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I. INTRODUCTION 

Pearl millet [Pennisetum glaucum (L.) R. Br.] is a staple food crop of semi-arid tropical 

regions of lndia and West Africa and is better adapted than any other cereal to regions 

of low rainfall, low soil fertility and hot sandy soils. Pearl millet is widely cultivated in 

different parts of the world. It is a multi-purpose cereal grown for grain, stover and green 

fcdder on about 27 million hectares, primarily in Asia and Africa (ICRISAT and FAO, 

1996). However, its importance in Latin America is expanding rapidly (Hash et al., 1999). 

In terms of annual production, pearl millet is the sixth most important cereal crop in the 

world, following wheat, rice, maize, barley and sorghum. In lndia it is important in the 

states of Rajasthan, Maharashtra, Gujarat and Haryana but it is also grown in other parts 

of the country where the rainfall is 150-750 mmlannum, primarily during the south-west 

monsoon from June to September (Kumar, 1989). 

Pearl millet is an excellent organism for genetic research because of its low 

chromosome number (2n = 14), short life cycle, high multiplication ratio (up to 1:1000), 

ratooning ability and the ease with which cross pollination can be done due to protogyny. 

It has also been found very suitable for molecular genetic studies. 

Breeding for resistance to diseases of current and potential economic importance 

contributes to increased productivity and stability of pearl millet grain, stover and forage 

yields. Disease resistance is a major concern in pearl millet improvement programs, and 

has been the subject of several reviews (Louvel, 1982; Williams and Andrews, 1983; 

Williams, 1984a; Andrews et a/., 1985; Talukdar et a/., 1994; Rai and Anand Kumar, 

1994; Hash etal., 1997; Hash etal., 1999). In breeding improved pearl millet cultivars, it 

is necessary to maintain moderate levels of resistance to many potential pathogens 

currently of minor importance in the breeders' target environments (Mohan et ab, 1978; 

Singh et ab, 199313). This helps ensure that these constraints do not become actual 

problems later. 



Sclerospora graminicole (Sacc.) J. SchrOt. is an obligate biotrophic fungus that causes 

downy mildew in pearl millet, often resulting in devastating yield losses under epiphytotic 

conditions. S. graminicole was first reported on pearl millet in India by Butler (1907). 

Althouth it is established throughout most pearl millet growing areas in Asia and Africa, 

higher disease incidence and losses were initially reported only in poorly drained low 

lying areas (Butler, 1918; Mitra and Tandon, 1930). However, since the introduction of 

high yielding single-cross hybrids in India, in the late 1960's, downy mildew has been a 

major production constraint and a major focus of pearl millet improvement research both 

by ICRISAT and the Indian National Program (Nene and Singh, 1976; Safeeulla, 1976; 

Williams, 1984b; Andrews, 1987; Dave, 1987; Rai and Singh. 1987; Shetty, 1987; 

Singh et a/., 1987, Singh 1995 and Singh eta/., 1993a). 

The symptoms of downy mildew may appear at any stage of plant growth. Leaf 

symptoms begin as chlorosis (yellowing) at the base of the first infected leaf and 

subsequent leaves show progressively greater chlorotic symptoms. The infected 

chlorotic areas produce massive numbers of asexual spores (sporangia), generally on 

lower surface of leaves, giving them a 'downy' appearance. Severely infected plants 

remain stunted and do not produce panicles. However, the most typical symptom of this 

disease is the transformation of infected floral parts into leafy structures (Pinard, 1989). 

Therefore, the disease is also known as the green ear disease. 

ICRISAT has developed highly effective field (Wdliams et a/., 1981) and greenhouse 

(Singh and Gopinath, 1985; Singh et ab, 1993a; Weltzien and King, 1995) screening 

techniques that can easily differentiate between resistant and susceptible progenies, 

In the present scenario, incorporation of a divene range of downy mildew resistance 

genes into the parental lines of elite pearl millet hybrids is major priority in order to 

achieve grain and stover yield stability. It has been found in most previous studies on 

genetics of resistance to downy mildew that host resistance was continuously distributed 



in the progeny (Singh et a/. 1980; Basavaraju et a/., 1981a; Dass et a/., 1984; 

Shinde et a/., 1984). However, this does not necessarily imply that the inheritance is 

complex and that many genes are segregating (Basavaraju et a/., 1981b). Polygenic 

system of resistance being most sensitive to environmental variation and vertifolia 

effects of oligogenes in the "genetic environment", if any, the expression of resistance is 

often inconsistent. Accumulation of maximum number of favourable alleles controlling 

disease resistance is a general strategy when host plant resistance mechanisms are 

under polygenic control. This warrants for the use of techniques that have maximum 

resolution. Use of molecular markers, like restriction fragment length polymorphisms 

(RFLP), linked to resistance genes enhances both the effectiveness and rate of progress 

of breeding improved hybrid parental lines. Also these markers are independent of 

variation caused by the genetic, biotic andlor abiotic environment and this offers the 

advantage of permitting selection for resistance in absence of the pathogen, or of 

specific variants of the pathogen that are otherwise required to identify segregants with 

pyramided resistance genes. 

Marker-assisted selection has been possible, if not always practical, for a wide range of 

crop plant traits since relatively early in the 20m century (e.g. Sax, 1923; Hash and 

Blake, 1981; Burton and Werner, 1991). With the development of molecular tools and 

the first molecular genetic linkage maps for plants, marker-assisted selection (MAS) has 

become much more broadly applicable. During the past decade, the developing ability to 

transfer target genomic regions using DNA markers resulted in extensive mapping 

experiments aimed at development of MAS (Dudley, 1993; Lee, 1995; Mohan et el., 

1997). The molecular marker based genetic linkage map of pearl millet (Liu et al., 1994) 

has permitted identification of at least 16 quantitative trait loci (QTLs) for downy mildew 

resistance (Hash st a/., 1997; 1999; Hash and Witcombe, in press). The essential 

requirements for MAS in a plant breeding programme are: 

a) marker@) should co-segregate with the desired trait; molecular markers should be 

closely linked (with no crossovers or very low frequency of crossovers) with the 



gene@) governing the target trait. In other words, the linkage should be stable 

across generations and populations; 

b) an efficient means of screening large populations for the molecular marker@) 

should be available; at present, this means, relatively easy analysis based on PCR 

technology; and 

c) the screening technique should have high reproducibility across laboratories, be 

economical to use, and should be user-friendly. 

A backcross breeding program is aimed at gene introgression from a donor line into the 

genomic background of a recipient line. The potential utilization of molecular markers in 

such programs has received considerable attention in the recent past. Markers could be 

used to assess the presence of the introgressed gene ("foreground selection") when 

direct phenotypic evaluation is not possible, or too expensive, or only possible late in the 

development. This was proposed by Tanksley (1983). Markers could also be used to 

accelerate the return to the recipient parent genotype at other loci ("background 

selection"). This was first proposed by Hillel et al. (1990). 

Another major limiting factor in the cultivation of peari millet is bird damage. In spite of 

several well known devices used for scaring off the birds, the loss in grain yield may be 

as high as 25 to 100 per cent (Lal and Singh, 1971). The presence of long panicle 

bristles are said to protect the filling grains from bird damage and from untimely rain at 

flowering periods, the later resuiting in damage to stigmas and washing down of the 

pollen-producing anthers and consequently empty panicles. In varieties of pearl millet 

commonly grown in India, the bristles surrounding each spikelet on the ear do not 

extrude beyond the level of the grain surface. Some African introductions, however, 

possess long, welldeveloped bristles that have been found to give at least some 

protection against bird damage. 

Two populations from planned crosses, intended to map QTLs contributing to seedling 

heat tolerance, have been produced by the peari millet breeding unit of ICRISAT (Hash 



and Witcombe, 1994). Both mapping populations involve inbred H 771833-2, the 

pollinator parent of three high-tillering and high yielding single-cross grain hybrids: HHB 

60, HHB 67 and HHB 68 (Kapoor el a/., 1989a, b, c). H 771833-2 is non-bristled and is 

susceptible to some strains of pearl millet downy mildew present in India. Downy mildew 

QTLs have been mapped in both of the populations involving H 771833-2. Therefore, the 

proposed study was planned with following objectives: 

Objectives : I. Marker-assisted backcross transfer of downy mildew resistance 

gene(s) to H 771833-2 from resistance source ICMP 451. 

II. Transfer of bristling gene(s) from ICMP 451 to H 771833-2 through 

conventional backcrossing. 

Ill. Field and greenhouse evaluation of plants, and their hybrids 

haking the transferred genes. 



2. REVIEW OF LITERATURE 

The objective of this review is to present all information relevant to the objectives 

outlined for the study (i.e. marker-assisted backcross transfer of downy mildew 

resistance gene@), transfer of bristling gene@) through conventional backcrossing, and 

field and greenhouse evaluation of plants having the transferred genes). While doing so 

we shall draw not only on the published research work on pearl millet, which is quite 

meager, but also on other crops related to pearl millet. 

2.1 Inheritance of downy mildew resistance 

Literature on the inheritance of host plant resistance to downy mildew of pearl millet is 

briefly reviewed here to better understand the subject. 

Since shortly afler the onset of the hybrid era for pearl millet in India, downy mildew has 

been a major research focus by scientists of both ICRISAT and the Indian national 

program involved in improvement of this crop (Singh et a/., 1993a; Hash, 1997; 

Hash et a/., 1997, 1999). There are several published papers on the inheritance on 

downy mildew resistance. However, most such studies have been hampered because 

both the pathogen and host are allogamous and highly variable (Thakur et ab, 1992; 

Jones et ab, 1995) and segregation of host plant resistance generally shows continuous 

variation (Singh etal., 1980; Basavaraju etal., 1981a, b; Dass etal., 1984; Shinde et a/., 

1984). In addition, regional variability in pathogen populations used and difficulties 

maintaining high and uniform disease pressure have led to conflicting conclusions from 

earlier studies (Jones et a/., 1995). However, a meaningful summary is still possible. The 

literature on inheritance of downy mildew resistance has been adequately discussed in 

several fairly recent reviews (Koduru and Krishna Rao, 1983; Hash et a/., 1997, 1999). 

Appadurai et a/, (1975) reported that resistance to Sclemspora graminicola (causal 

organism downy mildew) is governed by one or two dominant genes, while Gill et al. 

(1978) reported two dominant duplicate factors conferring resistance to downy mildew 



and proposed the gene symbols DM1DM2, DMldm2, and dm,DM2 for resistant and 

dmldm2 for susceptible genotypes. Dass et a/. (1984); Thakur eta/. (1992); Singh (1995) 

reported resistance to be dominant over susceptibility and probably controlled by one or 

a few genes. Except in one case where resistance was reported to be recessive 

(Singh et a/., 1978) resistance is generally observed to be dominant and variation in 

segregating populations is continuous (Singh et ab, 1993a). 

The quantitative nature of inheritance to downy mildew was reported by Singh et a/. 

(1978) with significant additive and non-additive genetic variance. Basavaraju (1978); 

and Basavaraju et a/. (1980) concluded that resistance to downy mildew is not simply 

inherited, but IS due to a series of non-allelic interactions Many authors (e.g., Tyagi and 

lqbal Singh, 1989; Deswal and Govila, 1994; Kataria et a/., 1994) have concluded that 

non-additive gene action is responsible for much of the heritable variability for host plant 

reaction of downy mildew, agreeing with simpler studies that show resistance to be 

dominant or partially dominant. 

Weltzien and King (1995) subjected one population of pearl millet highly susceptible 

to downy mildew to two cycles of recurrent selection for downy mildew resistance and 

demonstrated that even in a susceptible population, recurrent selection effectively 

increased the level of resistance to this disease. However, progress in the second cycle 

of selection was much less than that in the first suggesting fixation had occurred after 

the first selection cycle at the loci contributing most to disease reaction in this population. 

2.2 Applications of RFLP technique 

In recent years, developments in DNA cloning and the use of restriction endonucleases 

have enabled scientists to more quickly and effectively construct genetic linkage maps 

by studying directly the segregation of DNA fragments. Advances in molecular biology 

during the past several decades have provided a new class of genetic markers at the 

level of DNA, termed restriction fragment length polymorphisms (RFLPs). RFLPs oflen 



occur in sufficient quantities to generate detailed genetic maps (Botstein e i  al., 1980; 

Soller and Beckmann, 1983). Investigation in maize (Zea mays) (Helentjaris etal., 1986; 

Burr e i  al., 1988), rice (Oryza saiiva) (McCouch ei al.. 1988), soyabean (Glycine max) 

(Apuya et aL, 1988), tomato (Lycopersicon esculentum) (Bernatzky and Tanksley, 1986), 

and brassicas (Brassica spp.) (Figdore et al., 1988) have demonstrated that a potentially 

unlimited number of RFLPs exist, which should enable plant geneticists to establish well- 

saturated genetic linkage maps for any species. 

RFLP differences between plants are inherited in the same fashion as conventional 

Mendelian genes, thus genetic linkage maps of RFLPs can be constructed using 

conventional methods. Such RFLP maps indicate the location of specific restriction 

fragments of chromosomal DNA relative to one another. Ellis (1986) reported that simple 

consideration of RFLP mapping as a method of analyzing the inheritance of quantitative 

characters suggests that there are several limitations to the utility of this approach. 

Gale and Witcombe (1992) and Hash (1991) emphasized the opportunities for potential 

use of RFLPs in pearl millet breeding with particular reference to downy mildew 

resistance. Markers are most useful when their map position is known (Hospital el a/., 

1992). A number of recent papers suggest that use of RFLPs as markers offers a clear 

advantage in breeding for improvement in quantitative traits (Arunachalam and 

Chandrashekaran, 1993; Mohan etal., 1997; Paterson et al., 1991). 

The two primary advantages of RFLP markers over morphological markers are 

codominance and absence of pleiotropic effects. Since RFLP markers have no known 

effect on the phenotype of the plant, they are ideal for studying quantitative traits 

(Stuber, 1992). 

RFLP and morphological markers have been used in practical plant breeding programs 

to map quantitative trait loci (QTLs) (Tanksley et al., 1982; Edwards et a/., 1987a, b; 

Stuber et a/., 1987; Weller et a/., 1988) and to monitor response to recurrent selection 



(Stuber etal., 1980, 1982). Morphological markers have also been studied for possible 

use in backcross improvement of yield potential of elite pearl millet forage hybrids 

(Burton and Werner, 1991). 

Costs of applying RFLPs to genetic improvement were assessed by Beckmann and 

Soller (1983) in terms of individuals and number of polymorphisms per individual that are 

scored for various applications including varietal identification, identification and mapping 

of quantitative trait loci and their marker-assisted introgression from resource strain to 

commercial variety. 

Liu etal. (1994) analyzed a sample of 19 diverse pearl millet inbred genotypes with 200 

homologous genomic DNA probes and found this crop species to be extremely 

polymorphic as 85% of probes detected polymorphism using only two restriction 

enzymes. 

2.3 Genetic linkage mapping 

Scientists are constructing genetic linkage maps of DNA markers for many plant species 

today (Helentjaris, 1987; McCouch et a/., 1988; Huen et a/., 1991; Tanksley, 1993; 

Mohan et a/.. 1997). Two types of DNA markers have been widely used, RFLP markers 

(Botstein et a/., 1980) and random amplified polymorphic DNA markers (RAPDs) 

(W~lliams eta/. ,  1990). Both detect DNA polymorphisms and monitor the segregation of 

a DNA sequence among progeny of a genetic cross permitting construction of a linkage 

map. However codominant RFLP markers are more robust and repeatable than RAPD 

markers, which are generally dominant (or presencelabsence) and very sensitive to 

protocol variation. 

The first true RFLP-based genetic linkage map in a crop plant (tomato) was constructed 

in 1986 with only 44 F2 plants and 57 marker loci (Bernacchi and Tanksley, 1988). A 

detailed linkage map of lettuce (Lectuca sativa) was constructed by Landry etal. (1987) 

using 53 genetic markers including 41 RFLP loci, 5 downy mildew resistance genes, 4 



isozyme loci and 3 morphological markers. The genetic markers were distributed into 

nine linkage groups covering 404 cM, which may represent 25-30% of the lettuce 

genome. Using RFLPs as genetic markers, Helentjaris et a/. (1988), constructed linkage 

maps for maize and tomato. A subsequent comparison of the RFLP inheritance patterns 

in F2 populations of maize and tomato permitted arrangement of the loci detected into 

genetic linkage groups for both species. 

McCouch et at., (1988) reported the construction of an RFLP-based genetic linkage map 

of rice chromosomes. The map was comprised of 135 loci corresponding to clones 

selected from a Psd genomic library covering 1,389 cM of the rice genome. Chao et a/. 

(1989) attempted RFLP mapping in wheat (Triticum aestivum) using 18 cDNA clones, 14 

anonymous and 4 of known function. The loci identified by these probes were mapped 

on one or more of wheat homeologus group 7 chromosomes. Graner et a/. (1991) 

analyzed two populations to construct an RFLP-based genetic linkage map of barley 

using 250 genornic and cDNA markers. Maps of chromosomes 3A, 38 and 3D of wheat 

and 3R of rye were developed by Devos et a/. (1992) using 22 DNA probes and 

2 enzyme marker systems. 

Liu et a/. (1992) constructed an RFLP-based genetic linkage map in pearl millet using 

180 probes from a Pstl genomic library. Later Liu eta/. (1994) published the first linkage 

map using 200 genomic DNA probes employing crosses. The total length of this 

map, which comprised seven linkage groups, was 303 cM. On this map 181 loci were 

placed by studying segregation (RFLP banding pattern) in a F, population derived from a 

single F, plant. The average map distance between RFLP marker loci was 2 cM. 

Nearly every agronomic trait imaginable has been subjected to DNA marker mapping 

and QTL analyses e.g., drought tolerance (Martin. 1989), seed hardness (Keim et at., 

1990), seed size (Fatokun et ab, 1992), maturity and plant height (Lin et a/., 1995), 

disease resistance (reviewed, Young, l996), oil and protein content (Diers et el., 1992), 

soluble solids (Paterson eta/., 1988), and, of course, yield (Stuber et ab, 1987). 



2.4 Quantitative trait loci (QTL) mapping 

The conflict between the Mendelian theory of particulate inheritance and the observation 

that most trait in nature exhibit continuous variation was eventually resolved by the 

concept that quantitative inheritance can result from segregation of multiple genetic 

factors, modified by environmental effects (Johannsen, 1909; Nilsson-Ehle, 1909; East. 

1916). Breeding studies confirmed numerous predictions of this theory (East, 1916) and 

pioneering genetic mapping studies (Sax, 1923; Rasmusson, 1933; Thoday, 1961; 

Tanksley et a/., 1982; Edwards et al., 1987a, b) showed that it was even possible 

occasionally to detect linkage to the putative quantitative trait loci (QTL). Recently such 

studies have become practically possible in principle with the advent of RFLPs as 

genetic markers (Botstein et al., 1980) and the increasing availability of nearly complete 

RFLP maps in many trganisms. 

The theoretical basis of interpreting the association of marker loci with quantitative trait 

loci (QTLs) has been outlined by Mather and Jinks (1971), Tanksley at a/. (1982), Soller 

and Beckmann (1983) and Edwards et a/. (1987a, b). The theoretical basis for 

identification of QTL associated with individual marker loci have been studied by several 

authors (Jayakar, 1970; McMillan and Robertson, 1974; Soller and Beckmann, 1983; 

Edwards et a/., 1987a, b; Cowen, 1988). Likewise, the use of flanking marker loci for 

QTL identification has been suggested by Lander and Botstien (1989) and Knapp et al. 

(1990). Experimental studies (Law, 1967; Tanksley et al., 1982; Osborn et a/., 1987; 

Stuber eta/., 1987) have shown that marker genes are in fact linked to genes controlling 

quantitative characters in several crop species like tomato, wheat and maize. 

Experimental designs for determination of linkage betweel: marker loci and QTL have 

been widely described (Elston and Stewart, 1971; Geldermann, 1975; Hill, 1975; 

Jensen, 1989; Knapp et a/., 1990; Lander and Botstein, 1989; Soller and Beckmann, 

1983, 1990), and a number of successful experimental studies have been carried out 



(Beevar et a/., 1989; Edwards etal., 1987a, b; Gelderman etal., 1985, Paterson et al., 

1988; Sax, 1923; Tanksley etal., 1982; Weller, 1987; Weller et a/., 1988). 

Jaykar (1970) suggested methods for the detection and estimation of linkage bebeen 

marker gene and a locus influencing a quantitative character. First use of a reasonably 

complete RFLP-based genetic linkage map was reported by Paterson et a/. (1988) in 

resolving quantitative traits to discrete Mendelian factors in an inter-specific backcross of 

tomato. They mapped at least six QTLs controlling f ~ i t  mass and four QTLs controlling 

soluble solids. 

Detecting marker-QTL associations can be carried out through t-tests based on single 

markers (Soller at a/ . ,  1976) or by means of likelihood ratio tests that involve the use of a 

pair of markers bracketing a QTL, a procedure termed 'interval mapping" (Jensen, 1989; 

Knapp et al., 1990; Lander and Botstein, 1989; Weiler, 1987), although simpler 

approaches are possible (Haley and Knott, 1992; Thoday, 1961; Weller, 1987). 

Lander and Botstein (1989) described set of analytical methods that modify and extend 

the classical theory for mapping QTLs and that are implemented in the computer 

software package MapMakerIQTL. They provided explicit graphs that allow experimental 

geneticists to estimate, in any particular case, the number of progeny required to map 

QTL underlying a quantitative trait. 

Selective genotyping can markedly decrease the number of individuals genotyped for a 

given power at the expense of an increase in the number of individuals phenotyped, 

Darvasi and Soller (1992). They showed that the obselved differences in quantitathe 

trait values associated with alternative marker genotypes in the selected population can 

be much greater than the actual gene effect at quantitative locus when the entire 

population is considered. This is an result of the smaller effective population size used in 

such selective marker genotyping studies. Chandra et a/. (2000) suggested a more 



economic way, Bootstrap method, that could allow using real experimental data to 

quantify the bias in and to obtain realistic estimates of QTL parameters. 

Michelmore et a/. (1991) used a modification of "conventional QTL mapping" to detect 

QTLs for downy mildew resistance in lettuce, in a procedure they called bulk segregant 

analysis, which is remarkably similar to that previously described by Burton and Wells 

(1981) for assessing the value of a trait in near-isogenic F3 populations. 

Edwards et a/. (1992) explained that the availability of numerous marker loci in some 

genomic regions allowed 

more accurate localization of QTLs, 

* resolution of linkage between QTLs affecting the same trait, and 

' determination that when some chromosome regions are found to affect a number of 

traits, this is likely to be due to linkage. 

Effective utilization of molecular marker technology to manipulate loci controlling 

quantitative traits is considered to be dependent on tight linkage between the marker (s) 

and the QTL (Dudley, 1993). However, Dawasi et a/. (1993) showed that power of 

detecting a QTL was virtually the same for a marker spacing of 10 cM as for an infinite 

number of markers and was only slightly decreased for marker spacings of 20 cM or 50 

cM. However, a very important consideration is the confidence intelval for the QTL 

position on the linkage group. 

As reported by Keaney and Farquhar (1998) the analytical methods locate QTL with 

poor precision unless the heritability of particular trait is high. Also the estimates of the 

QTL effects, particularly the dominance effects, tend to be ~nflated because only large 

estimates are detected as being statistically significant. 

QTLs affecting testcross performance of maize were mapped and characterized by 

Schon et a/. (1994). They discussed the consistency of these QTLs across environments 



and testers. Jones et al. (1995) mapped QTLs for resistance to several pathogen 

populations of Sclerospora graminicola in F, derived F, self bulks from a cross of 

resistant and susceptible pearl millet inbreds. Independent inheritance of resistance to 

pathogen populations from India and Senegal and populations from Niger and Nigeria 

were shown. Four QTL were identified by Romagosa et al. (1996) in barley (Hordeurn 

vulgare) that accounted for most of the differential genotypic expression for grain yield 

across environments. Four QTLs were mapped to barley chromosomes 2, 3,6 and 7 at 

regions that also were identified using the MQTL software package (Tinker and Mather, 

I995a; Tinker and Mather, 1995b). 

Kearsey (1998) gave a non-mathematical explanation of the principles underlying QTL 

analyses, to discuss their potential. 

Prioul et a/. (1997) described the genetical methods required to analyze possible 

associations between traits that are inherited in a quantitative manner using QTL 

analysis. Advantages, and some limitations, of QTL analysis over other methods 

currently in use by physiologists to test associations between traits were also discussed. 

Yadav et a/. (1999, 2000) have identified a number of QTLs associated with terminal 

drought tolerance of grain yield in pearl millet. Some of the identified QTLs were 

common across water-stress environments and genetic backgrounds of two mapping 

populations while others were specific to a particular population andlor environment. 

2.4.1 Reliability of QTL estimates 

For marker-assisted selection (MAS) to be effective, reliable estimates of QTL positions 

and effects are required. Adequate power, precision and accuracy of QTL analyses can 

only be expected from large, well-suited mapping populations, using a marker set with 

good genome coverage, and phenotypic values based on multi-environment trials 

(Van Ooijen, 1992; Utz and Melchinger. 1994; Beavis, 1998). From a recent literature 

review of Kearsey and Farquhar (1998), updated by Lynch and Walsh (1998), it is 



evident that in most QTL studies the number of QTLs is considerably underestimated 

and the percentage of genetic variation explained by markers is highly erratic and often 

overestimated. In verification studies with maize, Melchinger et a/. (1998) found that 

50% or less of variance attributable to markers in the calibration experiment could be 

recovered in an independent sample of progenies of the same initial F2 population. Such 

uncertainties of QTL analyses have the potential to seriously reduce the efficiency of 

MAS. Verification of individual QTLs, e.g, by re-estimation in advanced generations or by 

evaluating near-isogenic backcrossderived lines (NILS) contrasting for genome 

segments of interest (Romagosa et el., 1999), is therefore imperative. An additional 

need is to verify estimated QTL effects and the possible epistatic interactions of QTL 

alleles with the genetic background of the material to be improved (Phillips, 1999; 

Kerns et el., 1999). 

2.5 Marker-assisted selection ( MAS) 

An important area in which molecular biology is being applied to plant disease resistance 

is that of marker-assisted selection (MAS) (Dudley, 1993; Jones et ab, 1997; Lee, 1995; 

Malyshev and Kartel, 1997; Michelmore, 1995; Mohan et a/., 1997; Young, 1996, 1999). 

MAS has been advocated as a useful tool for rapid genetic advance in case of 

quantitative traits (Lande and Thompson, 1990; Knapp, 1994, 1998). Gimelfarb and 

Lande (1995) presented detailed analysis of the relationships between genetic markers 

and QTLs in the process of MAS. 

Mohan et a/. (1997) concluded that MAS can be used to pyramid major genes including 

disease and insect resistance genes, with the ultimate goal of producing crop cultivars 

with more desirable traits. Thus with MAS it is now possible for plant breeders to conduct 

many rounds of selection in a year. A study conducted by Eathington et a/. (1997) 

assessed the usefulness of marker-associated effects estimated from early generation 

testcross data for predicting later generation testcross performance. 



Many forms of plant disease resistance are simply or oligo-genitally inherited (Agrios, 

1997). In addition, resistance QTLs can be inherited as a quantitative trait. In both cases, 

marker-assisted selection offers very strong potential for future resistance breeding 

(Dudley, 1993; Michelmore, 1995; Tanksley, 1993; Young, 1996). Use of marker- 

assisted selection in breeding for disease resistance has been reviewed (Michelmore, 

1995; Mohan et a/., 1997; Young, 1996). 

Hash et a/. (1997, 1999), Witcombe and Hash (2000), and Hash and Witcombe (in 

press) proposed that MAS will permit breeding of modified three-way hybrid cultivars of 

pearl millet that are uniform for agronomic characters but heterogeneous for their 

resistance gene complements. Such hybrids are expected to be less vulnerable to 

epidemics of new pathogen strains that have so often evolved when genetically uniform 

single-cross pearl millet hybrids have been widely or repeatedly cultivated (in India; 

pathogen = downy mildew, and in USA; pathogen = rust, caused by Puccinia substriata 

Ell. & Earth, var. indica Ramachar A Cummins). 

MAS can be used to pyramid several resistancegenes into a single host genotype. 

Where hybrid cultivars are possible, Witcombe and Hash (2000) have described how 

multiple resistance gene pyramids can be used practically to strategically deploy 

resistance genes in a potentially more durable manner than has been previously 

practiced. The frequency of genotypes having resistance-alleles at several loci increases 

greatly in both seed parent and hybrid when the overall frequency of resistance-alleles in 

maintainer lines increases. 

2.5.1 Theoretical studlee on the efflciency of MAS 

While most researchers involved in QTL mapping are optimistic about the usefulness of 

the MAS, little research has been done to evaluate its practical effectiveness. MAS for 

QTL have the potential to make traditional breeding strategies for variety improvement 

more efficient. The effectiveness and efficiency, and strategies of MAS for QTL have 

been evaluated and proposed with both experimental and actual breeding populations 



(Gimelfarb and Lande, 1995; Lindhout et al,, 1994; Monforte et al., 1996; Ribaut et al., 

1997; Van Berloo and Stam, 1998). Results from a few studies have suggested that 

MAS is at least as effective in identifying superior genotypes as phenotype selection, 

and is more predictable across years and locations (Stuber, 1992, 1994, 1995). 

Schneider et al. (1997) have reported that MAS improved drought tolerance 

performance by 11% under stress and 8% under non-stress in common bean 

(Phaseolus vulgaris). 

Using the model developed by Hanson (1959), using some simplifying assumptions, 

Tanksley and Rick (1980) predicted that the proportion of recurrent parent genome 

expected in the first backcross generation after selection for twelve markers (one per 

chromosome in tomato) was nearly same as in the third backcross without selection for 

recurrent parent phenotype. 

Lande and Thompson (1990) studied the efficiency of MAS in the improvement of 

quantitative traits and concluded that molecular genetics can be integrated with 

traditional methods of artificial selection on phenotypes by applying MAS. The increase 

in selection efficiency from the use of marker loci, and sample size necessary to achieve 

them, depends on the genetic parameters and the selection scheme. 

While investigating the use of markers to hasten recovery of the elite parent genome 

during an introgression breeding program, Hospital et al. (1992) showed that MAS may 

lead to a gain in time of about two generations. 

Computer simulations were used to evaluate responses to MAS by Edwards and Page 

(1994). They compared MAS responses with those typical of phenotypic recurrent 

selection in an allogamous annual crop species, such as maize or pearl millet, and 

concluded that MAS may offer a primary advantage of enabling two selection cycles per 

year versus the 2 years per cycle. 



That the higher efficiency of MAS on QTLs with large effects in early generation is 

balanced by a higher rate of fixation of unfavorable alleles at QTLs with small effects in 

later generations was reported by Hospital e l  a/. (1997). This explains why MAS may 

become less efficient than phenotypic selection in the long term. MAS efficiency 

therefore depends on genetic determinism. 

Knapp (1998) presented estimates of the probability of selecting one or more superior 

genotypes by MAS to estimate its cost-efficiency relative to phenotypic selection. The 

frequency of superior genotypes among selected progeny increases as selection 

intensity increases. Effectiveness of MAS compared to phenotypic selection was 

assessed by Van Berloo and Stam (1998) showing that MAS appears particularly 

promising when dominant alleles are present at QTLs and linked in coupling phase. 

Uncertainty in estimated QTL map positions reduces the benefits of MAS. 

Based on his studies Young (1999) pointed that despite innovations like better marker 

systems and improved genetic mapping strategies, most marker associations are not 

sufficiently robust for successful MAS. Romagosa eta/. (1999) verified the value of four 

QTLs for selection and compared the efficiency of alternative MAS strategies using 

these QTLs vs. conventional phenotypic selection for grain yield. Genotypic (MAS) and 

tandem genotypic and phenotypic selections were at least as good as phenotypic 

selection. Studies of Charmet et a/. (1999) showed that the accuracy of QTL location 

determination greatly affects selection efficiency. 

In rice, several authors have demonstrated the efficiency of MAS for the successful 

transfer of major genes for blast resistance (Inukai et el., 1996; Hittalmani et el., 2000) 

and for bacterial blight resistance (Huang et aL, 1997). MAS for QTLs has receqtly 

started to be applied to the genetic improvement of quantitative characters in several 

crops such as tomato (Lawson et a/., 1997; Bernacchi et a/., 1998), maize (Graham et 

a/., 1997) and barley (Han et a1.,1997; Toojinda et a/., 1998). Useful guidelines have 

been provided for methodological choices (Visscher e l  a/., 1996a; Hospital and 

Charcosset, 1997), and overall breeding strategies have been proposed (Tanksley and 

Nelson, 1995: Tuinstra el a/., 1997). 



2.5.2 Integration of MAS in to breeding program 

As genomic molecular markers become available in certain species, questions are being 

raised about the practicality and economic efficiency of their use in breeding programs. 

In case of selection for a quantitative trait, marker-assisted selection programs can be 

undertaken (Lande and Thompson 1990). 

For the introgression of qualitative traits such as pathotype-specific disease resistances, 

which are typically controlled by single, dominant genes, backcross breeding has been 

used for a long time (Allard, 1960). It allows the transfer of one or a few genes from a - 
often agronomically inferior - donor genotype into an elite recipient genotype, the 

recurrent parent. 

Stam and Zeven (1980) estimated the length of chromosome segment with the desired 

marker gene introgressed from a donor by backcrossing in to recurrent parent and found 

that, for instance, for a chromosome with length of 100 cM the length of the introgressed 

segment wil average 32 cM in the BC, generation. MAS has the potential to considerably 

reduce the linkage drag that is associated with conventional backcross breeding 

programmes. Young and Tanksley (1989) estimated that, to transfer a gene with only 

5 cM of donor DNA into the recipient parent, the number of backcross generations could 

be reduced from 100 to 2 using MAS. At the same time the heterozygotes at each 

resistance locus could be eliminated so that the plant breeder could rapidly select for 

genes in the homozygous state. 

Lee (1995) suggested the utility of MAS for achieving and improving genetic gain 

through backcross breeding depends upon the current and potential role of that breeding 

method. Backcross breeding has been widely used for introducing monogenic 

characters and less so for polygenic traits. Perhaps the utility of this method could be 

made more broadly applicable through QTL mapping. 



Markers were efficient in introgression backcross programs for simultaneously 

introgressing an allele and selecting for the desired genomic background Visscher el a/. 

(1996a). Using a marker spacing of 10-20 cM gave an advantage of one to two 

backcross generations selection relative to random or phenotypic selection for recurrent 

parent phenotype controlled by alleles in non-target areas of the genome. When the 

position of the gene to be introgressed is uncertain, a chromosome segment should be 

introgressed that is likely to include the allele of interest. 

Hospital and Charcosset (1997) demonstrated that using at least three markers per 

target QTL allows a good control over several generations and background selection is 

even more efficient in a pyramidal backcrossing program where QTLs are first monitored 

one by one. 

Frisch ef a/. (1999) conducted computer simulations to compare selection strategies with 

regard to (i) proportion of recurrent parent genome recovered and (ii) the number of 

marker data points required in a backcross program designed for introgression of one 

target allele from a donor line into a recipient line. Again Frisch et ab, (1999) reported 

that molecular markers can accelerate recovery of recurrent parent genome when (i) the 

distance between the flanking markers and target locus is optimized and (ii) the 

minimum number of individuals required to obtain individuals that carry the donor allele 

at the target locus and have minimum proportion of donor genome on the carrier 

chromosome are taken into consideration. 

Hash et a/. (2000) described several alternative marker-assisted backcrossing (MABC) 

procedures that can be used for transferring QTL from a donor to a elite recurrent parent 

when these two lines have been used in forming the base mapping population. 

Charmet et a/. (1999) advocated that a recurrent selection scheme is highly preferable 

for pyramiding many QTLs. 



An approach was suggested by Ribaut and Betran (1999) that conducting a single large 

scale marker-assisted selection (SLA-MAS) to select plants at an early generation with a 

fixed, favorable genetic background at specific loci, while maintaining as much as 

possible the allelic segregation in the rest of the genome. 

2.6 Inheritance of br ist l ing i n  pearl millet 

Rangaswami Ayyangar and Hariharan (1936) mentioned that an African race, 

Pennisetum echinurus, which has bristled panicles, when crosses w~th P. leonis without 

bristles showed an F2 segregation with a wide range of bristled and non-bristled forms. 

Grouping all the bristly forms together, they obtained a ratio of 3 bristled : 1 non-bristled 

types. Kadam et a/. (1940) reported sterility characterized by panicles bearing bristles. 

Ahluwalia and Shankar (1964) reported that bristling is governed by a single dominant 

gene (Br) and variation in density of bristling is possibly through the influence of 

modifying factors. Inheritance studies by Athwal and Gill (1966) have shown that bristling 

of panicles in pearl millet is a simply inherited dominant character and can thus be easily 

incorporated in inbred lines and varieties. Several other authors reported identical results 

(Krishnaswamy, 1962, quoted by Ahluwalia and Shankar, 1964; Athwal and Gill, 1966; 

Lal and Singh, 1971; Singh and Pandey, 1973; Khan and Bakshi, 1976; Singh eta/., 

1967; Gill and Athwal, 1970; Gill ef a/., 1971). A conflicting report by Yadav (1974) noted 

monogenic incomplete dominance for bristling. 

In crosses between long- and short-bristled plants, however, the bristle length was 

intermediate in F, and continuous variation was obsewed in F2, indicating the additive 

action of more than one gene (Appa Rao et a/., 1988). 

Athwal and Luthra (1984) advocated that bristling of pearl millet panicles is a useful 

economic character as it confers reduced vulnerability to bird damage and showed a 

monogenic mode of inheritance. Also they showed that there is no association between 

bristling and grain shedding and thus grain density in the panicle is not influenced by the 

presence of bristling. Athwal and Luthra (1964), Ahluwalia and Shankar (1964), and 



Joshi (1968) observed that bristled lines are agronomically superior, as they confer 

resistance to bird damage, and the grain is not shed loosely. Beri et a/. (1969) also 

noticed that bristling acted as a deterrent to grain-feeding birds. 

Literature on inheritance of panicle bristling in pearl millet has been discussed in detail in 

several reviews of inheritance of morphological marker traits in this crop (Koduru and 

Krishna Rao, 1983; Anand Kumar and Andrews, 1983; Poncet, eta/., 1998,2000). 



3. MATERIALS AND METHODS 

The present investigation was carried out during the period from August, 1998 to 

December, 2000 at the International Crops Research Institute for the Semi-Arid Tropics 

(ICRISAT), Patancheru, Andhra Pradesh, India. The details of the experiments, 

conducted in the lab and field, are given below. 

3.1 RFLP analysis 

Table 1. Details of target traits and probe-enzyme combinations used for marker- 
assisted downy mildew resistance improvement of elite pearl millet 
pollinator H 771833-2 

Donor parent Linkage group Probe Enzyme Target trait 

PgPSM 513 Hindlll 

ICMP 451 LG 1 PgPSM 856 Dral Downy mildew 
PgPSM 565 Hindlll resistance 

PgPSM 757 EcoRl 

ICMP 451 

PgPSM 464 Dral 

PgPSM 716 Dfal Downy mildew 
PgPSM 265 Hindlll resistance 

PgPSM 416 Dral 

3.1.1 Genomic DNA isolation 

Basic steps involved in any DNA isolation procedure include: 

Dark-grown, young seedlings (etiolated) or soft, non-green, stem internode tissues are 

generally used to isolate genomic DNA as they yield better DNA with better digestibility 

with restriction enzymes because of lower concentrations of phenolics and other 



adhering compounds as compared to green tissues. Further, grinding of the plant 

material in a coffee grinder with dry ice or liquid nitrogen is done. The procedure of DNA 

isolation must be able to lyse the cell walls and cell membranes and release the DNA in 

the soluble media with the use of extraction buffer having SDS (sodium dodecyle 

sulphate), EDTA and proteinase K. This is followed by differential centrifugation to 

isolate genomic DNA from cell debris; precipitation of SDS-protein-carbohydrate 

complexes with sodium acetate-isopropanol precipitation, phenol and phenol-chloroform 

extractions; and a second precipitation of DNA with absolute alcohol. 

Several procedures for genomic DNA isolation have been reported, but results obtained 

by the protocol given by Sharp et al. (1988) were most satisfactory. Therefore, the 

procedure given by Sharp et al. (1988) was adopted in the present study. 

According to this protocol. DNA was isolated from 5 grams of etiolated seedlings, 10-14 

days after emergence. These were quick frozen in liquid nitrogen and ground to a fine 

powder using either a coffee grinder with dry ice or a pre-chilled mortar and pestle with 

liquid nitrogen. The ground tissue were transferred to a 50 mL plastic centrifuge tube 

with 20 mL of extraction buffer containing 100 mM Tris-HCi pH e.0, 50 mM EDTA pH 

8.0, 100 mM NaCL, 2% SDS. Incubated in 65% water bath for half an hour with mixing 

and then 50 pL of protenase K (10 mglmL) was added. Again mixed and incubated for 

an hour in 55'C water bath. Samples were then extracted with equal volumes of phenol- 

chloroform-isoamyl alcohol (24:24:1 vlv) mixture and the emultion was separated by 

centrifugation at 5,000 rpm for 20 min at 4°C in a Sowall HB7 rotor. The upper aqueous 

phase was re-extracted with equal volumes of chloroform-isoamiy alcohol (24:l vlv) and, 

the emuition separated by centrifugation at 5,000 rpm for 20 min at 4OC. To the aqueous 

phase equal volumes of isopropanol was added and gently mixed and held at -20% for 

30 min. Precipitated DNA was spooled with a hook and dissolved in 2 rnL of RNase- 

TS0El0 (50 mM Tris-HCI pH 8.0 and 10 mM EDTA pH 8.0) buffer and incubated overnight 

(OIN) at room temperature. To inactivate RNase, samples were re-extracted with equal 

volumes of phenol-chloroform as described above. To the aqueous phase 2.5 volumes 



of ethanol was added and held at -20°C for 1 h to precipitate DNA. DNA was spooled 

and washed with 70% ethanol (twice) and pellets were air-dr~ed. The DNA was finally 

resuspended in appropriate volumes of TjaEj (10 mM Tris-HCI and 1 mM EDTA pH 8.0) 

according to the size of pellet and stored at 4 %  

DNA was quantified based on spectrophotorneter measurements of UV absorption at 

260 nm, assuming I OD at 260 nm is equal to 50 pg of DNA (Maniatis et al., 1982). The 

ratio of 0D280 to ODzso was calculated to check the purity of DNA sample. Pure DNA 

preparation shows an OD260 to ODzso ratio ideally between 1.7 and 1.6 (Maniatis et a/., 

1982). 

DNA was analysed in 0.8% TAE-agarose gel to test the integrity as described in 

Maniatis et a/. (1982). Gels were stained in ethidium bromide and viewed on UV- 

transillumninator before photographing with a camera fined with a UV filter. 

3.1.2 Restrlction enzyme digestion 

Twenty pg of DNA with sterile distilled water (SDW) was digested with Dral, EcoRI, 

EcoRV and Hindlll restriction endonucleases following the endonuclease supplier's 

instructions (Arnersham Pharmacia Biotech, Ltd.). The digestion was carried out in a 

total volume of 30 pL and the reaction was terminated by addition of 3pLof loading buffer 

(25% sucrose, 0.1% bromophenol-blue and 20 rnM EDTA) in each 30pL sample. 

3.1.3 Electrophoresis 

Fragments of digested DNA obtained after enzyme digestion were separated by 

electrophoresis in a 0.8% TAE-agarose horizontal slab gels (Bio-Rad DNA Sub cellTM) 

electrophoresis unit (Owl Separation Systems Model N0.A-1) for 16 h at 38 Vlcm in TAE 

(0.04 M Trls-acetate, 0.001 M EDTA, pH 7.8) buffer. Gels were prepared in the same 

buffer that was used for electrophoresis. Hindlll digested Lambda DNA (h  DNA) was 

used as molecular size marker. Gels were stained in 0.5 pglmL ethidium bromide for 15 

min, destained for 30 min in distilled water, viewed on a UV-transilluminator and 

photographed to assess the quality of digestion. 



3.1.4 Southern blot hybridization 

3.1.4.1 Preparation of southern blots 

DNA fragments obtained after digestion were transferred from agarose gel on to Nucleic 

Acid Nylon Transfer Membrane (Hybond-N', Amersham Pharmacia Biotech, Ltd.) 

following the procedure of Reed and Mann (1985) (Appendix i). Transferred membranes 

were soaked in 2x SSC for 2 min to neutralize the alkali, air dried, and wrapped with 

cling film and stored at -20°C for future use. 

3.1.4.2 Labelling o f  probes 

The random-primed method of Feinberg and Vogelstein (1983) was used for labelling 

DNA with a-"P. Purified insert DNA was denatured by heating at 9S°C for 10 rnin, 

quenched on ice for 5 min before the labelling reaction mixture was added and 

incubated at 37°C for 3 hours. The reaction was terminated by adding 2.5 pL of 3 M 

NaOH to use in the hybridization step. 

Labelling reaction mixture: 5 pL of ollgo-labelling buffer (Amersham Pharmacia Biotech, 

2 gL equimolar concentrations of dCTP, dGTP and dTTP, 2 pL ( I 0  mglml) acetylated 

BSA, 5 pL of 50 pCi "P-dCTP, and 2 units of Klenow enzyme. 

3.1.5 Hybridization t o  labeled probe 

3.1.5.1 Prehybridization 

Southern blots were prehybridized at 65'C with 5 mL of prehybridization solution (3 ml of 

5x HSB, 1.5 mL of denatured salmon sperm DNA and 1.5 mL of Denhardt's solution and 

sterile distilled water to 15 mL) for 6 hours in case of new blots and 1 hour for stripped 

blot. Prehybridization was performed in a Techne Hybridizer (HB-I D). 



3.1.5.2 Hybridization 

Labelled probe was added to prehybridization mixture and incubated at 65% in 

hybridization oven for at least 16 h (OIN). Care was taken to remove air bubbles present 

in between the blot and the hybridization bottle. 

3.1.6 Washing o f  blots 

Following hybridization, the blots were washed following four changes of 50 mL each of 

"P-wash solutions. Each wash was carried out for 15 min at 65OC in hybridization bottles 

using hybridization oven. First two washes were done using wash 1 solution (100 ml 20x 

SSC, 25 mL 20% SDS and distilled water to 1 liter) followed by two washes with wash 2 

solution (10 mL 20x SSC, 25 ml 20% SDS and distilled water to 1 liter). Membranes 

were air dried and enclosed in cling films. 

3.1.7 Autoradiography 

Autoradiography was conducted at -70% by exposing the membrane to photographic 

film (Kodak, X-OMATTM, XK-5) using Kodak intensifying screens in a cassette for various 

exposure times depending on counts. The X-ray films were developed with Kodak 

developer for 2-5 min followed by a stop bath (1% acetic acid) treatment for 1 min, fixed 

with Kodak fixer for 2 min, washed in running tap water and air dried. The 

autoradiograms were photographed using Kodak 100 ASA color films. 

3.1.7.1 Scoring RFLP bands 

The banding patterns obtained from RFLP procedure were scored as follows 

Donor parent genotype = A (D) 

Recurrent parent genotype = B (R) 

Heterozygotes = H 

1 to 5 represent progenies 

2 A B H B  A H H  

4.4 



3.2 Mapping population and QTL mapping 

Scientists at ICRISAT, Patancheru, India and the Institute of Grassland and 

Environmental Research (IGER), UK, jointly produced two pearl millet mapping 

populations to tag genes that control seedling heat tolerance of elite inbred pollinator H 

771833-2 (Howarth et al., 1994). The restriction fragment length polymorphism (RFLP)- 

based skeleton map for a population derived from a cross between H 771833-2 and 

ICMP 451 was completed in 1994 at IGER. Field data on downy mildew (DM) incidence 

(Patancheru field population of Sclerospora graminicola), flowering time and 1000-grain 

mass were collected in the 1994 and 1996 dry season DM nurseries at ICRISAT, 

Patancheru, using F, self bulks derived from 94 of 154 mapped F, plants. Combining 

these two data sets using interval mapping procedures with MapmakerlQTL 1.1 (Lincoln 

et al., 1992) permitted evaluation of the ability of the map to detect quantitative trait loci 

(QTLs). The basic pearl millet genetic linkage map and DM resistance QTL map for this 

cross are given in Fig. 1. and Fig. 2, respectively. The QTL map for this cross for other 

agronomically important traits is given in Fig. 3. 

3.3 Choice of target segments and markers analyzed 

Based on QTL mapping results, two segments were chosen for introgression of DM 

resistance from ICMP 451. The targeted regions for DM resistance in this cross were on 

linkage group 1 and 4 (Fig. I and Fig. 2). 

The marker loci flanking the targeted regions were used for genotyping work. They are 

listed below: 

-Target region of linkage group 1: Xpsm 513, Xpsm 856, Xpsm 565, Xpsm 757 

-Target region of linkage group 4: Xpsm 464, Xpsm 716, Xpsm 265, Xpsm 416 

In certain cases, where we had problems in getting useable results with any of above 

listed markers, we used other closely-linked markers to save time. (Xpsm 513 in place 

of Xpsm 280; Xpsm 265in between Xpsm 716 and Xpsm 416. 
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3.4 Parental lines used i n  crossing program 

3.4.1 Donor parent: ICMP 451 (IPC 000107) (Anand Kumar et al., 1995) is a near- 

inbred line, LCSN 71-1-2-1-1, derived by selfing from the ICRISAT Late Composite (Fig. 

4). It is the pollinator parent of hybrid ICMH 451 = MH 179 = 81A x ICMP 451, released 

for cultivation in lndia in 1986 (ICRISAT, 1988). It is tall, has long-bristled, semi-compact 

panicles, globular seeds of medium size, and is moderately resistant to the Patancheru 

isolate of pearl millet downy mildew. The subselection of ICMP 451 used as parent in 

this study, unlike the base population of ICMP 451, continues to have a relatively high 

level of resistance to downy mildew strains from across India. 

3.4.2 Recurrent parent: H 771833-2, the pollinator parent of three single-cross grain 

hybrids bred by Dr. R.L. Kapoor and his co-workers (Fig. 5) at Department of Plant 

Breeding, Hatyana Agriculture University, Hisar, Hatyana, lndia (Kapoor et al., 1989a, b, 

c). H 771833-2 was bred by selfing and selection within a Rajasthani landrace 

populat~on. It is early to flower, has medium height, tillers profusely at both base and 

nodes and has very small seed size. It has small-diameter panicles without bristling and 

is susceptible to the Patancheru isolate of pearl millet downy mildew. Compared to its 

base population, the subselection of H 771833-2 used producing the mapping population 

study is about 2 days earlier to flower, has conical rather than cylindrical panicle shape, 

and has slightly larger grain. However, a more typical version of H 771833-2 was used as 

the recurrent parent in the marker-assisted backcrossing program described in this 

thesis. 



Phenotypes of parental I~nes gtovdii at lCRISAT Pntancheru 
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3.5 Marker-assisted selection o f  backcrossed progenies for DMR 

The sequence of operations is presented in Table 2,  ICMP 451 was the donor of alleles 

increasing downy mildew resistance; H 771833-2 was the recipient and recurrent parent. 

Marker-assisted selection (MAS) was used to select plants carrying ICMP 451 alleles at 

markers flanking the target regions in the BCIF1, BC2F1, BC3F1, BC4F1 and BC4F2 

generations. The schematic representation of the development of the BClF3 near- 

isogenic lines (NILS) using MAS at different generations is presented in Fig. 7. In each 

generation up to BCIFI, progenies with the desired genotype profile were selected 

before heading and used as female parent in crosses with H 771833-2 in order to reduce 

the frequency of ICMP 451 alleles at non-target regions. The BC4F2 plants were selfed 

and screened for plants homozygous for the ICMP 451 allele at the target regions. In the 

BC4F2generation plants were selected if they fit one of three categories: 

a. Homozygous for ICMP 451 alleles at markers flanking target regions of both 

linkage groups 1 and 4. 

b. Homozygous for ICMP 451 alleles at markers flanking target regions of either 

linkage group 1 or 4. 

c. Homozygous for ICMP 451 alleles at different and overlapping chromosome 

segments around the target segment on one of the linkage groups 1 and 4, These 

plants are intended for fine mapping the DM resistance QTLs. 

Five or more progenies were advanced in each of the backcross generation. Selfed seed 

from all the backcross generations was used for tissue sampling for DNA isolation and 

RFLP analysis. BC4F3 rows derived from BC4F2 plants, homozygous for donor marker 

genotype in genomic regions immediately flanking target QTL, were selected. 



Table 2. MAS operations and results in each generation 

Plants 
genotyped 

10 

15 

25 

100 

178 

Status of the 
product 

50% H 771833-2 

50% ICMP 451 
75% H 771833-2 

25% ICMP 451 
87.5% H 771833-2 

12.5% ICMP 451 
93.7% H 771833-2 

6.3% ICMP 451 
96.9% H 771833-2 

3.1% ICMP 451 
96.9% H 771833-2 

3.1% ICMP 451 

Plants selected - 
for furiher 
backcrossing or 
selling 

3 

5 

6 

7 

9 

Product 

F, seeds 

BClF, 
seeds 

BC2F1 
seeds 

BCJF1 
seeds 

BC4F1 
seeds 

BC4F2 
seeds 

Backcross 
generation 

HybridizaCon 
ICMP 451 x 
H 771833-2 

BCiFi 

BCzFi 

BC,Ft 

BCdc 

Selfing 

Selection 
for target 
trait 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

Season 

1997 
Rabi 

1998 
Summer 

1998 
Kharif 

1999 
Summer 

1999 
Kharif 

1999 
Late Kharif 

Type of 
plants 
selected 

None 

Heterozygous 

Heterozygous 

Heterozygous 

Heterozygous 

Homozygous 



Fig. 7. Schematic for transfer of downy mildew (DM) resistance 
by marker-assisted backcrossing in pearl millet 
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3.6 Conventional backcross introgression for bristling 

Another experiment for the transfer, of panicle bristling, from donor parent ICMP 451 to 

recipient and recurrent parent H 771833-2, was also conducted. Using panicle bristling 

itself as a morphological marker, plants with bristled panicles were selected in BC,F, 

through BC,F2 generations. We scored the panicle bristling (phenotypic judgement) as: 

a. No bristling = 1 

b. Small bristles = 2 

c. Medium bristles = 3 

d. Long bristles = 4 

3.7 Field trials 

Two field trials (DMR and panicle bristling) were conducted at ICRISAT, Patanche~ in 

the genetic background of HHB 67 (843A x H 771633-2). Material was sown in a 

Randomized Complete Block Design (RCBD) in three replications during kharif 2000 in 

the RP 8A (Fig. 8, 9, 10). Each entry was accommodated in two rows of four-meter 

length in each replication. Row to row distance was kept 30 cm and a plant to plant 

distance of 15 cm was maintained. Fertilizer was applied as per usual recommendation 

and recommended package of practices of the crop were followed for raising a good 

pearl millet crop. 

In one trial, 178 BC4F2 plants were crossed on to 843A and the hybrids were compared 

with the original HHB 67. Here marker-assisted backcrossing had been used to transfer 

two additional downy mildew resistance genes from donor parent iCMP 451 to the 

genetic background of H 771833-2. 

In another trial, hybrids produced on 843A with 15 BCIFl progenies derived by 

conventional backcrossing of the long panicle bristling trait from ICMP 451 into the 

genetic background of pollinator H 771833-2 were compared with the original HHB 67. 

ObSe~ationS were recorded on 14 phenotypic traits in both the trials during kharif 

season 2000. 
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3.8 Observations and measurements i n  trial 

The observation and measurements taken during the trial were as follows 

1. Time to bloom (TB): Time to 50% flowering was recorded as the number of days 

from sowing until 50% of the plants in each entry produced stigmas on their main 

stem panicles. 

2. Plant height (PH): Plant height (cm) was measured from the base of the stem to 

the tip of the panicle at maturity. Data was recorded on 5 random plants from the 

middle of each row. 

3. Panicle length (PL): Length of the panicle (cm) was measured for same plants 

considered for plant height in each plot. 

4. Panicle girth (PG): Panicle girth (mrn) was measured using vernier calipers on all 

those panicles for which panicle length was recorded. 

5. Plant count (PC): Number of plants in the middle 3 m of two rows of each plot 

were counted for all the entries. 

6. Head count (HC): Panicles from middle 3 m of two rows of each plot were 

harvested and counted for all the entries. 

7. Effective tillers (ET): Number of productive tillers per plant were calculated by 

dividing PC by HC 

8. Panicle yield (PY): After harvesting was completed, panicles were put in an oven 

for 24 hours and dried at a temperature of 60%. The dry weight of the panicles 

was then recorded before threshing. 

9. Grain yield (GY): Panicles were threshed and their grain cleaned. The weight of 

the grains from each plot was recorded. 

10. Fresh stover yield (FSY): After panicles were harvested, the stems and the tillers 

were cut for biomass analyses from the middle 3 m area of two rows for all the 

entries. 



11. Sub sample fresh stover weight (SWS): Samples of fresh stover were then 

collected from each entry and chopped and fresh weights of these samples were 

taken. 

12. Sub sample dry weight (SDS): The chopped samples were kept in a drier for two 

days at temperature of 60% and their dry weights were then recorded. 

13. 1000-grain mass (TGM): One thousand grains were counted and their weight 

was the recorded for each entry. 

14. Bristling (BR): Based on presence or absence and length of panicle bristles the 

data was recorded for each entry as a score from 1-4 (1 = no bristles; 2 = small 

bristles; 3 = medium bristles; 4 = long bristles). 

15. Biomass yield: Above-ground biomass yield was calculated for each plot as the 

sum of PY and the product of FSY ' (SDSISWS). 

3.9 Statistical analyses 

Ail the analyses were performed using Genstat version 5 from Rothamsted, UK. Analysis 

was performed using the data recorded from testcross trials for DMR and bristling. For 

each trait measured on individual plants, the phenotypic data was anaiysed as means of 

ten individual plants from each plot. 

3.9.1 Statistical methods 

The data obtained from kharif 2000 for different phenotypic traits were statistically 

analysed on the basis of model described by Panse and Sukhatme (1967). 

Y , = p +  a,+ bi +el, 

where, 

Yl, = observation in the fh treatment and j" block 

p = general mean 

al = fh treatment effect 

bi = jth block effect, and 

&, = random error associated with the f"reatment and the fh block. 



The assumptions of the model are: 

a. All the observations should be independent 

b. Different effects in the model should be additive 

c. Error involved in the population should be normally and independently distributed 

with mean zero and variance a: 

3.9.2 Analysis of variance (ANOVA) 

Analysis of vanance for all characters under study were carried out, separately, as 

follows 

where, 

r = number of replications; 

t = number of treatments or genotypes; 

M,,, Mt,, and Me,, stands for mean sum of squares due to replication, treatment and error, 

respectively; 

a2,,i = genotypic variance of character xi; and 

a2,,, = error variance of character x,. 

3.9.3 The genotyplc and phenotypic variances were calculated as follows 

Source 

Repllcatlon 

Treatment 

Error 

Mt,i - Me,, 
Genotypic variance of character x, = a2,,, = 

r 

Expected MS. 

o',i+ t 0 '"I 

 rub^ ' 

0 'ell 

Phenotypic variance of character xi = 02,,, = 02,,, + a*.,, 

d.f. 

(r-I) 

(t-I) 
(r-I) (t-I) 

F ratio 

Mt,JMe,, 

3.9.4 Parameten of variability 

(I) Mean : 

Mean value (n) of each character was worked out dividing the sum of the observed 

values by the corresponding number of observations: 

MS. 

M~I, 

Mt, 

Me,, 



where, 

X,, = any observation in the ith and j'replication, and 

N = total number of observations 

(ii) Range: 

Lowest and highest values for each character were recorded 

(iii) Standard error: 

Standard errors of means were calculated for each character from the corresponding 

mean square error values from the analysis of variance tables as: 

where, 

(r2, is estimated mean sum of squares 

S.E, is the standard error of the mean, and 

r is the number of replications. 

(iv) Honestly significant difference (hsd): 

For all the characters, hsd was calculated to compare treatment means as suggested by 

Tukey (1953), using the equation: 

W = %(p,n2)s, 

where, 

q, is obtained from Table for a = .05 or .01 (Steel and Torrie, 1960; Appendix vi) 

p is the number of treatments, 

n,is the error degrees of freedom, 

sr is the standard error of mean, and 

w is used to judge the significance of each of the observed pair-wise differences 

between treatment means. 



(v) Coefficient of Variation: 

Genotypic and phenotypic coefficients of variation were estimated by the formula 

suggested by Burton (1952) for each character as: 

Ja2gll 
Genotypic coefficient of variation (G.C.V.) = - x 100 

Y 

Phenotypic coefficient of variation (P.C.V.) = x 100 
-x 

where l  is the mean of that   articular trait. 

(vi) Heritability (in broad sense): 

Heritability in broad sense was calculated according to the formula suggested by 

Hanson et al. (1956) for each character as given below 

(vii) Genetic advance expressed as percentage of mean: 

Estimates of appropriate variance components were substituted for the parameters to 

predict expected genetic gain as suggested by Lush (1949) and Johnson et ai. (1955). 

The expected genetic advance was calculated at 5% selection intensity for each 

character as : 

KO,. H 
Genetic advance (% of mean) = - x 100 - 

X 

where, K a, is the selection differential expressed in terms of phenotypic standard 

variations (using 5% selection in a large sample from a normally and independently 

distributed population, the value of selection intensity (K) is equal to 2.06 (Allard, 1960); 

H is the heritability in the broad sense; and 

x i s  the mean value for that character over all the genotypes. 



3.10 Downy mildew screening 

3.10.1 lnoculurn 

All experiments were carried out using an asexually-maintained pathogen population 

derived from plants infected with oospores from the ICRISAT field downy mildew nursery 

at Patancheru, India. The population was collected and maintained as described by 

Jones (1994) and Jones eta/. (1995). 

Infected leaves from mature plants of universally susceptible genotype 7042(S) were 

detached, wiped clean of any sporangiophores already present and incubated in 

darkness in plastic boxes for 8 h at 20% and 100% RH. The resulting sporangia were 

harvested by spraying leaves by de-ionised water and collecting the run-off. The 

sporangia produced from the leaves were harvested into chilled de-ionised water at 

approximately I0C. Suspension was then adjusted to lx105sporangia mL" with water at 

appropriate temperature. Spraying was carried out using the spray head of a hand- 

pumped 500 mL sprayer. 

3.10.2 Disease incidence determination 

40 seeds of all the entries along with parental lines and standard checks including 

universally susceptible pearl millet genotype 7042(S) (Hash and Witcombe, 1994) were 

sown in 11.5 cm diameter plastic pots. Each pot was a replicate and there were two pot- 

replicates for each treatment. Pots were placed on flood-benching in a completely 

randomised block under glasshouse conditions as described by Jones et ai. (1995). 

Each pot of seedlings was sprayed at the coleoptile-to-one-leaf stage with approximately 

4 mL of inoculum. Following inoculation, the glasshouse bench was covered with 

poiythene sheeting for 16-18 h to maintain high humidity. Disease incidence (% of plants 

showing chlorotic symptoms per pot) was assessed two weeks after inoculation based 

on number of diseased plants out of total number of plants in a pot. 



4. RESULTS 

Agronomic phenotyping of BC,F2-derived downy mildew resistant (DMR) 
testcrosses 

In the present study data on agronomically important phenotypic characters were 

recorded and analyzed for 178 BC4F2-derived testcrosses and related to those of near- 

isogenic elite control hybrid HHB 67. Summaries of the agronomic performance of DMR 

entries, control HHB 67, and the mean of the trial, are presented in Table 3. The 

coefficient of variability (CV) for most of the characters studied was less than 15% 

except for effective tillering, stover dly matter percentage, and fresh stover yield where it 

was 18.2%, 20.6% and 19.5% respectively. These are reasonable levels for CV values 

for a modestly replicated small-plot field trial. 

The analyses of variance indicated statistically significant differences (at P = 0.01 and 

0.05) for all agronomic characters studied except for grain yield, effective tillers, fresh 

stover yield and 1000-grain mass, where the differences between treatment means were 

non-significant. Plant count, effective tillers and hamest index exhibited low broad-sense 

heritability values of 0.20, 0.30 and 0.37, respectively. The other agronomic characters 

evaluated showed moderate to high broad-sense heritability values. Entry 51 ranked first 

with grain yield of 3590 kg ha" and relatively low downy mildew incidence (DMI). Other 

good entries included 118 and 97. Compared to the mean of control HHB 67, time to 

50% bloom was delayed by one day for entry 51, which also had significantly greater 

plant height, panicle length, fresh stover yieid, biomass, growth index and 1000-grain 

mass than the control. 



Table 3. Agronomic performance of DMR testcross entries compared to the mean of 
control HHB 67 and the mean of the trial as a whole; Patancheru, rainy season ZOO0 

DM1 . downy mildm incidence; OY . grain yield: TB m tlme to M)% bloom; PH = plant holght PL . panicle iengtk 
PO - panicle glrth; PC m plant count; ET = elbotlve tillen; BR - panlcle bristling: DMP =dry matlsr percent; 
FSY m h h  stoveryI.ld; BM =biomass; HI - hamst Index; GI -growth Index; TOM = 10Wgrsln maas 

tlanlflcant at thePm 0.0Snnd 0.01 levels. nrwctlvelv: n r .  non.sianHiCant 



Downy mildew Incldence (%) 

Differences for DM1 among DMR testcross entries were significant at P =  0.01 and 0.05. 

The original HHB 67 showed a mean DM1 of 97.3% where as the DMR testcross entries 

had mean value of 67.9% for this trait. Among DMR testcross entries, a range of 39.1% 

(entry 113) to 76.8% (entry 156) for DM1 was observed indicating the segregation of 

either one or both of the targeted regions from the resistant donor among the BC4F2 

testcrosses. An overall reduction for DM1 of 20-30% was observed among DMR 

testcross entries. This trait exhibited a broad-sense heritability of 0.64, which is 

reasonably high. 

Plant helght (cm) 

Significant diierences were also revealed for plant height (PH). For DMR testcross 

entries PH ranged from 135 cm (entries 48, 107, 110, 112 and 156) to 154 cm (entry 71) 

while the mean PH for the trial was recorded as 141 cm and of controls (HHB 67) as 137 

cm. There was an increase of 5 cm in mean PH of the DMR testcross entries as 

compared to the mean of control HHB 67. A high broad-sense heritability of 0.83 was 

observed for PH in this trial. 

Panicle length (cm) 

DMR testcross entries exhibited significant differences for panicle length (PL). Ranging 

from 17.3 cm (entries 96, 104, 107 and Ill) to 20.7 cm (entries 71, 155), panicle length 

had a mean of 18.6 cm in the DMR testcross entries. Trial mean and mean for control 

plots (HHB 67) were obselved as 18.7 and 17.5 cm, respectively, indicating a modest 

positive increase in mean of the DMR testcross entries for this trait. PL showed a high 

broad-sense heritability of 0.87. 

Fresh stover yield (kg ha") 

Significant differences were observed in treatment means for fresh stover yield (FSY) at 

both levels of significance. Ranging from 1320 kg ha" (entry 82) to 31 10 kg ha" (entry 

log), FSY had a mean of 2010 as compared to the trial mean and the mean of control 



plots (HHB 67) of 1910 and 1630 kg ha.', respectively. An increase of 375 kg ha.' in FSY 

was recorded for the DMR testcross entries over that of the control, with a moderate 

broad-sense heritability level of 0.65 in this trial. 

Biomass (kg ha") 

Biomass (BM) exhibited significant differences in treatment means for the DMR testcross 

entries. With a mean of 5677 kg ha", BM ranged from 4380 kg ha.' (entry 161) to 7060 

kg ha" (entry 109). Trial mean of 5492 kg ha" was recorded along with the mean of 

control plots (HHB 67) as 5092 kg ha". As compared to the HHB 67 control, an increase 

of 485 kg ha" for the DMR testcross entries was obtained. In this trial, BM showed a 

moderate broad-sense heritability level of 0.62. 

Growth Index (kg ha" d") 

Significant differences between treatment means for growth index (GI) were observed. 

The DMR testcross entries ranging from 89 kg ha" d-' (entry 161) to 153 kg ha" d-' 

(entry 109) exhibited a mean GI value of 120 kg ha" d-'. The trial mean and mean of 

control plots (HHB 67) had values 116 and 107 kg ha.' d-', respectively. Thus a mean 

increase of 13 kg ha" d" in GI for the DMR testcross entries was observed. Growth 

index showed a moderate broad-sense heritability of 0.61. 

Agronomic phenotyping of BC4F3-derived bristled testcrosses 

Table 4 presents agronomic performance of 15 BC4F3-derived bristled testcrosses 

compared to the mean of control plots (HHB 67) and the mean of trial. The analysis of 

data recorded for diierent phenotypic characters revealed that the coefficient of 

variability was less than 15% for many characters except for downy mildew incidence 

(%), plant count, and effective tillers. At the P = 0.01 and 0.05 levels of significance, 

significant differences were detected by analysis of variance for all the characters 

studied other than grain yield, plant count and growth index. Variation in DM1 (H = -0.08), 

grain yield (H = 0.02), plant count (H = -0.25), effective tiller number (H = -0.86), was 

essentially not heritable in this trial while that of biomass (H = 0.40) and growth index 



(H = 0.29) exhibited low broad-sense heritability values. This suggests that little, if any, 

genetic variability was present for these six traits in this set of closely related 

testcrosses. 

Maximum grain yield was recorded as 2910 kg ha" for entry 3 followed by entries 6 and 

8, but these were not significantly different from grain yields of other test entries and 

controls in this trial. Entries 13 and 15 showed lower DM1 values of 64.4 and 67.6%, 

respectively. Entry 3 was delayed by 2 days in terms of time to 50% bloom where as it 

exceeded the control (HHB 67) in case of plant height, panicle length, fresh stover yield, 

biomass, growth index and 1000-grain mass, along with long panicle bristles trait that 

was used as a morphological marker in this backcrossing program. 

Tlme to 50% bloom (d) 

Treatment mean differences were obsewed to be statistically significant for time to 50% 

bloom (TB). TB of bristled entries was delayed by approximately one day relative to that 

of the mean of control plots (HHB 67). Some entries were early in TB compared to the 

controls (HHB 67). TB ranged from 36.3 d (entries 13 and 14) to 38.3 d(entry 3) in the 

bristled entries whereas the trial mean was obsewed to be 37.1 d and the controls 

(HHB 67) had a mean of 36.4 d. A moderate broad-sense heritability of 0.61 was 

recorded for TB in this trial. 

Plant height (cm) 

Significant differences were also revealed for plant height (PH). For bristled entries, PH 

ranged from 143 cm (entry 7, 8) to 154 cm (entry 11, 12) while the mean PH for trial was 

recorded as 146 cm and of checks as 137 cm. There was an increase of 1 lcm in mean 

PH of bristled entries as compared to the mean of control plots (HHB 67). A very high 

broad-sense heritability of 0.93 was obsewed for PH in this trial. 



Table 4. Agronomic performance of brlstled testcross entries compared to the mean of 
control HHB 67 and the mean of the trial as a whole; Patancheru, rainy season 2000 

OM1 = downy mildew Incidence; GY = grain yleld: TB = tlme to M)% bloom; PH = plant helaht: PL = panlcls length; 

PG = panlcb girth; PC = plant count; ET = eMt lve  tillers; 8R - panicle bristling; DMP = dry maMr percent: 

FSY . h h  stover yleld: 8 1  m blomass: HI hrwtat Index; GI - growh Inhx; TOM = 1000-gnln mass 

ns = nonrlgnlflcant 
', ". rlgnlfluntatthe P =  0.06and O.Otlevel, respctlvely 



Panicle length (cm) 

Bristled entries exhibited nonsignificant differences for panicle length (PL). Ranging 

from 19.0 cm (entries 6, 8, 15) to 20.7 cm (entry 10) panicle length had a mean of 

19.8cm in bristled entries. Trial mean and mean for control plots (HHB 67) was obsewed 

as 19.4 and 17.1 cm, respectively, indicating a positive increase in the mean of bristled 

entries for this trait. PL showed a high broad-sense heritability of 0.87 in this trial. 

Panicle bristling (vlaual rating 1-4) 

Significant differences were obsewed for panicle bristling (BR). Panicle bristling 

segregated from medium-bristled (score = 2.7) to long-bristled (score = 4.0) panicles 

with a mean of long bristles in the bristled testcross entries. Trial mean for BR was 

medium-bristled while it was non-bristled (score = 1.0) for the control plots (HHB 67). A 

very high broad-sense heritability value of 0.96 was recorded for panicle bristle score in 

this trial. 

Biomass (kg ha") 

Biomass (BM) exhibited significant differences in treatment means for bristled testcross 

entries; with a mean of 5837 kg ha.', EM ranged from 5320 kg ha" (entry 2) to 

6250 kg ha" (entry 3). Trial mean of 5780 kg ha" was recorded along with the mean of 

control plots (HHB 67) as 5494 kg ha". As compared to the controls, EM showed an 

increase of 340 kg ha.' for bristled testcross entries was obtained. In this trial, BM 

showed a moderately low broad-sense heritability of 0.40. 

Hawest Index (YO) 

Treatment means manifested significant differences for hawest index (HI) with a mean 

of 50% for bristled testcross entries. A range of 46% (entry 16) to 55% (entry 82) was 

expressed for HI. This trait exhibited a trial mea? of 50% and mean of control plots 

(HHB 67) 52%, implying a reduction of 2% in the mean of bristled testcross entries. A 

moderately low broad-sense heritability of 0.37 was obsewed for HI in this trial. 



Growth Index (kg ha" d") 

Non-significant differences between treatment means for growth index (GI) were 

observed. Bristled testcross entries ranging from 11 1 kg ha" a' (entry 2) to 132 kg ha.' 

d" (entries 10 and 13) exhibited a mean GI value of 124 kg ha" d". The trial mean and 

mean of control plots (HHB 67) had values 123 and 118 kg ha" d", respectively. A non- 

significant increase of 6 kg ha.' d-' in GI for bristled testcross entries was also observed. 

Growth index showed a low broad-sense heritability of only 0.29. 

1000-grain mass (g) 

Bristled testcross entries treatment means revealed significant differences for thousand 

grain mass (TGM). With a mean of 9.09 g, bristled testcross entries ranged from 8.03 g 

(entry 9) to 10.03 g (entry 3). TGM showed mean values for the trial as a whole and 

control plots (HHB 87) of 9.04 and 8.82 g, respectively. The mean of bristled testcross 

entries showed a non-significant gain of 0.27 g over that of the trial mean for this trait. A 

fairly high broad-sense heritability value of 0.76 was also manifested for TGM in this trial. 

Downy mlldew screening 

All the 193 testcrosses, 178 BC4F2-derived DMR testcrosses and 15 BC4Fs-derived 

bristled testcrosses, were subjected to greenhouse downy mildew (DM) screening 

against a DM pathogen population from Patancheru. India. The results on downy mildew 

incidence (DMI, %) are presented graphically in Fig 11. Among the parental lines, donor 

parent ICMP 451 was fairly resistant to the Patancheru DM isolate with 52% DM1 as 

compared to 100% DM1 in case of recurrent parent H 771833-2. The original HHB 67 had 

DM1 of 97% whereas standard checks 7042(S) and 7042(R) exhibited 98% and 75% 

DMI, respectively. The proportion of DMR-testcross as well as bristled-testcross 

progenies were skewed towards susceptibility (Fig. II), as expected since their 

pollinates were still segregating for the targeted DM resistance genes. Based on 

previous generation pedigrees, segregation for disease resistance against Patancheru 

isolate among related families of the 193 testcrosses gave best fits to ratios of 1 

resistant : 15 susceptible, 3 resistant : 13 susceptible, and 7 resistant : 9 susceptible 

(Table 5), depending upon the family of testcrosses concerned. 





Table 5. Chi-aquare estimates for goodness of fit to a range of classical Mendelian 
segregatlon ratios for greenhouse screen DM reaction against Paiancheru 
isolate among 193 testcrosses of the pearl rnlllet cross ICMP 451 x H 771833-2. 

- -  

Genotyping of selected DMR entries 

Based on DM screening results, pollinators of 38 BC4F2 entries, exhibiting lower 

testcross DM1 values, were selected for priority marker genotyping to save time. The 

genotyping of all other BC4F2 entries is also undemay. Marker data for those selected 

38 entries is presented in Table 6. Out of these 36 entries, 9 entries homozygous for 

donor genome either in LG 1 or LG 4 or both were identified. 

Association between DM screening and marker genotyplng results 

The marker genotypes for the 9 selected BC4F2 progenies in both the target regions, LG 

1 and LG 4, along with their pedigree and DM1 values have been presented in Table 7. 

Plants homozygous for donor parent ICMP 451 allele(s) in the targeted regions had 

lower values of DMI. The marker genotyping results, therefore, are in agreement with 

the phenotyping results for DM1 screening of BC4F2 progenies. Nearly all of the BC4F2 

progenies were segregating for panicle bristling, the secondary target trait. 



Tabk? 6. Marker genotype data for 38 BC,Fz DMR entries that had lower disease incidence during their testcross 
DM screening 

- = not scor& 



Table 7. Marker genotypes of selected BCJF~ plants and selected plants in their progenitor generations along 
with DM1 (%) 



Table 8. Summary of QTLs identified using MapmakerlQTL for the response 
to downy mildew in pearl millet cross ICMP 451 x H 771833.2 

Figures in red are for a combined model and includes additional QTLo 



Fig. 15. Autoradiographs obtalncd from screening of BC,F progenres based 
on donor parent ICMP 451 and recurrent parent Ci 771833-2. hetercrygot~s 
ind~viduals were selected for further backcrossing l o  the recur rerit pnfeiit 
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Fig 16. Autoradtographs obtalned f r o r  screeriing of BC3F, plogcn#e:< 
based on donor parent iCMP 451 and r ecu r r en t  parent H 771833-2 
hetcroiygous indlvldi~als were selected for furtiici backcrossci?g to tile 
recurierit Oaient 
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Fig I / .  Autoradlographs obta~r~ed frorn screentng of BC,F, progetlies based or1 
donot parent ICMP 451 and teciirient paieni H 77!833-2: heterorygoiis indtuiriiials 
viere selected for fuitiier backcrossing to the iecuiretit pnreii? 
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Fig. 18. Autoradiograph obtained frorn sctce,iing of BC,F. proycnics based on 
donor parent ICMP 451 and recurrent parent H 771833-2. hcteiorygous ~ndiv~c l i~n ls  
were selected to1 furthe1 backcrossing to the recurrent parerlt 
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Fig. 20. Autoradiogriiphs obtained from screening o! BC,F- based on donor 
parent lCMP 451 and recurrent parent I+ i71833-2, ihornorygnus !ndiv!duals wcre 
selected for further evalilniron 
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Fig 21. Autoradiographs oblaiilcd from screening of BC!F progcnles bnscd on 
donor parent ICMP 451 and recurrent parent H 771833-2: tiornozyyuus ti;dividuaIs 
werc selected lor  furtiler evaiuat!ori 
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5. DISCUSSION 

In the present study we have shown that it was possible to transfer QTLs for downy 

mildew resistance (DMR) in pearl millet (Pennisetum glaucum (L.) R. Br.) using marker- 

assisted selection (MAS) without phenotypic selection, and recorded significant 

improvement in downy mildew resistance of testcross hybrids of several of the newly 

developed lines. This is clearly a step that would have been very difficult to achieve 

before the advent of DNA markers. Also panicle bristling was transferred through 

conventional backcrossing. 

Bristling 

lnspite of several well known devices used for scaring off grain-feeding birds, grain yield 

losses due to birds can be as high as 25-100% in pearl millet. Presence of panicle 

bristles is said to reduce the vulnerability of grains filling on the panicles to bird damage. 

There have been several reports indicating panicle bristling to be controlled by a single 

dominant gene (Krishnaswamy, 1962; Ahluwalia and Shankar, 1964; Athawai and Gill, 

1966; Lal and Singh. 1967; and Gill and Athwal, 1970), while others have suggested 

somewhat more complicated inheritance (Minocha and Sidhu, 1981). Therefore, simple 

phenotypic selection was followed in the present study using panicle bristling itself as 

morphological marker to incorporate this trait through conventional backcross breeding 

into H 771833-2, the pollinator of a widely grown early-maturing grain hybrid HHB 67. 

The donor parent used for this trait was ICMP 451. High broad-sense heritability value 

was observed for panicle bristling confirmed that simple phenotypic selection is sufficient 

for incorporation of this trait. Continuous variation for bristle length was observed among 

the BC4F2 plants which is in agreement with previous findings of Appa Rao et el. (1988). 

This suggests that although a single major gene largely controls presencelabsence of 

panicle bristles, bristle length and density of bristling on the spike are governed by 

additional genes. 



Agronomic phenotyping of BC4F3derived bristled testcrosses 

The lower and negative broad-sense heritability values obtained for downy mildew 

incidence, grain yield, plant count, effective tiller number and growth index suggested 

that little, if any, genetic variability was present for these traits among the closely related 

testcrosses and the original HHB 67 control entries in the bristled testcross trial. 

Significant and positive differences were observed for panicle bristling, plant height, 

panicle length, fresh stover yield, biomass, growth index and 1000-grain mass without 

any adverse effect on grain yield, Increases in plant height and panicle length could be a 

result of linkage of genes controlling these two traits with that for panicle bristling, that 

maps on to the middle portion of linkage group 1 in this cross (Fig. 3) (Howarth et a/., 

1994). Increase in fresh stover yield and biomass of the bristled testcrosses compared to 

control HHB 67 suggests that the linkage between these traits and the panicle bristling 

morphological marker can be directly used as selection criteria to improve these two 

traits. Increase in 1000-grain mass when compared to the original HHB 67 was due to 

the increase in size of grain contributed by ICMP 451. 

The slight, but statistically significant, delay in time to 50% bloom of the bristled 

testcrosses as compared to the control (HHB 67) can be explained by the position of 

QTLs for these traits on linkage group 1. Time to bloom was mapped to the upper part of 

LG 1, with alleles from ICMP 451 associated with lateness, while panicle bristling was 

mapped to the middle of LGI in this cross. 

The bristled versions of HHB 67 were considerably identical phenotypically to the 

original HHB 67 for almost all the traits studied except for the presence of panicle 

bristles, and significantly increased plant height and panicle length (Fig. 11, Fig. 12 and 

Fig. 13). Among entries in this trial, entry 13 had long panicle bristles combined with 

lower downy mildew incidence (67%) and was superior to the original HHB 67 for almost 

all the traits studied while taking the same time to reach 50% bloom. Based on the better 

performance of this entry than the original HHB 67 necessitates its further evaluation in 

large scale multilocation trials. 
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Agronomic phenotyping of BC4F2-derived downy mildew resistant 
testcrosses 

In this trial closely related 178 BC4FTderived versions of HHB 67 were compared with 

the original HHB 67 for their agronomic performance. The mean performance of selected 

downy mildew resistant (DMR) testcross entries and the mean of all control HHB 67 

plots have been presented in Table 3. The DMR testcross entries segregated for downy 

mildew incidence (%) ranging from moderately resistant to susceptible based on the 

presence (homozygous or heterozygous) or absence of either one or both of the 

targeted QTLs in their pollinators. 

The new DMR versions of HHB 67 were considerably phenotypically similar to the 

original HHB 67 with respect to almost all traits studied except for significant increases in 

plant height and panicle length. The increase in plant height and panicle length could be 

due to intentional selection for a larger portion of linkage group 1 for downy mildew 

resistance where QTLs from ICMP 451 for these agronomic traits also mapped (Fig. 3) 

that resulted in simultaneous selection of these traits as co-variables. In the cross ICMP 

451 x H 771833-2, the position of a QTL for time to 50% bloom lies in the vicinity of the 

QTL for DM resistance on linkage group 1. This might be the possible explanation for 

similar expression of this trait in the new DMR versions of HHB 67. A few entries, such 

as 51, 71, 82, 109, 11 1 and 153, were found promising having lower downy mildew 

incidence with higher grain yield than the original HHB 67 and should be further 

evaluated in multilocation yield trials prior to their possible release as new DMR versions 

of HHB 67 carrying different combinations of downy mildew resistance gene(s). 

Regardless of the genetic basis of the transgressive segregants obtained among BC4Fl 

progenies from this crossing program, they may be integrated into further applied 

pollinator and hybrid breeding work. Proper combination of agronomic traits with downy 

resistance reaction might yield breeding materials of even greater interest. On the other 

hand these BC4F2 lines have now largely returned to the genetic background of H 

771833-2, so they can serve as good starting materials for construction of NILS to dissect 

the underlying genetic basis of both disease resistance and agronomic traits such as 

plant height and panicle length or even grain yield. 



Downy mildew screening 

Parental line ICMP 451, used as the donor parent, was moderately resistant when 

screened against the Patancheru isolate of pearl millet downy mildew. This is in marked 

contrast to H 771833-2, the recurrent parent, which showed 100% susceptibility to the 

same pathogen isolate. HHB 67, used as control, had downy mildew incidence (DMI) of 

97% whereas standard checks 7042(S) and 7042(DMR) showed 98% and 75% DMI, 

respectively, indicating high disease pressure during this greenhouse screening of the 

BC,F2derived downy mildew resistant testcrosses. Various families of the test entries fit 

to classical Mendelian ratios of 1:15, 3:13 and 7:9, as indicated by non-significant Chi- 

square estimates, indicating that the various families showed digenic interactions of 

independently segregating duplicate dominant genes, one basic and one inhibitory gene 

and two complementary genes, respectively. The proportion of progenies was mostly 

skewed towards susceptibility in this screen again confirming the level of high disease 

pressure used, and the fact that many of the testcrosses had been produced with 

segregating BC4F2 plants that were not homozygous for one or more of the two targeted 

DM resistance genes. The observed segregation pattern of downy mildew resistance in 

bristled testcrosses was found to best fit a ratio of 9 resistant : 55 susceptible. This 

suggests the presence of either a dominant inhibitor of resistance (which could be a 

dominant resistance gene that is no longer effective against the Patancheru pathogen 

population used in this screen) conferred by two duplicate dominant genes, or the 

presence of a recessively inherited resistance that is required for effective expression of 

resistance conditioned by two additional duplicate dominant genes. Further greenhouse 

disease screening will be required to confirm these preliminary results. 

Marker-assisted selection 

Marker-assisted selection (MAS) offers a unique opportunity to circumvent many 

traditional problems associated with phenotypic selection for traits of interest. MAS has 

the potential to increase the efficiency and flexibility of a breeding program by permitting 

selection for marker genotypes linked to the target gene or QTLs in seasons or locations 

where phenotypic selection would be more costly or ineffective. In the present study 



MAS was carried out over four backcross generations and one selfing generation in the 

progeny of crosses between donor parent ICMP 451 and recurrent parent H 771833-2. 

The RFLP marker system was used for MAS. Despite the labor-intensive nature of this 

approach and the resultant limitations on population size that could be used in a given 

generation, good progress was made. Several quantitative traits have been very 

effectively manipulated using MAS in maize (Stuber and Edwards, 1986) even though 

the selections were based on results from a single environment. MAS have been 

advocated as a highly efficient breeding method because it can offer rapid and precise 

selection of the target gene@) (Tanksley et a/., 1989). In rice, for example, there have 

been studies demonstrating the possibility of using MAS to pyramid genes for bacterial 

blight resistance (Yoshimura eta/., 1995; Huang et ab, 1997). 

In future pearl millet MAS work it may be useful to conduct at least one generation of 

whole genome genotyping in an earlier stage of backcrossing. This will help to remove 

donor parent alleles in non-targzted regions more efficiently than selection based only 

on target regions. Development of PCR-based markers for the region targeted for 

transfer would allow genotyping a substantially larger number of progenies in each of 

backcross generations while still reducing marker data generation costs so that intensive 

phenotypic selection for recurrent parent plant type could be simultaneously practiced. In 

this way it should be possible to develop NILS of different target regions in only three 

backcross generations even though the recurrent parent and the donor parent are 

distantly related. The new lines obtained would be phenotypically identical to their 

recurrent parents, except for having different combinations of downy mildew resistance 

genes. In this respect, MAS certainly has a greater advantage over conventional 

backcross breeding as it is simple to ensure that genetically different resistance genes 

are being incorporated or even pyramided. As more genes of agronomic importance are 

being mapped with diagnostic DNA markers in pearl millet, MAS will be increasingly 

used for genetic improvement of additional traits of this crop. 



Pyramiding QTLs by crossing selected BC4F2 progenies 

The effects of individual QTLs are known to be small. To obtain differences for the 

resistance system in the progenies that translate to significant differences in terms of 

DMR in the field, the pyramiding of different resistance QTLs in a common line might be 

necessary. Pyramids of QTLs can be obtained by crossing plants carrying ICMP 451 

resistance alleles at different target regions. In the BC4F2 progenies evaluated, plants 

carrying ICMP 451 alleles at both targeted regions in linkage groups 1 and 4 were found. 

There can be two methods of QTL pyramiding. One approach is to use plants already 

carrying favorable alleles at different target regions as recurrent parents. An alternate 

approach is to first develop NILS carrying different single QTLs, then to cross them to 

pyramid the QTLs into single line. The first approach can accelerate the process 

compared with the alternative one by saving one generation of crossing. However there 

could be practical problems in this pyramiding approach. This type of cross involves two 

individual plants and not, as in the rest of program, one individual plant and a recurrent 

parent for which multiple sowings are easy to realize. Therefore the synchronization of 

the flowering time might be dimcult to obtain notably because of segregation for growth 

duration. However, the problem of non-synchronization can be tackled by the tillering 

capacity of pearl millet. 

One advantage is that the resulting line will have a relatively smaller genetic drag in the 

non-target regions, because it will come from only one line, compared with the 

alternative strategy where the resulting lines will accumulate the genetic drag from 

different lines. 

Fine mapping of QTLs on different chromosomes 

The other important work for the future could be fine mapping the QTLs for downy 

mildew resistance that have been transferred from ICMP 451. Several useful 

recombinations in the BC,Ft progenies can be identified for this purpose. For linkage 

group 1, recombinants carrying ICMP 451 alleles at different and overlapping regions in 

the vicinity of Xpsm280 - Xpsm858 - Xpsm565 - Xpsm757 are readily identified. By 

comparing their downy mildew reaction phenotypes, they can be used to locate the LG 1 

resistance QTL to one of these intervals. 



More precise mapping of QTLs will likely require the use of additional recombination in 

large populations to break up blocks of linked loci (Stuber, 1989). For example, 

technique such as substitution mapping (Paterson et a/., 1990), which utilize selected 

overlapping recombinant chromosomes generated from backcross lines, should be very 

useful for fine mapping of QTLs. Fine mapping studies should lead to the determination 

of whether multiple trait associations with specific genomic regions are due to pleiotropy 

of a single major gene or due to a group of closely linked genes. 

One consideration in using these BC4F2 recombinants for QTL fine mapping is that some 

of them are heterozygous instead of homozygous at some of the targeted marker loci. 

This may complicate the analysis of QTL effect. But this problem can be overcome by 

combining PCR techniques with DNA mini-preparation methods so that the genotypes of 

their progenies at these loci can be determined at seedling stage and only homozygous 

plants can be used for QTL fine mapping work. Alternatively, one could simply start the 

fine mapping work from BC,F, plant(s) heterozygous for a small region in the vicinity of 

the targeted QTL. Greenhouse downy mildew screening of BC,F, plants followed by 

extensive marker genotyping of resistant segregants in the target region could identify 

one or more heterozygous plants suitable for backcrossing andlor selfing to develop the 

fine mapping population. Additional field experiments and greenhouse work using similar 

populations may allow mapping of several other QTLs for downy mildew resistance on 

different chromosomes. 

Future phenotyping work 

In the BC4F, generation plants with the genotypes sought were identified but there is 

always risk that the individuals displaying the desired genotypes may not carry the QTL 

as the selection is based on linkage, sometimes quite loose, that can be broken during 

the generations of backcrossing. The second possible problem could be that the 

confidence interval for QTL location is often very broad for traits with low heritability 

(Hyne el a/., 1995; and Visscher et a/., 1996b) andlor based on mapping populations of 



modest size there is often a risk of QTLs being assigned to the wrong interval. For this 

reason marker-assisted transfer of a large donor segment, followed by phenotyping of a 

moderate-sized fine mapping population may offer a cost-effective alternative procedure. 

The BC4F3 seeds coming from selected BC4F,plants could be used for phenotyping. The 

first step will be to evaluate their downy mildew reaction under greenhouse conditions in 

comparison to H 771833-2 and see if they express the expected differences. A small field 

experiment, with large plots and greater replication, would allow better characterization 

of differences (if any) in growth duration, plant height and grain and stover yield 

components. The second step will be to evaluate the best lines (and their hybrids) under 

field conditions to see how these NILS (and their testcrosses) perform in comparison with 

H 771833-2 (and its hybrids HHB 60, HHB67, and HHB 68) under different environments. 

Efficiency of MAS 

Several important issues regarding the success and efficiency of MAS for QTLs merit 

further discussion. The number of lines with significantly improved phenotype was not 

very high. There could be several possible sets of reasons for this. The first set relates to 

the quality of the initial QTL analyses. It has been observed that a shin in analyses 

methods from regression on flanking markers to composite interval mapping on the 

same data set can sometimes lead to different conclusions on the number of QTLs and 

the direction of their effects. The composite interval mapping method was actually 

designed to improve the quality of QTL analyses in situations where several QTLs were 

present on the same chromosome region (Zeng, 1993, 1994). The presence of non- 

alielic interactions between donor alleles that may be disrupted by recurrent parent 

alleles during the backcross process is another likely possibility. A recent software taking 

epistasis into account in the framework of composite interval mapping (Wang et a/., 

1999) would allow further improvement of the precision in QTL analyses. Another 

problem could be uncertainty of the QTL position, notably for those with a small effect. 

Some studies have shown that the confidence interval for QTL location, when It can be 

determined, is huge by current QTL analyses techniques, sometimes up to 30 cM for a 



small mapping population (Hyne et a/., 1995; Visscher eta/. ,  1996b). Han e l  al. (1997) 

described such situations where the target region transferred might not have contained 

the desired QTL. To limit this risk, we took into account long segments of ICMP 451 but 

appropriate mapping methodologies are certainly crucial for the success and efficiency 

of MAS for QTLs. 

The second possibility is that the target QTL can be lost during the successive 

backcrosses through double crossovers between the markers. Some of the intervals 

between markers followed in this population were long enough to consider this a 

possibility (e.g, the 37 cM interval between Xpsm464 and Xpsm716 in linkage group 4). 

A more saturated map will limit this risk, but besides the cost of adding more markers, 

some areas seem to be difficult to saturate. The addition of microsatellites to skeleton 

mapslto genetic linkage maps of this population might allow the selection for better 

markers. If double crossovers occur, they are Impossible to detect in cases where we 

rely strictly on the marker genotype data to choose plants for several successive rounds 

of backcrossing because of unreliable phenotyping methods. The situation where a 

simple phenotyping technique can be applied on a plant-by-plant basis and combined 

with marker-aided selection either in a two-stage selection scheme or in an index 

selection scheme should result in better efficiency as shown by Han et al. (1997) in 

barley. One more possible reason could be that the targeted QTLs were actually of 

intermediate effect. Weak effects are more difficult to assess and additional replications 

of phenotyping might give clearer conclusions. 

Resistance gene deployment strategies in the hybrids using MAS 

It is clear that MAS can be used to pyramid several resistance genes in to a single 

inbred genotype. But, this may not provide durable genetic resistance as the pathogen is 

exposed to a full homozygous pyramid during hybrid seed production and to a full 

heterozygous pyramid in the resultant hybrid that is commercially sown. When the near- 

isogenic A- and B-lines along with R-line used to sow the Foundation Seed production 

plot for a modified three-way hybrid have been bred by marker-assisted backcrossing to 



carry small complementary pyramids of resistance genes, the commercially marketed 

certified seed will produce a population of plants that is agronomically similar to 

conventional single-cross hybrid, but that is remarkably different from the point of view of 

a pathogen such as downy mildew that can most easily produce an epidem~c on host 

populations with uniform gene complements (Witcombe and Hash, 2000). The net effect 

should be delayed development of epidemics (at least those caused by pathogens for 

which host plant resistance gene complements are inter allelic), and extended useful 

lifespans of popular hybrid cultivars (and the resistance genes in their parental 

resistance gene pyramids). The resistance gene complements of A-, B- and R-lines can 

be changed by breeders from season to season or location to location, further delaying 

widespread evolution of pathogen races capable of knocking an economically important 

background genotype out of the market. A modified three-way hybrid seed production 

scheme can be followed to generate hybrids segregating for pyramids of different 

resistance gene complements from A-, B- and R-lines that have been bred by marker- 

assisted selection (Fig. 22). 

Future for MAS 

The promise of MAS in plant breeding remains, though achieving the practical benefits is 

clearly taking longer than many had expected. Everything that made MAS an attractive 

strategy for crop improvement is still true, but the obstacles have turned out to be much 

bigger than originally thought (Young, 1999). The fact that MAS technology is so 

challenging should not be a reason for discouragement, but instead, a wake-up call for 

more ingenuity and better planning and execution of marker-assisted breeding 

programs. 

MAS for polygenic trait improvement is in an important transition phase, and the field is 

on the verge of producing convincing results. Given the plethora of ongoing experiments 

and explosion of new molecular technology and applications, new or improved selection 

schemes should be developed and applied very soon. Technology development, 

including automation, allele-specific diagnostics and DNA chips, will make marker- 

assisted selection approaches based on large-scale screening much more powerful and 

effective (Young, 1999). 



Fig. 22. Modified three-way hybrid s e e d  production scheme  
(adapted from Witcombe and Hash, 2000) 
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To take advantage of these powerful technologies, research teams, governmental 

funding agencies, commodity groups, and even the commercial sector will need to work 

together to insure that the public breeders are using the best tools possible. These tools 

will need to go beyond markers themselves to include genome-based knowledge 

derived from model systems like Arabidopsis and rice, as well as data-warehousing and 

data-mining strategies (Goff, 1999; Meinke et a/., 1998). Indeed integrating genomics 

and bioinformatics in to the field of molecular breeding may prove to be even more 

significant than DNA markers themselves, and eventually lead to even more profound 

revolutions in plant breeding. 

As Indicated in the recent review by Young (1999), the optimism of a decade ago has 

today been tempered somewhat by constraints encountered by some current MAS 

approaches. However, considering the potential for the development of new strategies, 

the future for polygenic trait improvament through DNA markers, and the contribution of 

this to plant breeding efforts worldwide appears bright. 

Using marker-assisted selection several new versions of HHB 67, with either one or both 

of downy mildew resistance QTLs introgressed, have been developed. All these new 

versions of HHB 67 look considerably phenotypically identical to original version of 

HHB 67 with increased resistances to downy mildew and bird damage. It is clear from 

the study that traditional plant breeding approaches coupled with molecular techniques 

can give the desired results in much shorter time than before. As the selection using 

molecular tools is based on genotype rather than phenotype of the plant and is therefore 

more precise, so there is no need of large population size for selection. It takes 

considerably less time to developlimprove a cultivar using molecular techniques as 

compared to traditional breeding approaches. With the development and use of PCR- 

based markers cost of breeding has also come down further. 



SUMMARY 

Pearl millet [Pennisetum glaucum (L.) R. Br.] is the world's sixth most important cereal 

crop. It provides food for millions of rural people in semi-arid regions of South Asia and 

Sub-Saharan Africa. Downy mildew (Sclerospora gramrnicola (Sacc.) J. Shroet.) is an 

obligate, oosporic biotroph with the potential to cause massive yield losses in pearl 

millet. it is specially problematic in India on genetically uniform single-cross hybrids. The 

study of host plant resistance to this disease is complicated by both the host and the 

pathogen being outbreeding and highly variable. Therefore disease reactions of new 

breeding materials have to be tested in expensive and often unreliable rnultilocational 

trials. The development of molecular markers has enabled genes contributing towards 

complex traits to be mapped using quantitative trait locus (QTL) analyses. Being able to 

breed for downy mildew resistance at the molecular level has allowed strategies on gene 

deployment to be implemented and reduces or eliminates l~nkage drag and the 

confounding effects of environmental variation associated with conventional disease 

resistance breeding. Using MapmakerIQTL, two downy mildew resistance QTLs had 

been identified using RFLP-based skeleton map for a population derived from a cross 

between H 771833-2 and ICMP 451. 

At ICRISAT, Patancheru, India, marker-assisted backcross improvement of downy 

mildew resistance was then conducted in this study using ICMP 451 as the donor parent 

and H 771833-2 as the recurrent parent. Based on QTL mapping results, two segments 

were chosen for introgression of downy mildew resistance from ICMP 451. The targeted 

regions for downy mildew resistance were on linkage groups 1 and 4. MAS was used to 

select plants carrying ICMP 451 allele(s) at markers flanking the target regions in the 

BCIF1 through BC4F2 generations that were heterozygous or homozygous for donor 

marker alleles in genomic regions immediately flanking the target QTLs. All the BC4F2 

plants were testcrossed onto 843A and the resulting hybrids were compared with the 

original HHB 67 (843A x H 771833-2) during kharif 2000. Data for agronomically 



important phenotypic traits of these hybrids were recorded and analyzed, including 

downy mildew (DM) reaction to a greenhouse screen against Patancheru isolate. 

Among the parental lines, donor parent ICMP 451 was fairly resistant with 52% downy 

mildew incidence (DMI) as compared to 100% DM1 in case of recurrent parent 

H 771833-2. The original HHB 67 had DM1 of 97% whereas among the downy mildew 

resistant (DMR) test entries, DM1 ranged from 39% to 76%. An overall reduction of 

20-30% was observed for DM1 among the segregating DMR entries, most of which were 

not uniform for presence of the resistance QTLs targeted. A few entries like 6, 8, 10, 21, 

23,29,32,33 and 36 were identified that show marker genotypes homozygous for donor 

parent ICMP 451, allele@) in the targeted regions along with lower DMI. Agronomic traits 

of the new DMR versions of HHB 67 were phenotypically similar to those of original 

HHB 87, with a slight but statistically significant increase in plant height, panicle length, 

biomass, harvest index and growth index. All of the BC4F2 progenies were segregating 

for panicle bristling. These entries should be evaluated further before selecting one or 

more for possible release as new DMR versions of HHB 67 carrying different 

combinations of downy mildew resistance gene@). Regardless of the genetic basis of 

the transgressive segregants obtained from among the BC,F, progenies produced by 

this crossing program, they may be integrated into further applied pollinator and hybrid 

breeding work. 

In another experiment, in view of vulnerability of early-maturing cultivars to grain losses 

caused by bird damage, panicle bristling gene(s) were transferred from ICMP 451 to 

H 771833-2 through conventional backcrossing. Plants from the cross between 

ICMP 451 x H 771833-2 were advanced to BC,F3 generation using panicle bristling as 

partially dominant morphological marker trait. Hybrids produced on 843A with uniformly 

bristled BC4F3 progenies were compared with the original HHB 67 in a field trial 

conducted during kharif 2000. Observations were again recorded on different 

phenotypically important traits. Very little variability was observed for DMI, grain yield, 

plant count, effective tiller number and growth index among the closely related 

testcrosses and the original HHB 67 control entry. Significant differences were observed 



for panicle bristling, plant height, panicle length, fresh stover yield, biomass, growth 

index and 1000-grain mass without any adverse effect on grain yield. A slight, but 

statistically significant delay in time to 50% bloom for the bristled testcrosses was 

Observed as compared to the control HHB 67. Apafl from other entries in this trial entry 

13 had long panicle bristles combined with low DM1 (67%) and was superior to the 

original HHB 67 for almost all traits studied while taking the same time to reach 50% 

bloom. Therefore, based on the present findings, this entry can be recommended for 

further evaluation. 

From the present findings, it can be concluded that MAS can be used to pyramid major 

genes including resistance genes, with the ultimate goal of producing varieties with more 

desirable characters. With MAS it is now possible for a breeder to conduct many rounds 

of selection in a year. However, one of the major drawbacks is when the linked marker 

used for MAS is a distance away from gene of interest, cross-over between the marker 

and the target gene can occur. This produces a high percentage of false- 

positiveslnegatives in the screening process. 
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APPENDIX (i) 

Southern Transfer based on Reed and Mann, 1985 (NAR 13 [2] 7207-7221) 

1. Nylon membranes are cut according to the size of the gel and pre-washed in 

sterile distilled water. 

2. Take a large square petri-dish and pour 500 mL of 0.4 M NaOH. 

3. Place a piece of glass on top, soak three sheets of Whatman 3 mm paper wicks 

In 0.4 M NaOH and place on the glass. 

4. Starting with one of the gel edges, gradually slide the gel from the gel tank on to 

the petty-dish. Air-bubbles trapped in between the gel and Whatman sheets are 

removed. 

5. Place the nylon membrane (Amersham Hybond-Nt) on top of the gel. Remove 

the trapped air-bubbles between the gel and the membrane. 

6. Wet a piece of Whatman 3 mm paper cut to the size of the gel and place on top 

of the nylon membrane. Remove the trapped air-bubbles. 

7. Place two dry Whatman paper sheets and 500 g weight on top. 

8 Leave overnight. 



APPENDIX (ii) 

Purification of DNA inserts f rom plasrnid DNA (Maniatis e t  al., 1982): 

According to this procedure the gene inserts of the clones were cleaved from their 

vectors using the appropriate restriction endonuclease(s) and fractionated by 

electrophoresis on a minigei of 1.4% agarose in TEE buffer containing ethidium bromide 

(0.5 pglmL). The electrophoresis was carried out with TBE buffer for 3 h at 6 vlcm. The 

gels were observed on a UV-transilluminator and the desired fragment was transferred 

on to NA 45 membrane (Schleicher and Schull, Inc., Keene, NH) by placing the 

membrane in a slit just behind the band of interest and allowing the electrophoresis to 

resume for further 30 min. The DNA was eluted from the membrane by addition of 

sufficient high salt buffer (1 M NaCI, 0.1 mM EDTA, 20 mM Tris-HCI, pH 8.0) to cover 

the membrane followed by incubation at 65OC for 45 min. Ethidium bromide was 

removed by extraction with TE saturated n-butanol and DNA was precipitated with 

0.5 vol of isopropanol at -80°C for 30 min and pelleted in a Sorvall microfuge at 10,000 

rpm for 10 min. The pellet was washed in 70% ethanol, dried under vacuum and 

dissolved in TtaEl buffer. 



APPENDIX (iii) 

Preparation of buffers and other chemicals 
0.5 M EDTA 

186.1 g of Na2.EDTA in 800 mL sterile d H ~ 0  
adjust to pH 8.0 with NaOH pellets 

make the volume 1 lltter with SDW 

autoclave 

1 M Trls-CI 
dissolve 121.1 g of Trizrna base in 800 mL of dH,O 

adjust to pH 8.5 with conc. HCI 

make the volume 1 liter with SDW 

autoclave 

5M NaCl 
dissolve 292 2 g of NaCl In 750 mL of dH20 

make the volume I liter with SDW 
autoclave 

20% SDS 

slowly add 400 g of SDS to 2 liters of warm water 

stir until dissolved 

store warm 

Buffer S (100 mM Trls-CI, 100 mM NaCI, 50 mM EDTA, 2% SDS) 

add together: 

200 mL of 1 M Tris-Ci, pH 8.5, 

40 mL of 5 M NaCI, 

200 mL of 0.5 M EDTA, pH 8.0, 

200 mL of 20% SDS 

make the volume 2 liters 

store warm 

Pmteinase K (10 mglmL) 

dissolve 100 rng of Proteinase Kin 10 mL of SDW 

stir thoroughly 

dispense in 1 rnL aliquots 

store at -20°C 



0.6 M Trls-CI 

dissolve 60.507 g of Trizma base in 800 mL of dH20 

adjust pH with 6 N HCI to 8.0 

make the volume 1 liter with SDW 

autoclave 

TmElo buffer 

add 100 mL of 0.5 M Tris-CI, pH 8.0 and 

20 mL of 0.5 M EDTA. pH 8.0 to 600 mL of dH,O 

make the volume 1 liter with dHzO 

T,,,E, buffer 

add 20 mL of 0.5 M Tris-CI, pH 8.0 and 

2.0 mL of 0.5 M EDTA, pH 8.0 to 600 mL of dHzO 

make the volume 1 liter with dH20 

Chloroform (24:l) 

add 10 mL of isoamyl alcohol in 240 mL of chloroform 

mix thoroughly 

70% Ethanol 

add 300 mL of dHlO per 700 mL of 100% ethanol 

RNase (I OmglmL) 

dissolve 100 mg of RNase in 10 mL of dH20 

place in boiling water for 20 min 

cool slowly 

dispense into 1 mL aliquots 

store at -20°C 

3 M Sodium acetate 
dissolve 408.24 g of sodium acetate in 600 mL of dH20 

adjust to pH 5.2 with glacial acetic acid 

make the volume 1 liter with dHzO 

autoclave 



lox TBE 

dissolve 108 g of Trizma base in 500 mL of dH20 

add 55 g boric acid and 40 mL of 0.5 M EDTA 

adjust pH 8.4 with 6N HCI 

make the volume 1 liter with dHpO 

SOX TAE 

dissolve 242 g of Trizma base in 500 mL of dH20 

add 100 mL of 0.5 M EDTA pH 8.0 

add 57.1 mL of glacial acetic acid 

make the volume 1 liter with dH20 

l x  TAE 

add 20 mL of 50x TAE per 980 mL of water 

Kesara's loading buffer 

in a beaker take: 

0.10 g of Bromophenol blue, 

0.10 g of Xylene cyanol, 

10 mL of Glycerol, 

0.372 g of Na2EDTA.2H20 

make the volume 20 mL with I x  TAE 

stir until dissolved 

dispense into 2 mL screwcap tubes 

store at 4OC 

0.25M HCI 

add 43 mL of conc. HCI (sg = 1.18) per 1957 mL of dH20 

4M NaOH 

dissolve 160 g of NaOH pellets in 800 mL of dH20 

make the volume 1 liter with dH2O 

0.4 M NaOH 

dissolve 96 g of NaOH pellets in 2 liters of dH20 on a stirrer 

make the volume 6 liters with dH20 



20x SSC 

dissolve 877 g of NaCl and 441 g of sodium citrate in 4 liters of dHzO 

make the volume 5 liters with dH2O 

2x SSC 
add 200 mL of 20x SSC to 1800 mL of d H 2 0  

Stripping solutlon ( 0 . 1 ~  SSC, 0.5%SDS) 

add 50 mL of 20% SDS and 

10 mL of 20x SSC to 1940 mL of dHzO 

SX HSB 

dissolve in 800 mL of dH20: 

175.3 g of NaCI, 

30.3 g of PIPES, 

7.45 g of Na2.EDTA.2H20 

adjust to pH 6.8 with 4 M NaOH 

make the volume 1 liter 

autoclave 

Denhardt's Ill 

dissolve in 100 mL of dHzO at 65"C, 

2 g of gelatin. 

2 g of Ficoll-400, 

2 g of PVP-360. 

10 g of SDS, 

5 g of sodium pyrophosphate 

store on a hotplate 

Carrier DNA 

dissolve 5 g of salmon sperm DNA in 1 liter of dHzO 

autoclave 

dispense into 50 mL aliquots 

store at -20°C 



"P Blots wash solutlons 

Wash 1 (2x SSC, 1% SDS) 
1700 mL of dH20 
200 mL of 20x SSC 
100 mL of 20% SDS 

Wash 2 ( 0 . 2 ~  SSC, 1% SDS) 

1880 mL of dH20 
20 mL of 20x SSC 
100 mL of 20% SDS 

Prehybridization solution I 7% SDS phosphate solution 
dissolve in 300 mL of dH20: 
35.5 g of disodium hydrogen phosphate (Na2HP04), 
5 g BSA, 

35 g SDS 

adjust pH with phosphoric acid (H3P04) 
make the volume 500 mL with dH,O 

Developer 
warm 700 mL of SDW up to 52OC and 
slowly add 157 g of D-19 

make the volume 1 lit 

Stop bath (3% of HAC) 

add 30 mL of HAC (acetic acid) to 970 mL of dH2O 

Rapid fixer 

to 700 mL of SDW slowly add 

250 mL of solution A and 
28 mL of solution B at room temperature 
make the volume 1 liter with SDW 

Loading buffer 

in 5 mL of dH20 dissolve: 

4 g of Sucrose, 
25 mg of bromophenol blue, 
400 pL of 0.5 M EDTA pH 8 

make the volume 10 mL 
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APPENDIX (v) 
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Abstract 

Present investigation was carried out at International Crop Research Institute for Seml-Arid 
Tropics (ICRISAT), Patancheru, Andhra Pradesh, India, during I998 to 2000. Polygenic systems 
of host plant disease resistance are senskive to environmental variation and vertiioiia effeds of 
oligogenes. Therefore the expression of resistance is 0fIen inconsistent. Use of molecular 
markers like restridion fraament ienoth ~olvmomhism (RFLP) markers, linked lo resistance 
gene($) provide a rapid andeffectlve methbdbf breedinp improved hybrid parental lines through 
marker-assisted selection IMAS). Available information on ouantiative trait loci IQTW for downv 
mildew resiaance (DMR) in l h i  cross ICMP 451 x H 771833-2, was used to 'condict marker- 
assisted backcrosslng to introgress two previously identified DMR QTLs into elite hybrid parental 
line H 771833-2 using ICMP 451 as the donor parent. 
Bird damage being another major limiting fador in pearl millet cuiUvaUon, panide bdstling gene(s) 
washre  transferred from donor parent ICMP 451 to recurrent parent H 771833-2 through 
conventional backcrossing. 
We then evaluated the agronomic peiformance of the downy mildew resistant and bristled 
testcmsses based on impmved versions of H 771833-2 with that of the origlnal hybrid (HHB 67). 
Phenotypic data was recorded on 14 agronomic traiis induding plant height, panide length, days 
to 50% bloom, effective tillen, tOOOarain mass and grain yield. A greenhouse downy mlldew 
screening of all the testcrosses was a60 conducted to ibse6e downfmlldew lncldence-(%). The 
field and greenhouse evaluations revealed that new versions of HHB 67 were considerably 
identical phenotypically to the original HHB 67 except for slight but stetlstically significant posltive 
genetic drag in terms of plant helght and panicle length along with increased downy mildew 
resistance. Further evaluation, In multllocation trials, of these new verslons of HHB 87is 
necessary before there possible release. A f l  
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