97w
£（V1）	08Et92ld	859\％W5
S（voruzz（ov）	¢Sfteclid	LS9\％W²）
6（1V）	て¢etocld	959\％W9
İ（V1）	91019 IIS	SS9ZWナ
$9(J 1)$	blot9ad	tS9\％${ }^{\text {a }}$
IZ（1v）	086892ld	\＆S9\％Wง
9 （VS）	85699215	ZS92W）
6（IV1）	056997d	1592w
9 （IV）ug（JV）	L16992ld	059\％Wง
8（J）	0089971	6092W0
019）uctiv）	ve8f9zld	8897Wフ）
$9(01)$	L08992td	＜t9zW9
$9(19)$	t08E97d	9692w
S（JVV）	86L997］	St9zw
$9(01)$	16LE9ELd	torw
8（1V）	29LE97d	£t9\％Wง
9（IV）	zelegzid	ても9zWจ
$91(10)$	solf9zld	169\％W5
てI（LV）	f0Lf971］	0692w
$01(1) u 01(\mathrm{~V})$	sc9equld	6\＆9\％W9
8（191）	ts989］ld	8£92Wง
zi（VI）	609892ld	＜£9zW
6（VO）US（OV） $\mathrm{U}_{6}(\mathrm{OL})(\mathrm{S}(\mathrm{VL})$	E95¢9］ld	9¢9\％W0
S（VOVI）	$86 \pm 59 \mathrm{ad}$	\＄59\％W0
LOL）	2Ltequal	ゅ¢9\％Wフ）
9 （OL）	2tty9ald	£¢9\％W゚
8（IV）	て1ty9ald	て¢9zw
8 8（IV）	sots9zld	189\％W
IICOV） $\mathrm{u}_{01}(\mathrm{~V})$	1L\＆¢9でI	0¢9\％W•）
$9(\mathrm{VL})$	£¢¢¢9］d	629\％W
9（IV）	692¢9zld	829\％W
S（LD）	6tze9てid	［z9\％Wง
zz（VI）	1t2\％97d	929\％W0
OI（VI）	I¢て¢9てIA	Sて9\％Wフ）

CcM2661	F1264500	(ATT)
CeM2662	F1264535	(TG)6
CeM2663	F1264545	(AT)7(GT)IOn(GA)7
CcM2664	F1264568	(AGA) 5
CcM2665	F1264613	(ATIzo
CcM2666	F1264652	(AC)6
CcM2667	F1264679	(AAAT)S
CcM2668	F1264688	(AT) 12
CeM2669	F1264867	(TA) 26
CcM2670	F1264871	(TA)23
CcM2671	F1264935	(TA) $1 \ln (\mathrm{~A}) 11$
CcM2672	F1265092	(TG) 10
CeM2673	F1265097	(TA) 32
CcM2674	F1265109	(Tat)7
CcM2675	FL265110	(AT)29
CcM2676	F1265182	(AG)7
CcM2677	F1265237	(T) $10 n($ AT $) 17 \mathrm{~nm}(\mathrm{AT}) 6$
CcM2678	F1265286	(ACC15
CcM2679	Fl265305	(TC) 7
CcM2680	F1265423	(TAA)6
CcM2681	F1265479	(TA)21
CcM2682	F1265483	(AT)6
CcM2683	F1265496	(CA)8n(AC)8n(AG) 5
CcM2684	F1265498	(AT)6
CcM2685	F1265594	(AT) 5 n(TA)7n(TA)8n(AT) ${ }^{\text {a }}$
CcM2686	F1265603	(AT) 11
CcM2687	F1265608	(TG)6
CcM2688	F1265609	(TA) 15
CcM2689	F1265616	(AT)6
CeM2690	F1265624	(ATT)10
CcM2691	F1265637	(TA17n¢TA)12(T)16
CcM2692	F1265652	(tatis
CcM2693	F1265657	(TCT)S
CcM2694	F1265670	(AT)22
CcM2695	F1265676	(AT) $14 n($ TA) 5
CcM2696	F1265677	(AT)28

ELI	LVVVSLSOOLVVVODVDVOS	VVOVODLLODLOVIVIVOLDOLL	Ol（V）9tiv）	f9s99zld	てELZWจ	
$s p z$	JJVLVLLOOVIVOJVOLLOLLL	OJOLIVVVJVIVIOODL．00	S（VLI）	$8 \mathrm{bS997LH}$	1£（ZWコ）	
SSZ	V．LVLLLLLLOOLLVVLDOLLI	VOVOJLVIVVVVJVวJLLI	91（1V）	2tS992II	0\＆LZWか	
$9 E \%$		VJVLכOOJJJVOJLLLVVV1	9（VI）	80599 zlu	6てLてw	
261	JLOULOLDOLV1000LLIV	LOOV	$9\left(V_{D}\right)$	¢8t997ld	8てLzw	
602		LVVVJJoLVILJOVLDLOLVV	El（v）us（Jv）	2Et997IH	LZLZW3	
＋0Z	OOLVVODLVILVLIJVIVJIVOJV	VJVJJOVLLVLVVVVVOVVOJLV	$S(V \vee 1)$	Ltt992lid	9てLてw3	
｜t｜	VODJVVDLLVLLDVOLVVVVDVS	VVOOVVVDOVVVVJVJVVVOL	$s z\left(V_{1}\right)$	Dit993ly	sてLzw	
zยz	ODDLLJVวLDSLV．）VIV）	HVOOJบL．	S（IV）ustio）	s0b997lit	＊てLZW5	
082	マJVVVOVJLVVVOVVVODVDLLOVS	LDOJLVOJLVVVVVDVJVอ	01（IV）	66E992］	£てLてWゝ	
$\|t\|$		VOVVOJOLDVVLOLOOVVOOL	6（VD）	588992II	でしてwゝ	
\＆0Z	VOLLOLLLOLOLOOLOJ	JOVVDJLVLOOLSOLLLL	$8 \mathrm{I}(\mathrm{VL})$	958992ld	IてLZW9	
\＆9Z	VVVOLLVIVODLDVDODLDVV）	ODLOSLOVVVOLOOLIOOLI	8（IV）u91（IV）	80¢997ls	ozLzW9	
SIZ		VOVVJJVVOVOLVVLLVVOVJVOL．	tl（VL）	8L2992Id	61L2W9	
8 Ol	JOOLOLOOOLLLVOLJV	L．）	くつV）uzic）	Esz997lu	81してw	－
ELZ	LLOVVOLVVOVLLOOODLLLI	JVVOLDVวVVVวコJコLVJov	s（VVIV）	9ャ2992lu	（1LZW）	9
キ1て	JอVVVLLDOULVLIVVVOJLDVV	HLIOJOLVOVVLOLVVLVVIDLSL	9 （VIL）	8129971．	91くてW5	
ZLZ	IVODOLLLVOJVOVOVLDOI	＊100）VV100LDO0JLDL	9（VO）	881997ld	SILZW3	
S81	VOJJVVLLOLVOVDLJJJ）V	VOOLOLOLILVOJVOLVVOL	LOLOLVD）	6L19921］	カ1＜2W3）	
SLZ	DLLLILVVLIVOVLIVJJLILVIL	VOLLLIOJVOJVLOVLLVVVLLDOL	Stivazit	1L199713	£1LZWง	
501	OOVVODLIVOLVJJIVGOVV	101VDOOVDOLODVDIL．JV	$01(\mathrm{DV})$	69199713	て1してW•	
002	VVOOIVOOLOLDOLDVLIL		s（IVIL）	scl99zld	11LZW9）	
871	VOJOVVLDL．OVVOMLIIV	OOOVO）V	¢i（ V LV）	flo997ld	01LてWゝ	
S£z	JOVVOJLJVVLOJLLVVOJD	LOOLVLOMLVLOVDLOLOJOD	S（IV）	\＄6659711	60LZW5	
	JVOLIVVOOOVLJovวอ	LODODLDOVDOOVVJIVIJV	8（10）	6965971：	80LてWग	
S\＆z	LOVOOH．OLIOLDLOOD	LOOLJLLDOOOVVVIVOD	9iVDVL）ez（VL）	0S6S97I	LOLZW3	
｜t｜	OอJVVLOLOJVVVOLOLLL	DJLDLIVVDOLLVLIVOLVJVJ	ul（VI）g（VLI）	Sb6S9713	90LてW9	
102	OอO）VLDLDOJVJVOLOL	VOLLOVอVอVLルวLLILIL	L（VLL）	Sbrs9zis	solzwos	
LZI	VOLDOOOLVOLVIVIVOPD	VOLLVLOVLOMIOLVVOLSLVVVVV	01（LV）	0¢659zly	p0LzWs	
¢0Z	LOJVOVOLVOOLIVOOJL	VVVOVVVLLOLVOJJVIVOVOOVV	9（VLL）	t68597ld	£0LZW｀）	
$6 L 2$	J0HLOOLOLLOLVOJJ10V	VDOODV1．JJVVDOVVDISL	S（LIV）	128597id	z0LZW9	
z0z	OOOV	VVIVOLLJJVOVOVLLDLLLLOLL	8（VLI）	058597H	10L2W ${ }^{\text {d }}$	
$0<1$		VVVJLVOLOJVOVJVJLJVVV	S（1V）u91（1）	LE8S97ld	00LZW9	
102	LJVDLJVVVวOLLLVVVVV	VOODOVVOLVODVDLLIVOV	8（IV）L（10）	988597ld	6697W ${ }^{\text { }}$	
991	OVVL100LODOOOLVOLVVV	IVVOOVVวJLOOLVVVVVJ	$9(\mathrm{VIV})$	LZ8S92Id	$869 \mathrm{~W}{ }^{\text {P }}$	
でて	LOOOVOLLOOVOJ1SLOLVO	OJVLLOOJVOLODJLLOVOV	tI（L）u6（L）	18L59zld	［69\％W3）	

วovvoluvjuvivojovojv	แDVDLDJLOMOLV＊วJiv
ODLOOLJLLDOIVJovv	
＊OJLVLDOJVIVOLOOLVVVOL	SolvovLllidooviovvvo
jovvrovvojavvoovoja	JVOLOOVVOLVOJLכSOLIV
vVว0010LLLOOLOOVLu	
＊LDVvogvvolivouovjou	voviogvjvvovvralvjvjov
LJoLvollovovvvvivvvvilelovol	LLOVOIVLILLLLIVIVVI＊SOJIOD
vvoviovovolliouvvooni	
LLOLTVLIVOOJVวบบแ	マLวLoloopluvvzovvoos
JLOVVวOLVVแDJLI．	دlomomaloovvovioul
Luollivodojoloioiv	v6ioolvjolvolvvopoov
1כVวOLแOOV	JoLvovijovovvviojavavioja
Loovvivvouilolumil	Ovvovovvoviolvoluvavelivo
\％VDOLJVVOJVVOvJoLIV	دんDOJLVIOLOVVIOVOOLLLL
hiovvolivvovvojujoisi	vojvovjovoujolouva
1000100LVJJjLoviouv	vavvovvojvoolivoolov
	volulvvolujuvvoliopl
joplovvvojugjovvvvi	v6วvojvojivoliovoon
Lovovvorvooluopoplo	ovvouvvivonjvvvrodel
vVVODLIVVVVVLLOVVOJVVIVIOL	vvolivivoovopojouls
coollvvivavajojovyvol	วvLuvovovovoojogovo
voviovoojlijovvoovs	monvojliollopolvvovi
マOOOLOLLOOLOOVLนแ	vVVJLDollivavvoljogo
	Sovvorvoviovvojuvzoiol
9JJoonviojvviojulvil	V901910Lullvjovoivvol
1LכLJOLVOLUVIOLO91	
goosovvovizjvavyvoiva	LOLLOVVOLV＊Jovvovoll
OLVOLIVLLIVJLIVIVOVOOVOLL	ooivjvivjuvvioovivvovovavvo
OLLIVLLVOLLDLDVEDVOVJL	
	VHOLOVDDOOOVOLLOV
ivjoughvaviojolvajouk	JVVV6OLDLLVIVVLD9VVOLL．JL．
VOLDIVYVJJVJivovoilioli	OJoojoluvLivivovvvol
	vojuvovvivjovvioojovy
vovojvvoiovvioujujo	vijvilvvvopuvopuvojo
OLO＊วLLOLOLLכอของ	OJLVLOOLVVVVIDOJLOS
＊วนแว）	วvovvoulojlivvvvoju

Jovvoljvjovivojovojv ตวอivioojvivoloolvyvol juvvvovvajavajovoje vVOODLOLLLDOLDOVL1L
 vVOVLJVJVJLLDJVVJODL DLoLolvilvoojvojoul L101． LLOILIVODLOOIDIOIV
 ＊ vVOLDOLIDIVJHVEDOL！ soolovgvojagjopvvvi LovovVJVVJOLـ1990019 voviovoojlliอวvvoov．
 OJOOOOVLOJVVLDOJLVLI 11．DLOLVOLHVOLOLOOL ooooovvovivjvjvbvoivo IVOLLVLLVOLIVIVOVOOVOLL マอ1 IVOJVวVV

 ＊วLLOJV

LIOVOLDJLDOOLVシDJIV
 SOLVOVLLLLDOOVOVVVJJ JVOLOOVVOLVOOLOOOLIV JอL） OVOLVLIIILIVIV甘I甘つOJIO VOVLDコLOVOVVว） วレวดวO）LLOOVVOVLルル
 SVOVFOVLOLVOLLLVVVLIV． VOJVOVSOVDIDOISLIV VOVVOVVDOVODLLVODLOV SLLIVVDLDJIVVDLLODL OVVOUVVIVODJV V VOOD VVDLLVLVODVOOOJOLLD
 VVVวLDコLIV妆）LODO
 ตอIJIOLLIVJJVJIVVOL L甘ODLOLIVOLLOOOVLOL MLLVJVLVJVVVLפOVLVVOVJVマVVD VムOLOVDOOOOVOLLOOV） OJODJJЦLVLIVIVOVVVDI จJJJVJVVIVOJVV100JOV ODLVLOOLJVVマLOOOLOOD

MOLV）	S69L9ZIH	89LZW3）
S（VVVDVV）	169L97ld	L9LZW9）
9（1）	089L97ld	994てWフ）
S（OVD）	0L9L92ld	S9lzW
LIOL）	629L971－	ャ912Wフ）
$8(1) 1.)_{6}(0)^{\text {（ }}$	86SL9ZIS	£9LてWフ）
$9(V / \mathrm{V})$	86SL92ld	29LZW0
$9(01)$	t8SL9で土	19LCWフ）
9（V1）	08SL971	09LZW｀）
9 （9V）	59SL921J	6SLZW0）
olfiv）	ESSL92lu	8SLZWכ
$9(01)$	tescerld	LSLZWગ
sz（VI）	960 L9713	9¢LZWフ）
$\left.8(V)^{\prime}\right)$	S6EL9ZIS	SSLZW9）
で（つ）ug（JV）	$9 \mathrm{SEL9ZIH}$	tSLCW ${ }^{\text {¢ }}$
で（J）ug（JV）	bselazle	£SLZWจ
L（L）	9felegld	てSLてW
\＆（VI）	cosl9 ${ }^{\text {ch }}$	ISLZW゚
8 （0V）	zszl9zld	0¢LZWフ）
S（VLI）u8（LIV）	0izlazis	6－LCW ${ }^{\text {（ }}$
8（IVV）	LEIL92I	80LZW）
9（OL）	92il9zld	くもくてW
（LD）	L80L92ld	97LZW9
S（OLV）	660L97ld	STLZW ${ }^{\text {S }}$
L（OLOLVD）	86699714	－WLてW3）
（1）V）	676992714	¢DLCW
g（Jv）	DE69971	
8（IV）	9169971 l	1ヵLZWコ）
11（1V）	6889971d	0ヶLてW3
Eitiv）	E889921H	6¢LZW ${ }^{\text {c }}$
01（IV）	6L89971H	8โLてWจ
II（L）us（IVVV）	828997ld	く\＆LZWア）
6（LLV）	L0L997ld	9¢LてWフ）
0101）	\＄89992IS	SELZW0）
9（VIVV）	L19992ld	ャ¢LZWग
9 9．1）	$9659971-1$	£ยLZWง

（942W） 991ZWO s9lzWo ゅ9L（W） Z9LZWJ 19LZW5 09L（N³） 8SLZWJ LSLZWD sSLZWગ サSLZWコ） ZSLZWગ ISLZW゚

	Ccm2769	F126774	(AC)6
	Ccm270	F1267789	(aat) 7
	CcM2771	F1267831	(ag) ${ }^{\text {a }}$
	Ссм2772	F1267874	(TC)6
	Ссм2773	F1267888	(CA) (ta) $^{\text {anitals }}$
	CcM2774	F1267891	(ATC) 12
	Ссм2775	F1267894	(ta)6
	Ccm2776	F1267931	(GT)7
	CcM2777	F1267955	(ATt) nittals
	CcM2778	F1267968	(GAT)
	Ссм2779	F1267980	(GGA)7
	CcM2780	F1267993	(GT)6
	Ccm2781	F1268005	(CTTIS(T)!
	CcM2782	FL268013	(тС)6
	Cem2783	F268067	(AT)31mita)
	CcM2784	F1268149	(ttalg
	CcM2785	F1268237	(ttal)
	CcM2786	F1268287	(TAT)
К	CcM2787	F1268313	(GA)7
	Ccm2788	F1268322	(TC) 8
	Ccm2789	F1268337	(TA)24
	Ccm2790	F268356	(Aat)
	Ccm2791	F1268471	(TC)6
	CcM2792	FID68514	(taf
	CcM2793	F1268551	(TA)6
	CcM2794	F268556	(ATI2S
	CcM2795	F1268559	(AT) 9
	Ccm2796	F1268569	(caabitaais
	Ccm2797	F1268576	(ag)iomagis
	CcM2798	F1268592	(ta) ionatatas
	CcM2799	F1268616	(AT)26
	Ccm2800	F1268639	${ }_{\text {(AG) }}{ }^{(1)}$
	CcM2801	F1268566	(AT) 18
	CcM2802	F1268723	(tas) 12
	Ccm2803	F1268727	(Ttals
	CcM2804	F126874	(ATG) ${ }^{\text {a }}$

ttigtgcaanagigtgagca tigtgacaccettctaccec agcaaggaggcatcacaaag cacaattatcagggccacaa catitggattgitttaantttgatg gcgataccacccaaccacta titgcgagacgaggaattit afggGaggtggactacaagga tgatgittantggantgctgace tgctgctgiticagactigg gaacccaaaaggetgtgtg tcattctcgcgattcctct tegtagtcaaccaaaiccet taccegagatcatgaggacc afaactitaaattgaacggctga cancatgcacctgittticg стtтстititctitagagaccttgat tgctatcaacttanaacatanaactcg aggtgccttrtgectacctt atcagggccacaaaattica cgitacaagtattcaccttticca aagggancaat tcgtattcactatg ggctcanaaatttcgtccaa aamgaaanagGaanataanagtggtg tgaacaccagaagaggatca tccgitcaataactcatgittctaca ccataattcatccttcctaaaca aaccacaacaaccacaacaa gcctataataggggcaggg catgcattagaanctitcagtcaa a acacctcgiggtggtctic ggGtccttctttttgcatga tggtctcatgtctttccatca acctccatiggeatcaagac tggaatgcctaanatgcaca ccaagaangcaccccttcta

AAAATGCATTGAAGTCTCGGA	116
TCTGGATCCCTTTCATTITCTT	207
ATCTCCTTTTCCACTCCGGT	235
CGGTACAGGTAAGAGGGCTG	188
TGCTGGTCTTTAATGGTGTCTC	214
TTTGATGATGCTITGCTTTGA	245
TGACCCGTTATGGTCTTTACA	260
ATTGCTTTCCTTGCATGCTT	229
TGTTGATTGAGCATGTGTGC	157
TCAAGAATCGCGTGTGCTAC	250
TGCTCTGGTGCTTCAAAATG	217
ACACACGACGCAATGACAAT	276
AAAGTGATTCATCCATAAAAAGTTTG	221
TCACTGTCCAACTCAACCCA	236
TCCAATTTTCATGTCGCAAG	224
AAAATCAACCTTCCCTTAAGACAT	267
CCTGATGTGGACATTITCCC	280
CAACCCTTTATCAAATCCAACC	149
CATTITGAAATTGGAACGGG	204
CACTACACAAATGCCTCACGA	102
CCCAGACATATGCTCGTGAA	133
GAGGAAAAATTTCGTCCGGT	280
TTCTAGGTGCTTTGTGGCAA	108
CATGGTAGGCTGGGTCAGAT	210
TGAAAGGTAATAATGAAAAGATGAAG	221
TCCCTCCTCACAAACACACA	242
TGAGCAGAGGTTCAACTGTCAT	253
TGCTTCAAAAGGTTTTACCAGA	176
CAACAATTATCCCCACACCC	234
TCAAAAGCCAATATATTATCCAAAAA	278
CGGATCATCCCTACCTCAGA	231
GCATAAGGCCTTCCTCTGTG	264
GAAAAGCCAATGTGGTGGTC	247
GTTCGAGGACCTGAAAGCAG	275
TGAATGCCATCAATAA	178

membatcectreatimet 207

CGGTACAGGTAAGAGGGCTG
TGCTGGTCTTTAATGGTGTCTC 214
ITGATGATGCTITGCTTTGA 245
TGACCCGTTATGGTCTTTACA 260
ATTGCTTTCCTTGCATGCTI 229
TGTTGATTGAGCATGTGTGC 157
CAAGAATCGCGTGTGCTAC 250
TGCTCTGGTGCTTCAAAATG 217
ACACACGACGCAATGACAAT 276
AAAGTGATTCATCCATAAAAAGTTTG 221
CACTGTCCAACTCAACCCA 236
TCCAATTTTCATGTCGCAAG 224
AAAATCAACCTTCCCTTAAGACAT 267
CCTGATGTGGACATTITCCC 280
AACCCITTATCAAATCCAACC 149
CATTITGAAATTGGAACGGG 204
(ACTACACAAATGCCTCACGA

GAGGAAAAATTTCGTCCGGT
TTCTAGGTGCTTTGTGGCAA 108
TGAAAGGTAATAATGAAAAGATGAAG 221
CCCTCCTCACAAACACACA 242
TGAGCAGAGGTTCAACTGTCAT 253
176
CAACAATTATCCCCACACCC 234
CGGATCATCCCTACCTCAGA 231
GCATAAGGCCTTCCTCTGTG 264
GAAAAGCCAATGTGGTGGTC 247

TGCGAAAATGCCATCAATAA 178
TGTGAATCCAAGAAGAAAAACG 210
$\bar{\sim}$
玉 区

玉 きた

atatggcacanggatgcaca	
	TTIGAGTGGCTCTGGIGATG
gctithtggcaacctttcac	
atanataggaggcatggggg	
TTTGGAAAGTCTTGGGAGGA	
Cagttctcaggaccecaaaa	
ctggctetgatgccacatta	
	aACTCCACAATGACAGAATtG
caacagcaggtgaatcatgg	
tCgacccattgcattraaga	
TGACCTCCTTTCTTTCCCAA	
agaatacgtggtgggagcag	
ctgcaacangccanalaggi	
agtgatccgctiatticanca	
CCatantccacacacactittatagtt	
TTCCTCATAATTCTCCTTAAATACCC	
Cactianaanaccangcctctica	
tGganamctanattgatganatgg	
CAAGTCCCCCGTGTAAAGAA	
agGaganagctctggcacaa	
TTITATTGGITCTGITTAGGTITAGAA	
attttccgitacacceacca	
tcgtccaacactccttagagc	
TTGTTGTTTGGTGGCTGGTA	
TITCTITITCTITAGAGACCTTGATAA	
CGGGATGAGGGTGAACAAG	
tGgtancgGgacgacagtte	
tgCCiattgacaattitictea	
tCAGAGCACACCTGGACAAC	
gagccoccaccaatatttta	
ttccgattitggancaggtc	
tCtanttitggancgggicg	
agcgetagcattcttthecte	
GaCCtaggatcgiggcgiaa	
gcctatanataggggcagg	

[^6]

CAAAATTTGTTTCTTCTAATGCTTTT	
antagccgancctigaccet	
AAAATCTGCGAGACACCTCTG	
cGctggatgantganacaag	
agagttgcagaggeagchi	
atgcanttgigttgcaggaa	
tGgatgGaggantccatcag	
gGGgGtgtagatctgcanaa	
CACAGAATTTCCCACGGATT	
gGattccagatttgtgccat	
tgaccataanaattgtcactcaaa GCACATGTTTTGTGACACCC	
gCttcagcttcagcatctce	
tgttccaaahggaggantcan	
CCCTITICTTGATIGGTTTCA	
tgatggatangggiatattgattgit	
trCcaagactgaggicgat	
ttctattcttgattgattrgcca	
aCGTTTTGTTCATGCTTCCC gGantGangTattaantcatctcgaa	
agcatcatataaatagittcettrce	
tTGTGACACCCTICTACCCC	
titattatattittgggeatgtagaga	
atgcattcagggtggangac	
gGgccagatccgaganagat gacgacgtcgaggatagctc	
gGtGangcacgaggitcatatt CATAGCAGGTGGTTGTGAGG	
tgatattggctccctgcte	
agacatcaggtgcatgitctg TGTTTCTCTCACTCTCACTTCCTC	
ttaccatgcatcattccect TTCCATTCTCACTTTCTCATT	

CACCCTTTACTTGCCCCTTT CCTCTAAGACATCATGTAGTTCAAACA	
	gaacctcatcaaacceac
tagttgcaattgcctcacca	
anaggcancaantcctattcac	
atgcacgcaatccatagtga	
GGaCtrtggtgagccagana	
tgagagacacgatgacctcct	
gctagantganaacccgcaa	
tgcaaatagtgggtggatga	
CTTTCTTTTTCTTTAGAGACCTTGAT tCCCaCacaccttanaccaa	
CCATAATTTTATTTCAagGagCCA TTICTTTITCTTTAGAGACCTTGATAA	
atccgactictgatgiatgc	
AtGGgCaCtGTtCtitggic	
tccacganttctctatgcce	
CCATTCATCAaAagcceant	
ttacaagcatagaggggigg	
gGGgGanaaganaactgcte	
aCAATCCTCTCAAGGAGCCA	
tGatganctianacccanagtgg	
a atcgattigggctitgtea	
tTtCTTTTTCTTTagagacctigataa	
CCAACTCAATTCCGACTCGT	
CTCCATCTACATCCGCCACT	
tgGacaaccaatccatancg	
aCCAAGGGCGAACACATAAA	
GCAGCTTCCTGCCTCTAAAC	
atGGCTAAAGTTTTACTATCCAGC	
aACGGAGTGCCCAAAAATTA	
TIITCTAATCCAGAAAACCAAAAA	
TCACTTGGCCATAAAGGCTC	
gaganatanagatatgggagggg	
ataccgangtangggccean	
	ttcatclaacgititcanca

[^7]| OLDLODLVJLVLDLJVOVOL． | VOLVODOLOVLLLLDLVLLLD． | EI（VL） | L0sqLZId | （16てW ${ }^{\text {（ }}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| VOOVODOVVVVIVOIDLIVJI | JOLVVVOOOLLOLVVOOLIV | 6（LVV） | ャ6t¢Lてli | 116\％W9 | |
| VVVDJOVOLLVLIOVOLVJJV | VODIVOLJVLIVIVLIVVVVVOOVIOD | LİVO）¢̧ı（VL） | sctelald | 0162W9） | |
| VVOOVLOLVDLLOOOVOOOL | VVVLLVOJLVLOLVOLIVVVVOOL | EI（LV） | ssoelzid | 606（W） | |
| JOOLVOVVOLVVIOVJVOJ | OOLVLLLOVOOLVOJOLOLD | Iz（IV） | 6e¢£L己ld | 806 （W9） | |
| OLLOOVLLOOLOODLLLLOLL | LLLOVVOVVOLLOVVOLSIVVVVII | LI（VI） | 66てELでI | L06てW0 | |
| VOVVJJIVVOOVOLVOJIV | OLOLOLLLOOJLVODLOLVVV | Iz（IV）us（VI） | 98z\＆LZId | 906 （W） | |
| VVVLLOOVVOVLIVOVOVOLVOLVVOL | OLLIVVOVVOLVVOVVLIOOLSVOL | 6（V．LV） | £ยzยしてİ | cobew ${ }^{\text {c }}$ | |
| OJVVVLLLOJLLILLLOVVOLLDD | OVOVVVODOVOOLLIVOOI | II（LV）uzı（V］） | HZELZİ | －06（W） | |
| SOIVOVOLDLODVVLIVVIVOJ） | LILVVLIVOOOLOVOLDOJ | 6I（V．） | 660¢Lzld | £06てWง | |
| DLLLLLOJOVOOLILD | JVOLLLOVVOODISLILO | L（DV） | troclzid | 206（W） | |
| ODSLLOLIVODVVODVVDLL | JVIVO）VLIOOODLLOVOD | Iz（V1） | 6862LZIS | 106ZW9 | |
| L）LDVDOJVVVDIOOOLIL | J1LVJIVOJLOOOLLOOV | 01（V）s（VI） | LE6ZLZId | 006てW0 | |
| OLLODVLLOOOOVLOLIDODL | L．JVODIV ${ }^{\text {SJVOOOOOVFLOL }}$ | 8（VOV） | Lz6ZLZId | 668\％Wフ） | |
| LLDVOLVOVILLIVOLLIVOVVVOLI | LIJVLVVOJVLLOOOLIOLVVVVV | El（V） | £68てLで1 | 868（W） | |
| อวอVOLLJJVVJVL） | VVIVLOOOLIVOVOLODOLDO | s（DV）uSllov urs（OV）ug（DV） | 8s8ZLZId | L68てW） | |
| VV\％วLJVVVLOLLVVVOJVVOJ | VDDOLDOLJOVODLLLVLD | g（LV） | 669 LZld | 968\％Wจ | （ |
| JOVVJOVVJVVVLLVVLIOJOL | JLLLLLLLJVOVDOLIVVIVOIVV | tz（IV） | st9zLzld | S680w ${ }^{\text {c }}$ | N |
| マVOODLOLLJOLOOVLLL | LJLLLLVVVOJLOVVVILJOL | 9（JI） | 919ZLZld | 568\％W0） | |
| v＊วvivวvvวอvvว）o．）vvo | VVOLVVVIVOVOLVIVVVJVOLLLOS | 6（1V） | 08szLald | £682W | |
| OOOOVLJVLOOOLLLLOOV | VOVVODLODVVOLLLLSOOV | 9（LD） | tiszlzld | 268（W） | |
| マDJVวอJV．วVวJ＊JVLOVJV | OVD）LVVOLVVVDISJVวอ⿺ | SI（LV） | 9Ltclali | 168（W） | |
| IVVJJVIVOOOVOVVVวอ） | JoLDojvjvLDLLovoวvอ | L（ODLLOLI）${ }_{6}($ LOD） | 69pZLCld | 0682W3 | |
| | IVOLLOOVY） | L（VLI） | £spてLzud | 688てW ${ }^{\text {\％}}$ | |
| VVVODLLVOLIVDOOJVOVL | マVOOVVV\％）VVVVVJVLIDIJDL | £（1．LV＊） | 1ttてLZIs | 888 （W） | |
| VOOJVFDLLVLLOVDIVVVVOVS | VVJOVVVOSVVVVJVJVVVOL | sZ（VL） | S6をzLzld | | |
| ODVOVFJVVOLVVJVVOLLLV | LLOOLLLOVVOLOODLD | 9（．）V） | 06EzLzı | 988（W） | |
| JVO） | VVOLLLOLVVVOVVOLOIVOLIOV | 9（IVI） | 68zzLzld | ¢882W ${ }^{\text {¢ }}$ | |
| LIVDLLLVVLDJVVJOOSD | VVVOVDLDVOOVODVVIVVVVSVJ | | £8zzLてい」 | เ88てWゝ | |
| マOOLDLDL | DJLDIVVOVVODVVOOOOVV | S（IVI） | 96 IzLZId | ［88てW3） | |
| V1VOLVJJOVVO9ODVV垉 | VJvovoviivvovvoopvovoi | $9(\mathrm{VD)}$ | £8ıてLで」 | 2882W | |
| VVVOLLVODLOVOV | VOLVOVVVLOOLVOOLVDIVVVO | S（VLL）M01（L） | 0＜IzLZld | 1882W ${ }^{\text {（ }}$ | |
| Jovvวコv＊วJJvovvvjvov | DLVVOLDLSLIVJDOVVODI | s（ovoiov） | vzizlzlis | 0882 ${ }^{\text {N }}$ ） | |
| VLVOOJVLODJOJLLOOV | OVOVVOVLJOVODOLOJVJ | 6（1V） | Isozlzid | 6L8てW ${ }^{\text {c }}$ | |
| OJJOVVOLVJVVOVVOOIVV | OLJVOVOLOLVOJOLIL | ¢（1）ว）ovว） | tozzzlis | 8L8てW | |
| OLLLIVVVOVVIVVIVDJVVOLIVJV | VOOOVIVOLIVJIVLDVVVJLIVOL | $8(\mathrm{VI})$ | ¢L6ILZİ | LL8（W） | |

	CcM2913	F1273540	(TA)8	tgcanamtacattcantcatatcaca	cccctgggtangtgatgcta	236
	CcM2914	F1273631	(AG)8	ataattaggaggcatgggg	tCCTCCTTTGGATTCCCTCT	156
	Ccm2915	F1273715	(T) $10 n($ ATTT) 5	aamatgcanagcaggaatgg	tgacatgcatccaataagca	216
	CcM2916	F1273771	(TC)6	tCagggctccaaattrtgtc	aggtgctithgtgganacctt	131
	CcM2917	F1273772	(TA)29	ggttgaatcgitaanatttgatgt	tgaganttttcangctgcgi	158
	CcM2918	F1273794	(atalis	gCCatatgGtccatcacctt	gcacgcgitatatcatatcgit	190
	CcM2919	F1273796	(TC)13(TA)39	gGttggatcgitgaaattcg	atctcttcatctcgcgetct	224
	CcM2920	F1273895	(TTA)	tGCTtTGTCCTGATGACTGC	atgcgcacaggitaattrce	226
	Ccm2921	F1273981	(Gatig	ttgcgcgttgttaatttgtt	agagittctggcggantcaa	190
	Ccm2922	F1274981	(ATT) 7	gGtgtgcattganggganag	agcaaagcaacgcatcttag	245
	CcM2923	F1275005	(TA) 5	tacaccgtccacccctitta	tggtgacaggtttcacgang	214
	CcM2924	F1275007	(TA) $/ 1 \mathrm{~m}(\mathrm{AT})^{9}$	cancttgatanattaataaccgtgitt	ttigatgcttaggitgattctga	219
	CcM2925	F1275011	(TA)II	ctaaggacattatcatcctitgaa	aAtttcttcgggcacaacac	213
	CcM2926	F1275020	(CaC) 7	aCTICTCCCTCCCCTTCTTG	agattggagcganttcctit	251
	CcM2927	F1275042	(GATGTG)12	tgantcaccattttgtgtgga	CCAAGGTCACGTTACCCCTA	263
	CcM2928	F1275046	(TA)6	gGttacatgagctantgattccitt	gaangacatgccttcantgct	118
	CcM2929	FL275048	(TTA)6	tgtitgitcatcaattcggc	CGTTCCCCACTCTTGTtCTt	263
	Ccm2930	F1275077	(TA)lı	ctanggacattatcatgctitgaa	aatticticgggcacancac	213
v	CcM2931	F1275131	(TC) 5	gticticgtacctgcticcg	tgigacttatcattaggatigacaaa	249
5	CcM2932	F275131	(TC)6	tctictggacaatgacctat	gaamantacticccogacce	252
	Ccm2933	F1275136	(TA) 10	CCTAAGACGTGGGaCtCCtCt	tgccattaattitgtctcctga	211
-	CcM2934	F1275140	(GATGTG)12	tgaticaccattttgtgigga	cCaaggtcacgitaccecta	263
	CcM2935	F275163	(CT) 5	gGtacccatggggantttct	actccaccancgtcaanagg	109
	CeM2936	F275173	(TG)5	CAAGGGGAGGTGGactacaa	gCtTTCCATtGCatgctita	227
	CeM2937	F1275181	(TCTIS	tCtGtGagctetttitctetcaa	gGgtccgaggtagangang	157
	CcM2938	F1275194	(T)IOn(TA)S	tcteagcattaggagctitiaacti	afagcatgaamactggggtg	184
	CcM2939	F1275210	(GA) 10	taacgcgtctcgaaggagat	ttgGaticttggangttggg	195
	Ccm2940	F1275223	(CT) 5	tTGTGTCCCAACTTGCATTG	cagcctacacagaggcanca	200
	CcM2941	F1275230	(AT)12n(TA) 14	agcaacactganagcaccet	tgatgcatgattgactcacc	273
	Ccm2942	F1275236	(TG)5	tCCtGataaggctcgaggaa	gangcttggttccacaccat	183
	Ccm2943	F1275249	(TC)	tctcttctetcatgeagcca	tgangacgaacatcagtccg	142
	CcM2944	F1275260	(TA)6	ggttacatgagctaatgattcctit	gaangacatgccticaatgct	118
	CcM2945	F1275299	(GA)5	atggatttgtgtgaanggg	TCTTCCCTTCAAATCTCCCA	179
	CcM2946	F1275326	(AG)S	agGgitctgtceagtccatct	tcaatggaggattacgagge	226
	CcM2947	F1275350	(TC)6	tctictgggcaatgacctgt	ganamatacticccgeacce	252
	Cem2948	F1275371	(TAAI8ntatals	CCAGAGACCTCTCAACAGGC	thgagaaatttgcggctict	220

```
        avวolvvวLonlllovvavov
            *VOOLOJVJLLVVOJVVVOL
            10LDOOJOLLVGVOVDLL
            onovvivavvquoovilogv
            gvovovjovzajoljolvajv
            LLLvJJvLIVDIOJOVJOD
            JHODOLDDOODLL*JL!
            jolDLOLOJVGJDLOVVF%
```



```
            *OLJVOVVDOOOVOLOVJVD
            \forallOLODLOLOLLLVVLLVOJOL
            OOJOLOOI\forallVOLOL\forallVVDLI
        *ODOLLJVVOOLVLDVVDLIVVO
                VOVVOJOOVOLIVLLVVSOD
                VOOLOIV&\forallOLLOOLLOL
                VOLVOLLLODVVOLLJJLVDJ
                JVOVVOVODDODLLILIVV
                JOVOOJOOLOVLVVV\forallVO
                OJVOLOVOL&OLVOOIVVOL
            HOLLIVVDLLLOSVODLILI
                ODVV\forallO)LVOLVDOLOOLLL
                *OMOMOLVVV\forallJVOLVVJIV
                ODILDVOL\forallJVYOJVDV\veeOL
                \forallDLOL\forallL)L\forallOOJVOOLVJ)
                OLVODLO\forallOOLVDVOVDLDD
            JJV.)LOVOLVOIVOOLVVOL
            OO!VVLVJVVVJJOVJIOJV
*JVVVVVOVVLLLVVOLLOVVVVJVOD
                VLOOLVOLOVFLOOOLOD). 
    VOLOLIVOLLOOVLLOOLVOLLL
        OOOLLOVVOOLLOLVOOLL
        LVODVFODVOFOVJJVODOV
        OOVOOJJJLLJVIVVVVVO
\forallVVOVOLIVDOVLIVOIVLIJVOLOL
        \forall\forallODLDLOL\forallOL\forallVODOLO
```


 OOVOVODLLDIVJVOLOLOLOL
 OOJOLDLLLLOOVIVDLL LVVOLOLIVVVVODVDJOOL 1．JVOJOLODLOLDIOLLD
 つLVVODOLDLOVOLIVDLI． VOLLLLVマOODOIVOJOVI HLVDODOLOOXIVLLLO
 JOLLIVDJJLOUVVOOLOVI
 OVFVVIVOVZVOJJOOLVJO פDODVVVOLDLOLIVVOOLV OLDLOLVJODISLVOOLVVL．
マ $\forall O L L D O L \forall O L \forall L I V J V D O \forall \vee L)$ LDLJVOL甘ทJOOOLLLI LOJV．JอV VVDIJVJvマJov DDLIVOLDOVVOLDDLIVDD
 JOOOLLOLLLOOVLVDL DL）LDLDLIIVOOVDODO LLOVマVV．LLOLDIVVLOVVOVDI
 1．）J ตวOVVVOL．OVOVVODV VOJJOOLOLLLLOLVIVJL L．OOLDVOLOLVOLDOLOLLDL VVOVVVVOVOLODJVLVLIVVJVV） H．IDLOJJVVLVVLLVマVIVOLLOVVJ LVOVODVVDOL．LDJOJVV1 ODODVZVOVLOLVVOVマLDJVDI 10LJJVOLV甘JOOOLJLJI DOJLLOLOVLOOLDLD O甘VOODVIVLLDLDOJVOJD OOODVVVDISLOILVVOOIV

S（0）	8ZLSLCIJ	486てW3）
S（JIV）	8ZLSLZIS	（86てWフ）
s（VIV）ug（VV．L）	0zLSLZİ	286\％${ }^{\text {（\％）}}$
S（1）	91LSLZİ	186\％Wフ）
S（OL）	90LSLZİ	086\％Wフ
$s(\nabla \vee 1 L)$	SOLSLZIS	6L6ZW0）
9 （VIL）	t69SLZİ	846てW ${ }^{\text {a }}$
t1（V1）	889 SLZIS	LL6\％W ${ }^{\text {cos }}$
¢（D）	LL9SLZT	
S（LV）	claslzid	SL6ZWプ
Il（V．L）	LS9SLZİ	－ 26 （W）
s（Jojov）	ts9sczid	\＆L6ZWง
9（LV）	¢E9slzld	てL6ZW9
S（10）	ze9stzld	1L6てW゚
$s(V D)$	0c9sLzud	0＜6\％W9）
S（IV）	9z9SLzid	696\％${ }^{\text {（ }}$ ）
61（VL）	vz9slald	896\％W0）
9131）	z19sluth	（96\％W5）
tivi）uzi（IV）	609sLüld	996 ［ W ${ }^{\text {a }}$
1！（1）66（V1）	LO9SLZİ	S96\％${ }^{\text {c }}$ ）
く（LOV）	c09SLzld	¢6\％W゚
$s(L)$	t6sslzis	〔\％\％てWจ
S（OL）	c9sslzte	2962Wフコ
$s(\forall 1)$	てtsslzis	196\％${ }^{\text {Wo }}$
92（1v）	LESSLZİ	096てW5
pl（vi）uzl（IV）	zisslard	6562W0）
¢（1）	sosslzis	8S6（W）
$s(\forall 1)$	tossczis	LS6てWフ）
$L(\nabla 1)$	S6tSLZI」	9S6てW
$6(1.12) 11(\forall 1)$	LLtSLCly	SS6\％W
01（VD）	0ctsleld	＋56\％W
$s(\forall))$	2ttslat	¢S6\％W ${ }^{\text {\％}}$
$9(01)$	01 tsLzl	て\＄6\％W
S（0）	01tsczis	156\％W ${ }^{\text {（ }}$
S（D）	¢LESLZIJ	0S6（W）
S（VO）	fleslzld	606 zW

LLI	OOOVIVLJLDLOOODOLLLL	VOVDVDJO1DVOVOLOVOD	$9(5 V)$	6S19LZİ	020¢W9	
$1 / 2$			$s(O V)$	6S19LZId	$610 ¢ W^{3}$	
£02	LIVOOOLVOLOLLVODOV	VLIVV）L．JVODOJJハLOL	$8($ IV）	2t19tzld	$810 \% \mathrm{~W}^{5}$	
827	SOVLOOVVJVJJLJOLLODV	LIODJLLOOVODVVJVJVV	s（VO）	LZI9LZIS	L10¢W5）	
082	＊OOVJJJVVวLLEVLLOJV	OOLVOLLVV1VOJLIOVOLOO	$97(\mathrm{VI})$	1019LZ1d	910 W ${ }^{\text {cos }}$	
£ \％	OVVJOLDVJODLOLVOVVOV	OマวOVDLOJV	Of（V）u0l（v）	2609LZİ	SI0¢W ${ }^{\text {cos }}$	
1\＆2		VOD⿺辶V＊OLLLLOOVVOJV	$9(\mathrm{DL})$	s909LZId	ゅ10¢W ${ }^{\text {S }}$	
itて	VOJ）LVOJVVVOLכM．LVOV	แวJVJНVOOLVOLOLLOL		¢s09LZly	\＆loww	
602	JロOODLVVVOVJVJLLIVJ	LOVVOLVOJOJVLDVJOLV	S（LV）	S66SLZId	210¢N3）	
b2l	VOOLOVVOLLLLOOVVOJV	O900VLJVLDJ0LLLVILJ	9（V））	t86sLZİ	110¢W3）	
S¢1	OLOLLOLJJVOLVJJVOV	LVOVOJJOVวLLLOLOJV	i（IV）	086sLZİ	010¢W3）	
$0 ¢ 2$	JOLVODVVODLIVOLVOOLO	マJVOLLOJJVVVOOVVVDI．	s（Jv）	LL6SLZld	600\＆W5	
991		VOLVOLVLJJOLVVOVVODLI	Iz（Lv）	896 LCZIJ	800\＆w5	
62%	VOVVOJOOVOLIVLDVJ00	LLIOLVJVJOOOVLVOJLO	S（LD）	096 SLCld	L00¢W ${ }^{\text {¢ }}$	
8 SI	VJOVJOJLJLLIOLOJLIV1	OJVOLJLOLOOJVOOOV 110	ol（v）uscovv）zi（v）	OS6SLZIS	$900 \%{ }^{\text {a }}$	3
¢92	OVVJVVJJOSVIVVVOLVVJ9	J0OLVOLOLJOLLOLVOV	S（LD）	stoslzis	S00\％Wフ）	6
0v τ		כOLLLVOLLJOLLJOLLI	S（101）	LE6SLZId	500\％W3）	r
$0 L Z$	マLDVJOOVVVマVJVJVODOL		9（LV）	916 SLZIJ	£00¢W ${ }^{\text {S }}$	
$6 \& 7$	دLVOOSLOVJOVVVVJVOO	OOLOOVVOVLOLOOLLLOOL	01（L）us（LV）9（JV）	zl6SLZ1d	200\＆Wง	
191	マVODLJJVJLロ	OLOLLDLOVOOLOLLLLVO9	s（O）V）	S06SLCld	100§Wง	
\＆0z	VOVVJJJL	VVLOLVODVOODOLIDIVJ）	こて（1v）	¢68SLCld	000¢W3）	
802	つぃつ）	LVVJVVJ00000VOVOV100	L（V1）uguld）	8285LZlı	666［Wコ）	
092	OLOLVOJLLLOLOOOL	VวLVVVVVวLOJOLVJJLOL	9（vo）	zL8SLZls	866（W）	
¢91	L．JVOOLVJJVVLכコLJJอV	JOVVLVOVVVJLVJIVJLVVJoVV	S（JV）	Es8sLzle	L66（Wจ）	
OEz	OVVJJOLVOLIVLLJVOOD	LLSLVJVJOOOVIVOJLJ	S（LS）	＊＊8sLzls	966 （W）	
697		LOJLOLOODVOLIVVLOL	8（1V）	LZ8sLzly	\＄66\％Wア	
012	VOVVVJLLLVVVV可河VOVV	วOLDOJOLVマวVวL）	$8(V)$ ）$u_{0 I}(\forall)$	sc8s Lzld	＋66\％Wフ）	
$\downarrow \mathcal{I}$	つOOLVOOVVVVOVLLDคOLL	IVODOLIVDVVJVOVวDLO	S（VI）	L18SLZlı	โ66てWフ）	
LII	IVVVOJ」1DLIOVVJVJVVLDJL	OOLVOLLVLLOLVOLIOVOVLLVLI	6（V1）	918SLZls	（66\％W ${ }^{\text {J }}$	
tez	J9DVDLVLJVODOOV迲	LLIOLVOVOOODV LVOJLJ	S（10）	£08SLZls	166 ［W9	
912	LOOวVLOอLDOJLL	OOOLJVOVOOOVOVVVVOOV	S（OV）	68LSLでs	066てW9）	
001	VDOL．LOLJOV		$S(V 1)$	Z8LSLZİ	686（W）	
LOZ		OOOVVJVL．OOVVJLJOVVJ）	S（L）	09LSLZİ	8862W5	
LSZ	OLIVJIV		$01(1)$ UlI (1)	9SLSLZİ	L86（W）	
821	OLLDOLLOLLVOVマJอJV	DOJLVマVJJVV	$s(\forall L)$	LELSLZİ	986てWソ	
$62 z$	マOVマOJOOVOLI＊LLO＊Oอง	LLLOLVวVว900VIVOJ．	¢（ 19$)$	selslala	S86 WW $^{\text {P }}$	

VLLLOJVOLVOVODOLOOV

 JVVVOLLOVOVOVVOJODJV JコL．VOLOLLVシDVDOLVJJJ マVVวLOJVวVVJLOLVJVVVว） LJบVOOLVOJVVLODLJOV VJVロVJVJIVVJOVOJOVDV JLOJLVLLOJOVVVVOJJOV つDVODOOLDOLLVIVVVVマD LVVVVLLDODVVOLLODODD VODIOOVOOOVVJIVLJVVOLOLDLLOLOOVOLVO）VDV
VVVVDOLDLLVVIVVVVOVLSJVIVV VOLOOVLJJVOJVOJLIVDO VVO）LLODVLDOOVLOODI VVVVIVLDVO）LIVODJOD O）VILVVVJOLVJJLIVJJJ
 つOJLVVDJVVV1DVDOLOD1 วJVODVOLVOLVDVDJJJVเ JJJVVOLILOOLLDLLLOL VIVODVJVJVODIVDLJDL マVマVマวอวVวLLLLOOLL． JLJVJOLOLJVOOJJL．L． OOODVLVLJOVVODLLVODL OJOVVVOVVVOLVLDLVLLOVOD LODVVJルOLVVODOVJVOO
 VOVODOLOOOVOLLLVOVV OLJJVVVODVVVVDJLVVOJ LレVJOVVOOVVOLOOLVVว〕 マVJVVJVJVIVJOVJVOVJDL
VVOOLOJVOLIVVOJVVDOV
マVVVVLVVVVVOJVOLVOLVVOLI
JOVOJVVOVOLLLVODOLLD
OVOVVV9OVDOOOLOVOVVS
VวVLLODL\＆DOVVOLDVJVDL

¢OLJVOJJJVOJVV1DLLJV	L（IV）	zs99LZld	950¢W5
	s（VVVOVV）	8£99LZld	scoew ${ }^{\text {cos }}$
	S（DV）	£¢99LZIH	tsoswo
LDLJVODIVOLOVOOLOOD	$s(V 1)$	z299LZIH	〔socw ${ }^{\text {c }}$
	$9(01)$	L199LZII	¿SO\＆N3）
マJOVวอJJVL．O）	$9(01)$	6859LZİ	1505W9
LVOODVOOLJJVOJLOVOV1	$9(0.1)$	0LS9LてId	0SOEW0
IVJOOVODLJJVOJIOVOV1	9 （15）	0¢59LZId	
VVOODLDLLOOLDOVLOLI	L（VD）	6ZS9LZIS	8 80ews
LVJODVJOLJOVOOLOVOVI．	S（V）$)$	IzS9LCld	Ltocw
	（İV）	10s9lてlit	950¢Wง
VOJVOOVSJIIVVVOVOLII	$s(V 1$.	00s9lzli	Storw ${ }^{\text {cos }}$
IVJoojujvoivovvoiviv	$s(\mathrm{VD})$	18596Cld	t60\＆w
LLLODVOOLIDLL．${ }^{\text {a }}$	$9(01)$	£tv9lでd	£เ0¢Wงว
DJLIVVVOOLLDOLLODVV	S（0．1）	เャワ9くで」	260\％W93
IVLOOLSODVVOVODVODV	s（ov）	をとか9Lてİ	160¢W ${ }^{\text {a }}$
VVLOLLLOLOLVLJVOLDLOD	$s\left(V_{\text {L }}\right.$ ）	0¢t9lてld	$010 ¢ W 9$
VLOLLLOLVLOVOJLDLODL	c（IV）	0¢t9lals	
VOLIV	$9(\mathrm{OV})$	82t9lcid	$8 \mathrm{cosw})^{\text {d }}$
LLLJVO）LVODL．LLJJ！	$\left.s(V)^{\prime}\right)$	t8\＆9LZIJ	LEOEW ${ }^{\text {c }}$
OVOOVVV1LTOVVJOLVOO9	9（JVV）	zs¢9LZId	9\％0¢W3）
	S（ıV）	ttE9LZIH	Scosw ${ }^{\text {cos }}$
	Stopo）	0¢59LZId	ทโ0¢W0
	9（IV）	zze9lzi．	E¢0¢W
マVVFVOJOSLIVVVVLOVOOL		Sif9lzis	て¢0¢W
10．JIOVILIVODLIOJVOD	L（JV）	$96 \mathrm{c9Lzl}$ d	1ร0¢W
OODVOJVVOVDLLLLSOL	LI（DV）	ャ8z9Lzli	0¢0¢W ${ }^{\text {cos }}$
OOLLDOLOVLLLOULVOL	$s(\forall))$	LOZ9LZIH	6z0¢W｀
วว์วอL）	S（JI）	s0z9Lzld	820¢W
OLVOJOV＊V＊SJJLLVOV＊	$S(L)$	t0z9Lzls	Lzosw
マVODOOVVOLOLVOLVLLJVVJ	9（JVV）	£0z9LzıI	9\％0世Wコ）
OLLLJLOVOOLOLLLLOJOV	S（JIV）	ع0z9Lzls	Sz0¢Wコ）
VVVVVJJOSLIVVVVLOVODL	zictuzi（v）uII（1）	1029Lzld	เて0ヶWコ）
JOOLOLLIJOLOOVLLLDO	$s(\mathrm{VO})$	2819LでS	\＆z0¢Wコ）
	zz（iv）	1819LZ71	zzosw
	OI（V）u0I（V）	SLI9LZIS	120¢W

Ccm3057	F1276656	(AT)25	AAACGTTTTCCAACCAAATTC	AAGCTCTAGGGTTGGGATTGA	211
CeM3057	F127656	(A)2	GCTCTCGACAACTGGGTAGC	acgacagccaancataagGc	278
CcM3058	F1276659		cagctgcaatat	CAAATTGGGGTTTGATCCTG	243
СсМ3059	F1276668	(AC$)^{10}$	Aat	CCCCTCITTTAAAATTGGICA	274
CcM3060	F1276671	(GT\%	TGCaATGTTATGGAGGCAAG		257
(cM306l	F1276682	(TA) 11	GCAAGCTTTGAAGGACCAAG	tgtgicatigaag	268
CcM3062	FD76686	(TTC) $\mathrm{sniAG6}$	CACACGCGTTCGGAATAGAT	gCaAacggiticagritit	223
CcM 3063	f1276702	(TG)5	GGTGCTTTGAGAAGCCAACT	gCcattigactaccticaa	260
CcM3064	F1276706	(TA)8	taggacatitgacatcggga	rctgtgacacclitacce	260
CcM3065	F1276710	(TC)	gCtTagcticctccacaigc	agcctcctanclatggact	234
СсM3066	F1276712	(GT)5	CCTCGATAGGGCACATGTTT	atgacgGcactiatigaggc	175
Ссल3067	F1276724	(A) $12 \mathrm{~m}(\mathrm{~A}) 14$	AACCCAAGCAAAGGAAGGAT	TTGTCCCAAAGTCCACAAGTC	269
CcM3068	F127674	(CA) ${ }^{\text {c }}$	GTATTGTCCGCTTTGGCAGT	ttggagtagitgagctuctig	220
Ccm3069	F276753	(ATC) ${ }^{\text {a }}$	CCAAGAGAAAAACGTTTGTGAA	AACCACTTTCTGGACCCCAA	177
СсМ3070	F276760	(AT) 18	CCAAATGTCAATTTTATTGTGGAA	TITTCTCITGAALATITATGTCOTG	111
Ccm3071	F[276765	(TA)5	accaatgiacacctctcgac	AAAAGGCAAAAALACTCTCTIGA	270
CeM3072	F1276777	$(A G) 8 \mathrm{n}(\mathrm{AG}) 38 \mathrm{n}(\mathrm{GA})(7 \mathrm{~nm}(\mathrm{GA}) 12$	GGTGAAGGAAAICATTGTGA		

Table 5 Sequence length distribution before and after assembly of Roche/454 STRs and Sanger ESTs

Range of Nucleotide Length	Raw 454 Reads	Raw Sanger ESTs	Assembled 454 reads	Assembled Sanger ESTs	Assembled 454 + Sanger ESTs
50	$31,876(6.4 \%)$	$44(0.4 \%)$	0	0	0
$51-100$	$61,172(12.3 \%)$	$180(1.6 \%)$	$2.282(4.7 \%)$	$5(0.6 \%)$	$2,253(4.6 \%)$
$101-150$	$84,878(17.1 \%)$	$420(3.8 \%)$	$4,854(10.0 \%)$	$4(0.5 \%)$	$4,829(9.9 \%)$
$151-200$	$88,806(17.9 \%)$	$449(4.1 \%)$	$5,934(12.2 \%)$	$17(2.2 \%)$	$5.874(12.0 \%)$
$201-250$	$185.863(37.5 \%)$	$658(6.0 \%)$	$12,780(26.3 \%)$	$24(3.2 \%)$	$12.561(25.7 \%)$
$251-300$	$41,758(8.4 \%)$	$630(5.8 \%)$	$9,224(19.0 \%)$	$20(2.6 \%)$	$9,015(18.5 \%)$
$301-350$		$401(3.7 \%)$	$4,960(10.2 \%)$	$21(2.8 \%)$	$4,821(9.8 \%)$
$351-400$		$603(5.5 \%)$	$3,415(7.0 \%)$	$42(5.6 \%)$	$3,349(6.8 \%)$
$401-450$	$666(6.1 \%)$	$1,901(3.9 \%)$	$37(4.9 \%)$	$1.879(3.8 \%)$	
$451-500$	$573(5.2 \%)$	$3,169(6.5 \%)$	$57(7.6 \%)$	$1.124(2.3 \%)$	
$501-550$	$740(6.8 \%)$		$58(7.7 \%)$	$3,021(6.1 \%)$	
$551-600$	$575(5.3 \%)$		$65(8.7 \%)$		
$601-650$	$621(5.7 \%)$		$51(6.8 \%)$		
$651-700$	$887(8.2 \%)$		$45(6.0 \%)$		
$701-750$	$1590(14.6 \%)$		$79(10.5 \%)$		
$751-800$	$682(6.3 \%)$		$42(5.6 \%)$		
$801-850$	$1,098(10.1 \%)$		$74(9.9 \%)$		
$851-900$			$24(3.2 \%)$	$18(2.4 \%)$	
$901-950$			$12(1.6 \%)$		
$951-1000$			$11(1.4 \%)$		
$1001-1050$			$70(5.3 \%)$		
$1051-1100$					486
Total reads	494,353	10,817			

Table 6 Mapping of pigeonpea 454-Sanger assemblies on soybean genome
Total number of RUSs 127,754
Total number of TUSs with Hits on soybean chromosome 33.874
Total number of genes covered 16.367
chromosome 1 1,450
chromosome 2 1,773
chromosome 3 1,359
chromosome 4 1,563
chromosome 5 1.643
chromosome 6 1.643
chromosome 7 1,702
chromosome 8 2,160
chromosome 9 1,563
chromosome lo 1,711
chromosome 11 1,535
chromosome 12 1.459
chromosome 13 4,162
chromosome 14 1,241
chromosome 15 1,542
chromosome 16 1,096
chromosome 17 1.654
chromosome 18 1,605
chromosome 19 1,515
chromosome 20 1,499
Average number of TUSs mapped on each of the twenty soybean chromosomes 1.693

Table 7 Illumina sequencing based SNP discovery in five parental combinations

Genotypes	ICPL $\mathbf{8 7 1 1 9}$	ICPL $\mathbf{8 7 0 9 1}$	ICP 28	ICPW 94
Number of reads (in Millions)	18.4	16.8	18.01	18.6
Number of SNPs in parental				
combination				
Substitution	5965	1115		
Insertion	176	42		
Deletion	122	33		
Total SNPs	6263	1190		

Figure 1 Overview of the 454 sequencing technology.
(a) Genomic DNA is isolated, fragmented, ligated to adapters and separated into single strands. (b) Fragments are bound to beads under conditions that favor one fragment per bead, the beads are isolated and compartmentalized in the droplets of a PCR-reaction-mixture-in-oil emulsion and PCR amplification occurs within each droplet, resulting in beads each carrying ten million copies of a unique DNA template. (c) The emulsion is broken, the DNA strands are denatured, and beads carrying single-stranded DNA templates are enriched (not shown) and deposited into wells of a fiber-optic slide. (d) Smaller beads carrying immobilized enzymes required for a solid phase pyrophosphate sequencing reaction are deposited into each well. (e) Scanning electron micrograph of a portion of a fiber-optic slide, showing fiberoptic cladding and wells before bead deposition. (f) The 454 sequencing instrument consists of the following major subsystems: a fluidic assembly (object i), a flow cell that includes the well-containing fiber-optic slide (object ii), a CCD camera-based imaging assembly with its own fiber-optic bundle used to image the fiberoptic slide (part of object iii), and a computer that provides the necessary user interface and instrument control (part of object iii).
(Source- Rothberg and Leamon, 2008)

Figure 2 Overview of Illumina/Solexa 1G sequencing

Figure 3 Plant tissue samples for FLX/454 sequencing. P1-1-3 embryo; P2 - 1-3 days old seedlings; P3-4 \& 5 days old seedlings; P4-4 \& 5 days old seedling ; P5-10, 14, 17, 22 \& 24 days old plant ;P6- Young, Matured leaves; P7- Flower buds, Unbloomed flower \& Bloomed flower; P8- Early senescence; P9-4, 5, 6, 8, 10, 14, 17, 22 \& 24 days roots

Tissue samples/ stages

Figure 4 Graphical overview of eDNA normalization for FLX/454 sequencing. Flowchart of the experimental design to obtain a normalized eDNA pool enriched for genes specifically induced at various developmental stages from different tissues of pigeonpea (PusaAgethi).

Figure 5 Annotation pipeline for analysis of BESs. This pipeline resulted in selection of nonredundant genomic BAC-ends which excluded organeller sequences, and further identification, annotation of non-redundant sequences together with SSR discovery, selection and primer designing.

Figure 6 Distribution of BESs according to annotation. Major proportion of non redundant BESs remained non-annotated followed by nearly equal percentage of genes and retroelements.

Figure 7 a) and b) Distribution of BAC end categories according to BES cluster depth. Cluster depth supported the repetitive nature of mobile genetic elements while genic regions were mostly associated with less repetitive sequences.

Figure 8 Distribution and frequency of SSR in differing genome fractions. Maximum frequency and maximum amount of SSR was exhibited by non annotated regions followed by the regions containing 'genes'.

Figure 9 Percentage amplification pattern of different SSR motifs

Figure 10 Sequence length distribution before and after assembly of short transcript reads (STR). Read size of FLX/454 STRs ranged from 50 to a maximum of 300 bases, with the highest number of STR having read size between 201 and 250 . Read size of high quality Sanger EST varied from 50 to 850, maximum number of reads had $700-750$ bases. A size comparison between raw FLX/454 STRs and assembled FLX/454 reads (contigs) showed that majority of sequences in each case had size range between 201 and 300 , while similar comparison between raw Sanger EST and assembled Sanger ESTs (contigs) showed a range of 600-650. However, maximum number (18.16\%) assembled of FLX/454 STR and Sager ESTs (contigs) are ranged between 550-600 .

Figure 11 Histogram plot of pigeonepea TUSs based on alignment to soybean genome. Histogram plot of percentage pairwise distance to the synonymous distance value (Ks) a peak at 0.06 which gives a divergence estimate of ~ 4.9 Mya. This is an indication of recent segmental duplication in pigeonpea post to its separation of Cajanus from cowpea and common bean, but did not result in a change in chromosome number.

Figure 12 Distribution and alignment of pigeonpea TUS against the reference genome of soybean. All the TUSs of CcTA were BLASTed against the gene set of soybean. Soybean chromosomes are arranged in a circle and grey indicates pericentromeric regions (bar is putative centromere) and colours indicated gene rich regions of soybean chromosomes. First alignments for pigeonpea contigs are shown as green hashes on the outside of the soybean chromosomes and second alignments as red hashes. Black lines in the middle connect the first and second best hits

Figure 13 Gene structure prediction based on comparison of CcTA and soybean genome. The figure shows three alignment paths with directional arrangement of few TUSs', their position and their overlapping pattern predicted using GMAP, a standalone eDNA mapping and alignment tool. To give an indication about the confidence of location of pigeonpea RUSs in soybean genome, the sequences with single best hit are shown in green color and the sequences with multiple good matches are shown in red color

Figure 14 Similarity search of TUSs across different plant EST databases. Significant similarity of the pigeonpea TUSs against different plant EST databases has been conducted using BLASTN algorithm at an e value of $=1 \mathrm{e}-30$. The figure also represents the similarity coverage by the TUS among legume species and non-legumes and across dicots and monocots.

Figure 15 b) Distribution of pigeonpea RUSs of the CcTA with putative functions assigned through Gene Ontology annotation to Molecular function.

Figure 15 c) Distribution of pigeonpea 'TUSs of the CcTA with putative functions assigned through Gene Ontology annotation to Cellular component.

Figure 16 Distribution of pigeonpea TUSs onto GO assignment showing coverage of major enzyme classes. The details on distribution of pigeonpea TUSs onto GO assignments covering six major enzyme classes such as oxidoreductases (389) followed by transferase (474), hydrolases (443), lyases (79), isomerases (79) and ligases (98)

LG9

LG4

LG5

LG6

Figure 17 Reference genetic map of pigeonpea derived from an inter-specific F2 population (ICP $28 \times \mathrm{ICPW} 94$)

[^0]: oluogooluoluLIVVV Lomojovvivavvionovosva hevolojoovjavvojavg vvoวuluvวovojlivisu vOLLIVELDMOLOLOVELOOL
 oplouvolivvojvvoovjv hovoulojviojvovoonll
 oovvvivavovovvvovaiovoम vJvı．jv．oolvojovvolion vooiovvallilouovvojv voplovvollumoovvjov
 vVOOvvOvL．jvopiopvoon vVollioivolopvojoll hojolovivllllivjoivol vavvvilolivjvjoolvvj solovvohoovvvvvojol Llepvovolluvivvvoviooool volomolivovvoinvavis Loooovojovolvoivol ovivvomojvvalovoopol LvDOvoplojllivvavaje hoonivovovovoivoiav vJVOVODLLVIVJVVVOVIVOJO ovjopvopvvopuvviovio OOLOOOLLLIOVILVJVOO
 vollioljioloovvojvivod Juvopvolvolvovojujvi avopiohovvajovvvooi DojuvLivVOlolvvoloos olvvvovvovolusolvvvovvs vJVVJJJIVVFVJIVJOLV，
 vอl．jvvvv．jvvvovoivoluol

[^1]: | (CCA)5 |
 | :--- |
 | (TC16 |
 | (CT17 |
 | (TA)16n(A) 11 |
 | (TC)14 |
 | (TA)6 |
 | (AT16 |
 | (AT)31 |
 | (TG16 |
 | (AT)10 |
 | (TG)8 |
 | (TTA)5 |
 | (AT)6 |
 | (TA)22 |
 | (AT)15 |
 | (AT)7 |
 | (TA)11 |
 | (TA)12 |
 | (TC16 |
 | (CTT)5 |
 | (AG)8 |
 | (CT)9AT)17 |
 | (TA)14 |

 (T) $10 n(A T) 9 n(T) 13$ 는 FI217637 F1217663
 F1217734 F1217768
 F1217823 F1217859 F1217866 F1217867 F1217872 F1217873 1217942 FL217978 F1218093 F121814 F1218149 F1218259 F1218293 F1218381 F1218404 F1218498 F1218510 $\stackrel{\infty}{9}$ F1218565 F1218675 F1218727 F1218778 $\stackrel{2}{\infty}$ F1218788 F1218791 FI218850 F1218860 $\stackrel{\circ}{0}$

[^2]: aCACCTCCAAATCCAATCCA TCCTCTCGTGAGTCTICAACTCT tTGAAATCTTGGTtCaCaCCC tTaggtgitgigacgicance CCGCACTTGTCCTCTTCTTC GGCATGCAAGCTTTAATTTGA cCCanaAtacacccaattca atGaganttgcgtgcancag AAAAACCTGCTTCATTCCAA tTCATGAAAATGACTTCTTTTGG Gaccagccgtgangattrgi acCangCCTTTTCAAGTGiCi: tCCAAACTCGGTCAAATCAA gattgatcactccataacaagca gGagagttiaggctagcanatga tGagGgitittananaganatgGa tTTCATTCATCTTCTTATTGGTTACA trCatacaagggcgttagttca tTTATACCTCAAAAATAAACCAAACA GAAGITCCGCCACTGATTGT tacctttggaggictitggtg tCGattacceagagancatggc gCaAtgatgreatggactcg CTACTGCTGGCCTACGTCCT ATGGTTTCCGTTCTGTTGCT tCAATGGTTACTATICATTTGAAACA gCagGcatgcaagcttaata tagagtcgacctocaggcat ttgtgacaccatctacceca attgaccattcacgeaatga tTGAGTGGTCTCAACTTGGAAA acatgGanacatgcanggor tgTgCCATITAatcganaatca tTGCCTTTTGAGAITCCCAC ctttgcatcanantanagtaananttc

[^3]: | GTACCCTGGTCACCATCGAG |
 | :--- |
 | CACCTCCATAATCCAATCCAA |
 | TTTCTGATTTCAAAACGGGC |
 | CTTGAAATCTACCCGGAGGG |
 | TTTGACAGGTACAATTACTATTTCAGG |
 | TCAAGAGTCAAGCTTTGGAGG |
 | AACGTCCCATTCCATCTTTG |
 | TGTTTATTGTACATGTGCGAGTCTI |
 | TTGGTTTTGGGCGTTAAGTC |
 | GGTCAATCTGCAGACCCAAT |
 | GTTGATAGGGTTATTGCGCC |
 | CCACTTCTTGACCCCAGGAAA |
 | TGTAGGACATTGGGAAGCAA |
 | AATACTTAGTAAAAGGTTACGCCGGT |
 | AGCACCCTTGTAGAAACCCA |
 | TCACATGATTATTGGAATTGTCG |
 | CAAAGACGCAGAAAGCCTCT |
 | GGAGACATCTTTGCGTGCTT |
 | TGGICCCGTCTCATTTCTTT |
 | CTAGCTTCCCTTACCTCGGG |
 | AAACATGTGCCCTATCGAGG |
 | AACATCAAGAAGGGTCCACA |
 | TCTGATTTGGTGTCCACAATTT |
 | TTTTAGGTGGAAAATTAAAAATCTCA |
 | TCCCCAAAGTGAAAACCTCT |
 | TAGCACCAAGCTTCAATCCC |
 | GTTGCTGGCTTTCAGGTCTC |
 | GGGTCGGCAAGGTTTTTAAT |
 | ATCTCCAAAGCCATTCATCG |
 | GCGAGAGCGTGTGTCAAATA |
 | TGTGTTAGGGTAGAGGGTGTCA |
 | CATTTGAACACAGCATTCGG |
 | TCATGCATCAATATATCATTTCACT |
 | AACACGGCAAGTATACCGGA |
 | TCGAATGTGTTTATCAAATGCC |
 | CACTCTGCACGCTTCTAAAAA |

[^4]:
 CcM1473 \sum_{i}^{*} \sum_{0}^{n} \sum_{U}^{∞} C．M1478 $\frac{2}{2}$范 ${ }^{-\infty}$ CcM1482 \sum_{i}^{∞} $\sum_{U}^{ \pm}$ CcM1485 CcM1486 CcM1487 CcM1488 CcM1489 CcM1490 CcM1491 CcM1492 CcM1493 CcM1494 CcM1495 CcM149 CcM1497 CeM1498 CcM1499 \sum_{0}^{8} $\stackrel{-}{5}$ N \sum_{0}^{n} \sum_{i}^{T}会 \sum_{0}^{2}会

[^5]:
 CcM2409
 CcM2410
 CcM241।
 CcM2412
 CeM2413
 CcM2414
 CcM2415
 CcM2416
 CcM2417
 CcM2418
 CcM2419
 CcM2420
 CcM2421
 CcM2422
 CcM2423
 CcM2424
 CcM2425
 CcM2426
 CcM2427
 CcM2428
 CcM2429
 CcM2430
 CcM2431
 CcM2432
 CeM2433
 CcM2434
 CcM2435
 CcM2436
 CcM2437
 CcM2438
 CcM2439
 CcM2440
 CcM2441
 CcM2442
 CcM2443
 CcM2444

[^6]: CeM2805 CcM2806 CeM2807 CCM2808 CeM2809 CcM2810 CcM2811 CcM2812 CCM2813 $\sum_{0}^{ \pm}$ N \sum_{c}^{∞} Ccm2817 $\stackrel{\infty}{\infty}$ CeM2819 CcM2820 CcM2821 CcM2822 CcM2823 ${ }_{2}^{\text {む }}$ CcM2825 층感 \sum_{0}^{∞}苍 CcM2830発 CeM2832 CcM2833 CeM2834 \sum_{0}^{∞}会 \sum_{i}^{\sim} CeM2838 CcM2839 CCM2840

[^7]:

