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Abstract 

Background 

Chickpea (Cicer arietinum L.) is an important grain-legume crop that is mainly grown in rainfed 

areas, where terminal drought is a major constraint to its productivity. We generated expressed 

sequence tags (ESTs) by suppression subtraction hybridization (SSH) to identify differentially 

expressed genes in drought-tolerant and -susceptible genotypes in chickpea. 

Results 

EST libraries were generated by SSH from root and shoot tissues of IC4958 (drought tolerant) 

and ICC 1882 (drought resistant) exposed to terminal drought conditions by the dry down 

method. SSH libraries were also constructed by using 2 sets of bulks prepared from the RNA of 

root tissues from selected recombinant inbred lines (RILs) (10 each) for the extreme high and 

low root biomass phenotype. A total of 3062 unigenes (638 contigs and 2424 singletons), 51.4% 

of which were novel in chickpea, were derived by cluster assembly and sequence alignment of 

5949 ESTs. Only 2185 (71%) unigenes showed significant BLASTX similarity (<1E-06) in the 

NCBI non-redundant (nr) database. Gene ontology functional classification terms (BLASTX 

results and GO term), were retrieved for 2006 (92.0%) sequences, and 656 sequences were 

further annotated with 812 Enzyme Commission (EC) codes and were mapped to 108 different 

KEGG pathways. In addition, expression status of 830 unigenes in response to terminal drought 

stress was evaluated using macro-array (dot blots). The expression of few selected genes was 

validated by northern blotting and quantitative real-time PCR assay. 

Conclusion 

Our study compares not only genes that are up- and down-regulated in a drought-tolerant 

genotype under terminal drought stress and a drought susceptible genotype but also between the 



 

 

bulks of the selected RILs exhibiting extreme phenotypes. More than 50% of the genes identified 

have been shown to be associated with drought stress in chickpea for the first time. This study 

not only serves as resource for marker discovery, but can provide a better insight into the 

selection of candidate genes (both up- and downregulated) associated with drought tolerance. 

These results can be used to identify suitable targets for manipulating the drought-tolerance trait 

in chickpea.  

Background  

Chickpea (Cicer arietinum L.), the fourth most important grain-legume crop, is grown in more 

than 45 countries, mostly in arid and semiarid zones. Approximately 90% of the crop is grown 

under rainfed conditions, wherein yield is significantly affected by abiotic stresses such as 

drought, heat, and cold [1,2,3]. Drought-related yield losses can occur in 40%–60% of the total 

chickpea production [4]. Terminal drought, which occurs at the pod filling and seed-developing 

stage of the crop and increases in severity at the end of the season, is a major constraint to 

chickpea production [1,5,6]. The identification of differentially expressed genes between 2 

genotypes differing in drought tolerance and a set of their progenies can therefore be an 

important indicator of drought-associated genes in chickpea. 

Functional genomics approaches have been used in recent years to understand the stress-

responsive mechanism in plants. Candidate genes involved in drought tolerance mechanisms 

have been identified, characterized, and assessed for their comparative transcriptional activity by 

using whole-genome sequencing or expressed sequence tag (EST) libraries. Several functional 

genomics studies have been performed in chickpea to identify the abiotic stress-responsive 

transcripts by approaches such as suppression subtractive hybridization (SSH), Super serial 

analysis of gene expression (SuperSAGE), microarray, and EST sequencing [7,8,9]. Additional 



 

 

file 1 summarizes results of previous studies on identifying ESTs associated with drought stress 

in chickpea. 

SSH has been widely used to compare patterns of gene expression in tissues under different 

conditions. However, it has not yet been used to identify differentially expressed transcripts 

(both up- and downregulated) in chickpea in response to drought stress at the flowering stage of 

plants. In all earlier studies, except the one by Varshney et al. [9], water stress was imposed by 

either completely withdrawing water or allowing uprooted young seedlings to wilt at room 

temperature. However, under field conditions, water stress progresses gradually and a similar 

type of stress is simulated in the laboratory by the “dry down experiment,” which allows 

comparison of different genotypes and their response toward drought [10]. Moreover, stress 

response of a plant at the seedling stage can be very different from that at the reproductive stage, 

the latter being an important and yield-determining stage in chickpea. 

In the present study, we constructed several reciprocal SSH libraries by using drought-tolerant 

and -susceptible genotypes as well as extreme recombinant inbred lines (RILs) for the high root 

biomass (HRB) and low root biomass (LRB) under terminal drought stress. This approach differs 

from that used in earlier studies in the following aspects: (1) use of 2 chickpea genotypes 

differing in their drought-tolerance capacity and their RIL progenies; (2) drought stress imposed 

at the flowering stage in a gradual manner by the dry down method; (3) plant samples analyzed 

when each plant experienced the same amount of stress, as judged by their transpiration ratio; 

and (4) reciprocal subtraction of transcripts by using control and stress conditions as well as 

susceptible and tolerant genotypes to enable a good comparison and identify both up- and 

downregulated genes. Thus, the EST set we used is novel and represents genes that are up and 

downregulated in response to terminal drought stress, and can thereby help several genes that 



 

 

have not been shown to be previously associated with drought stress in chickpea. The 

differentially expressed ESTs were analyzed using macro-array, northern blotting, and 

quantitative PCR. 

Methods 

Plant Material 

The drought-tolerant characteristics of chickpea line ICC 4958 and drought-susceptible 

characteristics of ICC 1882 have been attributed to their large and prolific and small root system, 

respectively. An RIL mapping population (264 RILs) of ICC 4958 (large root) and ICC 1882 

(small root) has been developed and phenotyped at the International Crops Research Institute for 

the Semi-Arid Tropics (ICRISAT), Patancheru (17° 30' N; 78° 16' E; altitude 549 m). The root 

phenotyping experiment was conducted in PVC cylinders with 18 cm diameter and 120 cm 

height, filled with soil–sand mixture in open field conditions. Plants were sampled at 35 days 

after sowing and different measurements were recorded as described by Kashiwagi et al. [11]. 

Ten RILs for extreme phenotype of high root biomass and low root biomass were selected on the 

basis of phenotypic evolution [Varshney et al. unpublished] to prepare bulk cDNA SSH libraries. 

Stress treatment 

Dry down procedure 

Dry down, a gradual and progressive water deficit stress, was given to plants [10]. Experiments 

were conducted in triplicate in a glass house receiving natural solar radiation, with air 

temperature regulated between 23°C and 28°C (night/day). Seeds of ICC 4958, ICC 1882, 10 

RILs each for HRB and LRB, were sown in plastic pots of 8-in. diameter.  Water stress (WS) 

treatment was initiated 35 days after the emergence of plants. All pots were saturated with water 

and left overnight to drain excess water. Next day, the surfaces of pots were covered with plastic 



 

 

beads to prevent water loss through the soil surface. Weight (in g) of individual pots was 

recorded daily in the morning at approximately 10.30 h. Daily loss of water through transpiration 

was calculated as the difference in pot weight on the current day from that on the previous day. 

Control plants were maintained at approximately 80% field capacity by daily compensation of 

water loss due to transpiration. To expose WS plants to a progressive water deficit, they were 

allowed to lose a maximum of 80 g of water per day; any additional loss was compensated by 

adding water to the pots. The transpiration of each plant was then calculated as the difference in 

its weight on successive days, plus water added on the previous day. Transpiration data were 

analyzed as described previously [10]. Well watered (WW) pots were maintained at a normalized 

transpiration ratio (NTR) value of 1 and WS treatment was continued until the ratio of the 

transpiration of the stressed plant to the average transpiration of WW plants reached ≤0.1, that is, 

when the transpiration of WS plants was <1% of the WW plants, a stage defined as the endpoint 

for the water deficit treatment [10]. WS plants reached this stage in 10 to13 day of initiation of 

stress treatment. At this stage, shoot and the root tissues from WW and WS plants were 

separately harvested, frozen in liquid nitrogen, and stored at –80°C for RNA extraction.  

RNA and mRNA isolation 

Total RNA was isolated by using the Trizol reagent (Invitrogen, Carlsbad, CA), and mRNA was 

further isolated by using the PolyATract mRNA Isolation System (Promega, Madison, WI). To 

construct bulk libraries, equal amounts of total RNA (100 µg from each RIL) isolated from 10 

RILs of extreme HRB and 10 RILs of extreme LRB were pooled separately and used for mRNA 

isolation.  

Suppression Subtractive Hybridization (SSH) 



 

 

To isolate genotype and tissue-specific transcripts related to drought, 3 subtraction strategies 

were employed (Figure 1). In the first strategy, forward subtraction was carried out by 

subtracting the cDNA of WW ICC 4958 root tissue from that of the WS ICC 4958 root tissue to 

isolate differentially upregulated genes in roots under drought stress. Reverse subtraction was 

performed to isolate downregulated genes under drought stress. Similarly, forward and reverse 

subtractive libraries were made from the shoot tissue. In the second strategy, reciprocal 

subtraction of cDNA from root tissue of ICC 4958 and ICC 1882, both receiving WS treatment, 

was performed to isolate differentially expressed genes in the genotypes. In the third approach, 

cDNA from 10 RILs, each showing extreme phenotype for HRB and LRB for reciprocal 

subtraction, was used to isolate drought-associated differentially expressed genes in RILs 

exhibiting extreme root biomass phenotype. 

Subtractive libraries were constructed by using the Clontech PCR-Select™ cDNA subtraction kit 

(Clontech, Palo Alto, CA), starting with 2 µg of mRNA from tester and drivers samples. Table 1 

lists the testers and drivers used to construct 8 different SSH libraries. Forward and reverse 

subtraction was performed according to manufacturer’s instructions to identify the transcript 

enriched in one sample relative to the other.  Subtracted cDNAs were purified by the MinElute 

PCR purification kit (Qiagen, Valencia, CA) and ligated into a pGEM-T easy vector (Promega). 

Ligated plasmid DNAs were used for transformation into competent E. coli strain DH5α. 

Positive clones were selected on an Ampicillin/IPTG/X-Gal LB plate. Plasmid DNA from 

positive clones were isolated by using REAL 96 plasmid isolation kit (Qiagen), and purified 

DNA was used  for single-pass Sanger sequencing by using T7/SP6/M13F universal sequencing 

primers. 

Sequence processing 



 

 

All sequences were checked for quality and then analyzed by Seqman
TM 

II 5.08 (DNASTAR, 

Inc.. Lasergene Gene Corporation, Ann Arbor, MI) to detect and remove pGEMT-Easy vector 

sequences. A Perl script EST trimmer [12] was used to trim adaptors, poly A/T ends. EST 

sequences which were less than 100 bp long were removed. Manual sequence processing was 

also performed to confirm results. ESTs from individual libraries were assembled into contigs, 

using default parameters of CAP3 [13]. Incorporation of ESTs into a contig required at least 95% 

sequence identity and a minimum 40-bp overlap. ESTs from all 8 libraries also underwent CAP3 

analysis to produce a differentially expressed unigene dataset. 

Sequence annotation 

The NCBI BLAST program [14] version 2.2.6 was used to perform BLASTN and BLASTX 

similarity searches. BLASTN analysis was performed to determine sequence homology at the 

nucleotide level of this unigenes set with EST databases of Medicago truncatula, Glycine max, 

Lotus japonicus, and Phaseous vulgaris and also with ESTs of model plant species such as 

Arabidopsis thaliana, Oryza sativa, and Populus alba downloaded from NCBI. The cutoff 

expectation (E)-value threshold for BLASTN searches was ≤1e-5. BLASTX was performed 

against NCBI non-redundant (nr) database using Blast2GO with an E-value cutoff of <1e-06. 

Functional categorization and GO enrichment analysis 

Functional annotation was performed by using Blast2GO (version 2.2.3) [15], following the 

standard procedure of BLASTX for unigenes dataset (parameters: nr database, high scoring 

segment pair (HSP) cutoff length 33, report 20 hits, maximum E-value 1.0E-3), followed by 

mapping and annotation (parameters: E-value hit filter 1.0E-6, annotation cutoff 55, GO weight 

5, HSP-hit coverage cutoff 20). GO terms were summarized according to their molecular 

functions, biologic processes, and cellular components. Enzyme mapping of annotated sequences 



 

 

was performed by using direct GO to Enzyme mapping and used to query the Kyoto 

Encyclopaedia of Genes and Genomes (KEGG) to define the KEGG orthologs (KOs). These 

KOs were then plotted into the whole metabolic atlas by using the KEGG mapping tool [16].  

GO enrichment analysis was performed by using the Fisher exact test, as implemented in the 

GOSSIP module [17] integrated in Blast2GO package. For GO enrichment analysis, all GO 

terms with a cut-off threshold of pFDR(p) ≤ 0.05 were considered differentially enriched 

between 2 set of EST libraries. To study the genotype-specific response for ICC 4958 and ICC 

1882 under drought stress, GO enrichment analysis was performed between ESTs developed 

from the SSH libraries AB1-1 and AB2-1, which were constructed to identify transcripts induced 

in response to drought in the tolerant genotype ICC 4958 and the susceptible genotype ICC 1882, 

respectively. 

Macroarray and Northern Hybridization 

To screen the differentially expressed ESTs identified in present work, two different macroarray 

experiments were conducted. In the first experiment, a nylon macroarray in 96-well format, 

using unigenes from AS1-1 and AS2-1 libraries, was constructed and total RNA from WW and 

WS plants of ICC 4958 were used to evaluate the differentially expressed unigenes under water 

stressed condition. Where as in second experiment, a nylon macroarray in a 96-well format, 

using unigenes from AB1-1 and AB2-1 libraries, was constructed and total RNA from water-

stressed ICC 4958 and ICC 1882 were used to evaluate the genotype-specific response under 

water stress condition.  

Equal amounts of purified PCR amplified products (100 ng) was spotted onto nylon membranes 

(Amersham Pharmacia Biotech, Uppsala, Sweden), using the dot-blot apparatus in 96 formats. 

Each blot was prepared in duplicate. PCR-amplified products of actin cDNA (GenBank: 



 

 

EU529707) as a housekeeping gene for normalization of the signals between the blots and 

neomycin phosphotransferase (NPTII) as a negative control for signal background correction 

were spotted on the membrane and  cross-linked using UV. RNA samples were labeled during 

first-strand cDNA synthesis. Total RNA (5 µg ) was reverse transcribed, using SuperScript III 

RT enzyme (Superscript II, Life Technologies, Grand Islands, NY) in the presence of α-[
32

P] 

dCTP and used as probes. The nylon membrane were prehybridized with formamide 

hybridization buffer for 42°C for 6 h, the denatured probe was added, and hybridized for 24 h. 

Washed membranes were exposed to X-ray film (BIOMAX MR Film, Kodak) and developed 

after 7 days of incubation at –80
o
C. The image of the developed film was acquired by 

SYNGENE-G-Box gel documentation and analysis system (Syngene, Synoptics Ltd, Cambridge, 

UK) and signal intensity of each spot was calculated by the Gene tool software. Transcript levels 

for each unigenes were calculated as the average intensity from triplicate experiments. The 

intensity of each spot was normalized with respect to the intensity of actin gene. Change in level 

of expression was expressed as the expression ratio of normalized signal intensities of respective 

unigenes in control versus treatments. On the basis of macroarray results, genes exhibiting 

significant induction were validated by Northern blotting.   

For northern blotting total RNA (20 µg) from WW and WS plants was separated by 

electrophoresis on a 1.2% FA agarose gel  and transferred to an Immobilon
TM

-Ny+ membrane 

(Millipore, USA) following the method of Sambrook et al. [18]. PCR-amplified individual 

cDNA fragments (amplified with M13 forward and reverse universal sequencing primers) were 

purified from the agarose gel and used as probes. cDNA-amplified actin (EU529707) was the 

housekeeping gene control. Probes were labeled with α32P-dCTP, using the DecaLabel
TM

 DNA 



 

 

labeling kit (Fermentas Life Sciences). Northern blots were scanned using a PharosFx Plus 

PhosphorImager (Biorad). 

Quantitative real-time RT PCR 

PCR primers for quantitative real-time PCR were designed with the parameters of optimum 

primer GC content of 50%, primer Tm > 55–65°C, primer length 18–30 nucleotides, and an 

expected amplicon size of 80–200 bp (see additional file 2 for primer sequences). SYBR green 

qPCR was performed in 96-well plates, using the Stratagene Mx3000P system and SYBR FAST 

qPCR Master Mix (2x) Universal (KAPA Biosystems). All qPCR reactions were run in 

triplicates with a no-template control to check for contaminations. PCR was conducted under the 

following conditions: 3 min at 95°C (enzyme activation), 40 cycles each of 3 sec at 95°C 

(denaturation) and 30 s at 60°C (anneal/extend). Finally, a melting curve analysis was performed 

from 65° to 95°C in increments of 0.5°C, each lasting 5 s, to confirm the presence of a single 

product and absence of primer-dimers. Two internal controls GAPDH (glyceraldehyde-3-

phosphate dehydrogenase, AJ010224) and HSP90 (GR406804) were used to normalize the 

variations in cDNA samples [19]. Fold changes were calculated by the 2
−δδCt

 method [20]. 

 

Results and discussion  

Water stress treatment 

 A graph of NTR values of ICC 4958, ICC 1882, and 20 RILs during the stress treatment 

indicates that all parental lines and RILs experienced same degree of stress (Additional file 3). 

The dry down procedure to impose water stress in pot experiments has been successfully 

employed in various plant systems, including chickpea [21-25]. 



 

 

Considering that terminal drought is a major constraint in achieving optimal crop yields in 

chickpea, all experiments were conducted at the flowering stage to identify molecular responses 

of chickpea under water stress. In many functional genomics studies on drought response in 

chickpea, drought stress has been induced by withdrawing water supply or by uprooting 

seedlings and allowing them to wilt at room temperature [26-28]. However, the physiologic and 

molecular responses to these treatments are likely to be different from those experienced by the 

plant during natural terminal drought conditions, wherein drought stress is gradual and allows the 

plant to go through various stages of adaptation. Another major limitation of all these studies is 

the variation in the quantum of stress experienced by different plants. Depending on their 

genotype as well as environmental and experimental conditions, plants experience varying 

degrees of stress when water is withdrawn or they are allowed to wilt for a specified duration. In 

our study, we sampled ICC 4958 and ICC 1882 and 20 RILs at a stage when they undergo the 

same degree of stress, as determined by the transpiration ratio.  

cDNA SSH libraries 

A total of 6432 clones were generated from the 8 SSH libraries, of which 6053 ESTs were 

sequenced. After a quality check, 5494 high-quality ESTs were obtained (Table 1). Four SSH 

libraries were constructed from resistance parent ICC 4958. In total, 2034 upregulated and 1620 

downregulated ESTs were identified: 753 upregulated ESTs from library AS1-1 (shoot tissue) 

and 1281 from AR1-1 (root tissue), and 821 downregulated ESTs from AS2-1 (shoot tissue) and 

799 from AR2-1 (root tissue). In addition, 2 reciprocal libraries were constructed using root 

tissues of ICC 4958 and ICC 1882: there were 503 upregulated ESTs from AB1-1 in ICC 4958 

and 529 uprgulated ESTs from AB2-1 in ICC 1882. Furthermore, 400 ESTs were generated from 



 

 

library Bulk1-1 (constructed from the bulk of 10 extreme RILs for HRB) and 408 from library 

Bulk2-1 (constructed from 10 extreme RILs for LRB).   

In chickpea, root growth, osmotic adjustment, and stem reserve utilization are associated with 

drought tolerance. Root traits such as biomass, length, density, and depth have been proposed as 

drought-avoidance traits under terminal drought conditions [29,30]. Roots are considered a 

primary site for stress signal perception, where a signaling mechanism cascade initiates gene 

expression in response to drought stress. These transcriptional changes can result in successful 

adaptations, protecting plants against environmental stress [31]. The differentially expressed 

ESTs identified in our study provide a list of gene regulated in response to terminal drought 

stress in root tissue of chickpea. 

The SSH strategy can be used as an alternative and complementary transcript profiling tool to the 

GeneChip microarrays, especially to identify novel genes and transcripts present in low 

abundance  [32]. Thus, the SSH technology will have more utility in a system where genome 

sequence information and microarray chip are not available for transcript profiling.  

In 2001, 47 ESTs up- or downregulated by water stress were first identified in chickpea [33]. 

cDNA libraries from a drought-responsive genotype in chickpea were constructed and 

differentially expressed ESTs were identified using in silico approach [9,34]. SSH libraries 

have been constructed from chickpea seedling after dehydration stress [27,35] and between  

root tissue of 2 chickpea cultivars [36]. Transcriptome analysis by using SuperSAGE and 

high-throughput 454 sequencing has generated 17,493 unique 26-bp tags (SAGE UniTags) 

from roots of the drought-tolerant chickpea variety ICC 588 [7]. However, absence of a 

reference sequence for chickpea and the short read length of sequences (26-bp) limit the 

utility of this approach.  



 

 

EST assembly 

A total 5494 high-quality sequences (average length 505 bp) were generated after removing  

short and low-quality sequences. A total of 3062 unigenes (638 contigs and 2424 singletons) 

were derived from cluster assembly and sequence alignment; each contig had 2–113 ESTs with 

an average length of the 527 bp. The majority of contigs (84.9%) contained 5 or fewer ESTs, 

whereas only 2.97% contigs were made from 20 or more ESTs (Additional file 4), indicating a 

high degree of normalization and subtraction efficiency. All EST sequences have been deposited 

in the dbEST division of GenBank (HO062174-HO068058). The unigene (UG) set developed in 

this study is henceforth referred to as UG-TDS (unigenes responsive to terminal drought stress). 

CAP3 assembly analysis of our datasets with all chickpea EST sequences (34,587) deposited in 

NCBI dbESTs identified 1576 unigenes (51.4% of total unigenes) as singlets and are new entries 

to the chickpea database.  

ESTs from forward and reverse libraries were aligned to identify unique ESTs, which were up- 

or downregulated (in silico subtraction).  There were 592 unigenes specific to forward-subtracted 

libraries and 876 unigenes to reverse-subtracted libraries. Although 125 assemblies contained 

ESTs from both forward and reverse libraries, this indicates very low level of redundancy 

between both libraries (Figure 2). ESTs identified in bulk libraries and from individual parent 

libraries were also aligned using CAP3 assembly, assuming that the high number of ESTs from 

the HRB-contributing parent ICC 4958 and bulks of RILs of the extreme HRB phenotype would 

form a cluster. Surprisingly, only 20 ESTs were common between ICC 4958 ESTs  and bulks of 

RILs exhibiting HRB.  Similarly, only 7 ESTs were common for ICC 1882–specific transcripts 

(the LRB-contributing parent in the mapping population) and the transcripts from bulks of RILs 

exhibiting extremes of LRB phenotype. 



 

 

To determine the efficiency of normalization and subtraction of SSH libraries, we compared our 

ESTs with those generated by using non-normalized cDNA libraries. We have previously 

reported more than 20,000 chickpea root ESTs in response to drought and salt stress in ICC 4958 

by using the same procedure to obtain tissue samples for constructing the libraries [9]. CAP3 

assembly and clustering analysis of ESTs identified 126 contigs with 1 EST from our SSH 

libraries and more than 5 ESTs from non-normalized libraries. Some ESTs such as HO063066 

(pathogenesis-related protein), HO063205 (plasma membrane intrinsic protein), and HO067852 

(Type 1 metallothionein), had single representations in SSH libraries, whereas more than 60 

clones were present in non-normalized cDNA libraries. These results support the utility and 

efficacy of our SSH approach to reduce the redundancy and identify specific transcripts with 

small-scale sequencing. Dataset analysis with all chickpea EST sequences (34,587) deposited in 

NCBI dbESTs identified 1576 new unigenes (51.4% of the total unigenes). 

Nucleotide-level diversity analysis 

BLASTN analysis of UG-TDS revealed significant identity with Medicago (79.0%), followed by 

Glycine max (72.0%), Phaseolus (53.7%), Lotus (53.4%), Populus (43.6%), Arabidopsis 

(29.4%), and Oryza sativa (28.5%) ESTs (Figure 3; additional file 5). Analysis of sequence 

similarity of chickpea UG-TDS with other legume species revealed that 2614 (85%) unigenes 

had significant similarity to ESTs of at least one of the analyzed legume species, with highest 

similarity of chickpea unigenes with Medicago, which is closely related to chickpea in the 

phylogenetic tree [37]. As expected, the 4 leguminous species showed the highest levels of 

similarity. The low level of sequence similarity for L. japonicus may be because of its EST 

collection is smaller (1,83,153)  than those of other species such as soybean (8,80,561) and 

Medicago (1,58,131). The low nucleotide similarity observed between chickpea and other plant 



 

 

species does not necessarily represent phylogenetic relationships, but could depend on the 

coverage of EST sequences. A significant percentage of unigenes (14.6-47.5 %) showing weak 

or no similarity (E-value >1E-05) for Medicago, Glycine,  Lotus, and  Phaseolus, indicating a 

considerable divergence in chickpea gene content within other leguminous species.  

Functional characterization of the chickpea unigene dataset  

BLASTX analysis of 3062 unigenes showed 2185 total hits against NCBI non-redundant (nr) 

database with E value <1E-06. A majority (1.210; 55%) of top matches were from proteins of 

legume species, with maximum hits from Glycine max (528, 24% unigenes) and Medicago 

truncatula (338, 15% unigenes); only 6% (132 unigenes) matched with Cicer arietinum, 

indicating the novelty of the chickpea unigenes dataset. Among nonlegume species, majority of 

matches were with proteins of Vitis vinifera (275, 12% unigenes), Ricinus communis (214, 9% 

unigenes) and Populus trichocarpa (212, 9% unigenes). The availability of the whole genome 

and predicted proteins of these species and limited sequence information of legumes in the 

database may have led to the highest homology of chickpea sequences with these nonlegume 

genomes (Additional file 6). Functional annotation of unigenes by Blast2GO resulted in gene 

ontology functional classification terms for 2006 (92.0%) sequences, of which 1813 (90.3%) 

unigenes were functionally annotated (GO consensus and EC number) and 193 sequences were 

mapped but not annotated (Figure 4). At the second level GO, 1375 sequences were assigned to 

the biologic process category, 1422 sequences to the molecular function category, and 1311 

sequences to the cellular component category (Figure 5). In biologic processes, “cellular 

process” and “metabolic process” was the most dominant term (27.2% of sequences), followed 

by “metabolic processes” (27.0%). In the molecular function category, “binding” (41.8%) was 

the most dominant term, followed by “catalytic activity” (36.6%); in the cellular compartments 



 

 

category, “cell part” (42.91%) was the most represented term, followed by “membrane-bounded 

organelle” (29.34%) and “organelle part” (10.04%). Additional file 7 gives details on GO 

analyses of UG-TDS sets. 

Pathway classification of transcripts 

Of the 1808 annotated sequences, 656 were annotated with 812 Enzyme Commission (EC) codes 

and mapped to 108 different KEGG pathways. Of the 108 pathways contained within the 

metabolism category (metabolic pathways), 46 were represented by 43.44% of the 656 unigenes. 

KEGG metabolic pathways well represented by unigenes were biosynthesis of plant hormones 

(44 enzymes), biosynthesis of phenylpropanoids (29 enzymes) and terpenoids and steroids (24 

enzymes), biosynthesis of alkaloids derived from histidine and purine (25 enzymes) and from the 

shikimate pathway (24 enzymes), starch and sucrose metabolism (24 enzymes), and arginine and 

proline metabolism (10 enzymes). Several hormone pathways, such as of abscisic acid, ethylene, 

salicylic acid, and jasmonic acid, are involved in one or more environmental stresses, including 

drought stress and other abiotic stresses processes [38-42]. A representative KEGG map for 

biosynthesis of plant hormones is given in Additional file 8. 

Gene ontology (GO) enrichment analysis 

Identification of overrepresented and underrepresented GO terms from a given list of genes from 

different libraries may help elucidate the functional relevance of these genes under drought 

stress. GO enrichment analysis found that 60 GO terms were differentially represented between 

AB1-1 and AB2-1 (Figure 6; additional file 9): 50 were overrepresented and 10 underrepresented 

in AB1-1. Several overrepresented terms were associated with stress response properties such as 

response to salt stress, osmotic stress, abiotic stimulus, radiation, and light stimulus. GO terms 

related to the flavonoid pathway (e.g., flavonoid metabolic process and flavonoid biosynthetic 



 

 

process) and peroxidase activity (e.g., oxidoreductase activity, acting on peroxide as acceptor 

and peroxidase activity) were underrepresented. The underrepresentation of these GO terms 

suggests downregulation of the flavonoid biosynthetic process and peroxidase activity under 

drought stress in roots of ICC 4958. Similar results have been reported in barley, chickpea, and 

mangrove under abiotic stress [7,43,44]. 

GO enrichment analysis was also performed between ESTs derived from the parental genotype 

library and RILs library to determine differential responses between parents and RILs. Compared 

with parental genotype libraries, 13 GO terms were significantly overrepresented in RILs bulk 

libraries (Additional file 10). GO enrichment analysis of forward-subtracted and reverse-

subtracted SSH libraries to determine differential GO representation between up- and 

downregulated EST sets (Figure 7; Additional file 9) showed overrepresentation of GO terms 

related to stress response properties, such as response to stress, heat, temperature, and abiotic 

stimulus in the upregulated libraries (AS1-1 and AR1-1). Three GO terms intrinsic to membrane, 

membrane part, and integral to membrane were underrepresented in the upregulated libraries. 

These differential enriched GO terms related to stress response in upregulated libraries indicate 

the efficiency of the SSH technique to clone up- and downregulated genes by the forward- and 

reverse-subtraction methodology. By this analysis, we have a priori–defined gene networks 

involved in drought stress in chickpea, which can be used to select drought-responsive candidate 

genes in chickpea. 

Differential expression analysis of unigenes under drought stress 

Myoinositol-1-phosphate synthase (MIPS) and pyrroline-5-carboxylate synthetase (P5CS) 

(involved in the synthesis of pinitol and proline, respectively) were upregulated under drought 

stress (Figure 8).
 
The concentration of pinitol, a cyclic sugar alcohol, is high in halophytic plants 



 

 

and plants adapted to drought [45]. MIPS transcript abundance, and it’s content increases in 

several plant species in response to environmental stresses [27,46,47].Two MIPS genes from 

chickpea CaMIPS1 and CaMIPS2 have been isolated and characterized for their role in water 

stress [48]. Differential patterns of MIPS-coding genes occur in maize [49], Arabidopsis [50], 

and rice [46]. Unigenes P5CS1 (UG-TDS_Contig353) and P5CS2 (HO066525) were 

significantly upregulated under water stress (Figure 8). A significant increase in proline 

concentrations has been reported in response to water stress in plants and accumulation of 

proline is considered as an indicator of stress-adaptive response of plants [51].  

In our study, different LEA groups of genes were found in UG-TDS: 2 unigenes encoding HVA 

protein (HO065000, unigene_Contig11), 5 encoding LEA proteins (HO063258, HO065296, 

HO0065083, UG-TDS_Contig311 and UG-TDS_Contig524), 6 encoding dehydrin (UG-

TDS_Contig232, Contig320, Contig622, UG-TDS HO064933, UG-TDS HO065247 and UG-

TDS HO066163), and 1 encoding ERD proteins (HO065032). Among these LEA group 2 

members [LEA (HO063258) and dehydrin (HO065247)] were found highly up regulated in 

drought stress (Figure 8). Earlier studies in chickpea have also reported the induction of LEA 

proteins under drought stress [27,34]. The expression profile of LEA genes under stress supports 

the role of LEA proteins as protective molecules that enable cells to survive protoplasmic water 

depletion [52]. Studies on overexpression of LEA genes also support the protective role of LEA 

proteins by improving the stress tolerance of transgenic plants. Expression of the barley gene 

HVA1 in wheat and rice increases drought tolerance [53], and overexpression of wheat LEA 

genes PMA80 and PMA1959 increases dehydration tolerance in transgenic rice [54]. 

Different members of aquaporins subfamilies were found in UG-TDS: which includes, 6 

unigenes encoding plasma membrane intrinsic protein (UG-TDS HO062890, HO064502, 



 

 

HO064741, HO064425, HO064603 and HO064612), 5 unigenes encoding tonoplast intrinsic 

protein (UG-TDS HO064719, HO064351, UG-TDS_Contig278, UG-TDS_Contig19 and UG-

TDS_Contig156) 2 unigenes encoding NOD26-like intrinsic protein (UG-TDS HO066903 and 

HO062732). The maximum numbers of the unigenes encoding aquaporin were found in root 

libraries and downregulation of one of the member (HO062890) under drought stress was 

conformed in northern blot analysis (Figure 8). This is similar to downregulation of transcripts 

and reduction in protein levels of most the Arabidopsis aquaporin genes under drought condition 

[55], which may be an adaptive strategy for plants to minimize water flow through cell 

membranes and uphold leaf turgor to minimize water loss. In tobacco, NtPIP1.1 and NtPIP2.1 

expression is downregulated
 
to reduce osmotic hydraulic conductance in the roots

 
under drought 

stress [56], supporting the role of aquaporins in drought stress maintenance.  

Eleven chickpea unigenes from UG-TDS were classified as members of the AP2/ERF 

superfamily: 10 under the ERF family and 1 under the RAV family. Three members of this 

family (ERF1, ERF-2, and RAV) were analyzed by Northern blot under drought stress 

conditions. ERF1 was downregulated whereas ERF2 was upregulated under stress conditions. 

Biosynthesis of ethylene and regulation of its activation pathway are important to mediate plant 

developmental processes and stress responses in plants [57,58]. The AP2/ERF family of 

transcription factors, especially the CBF/DREB and ERF subfamily, has been extensively 

studied in response to drought stress [59].  CAP2, a member of the chickpea AP2 family, is 

responsive to various abiotic stress and its overexpression in tobacco increases the tolerance to 

dehydration and salt stress [60]. Northern blot analysis showed that UG-TDS HO066286 coding 

for RAV (related to ABI3/VP1) transcription factor was downregulated under drought stress 

(Figure 8). Arabidopsis RAV1 is a brassinosteroid (BR) down-regulated gene. High level of BR 



 

 

is accompanied by a very low level of RAV1 transcripts and vice versa [61].The involvement of 

BR pathway in the enhancement of tolerance to chilling, thermo, salt, mild drought injury and 

pathogen attack has been confirmed in several studies [62,63]. Therefore, the down regulation of 

RAV during terminal drought stress in our study may indicate the involvement of the BR 

pathway. 

In chickpea, 3 members of the NAC gene family (CarNAC1, CarNAC3 and CarNAC5) are 

strongly induced by drought, salt, cold, and wounding [64]. We have identified 8 new members 

of this TF family in UG-TDS with one NAC gene (HO067315) that have increased expression 

under drought stress validated by northern blot result (Figure 8). Expression profiling and 

overexpression analysis of NAC genes in several plants supports their involvement in stress 

tolerance [65,66,67]. 

The HDZip gene (HO062575) was among the up regulated transcription factor, as reflected from 

northern blot results. Two members of this gene family (HO062575 and UG-TDS_Contig226) 

have been identified form UG-TDS. The functional information available on plant HDZIP genes 

suggest that at list some of these genes are involved in response to different environmental 

conditions [68]. Overexpression of sunflower HD-Zip gene Habt-4 confers drought tolerance in 

Arabidopsis [69], this is suggestive of important role of HD-Zip protein in regulation of 

expression of genes involved in drought tolerance.  

 Hypothetical proteins are genes of unknown functions predicted from the Arabidopsis or rice 

genome sequence. Two such genes HP-1 and HP-2 were significantly induced in WS plants. 

Several hypothetical genes have now been characterized by advanced bioinformatics tools by 

identifying similarity of conserved function domains. For example, in Arabidopsis, the family of 



 

 

BAG proteins initially annotated as hypothetical proteins are now annotated as bag gene family 

members, their function as regulators of apoptosis-like processes has also been characterized. 

Functional characterization of such unknown hypothetical proteins can shed light on the 

mechanism of drought adaptation in chickpea.   

We found transcript levels of the chlorophyll a/b-binding protein to be downregulated during 

stress. Most of the strongly downregulated transcripts were related to photosynthesis, 

photorespiration, and metabolism of amino acids and carbohydrates. In a dehydration shock 

treatment, the transcript level of chlorophyll a/b-binding protein remained unchanged [27]; 

similarly, in barley, chlorophyll a/b-binding protein transcript (NP_917525) levels do not change 

under dehydration shock treatment but are downregulated by drought stress treatment [70], 

indicating differential response of genes under dehydration and drought stress.  

Comparative transcript profiles of ICC 4958 and ICC 1882 under drought stress 

To identify differentially regulated transcripts in response to terminal drought stress between 

drought-tolerant ICC 4958 and drought-susceptible ICC 1882, SSH libraries AB1-1 and AB2-1 

were constructed. To validate these differentially expressed transcripts, a nylon macroarray, 

using unigenes from AB1-1 and AB2-1 libraries, was constructed. Total RNA from water-

stressed ICC 4958 and ICC 1882 was used to assess the genotype-specific response of these 

genes under drought stress (Figure 9). The unigenes showing at least 1.5-fold of induction were 

selected for further analysis (additional file 11).   

The normalized expression intensities of unigenes and the results of hierarchical clustering 

analysis according to their relative expression patterns is graphically represented by a heat map 

in Figure 10.Hierarchical clustering resulted in the formation of 3 clusters (cluster I, II and III). 



 

 

Clusters I and II included unigenes that were upregulated in ICC 4958, whereas cluster III 

included unigenes downregulated in ICC 4958 as compared with ICC 1882 (Figure 11). 

Genes in clusters I and II were associated with metabolic process [e.g., ethylene biosynthesis 

(HO062211, HO062180), flavonoid synthesis (HO062384), and amino acid biosyntheses 

(HO062526, HO062310 and HO062183)] and also these genes shown to be involved in drought 

response in several other plants [71,72]. Upregulation of genes involved in ion binding and 

transport activities [e.g., ATP-binding proteins (HO063146), lipid transfer proteins (HO062394, 

HO062798), UDP-galactose transporters (HO062219), metal ion binding (HO062399), sulfate 

transporters (HO063202), tonoplast intrinsic proteins (HO062783), were also upregulated in ICC 

4958. In an earlier study, we reported by in silico differential expression analysis the 

upregulation of the tonoplast intrinsic protein in the roots of ICC 4958, which mediates the 

regulation of root hydraulic conductivity in response to environmental stimuli [9]. Several stress-

related genes [e.g., pathogenesis-related proteins (HO062911, HO062939) and peroxidase 

(HO062698), chaperone binding (HO062569) and small heat shock protein (HO062866)] 

upregulated in ICC 4958 and have been shown to be induced by wounding, salt, and cold stress 

in other plant species [73,74] indicates multiple stress induction of these genes. Similarly known 

stress-responsive transcription factors and regulators such as the AP2/ERF domain-containing 

transcription factor (HO062802), MYB transcription factor (HO062363), DNA repair and 

transcription factor XPB1 (HO062308), and transcription regulators (HO062392) were also 

upregulated in ICC 4958. A similar differential induction of these genes or gene categories in 

drought-tolerant genotypes in response to drought stress during the reproductive stage has been 

reported in barley [75].  



 

 

Cluster III contained unigenes that were upregulated in ICC 1882 but not ICC 4958. One 

upregulated unigene encoded fructose-bisphosphate aldolase (HO063129), whose 

downregulation could inhibit gluconeogenesis for conserving energy in drought-stressed plants 

(41).  

To validate the results of dot blot analysis, 10 differentially expressed unigenes were analyzed by 

qPCR. Real-time PCR confirmed the differential expression of these genes under terminal 

drought stress conditions (Figure 12). The genes showing significant differential expression 

between the 2 genotypes can be explored as potential candidate genes that can confer terminal 

drought tolerance in chickpea, using transgenic overexpression and TILLING (targeting induced 

local lesions in genomes) analysis.  

Conclusions 

We report the sequencing, assembly, and annotation of 5494 high-quality drought-responsive 

EST sequences from chickpea. This dataset was generated from SSH libraries constructed using 

drought-tolerant and -susceptible chickpea genotypes and bulks of their progenies exhibiting 

HRB and LRB phenotypes. SSH libraries allowed cloning genes that are specifically up- and 

downregulated from the roots and shoots of chickpea in response to terminal drought. Moreover, 

we identified more than 1500 novel unigenes in chickpea that are associated with terminal 

drought stress. Besides several transcripts coding for known stress-related proteins, several novel 

genes with unknown functions that may have a potential role in drought tolerance in chickpea 

were also identified. This study also provides a comparative overview of genotype-specific 

expression patterns of more than 830 unigenes in root tissues of chickpea in response to drought. 

The up- and downregulation of some unigenes was confirmed by real-time qPCR. The EST 

dataset and the information about transcription of several genes can be useful for the research 



 

 

community and help identify potential candidate genes for drought tolerance in chickpea. Our 

study can also serve as an important resource for developing functional markers, full-length gene 

isolation, TILLING, drought-responsive promoter isolation, and in drought functional genomic 

studies involving overexpression, e-QTL, and manipulation of drought tolerance in chickpea. 
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Figure legends 

Figure 1: Schematic details about the SSH libraries. Two chickpea genotype (ICC 4958- 

HRB, drought resistant and ICC 1882-LRB, drought susceptible cultivar) and 10 extreme 

recombined inbreed lines each of HRB and LRB phenotype derived from ICC 4958 X ICC 

1882 mapping population were used for construction of eight cDNA SSH libraries. Both 

forward (FS) and reverse subtractions (RS) were generated using reciprocal samples. 

Figure 2: Venn diagram representing comparison of ESTs from different SSH libraries: 

(A) Cap3 assembly of four SSH libraries AS1-1(forward subtracted library from the shoots 

of drought tolerant genotype, ICC 4958), AR1-1(forward subtracted library from the roots of 

drought tolerant genotype, ICC 4958), containing up- regulated transcripts and AS2-

1(reverse subtracted library from the shoots of drought tolerant genotype, ICC 4958), AR2-

1(reverse subtracted library from the roots of drought tolerant genotype, ICC 4958) 

containing down regulated transcripts under TDS, reveals a set of 592 and 876unigenes 

specific to up- regulated and, down regulated libraries respectively. A set of 125 unigenes 

were common in both group.  

(B) ESTs obtained from bulk of RILs libraries Bulk 1-1(forward subtracted library from the 

roots of  HRB and LRB) and Bulk 2-1(reverse subtracted library from the roots of  HRB and 

LRB) and individual parental libraries, AB1-1 (forward subtracted library from the roots of  

ICC 4958 and ICC 1882)and AB2-1(reverse subtracted library from the roots of ICC 4958 

and ICC 1882  ) reveals 343, 399, 262   and 298 unigenes specific to AB1-1,  AB2-1, Bulk 1-

1 and Bulk2-1 libraries, respectively.  

Figure 3: Distribution of conservation between chickpea (Cicer arietinum) UG-TDS and 

the EST datasets of Mt (Medicago Truncatula), Gm (Glycine max), Pv (Phaseolus 



 

 

vulgaris), Lj (Lotus japonicus), Pa (Populus alba), Os (Oryza Sativa) and At (Arabidopsis 

thaliana). Unigenes were grouped according to similarity levels determined by nucleotide 

similarity search BLASTN E-value.   

Figure 4: A graphical representation of the annotation statistics of UG-TDS: the total 

number of unigenes annotated as a known protein with an E-value threshold of e-06, total 

number of unigens not mapped, total number of unigenes mapped but not annotated, the total 

number of unigene annotated with at least one category of Gene Ontology (GO) and the 

number of genes annotated in each of the 3 major GO categories, biological process, 

molecular function and cellular component. 

Figure 5: Summary of the Gene Ontology annotation as assigned by BLAST2GO: Gene 

Ontology classification of chickpea UG-TDS dataset according to molecular function,   

biological process and Cellular component.  

Figure 6:  Differential Gene Ontology terms between ESTs derived from ICC 4958 and 

ICC 1882 libraries under drought stress. GO enrichment analysis between ESTs generated 

form AB1-1(forward subtracted library from the roots of  ICC 4958 and ICC 1882) and AB2-

1(reverse subtracted library from the roots of  ICC 4958 and ICC 1882) SSH libraries using 

Fisher’s exact test with a false discovery rate (FDR) cutoff of p ≤ 0.05. The numbers of 

transcripts associated with a specific GO term are represented as percentage of functionally 

annotated EST in their respective libraries. 

Figure 7:  Differential Gene Ontology terms between up regulatory and down 

regulatory transcript under drought stress. GO enrichment analysis between ESTs 

generated from up regulated SSH library, AS1-1(forward subtracted library from the shoots 

of drought tolerant genotype, ICC 4958) and AR1-1(forward subtracted library from the 



 

 

roots of drought tolerant genotype, ICC 4958)) and down regulated SSH libraries,AS2-

1(reverse subtracted library from the shoots of drought tolerant genotype, ICC 4958) and 

AR2-1(reverse subtracted library from the roots of drought tolerant genotype, ICC 4958) 

using Fisher’s exact test with a false discovery rate (FDR) cutoff of p ≤ 0.05. The numbers of 

transcripts associated with a specific GO term are represented as percentage of functionally 

annotated EST in their respective libraries. 

Figure 8: Northern blot analysis of selected stress responsive genes.  

Northern blot analysis showing expression of selected stress responsive ESTs (Myb, ERF-2, 

NAC, bZIP, HD-ZP, P5CS-1, P5CS-2, dehydrin, LEA, hypothetical protein 1, hypothetical 

protein-2, ALDH-1, ALDH-2, MIPS, ERF-1, RAV, chlorophyll a/b-binding protein, and 

aquaporin.) in well watered (WW) and water stressed (WS) ICC 4958 plants. ESTs are listed 

according to their annotation generated in present work. Chickpea actin cDNA and 28S 

ribosomal RNA were used as controls. Panel (A) and (B) show up-regulated and down 

regulated genes during drought stress, respectively. 

Figure 9: A typical representative macroarray hybridization of SSH cDNA clones. 

identical nylon membranes containing cDNA spots from subtracted cDNA library of 

chickpea were hybridized with α
32

P-dCTP labeled cDNA probes synthesized from WS ICC 

4958 plants (A) and WS ICC 1882 plants (B). Actin (*) was used as internal control to 

normalize the signals of
 
two different blots and NPTII (#) used as negative control to subtract 

the background
 
noise.  

Figure 10: Heat map of expression values of drought responsive genes in ICC 4958 and 



 

 

ICC 1882 under TDS: Hierarchical clustering (average linkage and Euclidean distance 

matrix with the minimum similarity of 0.5) were performed using HCE version 2.0 beta web 

tool. Clustering of unigenes based on normalized signal intensity into three clusters (I, II, and 

III). The dendrogram of the array experiments reflects the similarity of the unigenes with 

respect to their gene-expression pattern. In the heat map red represents normalized 

expression values greater than the mean, green colour represents expression less than the 

mean and colour intensities in between the two represent the magnitude of the deviation from 

the mean. Colour scale (from green to red) represents the range of expression level. 

Figure 11: Expanded portion of the heat map of Figure 10 depicting identities of the 

genes from each cluster. Cluster I and II contains gene up regulated in ICC 4958 and cluster 

III contains genes up regulated in ICC 1882. 

Figure 12: Comparative expression analysis of selected unigenes between ICC 4958 and 

ICC 1882 chickpea genotypes in response to drought stress. Relative expression levels 

(fold difference) of 10 selected unigens in ICC 4958 and ICC 1882 chickpea genotypes under 

terminal drought stress were evaluated using qPCR analysis. Error bars represent Standard 

error of the mean (Number of replication n = 3). Unigenes used for qPCR analysis were: 

1-aminocyclopropane-1-carboxylate synthase (HO062180), esterase lipase thioesterase 

family protein-1(HO062244), yippee family protein (Putative zinc binding protein) 

(HO062242), calcium ion binding (HO062250), protein kinase (HO062281), MADS box 

protein (HO062366), esterase lipase thioesterase family protein-2 (HO062386), alkaline 

alpha galactosidase (HO062433),  leucine-rich repeat protein (HO062474) and  GDP 

dissociation inhibitor (HO062555).  
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Additional files 

Additional file 1: Summary of earlier work done towards identifying ESTs associated 

with drought stress in chickpea. 

Format: DOCX 

 

Additional file 2: 

Title: Primer sequences for qPCR analysis.  

Description: All primer sequences used for qPCR analysis in the manuscript are 

listed. 

Format: XLXS 

 

Additional file 3: 

Title: Daily NTR ratio of each well watered (WW) and water stressed (WS) ICC 

4958, ICC 1882 and RILs.  

Description: (A) Change in NTR ratio of well watered (WW) and water stressed 

(WS) ICC 4958 and ICC 1882 plants. (B) Change in NTR ratio of high root biomass 

and low root biomass RILs along with parental lines under water stressed (WS) 

condition. 

Format: DOCX 

 

Additional file 4:  

Graphical representation of Chickpea unigene assembly UG-TDS. (a) 

Distribution of chickpea EST members in contigs after the assembly process. (b) 

Distribution of contigs according to the EST numbers. Each contig categories 

represents number of ESTs per contig. Green bars indicate the EST size and the blue 

bars indicate number of contigs belonging to respective EST size categories.  
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Format: PPT 

Additional file 5:  

Title: UG-TDS BLASTN analysis results.  

Description: Table showing BLASTN analysis results of UG-TDS dataset with EST 

datasets of EST datasets of Mt (Medicago Truncatula), Gm (Glycine max),  Pv 

(Phaseolus vulgaris), Lj (Lotus japonicus), Pa (Populus alba), Os (Oryza Sativa) and 

At (Arabidopsis thaliana) with corresponding details of GB ID numbers, descriptions 

and E-value. 

Format: XLSX 

 

Additional file 6:  

BLASTX similarity search of the UG-TDS against the NCBI non-redundant 

protein database. (A) Distribution of top matches against the NCBI taxonomic 

domains. (B) Distribution of e-value scores.  

Format: PPT 

 

Additional file 7: 

Title: Functional annotation of UG-TDS results. 

Description: Table showing functional categorization results of UG-TDS dataset 

using Blast2go tool. Table represent corresponding details of sequence description of 

BLASTX hit, E-values, Gene Ontology terms and Enzyme Commission entries. 

Format: XLSX 

 

Additional file 8: 

Title: KEGG pathway for Biosynthesis of plant hormones:  
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Description: 78 differentially expressed unigenes under drought stress were 

identified as a candidates involves in different plant hormones such as Jasmonic acid, 

ethylene and salicylic acid and gibberellin.  

Format: PPT 

 

Additional File 9: 

Title: GO enrichment analysis using GOSSIP module of BLAST2GO program.   

Description: Table S1: Results of GO enrichment analysis done using transcripts 

generated from AB1-1 library as test set and AB2-1 as reference set with the FDR 

filter value 0.05. The 60 GO terms were differentially represented in these two 

libraries. Out of then 50 were over represented and 10 were under represented.  

Table S2: Results of GO enrichment analysis done using transcripts generated from 

bulks of RILs as test set and SSH unigenes from individual parental libraries as 

reference set with the FDR filter value 0.05. The 13 GO terms were over represented 

in libraries from bulk of RILs. 

Table S3: Results of GO enrichment analysis done using transcripts generated from 

up regulated libraries (AS1-1 and AR1-1) as test set and  unigenes from down 

regulatory libraries (AS2-1 and AR2-1) as reference set with the FDR filter value 

0.05. The 10 Go terms were overrepresented in up regulated libraries and three GO 

terms were under represented.   

Format: DOCX 

Additional file 10 

Differential Gene Ontology terms between parental line (ICC 4958 & ICC 1882) 

and bulks of RILs under drought stress. GO enrichment analysis between ESTs 

generated from parental line (From AS and AR libraries) and ESTs form bulks of 

RILs using Fisher’s exact test with a false discovery rate (FDR) cutoff of p ≤ 0.05. 
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The numbers of transcripts associated with a specific GO term are represented as 

percentage of functionally annotated EST in their respective libraries  

Format: PPT 

 

Additional File 11: 

Title: Genotype specific response of chickpea unigenes in response to terminal 

drought stress.  

Description: Expression profiling of differentially expressed ESTs generated by SSH 

libraries were analysed in drought stressed ICC 4958 and ICC 1882 using dot-blot 

expression analysis. Differential responses of unigenes are represented in normalised 

signal intensities values. Standard deviations are calculated from three different 

experiments. Signal intensity of Actin (GenBank: EU529707) used for normalisation 

of the signals between the blots and NPTII was used for signal background correction. 

Unigenes are listed according to their annotation generated in present work.  

Format: DOCX 
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