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a b s t r a c t

The availability of a large number of expressed sequence tags (ESTs) has facilitated the development of
molecular markers in members of the grass family. As these markers are derived from coding sequences,
cross-species amplification and transferability is higher than for markers designed from genomic DNA
sequences. In this study, 919 EST-based primers developed from seven grass species were assessed for
their amplification across a diverse panel of 16 grass species including cereal, turf and forage crops. Out
of the 919 primers tested, 89 successfully amplified DNA from one or more species and 340 primers
generated PCR amplicons from at least half of the species in the panel. Only 5.2% of the primers tested
produced clear amplicons in all 16 species. The majority of the primers (66.9%) were developed from tall
fescue and rice and these two species showed amplification rate of 41.6% and 19.0% across the panel,
respectively. The highest amplification rate was found for conserved-intron scanning primers (CISP)
omology
equence conservation

developed from pearl millet (91%) and sorghum (75%) EST sequences that aligned to rice sequences. The
primers with successful amplification identified in this study showed promise in other grass species
as demonstrated in differentiating a set of 13 clones of reed canary grass, a species for which very little
genomic research has been done. Sequences from the amplified PCR fragments indicated the potential for
the transferable CISP markers for comparative mapping purposes. These primer sets can be immediately
used for within and across species mapping and will be especially useful for minor grass species with

ular
few or no available molec

. Introduction

The grass family, Poaceae, is one of the largest families of flow-
ring plants, with approximately 10,000 species in 700 genera.
oaceae surpasses all other botanical families in economic impor-
ance. Three grain crops, wheat (Triticum aestivum), rice (Oryza
ativa) and corn (Zea mays), are the world’s predominant food

ources, but the family also includes several other less-researched
rops. Tef (Eragrostis tef), for example, is a major staple food in
thiopia, but almost unknown elsewhere. Turf and forage crops
uch as tall fescue (Lolium arundinaceum), Kentucky bluegrass (Poa

∗ Corresponding author at: Dept. of Plant Breeding and Genetics, 240 Emerson
all, Cornell University, Ithaca, NY 14853-1902, USA. Tel.: +1 607 255 2180;

ax: +1 607 255 6683.
E-mail address: mes12@cornell.edu (M.E. Sorrells).

378-4290/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.fcr.2010.03.014
markers.
© 2010 Elsevier B.V. All rights reserved.

pratensis) and bermudagrass (Cynodon dactylon), are vital to the
rangeland management and lawn care industries generating mil-
lions of dollars in seed sales, but have limited genetic resources
available. In addition, future biofuel crops such as switch grass (Pan-
icum virgatum) and reed canary grass (Phalaris arundinacea) are also
examples of crops that are definitely in need of more research to
bring about the required improvements.

Genetic studies of these minor crops are hindered because of
the scarcity of molecular markers available. Because marker devel-
opment is laborious, time-consuming, and expensive, given the
limited resources and researchers available for minor crops such
as turf/forage species, it has lagged behind that of major and well-

researched crops. Microsatellite markers (SSR) developed from
genomic libraries (gSSR) have been widely used for mapping and
population genetic analysis. This can be mainly attributed to their
high level of polymorphism, abundance and dispersion throughout
the genome, besides their codominant nature of inheritance and

http://www.sciencedirect.com/science/journal/03784290
http://www.elsevier.com/locate/fcr
mailto:mes12@cornell.edu
dx.doi.org/10.1016/j.fcr.2010.03.014
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eproducibility (Gupta and Varshney, 2000; Squirrell et al., 2003).
he disadvantage of gSSR markers is the high initial cost of develop-
ent and their low transferability across genera and beyond (Roa

t al., 2000; Kindiger, 2006).
A large amount of coding sequence information has been gen-

rated by EST (expressed sequence tag) projects for gene discovery
n several crop species, and deposited in the National Center for
iotechnology Information (NCBI) database. EST-based markers are
erived from transcribed regions of the genome, which are more
onstrained with respect to sequence diversity since they code for
unctional proteins. For this reason, EST-derived markers are more
ikely to produce amplicons in multiple species than those designed
rom non-coding sequences (Yu et al., 2004; Zhang et al., 2005;
arida et al., 2006). By December 21st, 2009, NCBI had more than
ix million readily accessible ESTs in members of the Poaceae, 83%
f which were derived from rice, maize or wheat. The large amount
f genetic information available on the major grain crops, includ-
ng maize and sorghum (Zhu and Buell, 2007), and the full genome
equences for rice (Yu et al., 2005) and brachypodium (Opanowicz
t al., 2008) are useful resources that can be extended to less well-
unded grasses using comparative genomics tools (Varshney et al.,
005; Feltus et al., 2006). Based on this information, one can search
or variation in EST sequences to develop markers flanking SSRs,
nsertions and deletions (INDEL), and single nucleotide polymor-
hisms (SNP).

It has become widely accepted to screen EST-based mark-
rs derived from one species with other species in the same
enus and even across genera within the same family. Gupta
t al. (2003) reported that 24 out of 59 wheat EST-SSR mark-
rs amplified fragments in five species including barley, maize,
at, rice, and rye. Similarly, Wang et al. (2005), demonstrated the
ransferability of EST-SSR markers from maize, sorghum, rice and
heat to minor grass species (finger millet, seashore paspalum and

ermudagrass) and observed the correlation between the trans-
erability rate of markers and the phylogenetic relationship of the
pecies tested. Numerous studies, however, have used the term
transferability of markers”, which implies amplification of orthol-
gous loci, to describe amplification of an amplicon regardless
f orthology. While many studies have suggested that EST-SSR
re most interesting because of their amplification of conserved

orthologous) sequences across different grass species (Varshney
t al., 2005; Feltus et al., 2006), others have observed loss of
equence homology when markers developed from one species
ere screened on distantly related species (Asp et al., 2007; Sim

t al., 2009).

able 1
panel of 16 grass species used for evaluation of 919 primers developed from seven spec

Common name Variety Scientific na

Maize B73 Zea mays
Sorghum BTx623 Sorghum bico
Pearl millet Titft23A Pennisetum g
Bermudagrass Midland 99 Cynodon dac
Tef Kaye Murri Eragrostis tef
Creeping bentgrass AA61 Agrostis stolo
Harding grass Maru 20-2 Phalaris aqua
Oat Ogle Avena sativa
Brachypodium Bd3-1 Brachypodiu
Smooth bromegrass Lincoln 8-7 Bromus inerm
Barley Morex Hordeum vul
Western wheatgrass Barton Pascopyrum
Wheat Chinese Spring Triticum aest
Ryea – Secale cereal
Kentucky bluegrass SR2394 Poa pratensis
Tall fescue KY31 Festuca arun
Rice IR64 Oryza sativa

a Rye was only used as a source of markers in this study.
arch 118 (2010) 28–35 29

The conserved-intron scanning primers (CISP) designed by
Feltus et al. (2006) to conserved exonic regions flanking introns
from sorghum/pearl millet ESTs and aligned to the rice genome,
successfully amplified in barley, maize, tef and wheat. Those mark-
ers and others, such as the PCR-based landmark unique genes
(PLUG) described by Ishikawa et al. (2009), are much more con-
served than EST-SSR markers and could provide better resources for
comparative mapping studies, provided they amplify orthologous
sequences that are polymorphic. Thus, more research is needed
on the level of transferability of molecular markers from well-
researched cereal crops to distantly related, minor grass species and
also on the nature of the products of those markers. It is crucial to
understand whether those markers will only add novel markers to
less-researched crops or will also provide the basis for comparative
mapping work.

The objectives of this research were: (i) to evaluate the cross-
amplification of 919 primers developed using EST sequences
derived from wheat, rice, tef, sorghum, pearl millet, tall fescue, and
rye on a panel of 16 grass species, (ii) to evaluate the utility of some
of those markers in discriminating reed canary grass accessions,
and (iii) to evaluate the transferability of markers for comparative
mapping work of less-researched grass species.

2. Materials and methods

2.1. Plant materials

Sixteen grass (Poaceae) species, including maize (Z. mays),
sorghum (Sorghum bicolor), pearl millet (Pennisetum glaucum),
bermudagrass (C. dactylon), tef (E. tef), creeping bentgrass (Agrostis
stolonifera), harding grass (Phalaris aquatica), oat (Avena sativa),
brachypodium (Brachypodium distachyon), smooth bromegrass
(Bromus inermis), barley (Hordeum vulgare), western wheatgrass
(Pascopyrum smithii), wheat (T. aestivum), Kentucky bluegrass (P.
pratensis), tall fescue (Festuca arundinacea) and rice (O. sativa), were
selected to represent 10 tribes from four of the six subfamilies
within the Poaceae family (Table 1). The subfamily Pooideae was
represented by 11 species of grain, turf and forage crops in this
panel. To evaluate the level of polymorphism transferable mark-

ers provide, and investigate the nature of the amplified fragments,
13 reed canary grass clones and Indian lovegrass (Eragrostis pilosa
accession 30-5) were employed. Those clones represent cultivars
and accessions from northeast and north central United States,
Canada and one European cultivar (Table 2).

ies (boldfaced).

me Tribe Subfamily

Andropogoneae Panicoideae
lor Andropogoneae Panicoideae
laucum Paniceae Panicoideae
tylon Cynodonteae Chloridoideae

Eragrostideae Chloridoideae
nifera Aveneae Pooideae
tica Aveneae Pooideae

Aveneae Pooideae
m distachyon Brachypodieae Pooideae

is Bromeae Pooideae
gare Triticeae Pooideae
smithii Triticeae Pooideae
ivum Triticeae Pooideae
e Triticeae Pooideae

Poeae Pooideae
dinacea Poeae Pooideae

Oryzeae Ehrhartoideae
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Table 2
Reed canary grass clones used for verification of amplification results
and sequence analysis.

Accession/cultivar namea Geographic origin

Brummer (cultivar) IA, USA
Marathon (cultivar) IA, USA
Vantage IA, USA
Denton NY, USA
Rensselaer Falls NY, USA
Watkins Glen NY, USA
State College PA, USA
Juneau Ditch WI, USA
Poygan Marsh WI, USA
Rabbit Lane WI, USA
Bellevue Quebec, Canada
Rival (cultivar) Manitoba, Canada
SW Bamse (cultivar) Sweden
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aGermplasm (except Denton) was provided by Dr. Michael D. Casler,
USDA-ARS, U.S. Dairy Forage Research Center, Madison, WI, USA. Denton
clone was collected at Aurora, NY, USA.

.2. Primer resources

Markers developed from four subfamilies of the Poaceae fam-
ly were used in this study. A total of 919 primers derived from
even grass species developed by four research institutes were
ested. Almost 90% of the primers screened were developed from
ST sequences harboring SSR repeats, while 10% were CISP mark-
rs (Table 3). A total of 602 primers (RM, REMS, CNL, PRSC/SRSC
nd CNLT), were tested at Cornell University, while the remaining
64 primers (NFFA and NFFS) were tested at the Noble Foundation
Table 3 and Supplemental Table I).

.3. Primer screening and data analyses

DNA was isolated from fresh tissues as described in Tai and
anksley (1990). A sample of 20 ng of template DNA was used for
CR amplification in a PTC-225 thermocycler (MJ Research) with
n initial denaturation at 94 ◦C for 3 min, 35 cycles of 1 min at
4 ◦C, 1 min at 53 ◦C, and 2 min at 72 ◦C, and a final elongation for
0 min at 72 ◦C. A single annealing temperature was employed to
ccommodate all primers tested in this study. Reactions were car-
ied out in 20 �L volumes containing 1× PCR buffer, 2.5 mM MgCl2,
.125 mM of each dNTP, 0.8 Units Taq DNA polymerase (Promega),
nd 5.5 �M of each primer pair. PCR amplicons were examined on
.5–2% agarose gels with ethidium bromide staining. Amplification
as evaluated as a binary score: clear, strong bands were scored

s 1; weak bands and those with multiple bands were considered
on-specific amplifications and were scored as 0. Scoring results
re presented in Supplemental Table II. Primer cross-amplification
as calculated as the average number of primers amplifying a prod-

ct divided by the total number of primers screened (Table 4).
enetic similarity estimates between species on the panel were cal-
ulated according to Nei and Li (1979). Similarity coefficients were
sed to construct a UPGMA dendrogram using NTSYS-pc version
.20h (Rohlf, 2002). Similarity coefficients between the six source

able 3
roups of primers screened in this study indicating the species for which the primers w
arker.

Marker name No. of primers Species of origin Marker ty

CNL 344 Rice, wheat EST-SSR
CNLT 107 Tef EST-SSR,
RM 20 Rice EST-SSR
SRSC 87 Sorghum/rice CISP
PRSC 9 Pearl millet/rice CISP
NFFA/NFFS 317 Tall fescue EST-SSR,
REMS 35 Rye EST-SSR
arch 118 (2010) 28–35

species (excluding rye) and the 16 species on the panel were cor-
related with their corresponding cross-amplification rate values
of EST markers (N = (6 × 16) − 6 = 90 comparisons) using Pearson’s
correlation.

2.4. Length variation and sequence analysis of amplified
fragments

Accessions of reed canary grass (Table 2) were screened with
those primers that amplified a clear single band on agarose gels in
harding grass (Supplemental Table II). Amplicons were then run on
4% denaturing polyacrylamide gels and stained with silver nitrate
after replicating the PCR reaction mentioned above with a faster
PCR program characterized by a higher annealing temperature and
fewer cycles (30 cycles of 45 s at 94 ◦C, 1 min at 54 ◦C, and 1 min
at 72 ◦C, and a final elongation for 7 min at 72 ◦C), to reduce the
number of non-specific amplicons.

PCR products from 24 primers that amplified in reed canary
grass and 7 that were previously mapped in tef (Yu et al., 2006)
were cloned using TOPO TA cloning kit (Invitrogen). Recombi-
nant clones were directly amplified using vector primers and
10 �L of the PCR products were screened on a 1% agarose gel
for presence of inserts of the correct size before being sequenced
using an ABI 3730XL automated DNA sequencer (Applied Biosys-
tems, Foster City, CA, USA). In other instances, only the desired
amplicon of the correct size was excised from the polyacry-
lamide gel (Chalhoub et al., 1997) and used as a template in
another round of PCR before cloning and sequencing. Sequences
were edited and aligned using the Chromas pro software ver-
sion 1.22 (Technelysium Pty, Ltd.). The online tool ClustalW2
(http://www.ebi.ac.uk/Tools/clustalw2/index.html) was used to
align sequenced fragments to the reference sequence from which
the markers were designed.

3. Results and discussion

A total of 919 primers from seven grass species were screened
for their amplification across a diverse panel of 16 grass species
(Table 1). Of those, 891 (97%) amplified a product with at least
one species, 340 primers (35%) amplified in at least half of the
species tested and 50 primers (5.2%) amplified across all 16 species
on the panel (details are listed in Supplemental Table II). Only
119 primers (13%) amplified in a single species. On average, 314.7
primers amplified in each species, varying from 19.0% for rice
primers to 91.1% for pearl millet CISP primers (Table 4), however,
only 9 primers of the latter were tested. Gupta et al. (2003) observed
similar average cross-amplification rates (40.7%) between bread
wheat and five other cereals (barley, maize, oats, rice and rye).
Similarly, Zhang et al. (2005) reported an average of 50% cross-

amplification and transferability of markers between wheat and
four cereals (Agropyrum, barley, rice and rye). In those studies, only
cereal crops were included in the screening panel. The study pre-
sented here used a more diverse panel of grass species and found
comparable cross-species amplification.

ere originally designed, type of marker, and the institution that developed each

pe Institution Source

Cornell Univ., USA Yu et al. (2004)
SNP/INDEL, IFLP Cornell Univ., USA Yu et al. (2006)

Cornell Univ., USA Temnykh et al. (2000)
Univ. Georgia, USA Feltus et al. (2006)
Univ. Georgia, USA Feltus et al. (2006)

STS Noble Found., USA Saha et al. (2004)
IPK, Germany Khlestkina et al. (2004)

http://www.ebi.ac.uk/Tools/clustalw2/index.html
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Genetic studies on forage and turf crops are limited by the num-
ber of markers available. One possible approach to acquiring new
markers and facilitating comparative mapping in less-researched
species is to screen markers already developed from better studied
and related species. Limitations to this approach include the avail-
ability of such markers, their transferability, polymorphism, and
nature of the amplified fragments in the less-researched species.

3.1. Marker availability

The rice genome sequence provides a readily available, rich
source of molecular information. Out of the 282 rice EST-SSRs
screened in this study, 220 (CNL160 to 403) were selected from
4726 rice EST-SSRs by La Rota et al. (2005) to cover the entire rice
genome using in silico mapping against the rice genome sequence
(Supplemental Table I). Rice primers tested here showed an average
of only 19% amplification across the other 15 species, with no clear
difference among subfamilies. Despite this low cross-amplification,
the large number and precise sequence anchorage of rice EST mark-
ers make them a powerful resource for breeders and geneticists
working on less-researched crops. Rice markers could provide a set
of conserved orthologous markers to facilitate comparative analy-
ses for cross-referencing genes and genomes (Varshney et al., 2005;
Feltus et al., 2006).

Sorghum is another crop with a large amount of genetic infor-
mation available in databases. All sorghum primers screened here
were based on low-copy exons flanking intron regions conserved
between sorghum and rice, which ensures higher amplification rate
and transferability across grass species, as compared to EST-SSR and
gSSR-based markers (Feltus et al., 2006). The sorghum/rice CISP
primers showed a very high cross-amplification rate of 75% in this
study. These markers appear to be limited in number and require
considerable in silico and lab work to develop and verify as com-
pared to EST-SSR primers, however, recently more of those intron
flanking marker are becoming available (Ishikawa et al., 2009).

On the other hand, EST-derived primers from tall fescue, with
only about 100,000 EST sequences available in Genbank (accessed
December 22nd, 2009) showed 47.3% amplification across 15
species, which is comparable to the 57% reported by Saha et al.
(2004) on five other grass species screened with only half of the
tall fescue primers screened here, indicating that this set of primers
amplify across a wide range of species and genera as compared to
other tested EST-SSR primers (Table 4).

Marker-derived primers from tef, with nearly 4000 EST
sequences currently available, showed 20% cross-amplification,
comparable to the results for rice and wheat, as shown in Table 4.
Sim et al. (2009) screened 22 of the tef primers tested here on
ryegrass and found that 14 of these primers cross-amplified in rye-
grass and six were included in their map. These results and the
ones presented here suggest that all sources of markers available
for less-researched species should be exploited to cope with the
lag in marker information for those crops. In the present study, we
identified an average of 314.7 (varying from 210 for sorghum to 425
for western wheatgrass) that can be immediately used for studies
on a variety of turf and forage species (Table 4).

3.2. Primer cross-amplification and taxonomic relationship

The 317 primers from tall fescue tested for cross-amplification
in this work showed 51% amplification in the nine species of
its own subfamily (Pooideae). A large number of those primers

amplified DNA of the closest relative Kentucky bluegrass (62%),
which is from the same tribe, Poeae. The next highest amplifi-
cation rate was observed for members of the Aveneae tribe. This
supports the molecular analysis based on internal transcript space
(ITS) sequences from nuclear rDNA that indicated a sister group
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Fig. 1. Dendrogram of the 16 grass species based on Dice co

elationship between Poeae and Aveneae (Hsiao et al., 1995). As
xpected from their phylogenetic distance (Kellogg, 2001; Gaut,
002), fewer tall fescue primers were functional on species from
he Panicoideae, Chloridoideae and Ehrhartoideae subfamilies. The
ame trend was observed for primers from wheat, showing the
ighest cross-amplification to members of the Triticeae tribe (bar-

ey and western wheatgrass). On the other hand, both rice and tef
howed the lowest rate of amplification across the panel (Table 4).
ice primers in this study showed the least frequent amplification

n members of the Andropogoneae tribe, represented by maize and
orghum.

Studies have indicated that the number of SSRs amplified in a
iven species was positively correlated with the phylogenetic relat-
dness of that species and the species from which the marker was
esigned (Saha et al., 2004; Mian et al., 2005; Wang et al., 2005;

ensen et al., 2007). Sequence alignment of PCR products from EST-
SR markers (Saha et al., 2004; Gimenes et al., 2007) have indicated
hat sequences flanking the repeats are usually conserved and vari-
tion appears more in the repeat motif length. However, for less
elated species the polymorphisms that were detected included
ore INDEL and substitutions in the SSR flanking regions. We used

he data provided by the 841 functional markers (excluding the 50
arkers that amplified in all 16 species on the panel) in a clus-

er analysis of the 16 species in our panel. Using the Nei and Li
1979) coefficient of similarity to construct a dendrogram based on
he UPGMA method, members of the Pooideae grouped together in
ne cluster (Fig. 1). Rice, from subfamily Ehrhartoideae was clearly
eparated from all other groups. No clear separation was apparent
etween members of subfamily Panicoideae (sorghum, maize and
earl millet) and those of subfamily Chloridoideae (bermudagrass
nd tef). This clustering is in agreement with previously estab-
ished taxonomic relationships among grass species (Kellogg, 2001;
aut, 2002). The correlation between the genetic similarity coeffi-
ients and their corresponding cross-amplification values of EST
rimers (N = 90 comparisons) was surprisingly low (r = 0.26). This

orrelation was rather weak considering the expected positive cor-
elation between the phylogenetic relatedness of the species and
ross-amplification of primers. However, when CISP primers, were
xcluded from the correlation matrix (N = 60 comparisons), a sig-
ificant correlation with r = 0.80 (p < 0.01) was observed. Since CISP
ent of similarity calculated from 841 polymorphic markers.

primers were designed to target conserved low-copy exons flank-
ing intron regions across sorghum and rice or pearl millet and rice
(Feltus et al., 2006), those primers are expected to amplify prod-
ucts with most of the species on the panel, thus weakening the
correlation between cross-amplification and relatedness. The high
rate of cross-amplification of sorghum/rice (74%) and pearl mil-
let/rice (91%) CISP primers, as shown in Table 4, was due to the
type of marker screened, rather than their phylogenetic relation-
ship to other species on the panel. Consequently, the remainder of
the data supported a positive correlation between the phylogenetic
relatedness and EST-SSR primer cross-amplification for the tested
species.

3.3. Polymorphism of amplified fragments as observed on reed
canary grass

Reed canary grass is a perennial grass native to temperate zones
of the Northern Hemisphere and mainly represented by an allote-
traploid cytotype (2n = 4× = 28) and a hexaploid form (2n = 6× = 42)
(Lavergne and Molofsky, 2004). Although it was not included in
our screening panel, it is a close relative of harding grass (P. aquat-
ica), which was screened in this study. Both species are not yet
well characterized on the molecular level (Mian et al., 2005; Casler
et al., 2009). DNA from 13 accessions of the reed canary grass was
amplified using 91 primers (56 CISP and 35 EST-SSR primers) out of
the 192 primers that amplified a PCR product in harding grass. The
PCR products were visualized on polyacrylamide gels and scored
for polymorphisms. Fifteen of the CISP primers showed polymor-
phism (27%) in at least one of the 13 accessions screened, three
failed to amplify and 38 were monomorphic. On the other hand,
33 of the 35 EST-SSR primers (94%) were polymorphic with only
two primers (CNLT 110 and RM 109) scored as monomorphic. CISP
primers were able to discriminate all 13 clones except Marathon
and Rival. However, including the rest of the polymorphic primers
all clones were discriminated with Rensselaer and Rival showing

the highest genetic similarity estimates (data not shown).

These results clearly indicated that the primers selected in this
study cross-amplified even across genera, but CISP primers are less
polymorphic as compared to EST-SSR primers based on fragment
size differentiation as observed on polyacrylamide gels. It is worth
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Fig. 2. ClustalW2 alignment of sequences obtained from: (A) four fragments of the EST-SSR primer CNL98 amplified in reed canary grass (RCG) clone Bellevue as compared
to the reference sequence from wheat (BE604377), (B) two fragments of the CISP primer SRC4-031 amplified in RCG clone Bellevue as compared to the reference sequence
from pearl millet (PM), and (C) two fragments of the CISP primer PRSC1-22 from Eragrostis pilosa (E. pilosa). Primer sequences are shaded, single nucleotide polymorphisms
(SNP) are in bold and SSR repeats are in italics.



34 M. Zeid et al. / Field Crops Research 118 (2010) 28–35

(Cont

m
S
e
T
v
m
d
v
g
s

f
a
3
e
m
i
t
(
e
S
a
c
t
m
m
c

3
E

p
m
b
m
r
b
w
e
m
t
E
p
o

p
a
g
t

Fig. 2.

entioning that CISP primers were originally developed to detect
NP variation through sequencing the amplified fragments (Feltus
t al., 2006) and not based on size variation as done in this work.
hus screening for SNP in CISP amplicons across clones is another
enue to better utilize those markers. The recently developed PLUG
arkers (Ishikawa et al., 2009) provide a cheaper method for SNP

etection that relies on restricting the amplified fragments with
arious restriction enzymes and observing the variation on agarose
els. This approach is less demanding for equipment and better
uited for the resources available in less-researched crops.

The vast majority of EST-SSR primers tested amplified multiple
ragments in reed canary grass. Increasing the annealing temper-
ture to 54 ◦C and reducing the number of cycles to 30 instead of
5 cycles has reduced the number of non-specific fragments, how-
ver, many obvious fragments were still scoreable. Amplification of
ore than one fragment using EST-SSR markers has been reported

n previous studies and was attributed to the possible amplifica-
ion of both orthologous and paralogous copies of the target region
Varshney et al., 2005; Sim et al., 2009), or homoloci from differ-
nt genomes, as in the case of hexaploid wheat (Gupta et al., 2003;
aha et al., 2004). Although reed canary grass is a polyploid and
mplification of homoloci is rather expected, these assumptions
ould only be verified by sequencing the observed fragments. For
he CISP primers, single fragments and rarely two or more frag-

ents were observed, adding another distinctive character to those
arkers, besides their remarkably high cross-amplification rate as

ompared to the EST-SSR primers tested here.

.4. Nature of the amplified products in reed canary grass and
ragrostis species

Some of the concerns regarding amplification of EST-SSR
rimers across species as pointed by Thiel et al. (2003), were that
arkers producing identical fragment sizes may not be identical

y descent (homoplasy). In addition, two alleles of different size
ight be the result of INDEL in the SSR motif or the flanking region

ather than variation in the SSR repeat length. These issues would
e of special interest for less-researched species as in case of tef,
here some of the markers tested here were already mapped (Yu

t al., 2006). We sequenced the fragment/s obtained from various
arkers tested on tef, E. pilosa and reed canary grass clones in order

o: (i) understand the nature of the multi-fragments observed with
ST-SSR primers as opposed to those fragments observed with CISP
rimers and (ii) determine the genetic basis of the polymorphisms
bserved (variation in SSR repeat length, INDEL and/or SNP).
All fragments in the range of 120 bp and 400 bp produced by the
rimers CNL56 and RM176 tested on the line Kaye Murri (E. tef),
nd CNL98 and CNL239 from the clone Bellevue of the reed canary
rass were sequenced and vector sequences were trimmed. From
hese four primers 16 fragments were recovered. Only one frag-
inued ).

ment (CNL98-204 bp) showed homology to the reference sequence
including the SSR repeat motif (CCT)4 as compared to (CCT)6 in
the reference sequence as seen in Fig. 2A. Except for the primer
sequences, the other three fragments from the primer CNL98 and
the 12 fragments from the other primers showed very low or
no homology to the reference sequence in addition, the targeted
repeat sequence was not recovered in any of those fragments. Since,
the sequence of any set of fragments within each primer did not
align to each other, it could be concluded that those fragments
were amplifications of different loci. The screened CISP primers
on the other hand, were more conserved as compared to EST-
SSR primers in terms of the number of amplicons amplified per
primer. We sequenced the fragments amplified from each of the
primers (PRSC1-22 and SRSC3-5) in both Eragrostis species and
(SRSC4-31, SRSC7-6, SRSC9-2 and SRSC5-19) on Bellevue. Sequenc-
ing results have indicated that for each primer, the amplified
fragments aligned to each other with very high homology and the
differences in sizes were mainly caused by INDEL, although numer-
ous SNP were also observed (Fig. 2B). In one case the cause of the
two fragments observed was the absence of the entire SSR motif
(GAAA)5 in the shorter fragment (263 bp) as compared to 283 bp
in the longer fragment for the primer (PRSC1-22) with E. pilosa
(Fig. 2C). Six amplicons (25%) from 24 CISP primers sequenced from
reed canary grass showed homology to the reference sequence.

It could thus be concluded that the multi-fragment amplifica-
tion observed with the EST-SSR primers tested here were due to
loss of specificity of the primers to the targeted sequence in dis-
tantly related species. These results are in general agreement with
the results of Sim et al. (2009), where for 83% of the sequenced
fragments, from various EST-SSR primers tested on ryegrass, lacked
homology to the reference sequence. The results also suggest that
although an EST-SSR marker targeting a specific sequence in one
species can amplify the orthologous sequence in a distantly related
species, the uniqueness of this marker is no longer valid because
other non-targeted loci co-amplify. On the contrary the CISP frag-
ments amplified in this study from a single primer are probably
the outcome of amplification from two loci on the homologous
chromosomes from the polyploid species used in this study.

In conclusion, CISP primers showed higher levels of both cross-
amplification and transferability than EST-SSR primers. This may
be attributed to the nature of the sequence targeted for primer
design and also the sequence flanked by the two primers. EST-
SSR primers were designed to either flank SSR repeats observed
in a single species (CNLT, RM, REMS, and NFFA/NFFS) or in multiple
species, as in case of the CNL markers (Yu et al., 2004; La Rota et

al., 2005). These features of the EST-SSR markers allow for detec-
tion of polymorphism based on variation in the SSR repeat length
and/or INDEL (Varshney et al., 2005). The CISP markers on the other
hand, were designed to be positioned on exon sequences conserved
across either sorghum and rice or pearl millet and rice, flanking at
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east one intron region and rarely harboring an SSR repeat motif
Feltus et al., 2006). While both marker types should be useful
or less-researched crops, CISP primers are more promising than
ST-SSR primers for comparative mapping across distantly related
pecies.

This study assessed the cross-amplification of 919 EST primers
eveloped from seven different grass species on a total of 16
rasses. An average of 315 primers amplified per grass species
excluding self amplification) and could be considered a readily
vailable resource for genetic mapping and diversity analysis in
wide range of minor, less-researched grass species from different

ubfamilies of the Poaceae. The results also confirmed the expecta-
ion of higher level of cross-amplification of EST-SSR primers to

ore closely related species, extending previous results to sev-
ral other grass and forage species. While cross-amplification of
ifferent types of EST-based primers even across genera was pos-
ible, more attention should be given to the nature of the amplified
ragments before inferring synteny or orthology. As new sequenc-
ng technologies emerge, longer sequence reads at much lower
osts than what is available right now are anticipated, making
enome sequencing the method of choice for many crop species.
owever, until this is realized future studies on minor crops and

ess-researched grass species will benefit directly from the primers
escribed here and from similar studies.
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