

Sorghum, a crop of substance

ICRISAT's submission for the 2004 CGIAP King Baudouin Award

ICRISAT's Vision – The improved well-being of the poor of the semi-arid tropics through agricultural research for impact. With this impact we have the determination to substantially contribute to the attainment of the Millennium Development Goals, specifically those tackling poverty, hunger, gender and health issues.

ICRISAT's Mission – To help the poor of the SAT through science with a human face and partnershipbased research for development to increase agricultural productivity and food security, reduce poverty, and protect the environment in SAT production systems.

ICRISAT's Mandate – To improve the livelihoods of the poor in semi-arid crop-livestock-tree production systems through integrated genetic and natural resource management strategies. ICRISAT will make major food crops more productive, reliable, nutritious, and affordable to the poor; diversify utilization options for staple food crops; develop tools and techniques to manage risk and utilize the natural resource base of SAT production systems in a more sustained fashion; develop options to diversify income generation; and strengthen delivery systems to key clients. Partnership-based research for impact, gender sensitivity, capacity building and enhanced knowledge and technology flows are integral to this mandate.

The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of ICRISAT concerning the legal status of any country, territory, city, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Where trade names are used this does not constitute endorsement of or discrimination against any product by the Institute.

Contents

Executive Summary	1
Introduction	5
Sorghum: cultivation, utilization and food security	5
Production constraints	6
ICRISAT's strategy and mission	6
Breeding processes	6
Breeding products	7
I. Impacts on livelihoods of resource-poor farmers and people	10
Adoption of improved cultivars	
Grain productivity	13
Costs of production	15
Cost-benefit ratio and returns from research	16
Genetic diversity	16
Spillover impacts	18
Impacts from private sector	21
II. Impacts on sustainable production systems	23
Genetic options – cultivars with improved resistance to biotic and abiotic stresses	23
Natural resources management options – vertisol technology	23

III. Innovations in science and their sharing	24
Strategic research	24
Upstream research	25
Alternate uses and methods of technology sharing	. 27
Publications	27
Capacity building	28
IV. Partnership/collaboration – the way forward	. 30
Public sector networks	30
Public-private sector partnerships	30
Conclusions	30
Looking ahead	. 31
Acknowledgements	31
References cited in the text	. 32
Annexure I. ICRISAT's Partners in Sorghum Improvement Research	35
Annexure II. Details of sorghum germplasm accessions or selections released as	
superior varieties in different countries	39
Annexure III. Details of released sorghum varieties and hybrids with ICRISAT-breeding product content in different countries	. 40
Annexure IV. Publications related to sorghum improvement at ICRISAT	. 45

From subsistence to substance: Sorghum improvement for the semi-arid tropics

Executive Summary

Sorghum (Sorghum bicolor [L.] Moench) is the fifth most important cereal crop by area after wheat, rice, maize and barley in the world. Traditionally, a staple food crop for millions of poor in the semi-arid tropics (SAT) of Africa and Asia, its importance as a fodder and feed crop for livestock steadily increased over the last decade or two. It is cultivated on marginal, fragile drought-prone environments in SAT. In mid-1970s, the productivity levels of sorghum were <0.7 t ha⁻¹ in Africa, <0.8 t ha⁻¹ in Asia and <0.5 t ha⁻¹ in India when the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) was established at Patancheru, Andhra Pradesh, India. Low productivity was the result of dependency on traditional cultivars and management practices and exacerbated by an array of biotic stresses (insect pests—shoot fly, stem borers, midge and headbugs; diseases-grain mold, anthracnose, rust, downy mildew, leaf blight and Striga); and abiotic stresses (drought and problematic soils—acidic and saline). ICRISAT, in close collaboration with the National Agricultural Research Systems (NARS) in SAT, the Advanced Research Institutes (ARIs) and sister organizations of the Consultative Group on International Agricultural Research (CGIAR) over the years has been engaged in improving the productivity of sorghum in various SAT regions through genetic improvement of sorghum coupled with integrated genetic and natural resources management approaches. These research efforts have led to many and diversified impacts; overall effect being the significantly improved livelihoods of resource-poor farmers and low-income people in SAT.

Significant grain productivity improvements were facilitated due to release and adoption of several partnership cultivars (total 194—Africa: 110, Asia:

50 and other countries: 34) having specific adaptation to local environments. The improved cultivars developed by ICRISAT's partnership research in southern Africa currently occupy 15-50% of the sorghum area in eight southern African Development Committee (SADC) member states. The increased sorghum area in Africa (by 9 million ha) coupled with increased productivity (by 150 kg ha⁻¹) enhanced the total production by 10 million t from 1971-73 to 2000-2002, signifying its contribution to the regional/national food security. With a dramatic increase in productivity between 1971-73 to 2000-2002, India (by 280 kg ha⁻¹) is able to spare nearly 6 million ha and Asia (by 450 kg ha⁻¹) about 7.4 million ha of sorghum area to other competitive crops while still maintaining sorghum production in 2000–2002 comparable to that of 1972, when ICRISAT was established.

Several cultivars such as S 35, ICSV 111, ICSV 400 etc, in western and central Africa, Seredo, M 36121, ICSV 112, SV 2, Macia etc, in eastern and southern Africa and SPV 351, SPV 475, ICSV 745, CSH 11 and many ICRISAT-public/private sector partnership varieties/hybrids in India, China, Myanmar, the Philippines and Pakistan in Asia and in Latin American countries are contributing to onfarm cultivar biodiversity in SAT regions of the world. In India alone, more than 4 million ha are occupied by over 54 hybrids developed from ICRISAT-based parental lines or their derivatives.

The studies showed that cost-benefit ratios of production from the cultivation of improved cultivars were improved in several regions in Africa and Asia. It was 1:1.25 in West and Central Africa (WCA) and 1:1.4 in India. The net present value (NPV) of benefits from the cultivar, S 35 was estimated at US\$15 million in Chad and US\$4.6 million in Cameroon, with an internal rate of return (IRR) of 95% in Chad and 75% in Cameroon. Improved sorghum cultivars in Mali are estimated to generate an NPV of US\$16 million with an IRR of 69%. The adoption of improved cultivars in eight SADC member states together contribute an additional US\$19 million per year in income streams. In Zambia and Zimbabwe, IRR from the adoption of the cultivar, ICSV 88060 is estimated at 11–15% and 22%, respectively.

The partnership research carried out in one region/ country produced significant spillover impacts in other regions/countries. Several ICRISAT-Patancheru-bred varieties were further selected, tested and released in many African countries. These are, amongst others, ICSV 112 (SV 1 in Zimbabwe), A 6460 (SV 2 in Zimbabwe), ICSV 2 and IS 23520 (Zambia), M 90393 (Ingazi in Sudan), M 36121 (in Ethiopia), M 90038 (SEPON 82 in Niger), M 91019 (S 35 in Cameroon and Chad) etc. Within Asia, several ICRISAT-Patancheru-bred varieties were released. Similarly, within Africa, cultivars developed in one country showed significant superior performance in other countries. This is best exemplified by Macia, a variety developed at ICRISAT-Bulawayo, Zimbabwe, in 1989, was released in Mozambique (in 1989 as Macia), Botswana (in 1994 as Phofu), Namibia (in 1998 as Macia) and Tanzania (in 1999 as Macia). The gains in productivity in midge-endemic areas in Australia through the adoption and use of midge-resistant cultivars (ICSV 197, ICSV 745 and PM 13654) in breeding programs, introduced from ICRISAT-Patancheru is estimated at 2.5% annually that translates into a cost reduction of US\$4.0 t1, or a cost saving of US\$4.7 million at current average production levels. These benefits are well in excess of Australia's financial contribution to ICRISAT. This is an example of international agricultural research outputs aimed at improving productivity in developing countries also having spillover benefits in developed countries. Several such spillover impacts including in Latin America amply illustrate the synergism of stupendous magnitude, never seen before, from partnership research led by ICRISAT. These studies also demonstrate parallel adaptation of improved cultivars in more than one region.

The targeted large-scale adoption of improved cultivars resistant to biotic and abiotic stresses provided options leading to sorghum-based crop diversification and crop rotations. This together with natural resources management improved practices such as dry seeding, broad bed-furrow system, intercropping systems and integrated pest management implemented in small watersheds has ensured sustainable and productive cropping systems. The potential gain by adoption of cultivars with improved resistance to abiotic and biotic stresses is estimated to be around US\$736 million in world. The adoption of dry seeding has resulted in a yield increase of 38.4%, income by 98.5%, employment by 13.6% and cost saving by 17.1% in India. The released cultivars, though improved for grain productivity are rich in crop residue nutritive value, which helped farmers to get additional income through mixed crop-livestock system. The increased grain productivity of the tall dual-purpose cultivars together with nutrient-rich crop residue ensured higher food availability at household level as well as income from livestock that helped women, the main force in livestockrelated activities, to have more income at their disposal.

The applied research that led to release and largescale adoption of diverse cultivars was the result of path-breaking innovative research in strategic areas, adoption of new science tools, networking of public partners and forging public-private sector partnerships. The innovations in strategic research areas such as epidemiology and biology of diseases' and pests' causal organisms, development of cost-effective and reliable screening techniques to identify sources resistant to various stresses, genetics of several traits of economic importance and useful in adaptation, selection procedures, alternative targeted products, trait-based breeding approach to diversify and develop targeted hybrid parents, capturing of both racial and geographical diversity in breeding materials as evidenced by the utilization of nearly 4000 germplasm accessions to generate useful variability, formation of core collection of germplasm accessions to facilitate enhanced utilization of germplasm,

stratification of test sites in Africa to help reduce resources utilization in multilocation testing of advanced breeding lines, development of databases and Geographical Information System (GIS) maps etc, helped accelerate the gains from breeding programs both in NARS and ICRISAT. The concept and demonstration of the use of landrace pollinator-based hybrids approach-a path-breaking strategic research-gave impetus to private sector to develop and market hybrids for postrainy season for the first-time in India. Further, the advances made in identifying quantitative trait loci (QTLs) for resistance to shoot fly, Striga and drought (stay-green) and transferring these QTLs to susceptible, but elite sorghum breeding lines using marker-assisted breeding techniques are helping ICRISAT and partners to position themselves to bring about rapid advances in breeding for these traits of yield stability and adaptation. Also, ICRISAT has the distinction of being the first institute in the world to develop stem borer resistant transgenic plants with the cry1AC gene that soon go for greenhouse testing. Besides, these farmer participatory varietal selection, being practiced in India for postrainy season adaptation, and in WCA for adaptation to drier areas helped reduce the time lag in transferring the improved products to farmers.

The publication of research findings (a total of 886 during 1977 to 2004) together with workshops, conferences, field days and capacity building through on-job training and focused short-term courses in various disciplines related to sorghum improvement enabled the researchers world over to improve the efficiency of their sorghum improvement programs.

ICRISAT's role as a catalyst in leveraging the partnerships in research on alternative uses such as use of sorghum in poultry feed, confectionary/syrup and ethanol production industries is paving the way to utilize the marketable surplus resulted from adoption of high-yielding cultivars for commercial purposes. For this endeavor, various public/private sector networks are established suitable for different regions. Farmer—poultry feed and products industry—user coalition has been established by ICRISAT to broaden the demand for sorghum for utilization in poultry feed rations in Andhra Pradesh state in India. A tie-up has been worked out with Rusni Distilleries Private Limited, Hyderabad, a private sector company based in India to incubate ethanol production technology from several sweet sorghum cultivars developed at ICRISAT. Most significantly, ICRISAT, again is the first premier institute in CGIAR system to tap private sector seed companies resources for public research on hybrid parents development through an innovative consortium model. The consortium netted about US\$0.2 million during 2000–2003 and an amount of US\$1 million is expected during 2004–2008.

In addition, the popularity of private sector hybrids, most of which are based on ICRISATdeveloped parental lines or their derivatives has triggered seed production activity in several villages in Andhra Pradesh and Karnataka states in India. It is estimated that on an average, hybrid seed production fetches US\$630 ha-1, about three times the income from commercial crop. In the last three years, a total of 29,800 t of certified hybrid seed of ICRISAT-private sector hybrids was produced which gave a total income of US\$18.8 million to farmers in these states. Between 1994 and 2002, seed production of JKSH 22, an ICRISAT-private sector partnership hybrid earned farmers an average of over US\$0.3 million per year in Andhra Pradesh and Karnataka states in India and US\$2.7 million per year from cultivation of JKSH 22 in Maharashtra and other sorghum growing areas in India.

Thus, the applied research aided by strategic research, new tools and innovative technology sharing through networks, private sector consortium and coalitions has brought about a significant transformation of sorghum from subsistence food crop to a crop of substance resulting in enhanced livelihoods for resource poor farmers and poor people living in SAT regions of Asia, Africa and Latin America.

Sorghum "Team ICRISAT" will continue to carry out research, "Science with a Human Face" by generating International Public Goods (IPGs) to benefit resource-poor farmers, consumers and sorghum-based entrepreneurs.

Importance of Sorghum in Global Agriculture

Sorghum (Sorghum bicolor [L.] Moench), the world's fourth major cereal in terms of production, and fifth in acreage following wheat, rice, maize and barley, is a staple food crop of millions of poor in semi-arid tropics (SAT) of the world. It is mostly grown as a subsistence dry land crop by resourcelimited farmers under traditional management conditions in SAT regions of the Africa, Asia and Latin America, which are frequently drought-prone and characterized by fragile environments. India grows the largest acreage of sorghum in the world followed by Nigeria and Sudan, and produces the second largest tonnage after the US, with Nigeria, the third largest producer. In most of the regions of India, it is cultivated both as a rainy- and postrainy-season crop. The yield and quality of sorghum produce worldwide is affected by a wide array of biotic and abiotic constraints.

The origin and early domestication of sorghum is hypothesized to have taken place around 5000 - 8000 years ago in northeastern Africa or at the Egyptian-Sudanese border (Mann et al. 1983; Wendorf et al. 1992) with the largest diversity of cultivated and wild sorghum also found in this part of Africa (deWet 1977, Doggett 1988 and Kimber 2000). The secondary center of origin of sorghum is the Indian Subcontinent, with evidence for early cereal cultivation discovered at an archaeological site in western parts of Rojdi (Saurashtra) dating back to about 4500 before present (Vavilov 1992; Damania 2002).

Traditional foods made from sorghum include unfermented and fermented

breads, porridges, couscous, boiled riceresembling foods, snacks, as well as alcoholic beverages. Sorghum blended with wheat flour is used in the last two decades to produce baked products including yeast leavened pan, hearth and flat breads, cakes, muffins, cookies, biscuits and flour tortillas (Badi et al. 1990). Malt drinks and malt cocoa-based weaning food and baby food industries are popular in Nigeria. Hard endosperm sorghum is used extensively in southeast Asia for noodles and related products (Murty and Kumar 1995). Sorghum grain is one of the major ingredients in swine, poultry and cattle feed in the western hemisphere, China and Australia (Bramel-Cox et al. 1995), however, demand for grain sorghum in poultry feed depends largely on the price of maize. Sorghum is also grown for forage and is commonly grown in northern India and fed to animals as a green chop, silage or hay. Sweet sorghum is used to a limited extent in producing sorghum syrup and jaggery in India and of late it is gaining importance in the ethanol production.

Sorghum grain and stalk productivity improvement resulted from partnership research efforts globally offer a vast scope for industrial utilization apart from food and feed, thereby improving the economy of developing countries and reduces the need for imports. The popularity of hybrids in Asia, especially in India and China has significantly improved income level of seed growers through hybrid seed production activities. Sorghum, therefore assumes greater importance in the economies of several countries in Africa and Asia largely inhabited by resourcelimited farmers besides being a subsistence food staple.

Introduction

Sorghum: cultivation, utilization and food security

Sorghum (Sorghum bicolor [L.] Moench) – a major cereal of the world after rice, wheat, maize and barley, is a staple food for millions of poorest and most food-insecure people in the semi-arid tropics (SAT) of Africa, Asia and Latin America. The crop is genetically suited to hot and dry agroecologies where it is difficult to grow other food grains. These are also areas subject to frequent drought. In many of these agroecologies, sorghum is truly a dual-purpose crop; both grain and stover are highly valued outputs. In large parts of the developing world, stover represents up to 50 percent of the total value of the crop, especially in drought years (FAO and ICRISAT 1996).

Sorghum production and utilization in the world fall under two broad groups. Group I countries (primarily in Asia and Africa), where production is traditional, subsistence and small-scale, use sorghum for food. Yields are generally lower and can vary considerably from year to year. Group II countries (developed countries and some developing countries), where production is modern, mechanized, high-input and large-scale, use sorghum primarily for animal feed and yields are higher.

A truly global crop

Sorghum cultivation is distributed throughout the world. In Asia, it is grown in China, India, Korea, Pakistan, Thailand and Yemen. Australia and USA grow the crop too. In southern and eastern Africa, the sorghum-growing countries are Botswana, Burundi, Eritrea, Ethiopia, Kenya, Lesotho, Madagascar, Malawi, Mozambique, Namibia, Rwanda, Somalia, South Africa, Swaziland, Tanzania, Uganda, Zambia and Zimbabwe. In west, central and northern Africa, the crop is grown in Benin, Burkina Faso, Cameroon, Central African Republic, Chad, Egypt, Gambia, Ghana, Guinea, Guinea-Bissau, Ivory Coast, Mali, Mauritania, Morocco, Niger, Nigeria, Senegal, Sierra Leone, Sudan, Togo and Tunisia. In Latin America, the sorghum-growing countries are Argentina, Brazil, Colombia, El Salvador, Guatemala, Haiti, Honduras, Mexico, Nicaragua, Peru, Uruguay and Venezuela. In Europe, it is grown in France, Italy, Spain, Albania and Romania.

Sorghum plant

The cultivated sorghum is a C_4 annual plant adapted to hot, semi-arid tropical and dry temperate areas of the world. It grows to a height of 50 cm to 6 m. It is cultivated both for its grain and fodder. The types used for grains have a large, erect and single culm terminating in a semi compact or compact head or panicle. The types used for fodder purpose are generally profusely tillering with succulent stems. Many of these fodder types have high ratoonability. The plants have a fibrous root system that may penetrate 5 to 8 ft into the soil that makes sorghum one of the hardiest cereal. Being a C_4 plant it has high water use efficiency. For the same reason, sorghum is grown in regions where most other crops fail to grow. The leaves look very much like those of maize and the number vary from 14 to 18, growing on alternate sides of the stem. Inflorescence commonly referred to as panicle varies from compact to open type. The plant is predominantly self-pollinated although crosspollination up to 25% is reported depending on the extent of openness of the plant. The plant is propagated through sexual seed.

Races unique to sorghum

Harlan and deWet (1972) developed a simplified classification of cultivated sorghum (*Sorghum bicolor* (L.) Monech) into five basic, and ten hybrid races that proved to be of real practical utility for sorghum researchers. The basic races are *bicolor*, *caudatum*, *durra*, *guinea and kafir* (Figure 1). The hybrid races are intermediate as expected. The 15 races of

Figure 1. Sorghum classification by basic spikelet type.

Production constraints

The yield and quality of sorghum produce in Group I countries is affected by a wide array of biotic (pests and diseases) and abiotic stresses (drought and problematic soils). These are shoot fly (India and eastern Africa), stem borer (India and Africa), midge (eastern Africa and Australia) and head bug (India and western and central Africa [WCA]) among pests; grain mold (all regions), anthracnose (WCA and northern India) and Striga (all regions in Africa) among diseases; drought (all regions) and problematic soils - saline (some parts of India and Middle-East countries) and acidic (Latin America) - which together (except saline and acidic soils) cause an estimated total yield losses to the tune of US\$3032 million (www.agbiotechnet.com/pdfs/ 0851995640).

In Group I countries the sorghum grain productivity was dismally low (0.7 t ha⁻¹) because of these production constraints and the use of traditional cultivars (low-yielding) and production practices when the ICRISAT was established. ICRISAT targeted its research primarily in Group I countries, although it had spillover effects in Group II countries as well by improving sorghum productivity through genetic and natural resources management that directly cultivated sorghum are identified by mature spikelets alone, although head type is sometimes helpful. The International Plant Genetic Resources Institute (IPGRI) Advisory Committee on Sorghum and Millets Germplasm has accepted and recommended this classification to be used in describing sorghum germplasm (IBPGR/ICRISAT 1980).

translates into food security in Africa and income gains through improved competitiveness for sorghum in Asia's sorghum-based industrial markets. We, at ICRISAT describe in this proposal how ICRISAT's partnership sorghum research turned around the fortunes of millions of resource-limited farmers in world's SAT through significant improvements in realized incomes not only from the higher productivity (thus assuring food security) of commercial crop, but also from hybrid seed production activities and broadened utility of sorghum.

ICRISAT's strategy and mission

The International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) was established in 1972 with its headquarters at Patancheru, Andhra Pradesh, India. Sorghum is one of its five mandate crops. The low productivity levels in sorghum were due to the several reasons mentioned above. ICRISAT through crop improvement, natural resources management and socio-economic research aims to improve the living standards of the poor in marginal environments in SAT regions by increasing agricultural productivity and food security, and by reducing poverty and protecting the environment in partnership with national agricultural research systems (NARS) (Annexure I).

Breeding processes

The breeding processes involving partners have undergone changes at ICRISAT because of changes in external environment, donors' perceptions, NARS capacity and ICRISAT research management structures. The identification of geographic functional regions/research domains with a set of constraints has resulted from the gradual shift in breeding strategy from initial wide adaptability to specific adaptations and to trait-based breeding program for threshold traits through 1980s and 1990s (Figure 2). Threshold traits include yield stabilizing defensive traits as well as grain qualityevident traits. The ICRISAT-Patancheru based wide adaptability approach followed initially was abandoned by mid-1980s, and three research centers with regional mandates were established in Africa and one in Central America to take up breeding for region/production system-specific adaptations (Reddy et al. 2004). Thus, six different phases in sorghum breeding goals could be recognized in ICRISAT's global sorghum breeding program. These are (1) wide adaptability and high grain yield (1972-75), (2) wide adaptability and screening techniques (1976-79), (3) regional/ specific adaptations and resistance breeding (1980-84), (4) specific adaptation and resistance breeding (1985–89), (5) trait-based products and sustainable productivity (1990-94), and (6) trait-based products and upstream research (1995-present).

Figure 2. ICRISAT's sorghum breeding strategy from 1972 onwards.

Breeding products

Developing improved varieties in partnership with NARS for all SAT areas from ICRISAT-Patancheru was given major emphasis initially. Later on, hybrids as the target materials were also given considerable importance at ICRISAT-Patancheru. From 1995 onwards, partnership mode of conducting research to develop improved hybrid parents at ICRISAT-Patancheru for Asia, and finished products (varieties and hybrids) at other ICRISAT locations in Africa has been the focus for all regions in Africa. Over the years, several land race selections and improved cultivars with adaptation to different agro-climatic conditions, and resistance to biotic and abiotic constraints have been developed and released by exploiting the available and enhanced genetic diversity using strategic and applied research. The number of germplasm accessions/selections released as superior varieties through partnership research are 23 in Asia, 16 in southern and eastern Africa, 2 in western and central Africa, and 5 in Latin America (Annexure II). The notable among these are NTJ 2, and E 35-1 (a *Zera-zera* landrace from Ethiopia).

NTJ 2 (Figure 3): It was released for Andhra Pradesh state in India, which occupies several thousands of ha in the postrainy season sorghum belt. It is known for its excellent grain and fodder quality with terminal drought resistance, photoperiod sensitiveness and temperature insensitivity – the traits required for postrainy season adaptation in India. It was developed from a landrace in Ethiopia by ICRISAT-Patancheru and Acharya NG Ranga Agricultural University (ANGRAU) (Stenhouse et al. 1997).

Figure 3. NTJ 2, a dual purpose sorghum cultivar highly popular in India.

E 35-1 (a *Zera-zera* landrace from Ethiopia): It was recommended for release in Burkina Faso (Prasada Rao et al. 1989). It is known for its seedling establishment and drought resistant traits such as stay-green.

Partnership efforts by multi-disciplinary team of scientists at ICRISAT and in NARS programs have led to the release of 194 improved cultivars in

Africa, Asia and Latin America and Caribbean countries (Annexure III); SEA (60), Asia (50) – India (22) and others (28), WCA (50) and LA (34). Sorghum area, production and the number of released cultivars have increased over the years (Figures 4–8).

The significant success of ICRISAT partnership program, thus achieved is due to dynamic sorghum improvement program involving multidisciplinary team of scientists utilizing the strong genetic resource base of 36,744 accessions from 91 countries representing all the five basic and their hybrid races (30,853 landraces, 5434 breeding lines, 66 advanced cultivars and 421 wild) built at ICRISAT's Rajendra S Paroda Genebank, which were maintained, classified and evaluated

(Table 1). In pursuit of diversifying its breeding products (160 pairs of high-yielding male-sterile lines, 567 pairs of trait-specific male-sterile lines, 873 improved restorer lines and 1451 varieties), ICRISAT successfully captured both racial as well as geographical diversity. Nearly 4000 germplasm accessions were utilized to generate variability of which 557 lines have contributed to the development of the elite lines referred above. The tropical germplasm lines originating from Asia (175) have contributed most followed by temperate and tropical lines from Africa (139) and USA (105) (Table 2). These germplasm lines largely belonged to Durra (80) (predominantly represented by Asia) and caudatum (48) (predominantly represented by Africa) among the basic sorghum races and guineacaudatum (71) (predominantly represented by

Figure 4. Sorghum area, production, productivity and number of cultivars released in SEA.

Figure 5. Sorghum area, production, productivity and number of cultivars released in Asia.

Figure 7. Sorghum area, production, productivity and number of cultivars released in WCA.

Figure 8. Sorghum area, production, productivity and number of cultivars released in Latin America.

Table 1. Status of classified sorghum germplasm accessions held at ICRISAT gene bank according to biological races and geographic origin

	Bicolor	Caudatum	Caudatum-bicolor	Drummondii	Durra	Durra-bicolor	Durra-caudatum	Guinea	Guinea-bicolor	Guinea-caudatum	Guinea-durra	Guinea-kafir	Kafir	Kafir-bicolor	Kafir-caudatum	Kafir-durra	Tetraploid wild	Un-classified	Total
Asia	529	685	420	2	4108	899	2059	819	41	359	84	4	63	43	42	51	1	46	10209
ICRISAT	2	72	16		3	1	11	15		32	1	1	19	1	3	2		353	179
India	344	142	114	2	3569	549	379	772	25	145	56	1	12	10	6	34	1	21	6161
WCA	107	1808	214	3	646	179	789	2677	185	679	30	1	7	4	7	4	2	8	7342
S&EA	381	4343	556	16	2762	1162	1056	809	70	1985	79	34	870	35	222	134	7	94	14521
LA&	4	40	13	0	8	3	28	2	0	13	2	0	63	4	7	4	0	0	191
Caribbean		2543										61							
North America	333	325	169		151	60	276	74	22	184	17	65	238	42	111	65		16	2132
World	1445	7441	1439	21	7783	2348	4289	4782	329	3387	223	106	1274	135	404	270	14	639	35690

Table 2. Summary of origin of sorghum germplasm utilized to develop various categories of breeding products at ICRISAT

te partici (1	Seed P	arents	and the second				
	High yielding	Trait specific	Improve				
Region/Country	A-/B pairs	A-/B pairs	Restorers	Varieties	Total		
Asia	16	31	53	64	175		
USA	12	25	33	35	105		
WCA	1	11	24	44	81		
SEA	2	8	18	30	58		
ICRISAT ¹		6	14	30	50		
South Africa	3	3	5	6	17		
Australia	2018 27/20	1	1	3	5		
Latin America	AN A DUST	2	2	1 6-0-66	4		
Unknown	1	4	22	39	66		
1. Breeding mate	rials		02010120100				

Africa) and *durra-caudatum* (45) (predominantly represented by Asia and Africa) among the hybrid races (Table 3).

The formation of core collection (Prasada Rao et al. 1995) helped enhanced utilization of these genetic resources. The proposed formation of minicore collection (about 10% of the core collection) following the strategy of Upadhyaya and Ortiz (2001) is expected to bring about further genetic gains from partnership research.

I. Impacts on livelihoods of resourcepoor farmers and people

Adoption of improved cultivars

The worth of the improved cultivars is qualified by their successful adoption by the farmers and adoption is the precondition for creating impacts. Adoption levels of improved ICRISATbred sorghum cultivars are high in Asian countries, while comparatively low in African countries.

State State	Service and the	State Section	-224-25		
	Seed p	oarents	assisteri	7 12 M.B.A.	
	High vielding	Trait specific	Impr	oved	
Race	A-/B pairs	A-/B pairs	Restorers	Varieties	Total
Bicolor (B)	steele de	1	10	1	12
Caudatum (C)	3	7	16	22	48
Caudatum bicolor (CB)	0-14 C (16)	5	6	14	25
Durra (D)	6	13	31	30	80
Durra bicolor (DB)	1	1	4	9	15
Durra caudatum (DC)	5	5	11	24	45
Guinea (G)		2	2	7	11
Guinea caudatum (GC)	3	10	19	39	71
Guiea durra (GD)	2	1	2	3	8
Guinea kafir (GK)	1		1	2	4
Kafir (K)	4	4	8	6	22
Kafir bicolor (KB)	1	1	1944120 191	1	3
Kafir caudatum (KC)		1	2	1	4
Kafir durra (KD)	5	6	5	4	20
Unclassified	19	25	56	89	189
Total	50	82	173	252	557

 Table 3. Race-wise distribution summary of the sorghum germplasm accessions that contributed for

 developing various sorghum materials at ICRISAT-Patancheru

Asia: India has the highest level of adoption of improved cultivars (65% of total sorghum area) in Asia of which more than 50% of the area is covered under cultivars with ICRISAT-bred improved germplasm content. Initially, when private sector seed companies were in their infancy, public sector-bred cultivars dominated the farmers' fields but as the private sector seed companies developed their own research and development infrastructure, they took the lead in the development and marketing of large number of hybrids based on

ICRISAT-bred hybrid parents in India. In India, more than 4 million ha is occupied by over 54 hybrids developed by seed companies based on ICRISAT-bred parental lines or their derivatives. An ICRISAT-private sector hybrid, JKSH 22, known for its high grain yield potential, bold grain and earliness (5–10 days compared to the most popular hybrid CSH 9) showed remarkable adoption covering 1500 ha in 1994 to 210,000 ha in 2002 (about 0.5% of the total rainy season sorghum area) (Figure 9). Apart from this, several other private sector hybrids with ICRISAT-bred hybrid parents or their derivatives such as MLSH 296, VIKI 540, GK 4009 and GK 4013 are widely adopted in India. In Pakistan, 21% of the area is under improved cultivars. Two varieties PARC-SS 1 (ICXV 107) and PARC-SS 2 (IRAT 408) were released in Pakistan, which account for nearly 50% of the area occupied by improved cultivars.

In China, hybrids take the lion's share of the total area sown to improved cultivars having ICRISAT-

Figure 9. The area covered under JKSH 22, an ICRISAT-private sector partnership hybrid in India.

bred materials. In 1975–76, only local sorghums were in cultivation while in the mid-90s, all the area under improved cultivars was sown to 9 ICRISAT-bred varieties in Myanmar. In Thailand, improved cultivars having at least one ICRISATbred parent covered 10% of the country's total sorghum area in 1995–96.

Africa: The adoption of improved cultivars in African countries varied from 3% of total sorghum area in Sudan to 49% in Cameroon (Table 4).

Southern and Eastern Africa: The improved cultivars developed by ICRISAT in southern Africa currently occupy 15–50% of the area in eight Southern African Development Committee (SADC) member states. The levels of adoption of ICRISAT-bred varieties in Zimbabwe, Zambia, Malawi and Sudan in 1997 were 36%, 35%, 10% and 3%, respectively (Table 4). Although, in Zimbabwe, the sorghum variety SV 2 was released in 1987, it showed a rapid rise in adoption from 1991 onwards to reach 36% in 1994. The variety Gadam el Hamam has been adopted by Kenyan farmers

who are impressed with its early maturity, drought tolerance and good taste. Another high yielding variety Pato has been adopted over approximately 36% of the area under improved sorghum varieties in Tanzania.

Western and Central Africa: The adoption levels were highest in Cameroon (49% of total sorghum area) followed by Mali (29%), Nigeria (28%) and Chad (27%) (Table 4). The sorghum variety S 35 that began diffusion in 1986 in Cameroon and in 1990 in Chad showed varying adoption ranging from 12 to 15% in Cameroon and 5 to 39% in Chad. CSM 63 E, an extra-short-duration variety with excellent grain quality, popularly known as Diacumbe, is making inroads with the farmers and is now grown in over 10% of the sorghum area in Mali. The adoption of this variety along with several other varieties (Tiemarifing, CSM 388, CE 151, Siguetana, ICSV 1063 BF and ICSV 1079 BF) in West Africa ranged from 20 to 30%. The adoption rates of improved varieties by the farmers are substantial in drought-prone regions of the Malian

- Station	AL STREET		Percent area planted to		
Country	Region	Year	Cultivars with ICRISAT's contribution	All improved	
Botswana	National	1997/98	33	33	
Cameroon	Mayo Sava	1995	49	49	
	Diamare	1995	14	14	
	Mayo Danay	1995	12	12	
Chad	Guera	1995	38	38	
1998 - 2011 d 2	Mayo Kebbi	1995	27	27	
1.1.1. 2. 1.1.	Chari Baguirmi	1995	24	24	
Egypt		1995/96	5	35	
Lesotho		1997	4	4	
Malawi	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	The state of a	10	10	
Mali		1995	29	29	
Mozambique		Carlo Carlos	5	5	
Nigeria	Kano	1996/97	28	28	
	Katsina	11.12-11-21-2	10	10	
	Kaduna	1) 2/ 30 - 2 - 1	29	29	
	Jigawa		3	3	
Sudan		1995/96	3	22	
Zambia	AFANIC MORE TO 2	a de la	35	35	
Zimbabwe		B.B. S. S.	36	36	

Table 4. Level of adoption (% area) of different improved sorghum cultivars in Africa

Source: Deb et al. (2004); Ogungbile et al. (1999) for Nigeria; Rohrbach and Makhwaje (1999) for Botswana; Yapi et al. (1998) for Mali; and Yapi et al. (1999) for Cameroon and Chad.

bread basket (Mopti, Segou and Koulikoro) targeted by sorghum improvement research (Yapi et al. 2000). A hybrid called NAD 1 has been released, and both seed production and adoption are increasing in Niger and Nigeria. Similarly, hybrid ICSH 88902 has been released in Nigeria.

Egypt: In Egypt, 15% of the total sorghum area is under ICRISAT-bred improved pure line selections and hybrid parents. Of this 15% area, 8% area is covered under ISIAP Dorado, a short-statured, large- and hard-grained, high-yielding and whitegrained/tan plant pure line selection. Besides these, three hybrids – Shadaweel 1, Shadaweel 2 and Shadaweel 6 – developed using ICRISAT-bred hybrid parents by Egyptian government sorghum improvement program are gaining popularity.

Latin America: In 1993, more than a fifth of the sorghum area in four Central American countries was sown to improved cultivars bred or introduced to the region through the ICRISAT program (often in collaboration with those of International Sorghum/Millet Collaborative Research Support [INTSORMIL] and NARS). This included almost half the sorghum area in Guatemala, a third in Honduras and a fifth in Nicaragua and El Salvador (CGIAR 1996).

Grain productivity

Gradually, the number of releases and the number of countries adopting improved sorghum hybrid cultivars have been expanding. This, along with the adoption of improved production technologies developed through natural resources management research resulted in an increase of annual sorghum grain productivity by 0.9% in Africa and 3.1% in Asia between 1971–73 to 2000–2002.

Asia: With a dramatic increase in productivity between 1971-73 to 2000-2002, India (by 280 kg ha⁻¹) is able to spare nearly 6 million ha and Asia (by 450 kg ha-1) about 7.4 million ha of sorghum area to other competing crops, while still maintaining sorghum production of 1972 in 2000-2002. Several ICRISAT-Patancheru-bred improved cultivars such as ICSV 112, ICSV 745, SPV 351, CSH 11; ICRISAT-public sector partnership cultivars SPH 840 and PVK 801 and numerous (about 54) ICRISAT-private sector partnership hybrids in India and several varieties/ hybrids with ICRISAT breeding product content in China, Myanmar and Thailand have contributed to increased productivity in Asia. The large-scale adoption of an ICRISAT-private sector hybrid JKSH 22 (Figure 10) known for its high grain yield potential, bold grain and earliness (5-10 days compared to CSH 9) resulted in significant improvement in sorghum yield levels on farmers' fields.

A dual-purpose grain mold resistant rainy season adapted sorghum variety PVK 801 (Figure 11) developed by ICRISAT in partnership with Marthwada Agricultural University, Maharashtra, India, is highly popular in Maharashtra state because of its higher grain and fodder yielding ability coupled with good grain and stover quality than the popular cultivar CSV 15. Another hybrid

Reasons for adoption

Farmers in Mali have cited early-maturity, high yield, good food quality and *Striga* resistance as reasons for the adoption of improved sorghum varieties. Ogungbile et al. (1999) mentioned that early-maturity, high yield, good food quality and ease of threshing and processing were main reasons for the adoption of improved sorghum varieties (ICSV 111 and ICSV 400) in Nigeria. Farmers of Chad cite early maturity, high yield and good food quality are among the most important reasons for the adoption of S 35 (Yapi et al. 1999). In India, high rate of adoption of ICRISAT-based hybrids is due to bold grain, higher grain and fodder productivity. The large-scale adoption of ICRISAT-bred improved cultivars by farmers of Africa and Asia is a clear indication that breeding efforts have been successful in addressing the farmers' preferences.

Figure 10. JKSH 22, highly popular ICRISAT-private sector partnership hybrid with high adoption level in India.

Africa: The increased sorghum area in Africa (by 9 million ha) coupled with increased productivity (by 150 kg ha-1) enhanced the total production by 10 million t from 1971-73 to 2000-2002, signifying its contribution to the regional/ national food security. A yield differential as high as 600 kg ha-1 was noted in Cameroon. Farm level yields of improved cultivars were 7-63% higher than the best local cultivars in Nigeria. Improved cultivar S 35 (Figure 12) had 51% yield advantage in Chad and 14% in Cameroon (Table 5), indicating its better genetic potential.

Figure 11. PVK 801, an ICRISAT–public sector partnership grain mold resistant variety highly popular in Maharashtra state in India.

SPH 840 developed by ICRISAT in partnership with Panjabrao Deshmukh Krishi Vidyapeeth, Akola, Maharashtra, India, is also popular as its grain and fodder yield potential is better than highly popular hybrid CSH 16. The adoption of these cultivars in Maharashtra, a major sorghum growing state in India, has contributed to significant improvement in rainy season sorghum productivity.

Figure 12. S 35, a high yielding cultivar widely cultivated in many African countries.

12211			1. 1. 13. 15.	Yield	d (kg ha ⁻¹)	
Country	Region	Year	Improved cultivar	Local	Improved	Yield gain (%)
Cameroon	Mayo-Sava	1995	S 35	1220	1650	36
Cameroon	Diamare	1995	S 35	1450	1540	6
Cameroon	Mayo Danay	1995	\$ 35	1420	1470	4
Cameroon		1995	S 35	1360	1550	14
Chad	Guera	1995	S 35	710	1090	54
Chad	Mayo-Kebbi	1995	S 35	780	1190	53
Chad	Chari-Baguirmi	1995	S 35	810	1180	46
Chad	0	1995	S 35	760	1150	51
Nigeria		1996	ICSV 400	875	1165	33
Nigeria	2 Ce 6 5 14 2	1996	ICSV 400	1003	1073	7
Nigeria		1996	ICSV 400	865	1398	62
Nigeria		1996	ICSV 400	914	1212	33
Nigeria	Kano	1996	ICSV 111	875	1221	40
Nigeria	Katsina	1996	ICSV 111	1003	1274	27
Nigeria	Jigawa	1996	ICSV 111	865	1406	63
Nigeria		1996	ICSV 111	914	1300	42

Table 5. Impacts of improved sorghum cultivars on grain yield in Africa.

Source: For Cameroon and Chad, Yapi et al. (1999) and for Nigeria, Ogungbile et al. (1999).

Latin America: Yields have doubled in Argentina, Nicaragua, Peru, El Salvador, Guatemala, Honduras and Mexico.

In general, countries with strong NARS benefited from elite germplasm and hybrid parental lines. On the other hand, countries with weak NARS benefited from finished products.

Costs of production

An analysis in India showed that the cost of unit production (cost per ton) using improved varieties decreased in the 1980s and 1990s compared to that in early 1970s (Table 6), despite the increase in the total cost of production because of the use of additional inputs. The increased productivity of improved cultivars has more than compensated the cost of additional inputs. In Maharashtra and Rajasthan states, the cost per ton in 1990s was 40% and 37%, respectively, compared to that in 1970s. The improved cultivar S 35 has a cost advantage of 12% in Cameroon and 25% in Chad

Table 6. Impact of improved sorghum cultivars on per ton production cost in India, 1971–1995.

1989 (c)		Average cost (Rs t ⁻¹)	Cost reduction (%) compared to early 1970s in		
States	Early 1970s ¹	Early 1980s ²	Early 1990s ³	Early 1980s	Early 1990s
Andhra Pradesh	270	NA	286	NA	-6
Karnataka	224	192	231	14	-4
Madhya Pradesh	223	169	208	24	7
Maharashtra	253	188	153	25	40
Rajasthan	309	264	195	14	37

Note: All costs are real cost of production. For Rajasthan, real cost is computed on the basis of 1992 prices and all other states based on 1989 prices.

1. Early 1970s indicate for Andhra Pradesh (average of 1973 and 1974), Karnataka (average of 1972–1974), Madhya Pradesh (1976), Maharashtra (average of 1972–974) and Rajasthan (average of 1972–1974).

2. Early 80s indicate for Karnataka (average of 1981–1983), Madhya Pradesh (average of 1981–1983), Maharashtra (average of 1982–1983) and Rajasthan (average of 1981–1983).

3. Early 1990s indicate for Andhra Pradesh (average of 1994–1995), Karnataka (1991), Madhya Pradesh (average of 1994–1995), Maharashtra (1995) and Rajasthan (1992).

Source: Estimated from cost of cultivation reports (various issues).

(Table 7) (Yapi et al. 1999). Cost of production per unit ton of sorghum grain using improved varieties is reduced by 25% (US\$34 t⁻¹) compared with local varieties in Mali (Yapi et al. 2000).

Cost-benefit ratio and returns from research

The productivity gain from improved cultivars has more than compensated the cost of additional inputs used for their cultivation. The cost-benefit ratio of production of improved cultivars ranged from 1:1.25 (in WCA) to 1:1.4 (in India). The net present value (NPV) of benefits from the cultivar S 35 was estimated at US\$15 million in Chad and US\$4.6 million in Cameroon, with an internal rate of return (IRR) of 95% in Chad and 75% in Cameroon (Deb and Bantilan 2003). Improved sorghum cultivars in Mali are estimated to generate an NPV of US\$16 million with an IRR of 69%. The adoption of improved cultivars in eight Southern African Development Committee member states together contributes an additional US\$19 million per year in income streams. In Zambia and Zimbabwe, IRR from the adoption of cultivar ICSV 88060 is estimated at 11-15% and 22%, respectively.

Genetic diversity

The genetic diversity of cultivars in a crop species is essential for yield stability under ever-dynamic environmental conditions, as it acts as natural insurance against unexpected pests and disease outbreaks, resulting in major production losses. ICRISAT's trait-based breeding approach utilizing diverse germplasm helped capture not only the advantages of specific adaptation but also maintain the diversity in the improved varieties and hybrid parents. As a result, the cultivars adopted by farmers have greater genetic diversity contributing to the increased yield stability in all the sorghum-growing states in India (Deb and Bantilan 2003). In India, more than 4 million ha (80% of the total) of rainy season sorghum are planted with about 70 private sector hybrids, of which 54 are based on ICRISAT-

Food security and higher income

The adoption of the improved varieties has ensured food security to ever increasing mouths, especially in Africa through sustainable production as they are early maturing, which are known to reduce risks from late-season drought and to bring down the hunger gap by providing first food in the farming year. With increased yield productivity (Figure 13) coupled with reduction in unit cost of production, farmers adopting the improved varieties have more access to food for their families and for social ceremonies as well as a marketable surplus, thus raising their income levels. The cost saved on food is far greater than research costs as explained above.

Table 7. Impacts of improved sorghum cultivar (\$ 35) on cost of production in Cameroon and Chad,1995.

1. 203-		Production co		
Country	Region	Local	Improved	Unit cost reduction (%)
Cameroon	Mayo-Sava	77,500	57,700	26
Cameroon	Diamare	63,500	58,900	7
Cameroon	Mayo Danay	50,000	49,300	1
Cameroon	· · · · · · · · · · · · · · · · · · ·	63,161	55,607	12
Chad	Guera	89,296	65,825	26
Chad	Mayo-Kebbi	45,994	37,903	18
Chad	Chari-Baguirmi	67,765	49,947	26
Chad		80,805	60,817	25
Source: Vani et al	(1000)	and the second	1225482-DW44	H II IN LEADER PARTS

16

Figure 13. A happy African farmer with bountiful harvest of sorghum contributing to food security in Africa.

Gender perceptions

Women in Africa contributed significantly to the adoption of low tannin white grain improved cultivars since women perceived the grains to be of good milling/food quality. This helped in increased food availability at the household level in regions where it was promoted on a large scale. In India, although the demand for sorghum as food grain has declined over the years, acceptance of improved dual-purpose cultivars increased because of their improved stover palatability and digestibility, the traits preferred by women

who dominate small farm dairies (Figure 14). Women are generally in the forefront of all livestock related activities. The additional income because of increased fodder quantity and superior quality ensures higher and regular income to the family.

Figure 14. An Indian woman carrying sorghum stover which contributes substantial dry matter to milking buffaloes in small and large dairies in India.

derived parental lines/improved germplasm. These have made substantial contributions to enhance biodiversity, productivity, yield stability, and also improved the livelihoods of poor farmers in the dry areas (Gowda et al. 2003).

Spillover impacts

Several varieties developed at one location exhibited their superior performance in another location/country/region. Details of such spillovers are described below:

Spillovers from Asia to Africa: A total of about 29 varieties, including germplasm accessions and advanced progenies have spilled over from ICRISAT-Patancheru into 17 African countries (Figure 15). In order to illustrate the spillover of sorghum technologies from ICRISAT-Patancheru to the African region/countries, selected examples are presented.

Variety S 35: It is an advanced generation breeding progeny (M 91019) developed at ICRISAT-Patancheru, which was introduced into ICRISAT-Nigeria and from these reintroduced into Cameroon and Chad where it was released as S 35 upon further testing. On the basis of its high and stable performance, S 35 was released in 1986 for wider use in large-scale seed multiplication. According to Kamuanga and Fobasso (1994), 20 t of S 35 seed was produced at the time of its release by the government's Seed Multiplication Project at Maroua.

Variety ICSV 111: It is a pure-line variety developed between 1980 and 1984 at ICRISAT-Patancheru through pedigree selection from a three-way cross. The ICRISAT program in Nigeria introduced ICSV

Figure 15. Spillover impacts of important sorghum research products.

111 in 1988 from ICRISAT-Patancheru, and it was released in 1996. Farmers in Nigeria prefer this variety because of its high yield, early maturity, white grain, good food quality (good porridgemaking quality) and juicy stalks (preferred by animals). It is also resistant to *Striga hermonthica*, an important parasitic weed in WCA.

S 35 – a food securing and land saving sorghum variety

"When rains do not come on time or when they stop too soon, our own varieties give us nothing, so we sow this one", says a farmer Toralet of Niergui village (Guera in Chad) displaying a few panicles of S 35. "This is the sorghum that never fails", he adds. "I used to sow 2 ha of my own variety of sorghum each year in order to feed my family", said another farmer Issaka from the village of Niergui, Guera. "I now sow only 1 ha with S 35. I grow vegetables on half of the other hectare", he added. For Bouda, a farmer from the village of Tchigali II in Mayo-Kebbi in Chad, the short duration trait of S 35 variety is a real advantage, not just because it helps escape terminal drought, but also matures much earlier, thereby reducing the hunger period before the next harvest. "Ever since I first tried S 35 variety in 1992, I sow half a hectare of it each year. This way I can feed my family even as I wait for the sorghum of our ancestors to mature", he said (Yapi et al. 1999).

Variety ICSV 112: This (Figure 16) was developed at ICRISAT-Patancheru by pedigree selection from a multiple cross. The variety was released in India (as CSV 13 in 1987) and in several African countries – Zimbabwe (as SV 1 in 1987), Kenya (as CSV 13 in 1988), Swaziland (as MRS 12 in 1992), Malawi (as PIRIRA 2 in 1993), Mozambique (as Chokwe) in 1993 through the efforts of ICRISAT's Africa programs and their partners. It was also released in a few Latin American countries. ICSV 112 is a medium-maturing (110–120 days), rainy-season variety with moderate juicy stalks. The grain contains about 9.6% protein and 2.6% lysine (100 g⁻¹ protein). Food prepared from the variety is good and comparable with that from CSH 5, a popular commercial sorghum hybrid in India.

Variety SV 2, A 6460: This is an example of a variety from ICRISAT-Patancheru tested and released by national programs in their own countries. The Department of Research and Specialist Services (DR&SS) of Zimbabwe introduced A 6460 from ICRISAT-Patancheru in 1980. It was evaluated and released as SV 2 (Figure 17) in 1987 for its earliness and higher grain yield. In on-station trials in Zimbabwe, SV 2 provided a grain yield of 3.38 t ha⁻¹ that compares with 2.73 t ha⁻¹ for local varieties. SV 2 flowered 13 days earlier than the local variety.

ICSV 400: A high yielding ICRISAT-Patancheru bred variety enjoys wide adoption in Nigeria and Ghana. Sales of ICSV 400 increased enormously to 4.5 million Naira (US\$40,000) in 2001 because of the variety's suitability in the brewing industry. Virtually all Guinness Stout, one of Nigeria's most popular beverages, is brewed from ICSV 400.

Figure 16. ICSV 112, a high yielding popular variety released in several African and a few Latin American countries.

Figure 17. SV 2, an early-maturing and high-yielding variety developed in ICRISAT-Patancheru and released in Zimbabwe.

Spillovers from Africa to Asia: There are two good examples of sorghum lines introduced from Africa (IRAT 408 and IS 30468) through ICRISAT: (1) PARC SS 2, which was derived from a Malian line (IRAT 408) and introduced by ICRISAT through germplasm exchange to Pakistan and was released there in 1991. (2) NTJ 2, a selection by ICRISAT from an Ethiopian landrace introduced and released in Andhra Pradesh (India) in 1990. These lines were distributed to the national programs after some selections at Patancheru. NARS scientists evaluated them in national trials before their release.

Spillovers within Africa: Several varieties bred in one region excelled in their performance in other regions.

Variety Macia (SDS 3220) (Figure 18): This is an open-pollinated, early-maturing, stay green and high-yielding variety developed at ICRISAT-Bulawayo, Zimbabwe, in 1989. It was released in Mozambique (as Macia in 1989), Botswana (as Phofu in 1994), Namibia (as Macia in 1998), Zimbabwe (as Macia in 1998) and Tanzania (as Macia in 1999). Farmers are benefiting from rapid and extensive adoption of the variety in these two countries (Botswana and Mozambigue). Phofu is being planted by 21% of the sorghum farmers in Botswana. This was followed by a sequence of releases in three other SADC countries - Namibia (1998), Zimbabwe (1998) (it was released by SeedCo Ltd, a private seed company) and Tanzania (1999). This variety is being cultivated in an area of 0.1 million ha for its good taste and food quality in Botswana, Namibia, Zimbabwe, Mozambique,

Figure 18. Macia—Farmers in several southern African countries are benefitting from adoption of this earlymaturing, high-yielding variety developed at ICRISAT-Bulawayo.

Eritrea and Tanzania, which represent SADC region of southern Africa. (Table 8).

Spillovers within Asia: Several varieties (21 in India and 23 in other Asian countries) have been released in Asia using ICRISAT-Patancheru-bred material.

China: Ten sorghum varieties using ICRISAT parental material were released from 1982 to 1997. These are Yuan 1-98, Yuan 1-28, Yuan 1-

Table 8. Estimated adoption and spread of SDS 3220(Macia) in the SADC region of Southern Africa.

Country	Released name	Year of release	Approximate adoption area (ha)	Percentage of total area under sorghum
Botswana	Phofu	1994	37500	25
Namibia	Macia	1998	3000	10
Zimbabwe	Macia	1998	26300	15
Mozambique	Macia	1987	22000	7
Tanzania	Macia	1999	20000	3
Source: Shiferaw	/ et al. 2004.	£9.8)		Winter the

505 (all varieties), Liao Za 4, Liao Za 5, Liao Za 6, Liao Za 7, Zin Za 94, Jin XA 4, Liao Za 10, Zin Za 12, Gile Za 80 (all grain sorghum hybrids) and Longsi-1 (a forage sorghum hybrid).

Myanmar: Nine sorghum varieties (including germplasm accession) have been released in Myanmar from 1982 to 1994. These varieties were directly introduced from ICRISAT- Patancheru into the regional trials.

Pakistan: Two varieties, ICSV 107 (PARC – SS1) and IRAT 408 (PARC – SS2), were released in Pakistan in 1991. Both the lines were introduced from ICRISAT-Patancheru.

The Philippines: Two sorghum varieties, IES Sor 1 and IES Sor 4, were developed using ICRISAT's germplasm and released in Thailand in 1996.

Spillovers to other regions: ICRISAT-Patancheru-bred varieties were introduced into ICRISAT's Mexico program (1978–93) where they were further improved in collaboration with the national programs. These and others developed at other ICRISAT Centers were evaluated jointly with the national programs in the Americas and Australia.

Central America: National programs after testing released a number of varieties – 5 in Mexico, 2 in Nicaragua, 3 in El Salvador, 3 in Honduras and 1 in Gautemala.

Latin America: Several varieties/segregating materials/improved germplasm/hybrids/ hybrid parents such as ICSV 112, ISIAP DORADO, M90362, M62641 and M90812, all bred at ICRISAT-Patancheru/ICRISAT-Mexico were released in Mexico as UANL-1-87 and Pacifico 301, ISIAP DORADO, UANL-1-287, Costeno 201 and Tropical 401, respectively. Similarly, ISIAP DORADO, M 90362, M 90361, ICSV-LM 90502, ICSV-LM 90503 and ICSV-LM 90508 were released in El Salvador as ISTMENNO, Agroconsa, Centa Oriental, Soberano, R.C.V. and Jocoro, respectively; ISIAP DORADO, M62650, IS 18484, and the hybrid ATx 623xTORTILLERO were released in Honduras as ISIAP DORADO, Sureno, Tortillero and Catracho, respectively.

Australia: As a result of the introduction of midge resistant cultivars such as ICSV 745 (Figure 19) from ICRISAT-Patancheru, India, grain yields in Australia is expected to increase by 5 to 50% in the midge-

Figure 19. ICSV 745, a high-yielding, midge-resistant variety popular in Karnataka state of India with significant spillover impact in Australia.

endemic areas. The expected gains to Australia in terms of yield are estimated to be at 2.5% that translates into a cost reduction of US\$4.0 t⁻¹ or a cost saving of US\$4.7 million at the current average production levels. Australia made net gains at an average of US\$1.14 million per year from the impact of ICRISAT's sorghum research. The benefits are well in excess of Australian financial contribution to ICRISAT (Brennan et al. 2004).

Impacts from private sector

ICRISAT has been interacting with scientists in private and public sectors. The feedback from these scientists helped to shape the research programs at ICRISAT. Interaction, in particular with private sector helped to transfer the benefits of ICRISATdeveloped products to farmers. Also, private sector benefited immensely which used ICRISAT's improved hybrid parents and marketed hybrids made either directly from these parents or their derivatives.

Midge resistant lines in Australia: From 1987 onwards, Pioneer has been testing selections, primarily for midge resistance (a total of 400-600 lines) from ICRISAT, imported through Pioneer's Indian program in Australia (Brennan et al. 2004). ICSV 197 has been the most successful and there are now 66 inbred pedigree lines in F_4 and F_5 , with an average infusion of 13% of ICSV 197 in the restorer lines. Other progenies that are derived from ICRISAT material are in advanced stages of the program; their ICRISAT source materials include DJ 6514, PM 15952 and PM 15949. Pioneer's sorghum program in 1996 had a number of ICRISAT lines being evaluated for midge resistance and dual-purpose or forage sorghum, both as restorer lines and female lines. The lines in backcrossing stage have about 10% ICRISAT infusion, with a slightly higher level (13–15%) in the restorer lines. Pacific seeds, another private sector company, has developed and marketed forage sorghum hybrid using one parent from ICRISAT, and several more were being developed by pedigree crossing, especially using latematuring B-lines in single crosses. Pacific seeds also uses screening techniques for midge resistance developed at ICRISAT (Brennan et al. 2004).

ICRISAT-Private Sector Sorghum Hybrid Parents

Research Consortium: ICRISAT, in the beginning, interacted with scientists in private sector seed companies on an informal basis and supplied to them wide range of breeding products. However, for enhanced farm level adoption of hybrids developed from ICRISAT's intermediate/products, ICRISAT-led private sector Sorghum Hybrid Parents Research Consortium has been operational since 2000. The impacts of this consortium are briefly described below.

Cultivar adoption: The ICRISAT-PS partnership has greatly contributed to development and marketing of improved hybrids and varieties in Asia. In India, more than 4 million ha (80% of the total) of rainy season sorghum are planted with about 70 PSbased hybrids, of which 54 are based on ICRISATderived parental lines. These hybrids have made substantial contributions to enhance genetic diversity, productivity, yield stability, and also improved the livelihoods of poor farmers in the dry areas (Gowda et al. 2003). Scientists' Field Days and meetings provide opportunity for private seed companies to select breeding materials and to elicit feedback on the usefulness of materials, and also to set priorities (such as farmer or trade or industry preferences) for future research.

Benefits from seed production: Farmers on an average produced about 3.0 t ha⁻¹ hybrid seed of JKSH 22, an ICRISAT-private sector partnership hybrid to obtain a profit of Indian Rs. 29,500 (US\$630). Between 1994 and 2002, JKSH 22 seed production earned farmers, on an average, US\$0.3 million per year. Based on the seed sales of JKSH 22, farmers in Maharashtra and other sorghum growing areas in India have earned an average of US\$2.7 million every year for the last nine years from cultivating JKSH 22. Several seed villages in Andhra Pradesh and Karnataka states in India became prosperous by taking large scale hybrid seed production (personal communication from Ramakrishna 2003).

It is estimated that on an average, hybrid seed production fetches US\$630 ha⁻¹, about three times the price of commercial crop. In the last three years, a total of 29,800 t of certified hybrid seed of ICRISAT-

private sector hybrids was produced (Table 9), which gave a total income of US\$18.8 million in India. Livelihoods and the environment in these villages (roads, temples, new houses) got better as a result of higher income accrued from hybrid seed production.

Table 9. Share of ICRISAT-private sector (PS) partnership sorghum hybrids seed production (certified) in total Indian sorghum seed production.

	Total certified		
Year	Quantity (t)	Percentage (%)	seed (t)
2001-02	11600	71	16410
2002-03	7200	63	11390
2003-04	11000	61	18000
Total	29800	65	45800

Resource mobilization: Sixteen PS seed companies working on sorghum in India, Egypt, Thailand and Indonesia have expressed their interest to join the revised Sorghum Hybrid Parents Research Consortium in 2004, which enables ICRISAT to mobilize financial resources to the tune of US\$140,000 per year (Table 10) towards partial funding of crop improvement research at ICRISAT for developing elite sorghum hybrid parents to serve both public and private sectors. This resource mobilization is particularly significant at the crucial time of diminishing core funding to crop improvement research at ICRISAT. Thus, the Hybrid Parents Research Consortium for sorghum established at ICRISAT has emerged as a novel institution building for supporting agricultural research and enhancing impacts.

Table 10. Status of sorghum ICRISAT-private sector Hybrid Parents Research Consortium members and total resource mobilized since its inception in the year 2000.

Year	No. of consortium members	Amount accrued (\$)
2000	7	35000
2001	9	45000
2002	12	60000
2003	12	60000
2004 (up to June)	16	140000
	Total	340000

Feedback on research agenda: The feedback received from private and public sectors scientists on the utilization and quality of ICRISAT-bred hybrid parents, the number of hybrids developed and marketed/released, extent of farm-level adoption of such hybrids and the constraints, if any for the adoption, and farmers' perceptions will be collected from the partners time to time and the information is summarized. This feedback is useful to improve and/or modify ICRISAT's sorghum breeding strategy.

II. Impacts on sustainable production systems

Genetic options – cultivars with improved resistance to biotic and abiotic stresses

During the initial periods of its inception (1972-75), ICRISAT placed high importance on developing varieties and hybrid parents with high yield potential. In subsequent years, genes conferring resistance to several biotic and abiotic yield constraint traits were identified and were introgressed into the varieties and hybrid parents to bring stability to their high yield potential through trait-based breeding approach. The hybrids developed from these parents in Asia and Latin America, and the varieties in Africa formed an integral component in integrated insect pest and disease management, which together with the cultivar diversity resulting from partnership-traitbased breeding approach, has led to sustainable production systems and environment conservation in SAT countries.

The potential gain by genetic enhancement of resistance to biotic and abiotic stresses via crop improvement is estimated to be around \$736 million annually. In India, varieties bred for specific adaptation, ICSV 112 and ICSV 745, which are relatively early and resistant to foliar diseases (and ICSV 745 resistant to midge) introduced in Warangal district of Andhra Pradesh state showed grain yield advantages to the tune of 56% in intercropping and 30% in sole cropping systems and enabled farmers to earn 13% higher income in ICSV 112 and 58% in ICSV 745. These varieties

gave 20% higher grain yield and 35% higher fodder yield than the locally adopted cultivars in Melghat region of Maharashtra state in India.

Natural resources management options – vertisol technology

The adoption of dry seeding summer cultivation of sorghum, one of the components of vertisol technology under natural resources management developed by ICRISAT, has resulted in an increased yield by 38.4%, income by 98.5%, employment by 13.6% and a cost saving of 17.1% by farmers of Vidarbha region of Maharashtra state in India during 1996–97.

Another component of vertisol technology was developed for deep black soil regions with a relatively dependable rainfall, where the land is left fallow during rainy season. This technology is based on the concept of a small watershed as the basic resource management unit consisting of several components, including improved sorghum cultivars. Results from the operational-scale demonstrations of this technology at ICRISAT, India, were extremely encouraging. Substantially higher gross returns and profits were achieved by using improved sorghum/pigeonpea intercropping system (Figure 20) and management practices (US\$197 ha-1 and US\$142 ha-1, respectively compared to US\$36 ha-1 and US \$21 ha-1, respectively from the traditional systems of rainyseason fallow). The marginal rate of returns on the

Figure 20. Sorghum-pigeonpea intercropping system, a component of vertisol technology fetches higher marginal rate of returns to farmers in Andhra Pradesh state of India.

investments in 'Vertisol Technology' was 304% from sorghum/pigeonpea cropping systems (Flower 1994).

Thus, improved sorghum cultivars (especially short duration) could fit into different cropping systems and crop rotations leading to sorghum-based crop diversification and hence sustainable agroecosystems. Mixed crop-livestock systems (MCLS) are common, and indeed the dominant form of production systems of Indian SAT. Sorghum is considered as 'mother' crop in major growing areas of India and it is treated as a dual-purpose crop. Milk production is an important activity in these regions. Households that own ruminants depend on sorghum stover as the main source of fodder, especially in summer months. Because of growing demand for milk, the derived demand for sorghum fodder is also increasing (Kelly et al. 1993). While sorghum stover is an important source of fodder in both low-dairy and intensivedairy villages, green fodder from forage sorghum cultivars are important in intensive-dairy villages. Village-level surveys have indicated that sorghum stover contributes between 20 to 45% of the total dry weight fed to dairy animals by small farm owners depending on the season. Milking

Figure 21. Milking buffaloes receive 40% of total dry matter from sorghum stover in small and large dairies in Hyderabad, India.

buffaloes receive on an average 40% of their total dry matter as sorghum stover in small and large dairies in Hyderabad, India (Figure 21). Dry milk cows and buffaloes consume a much higher proportion of sorghum stover, often receiving neither concentrates nor green fodder.

III. Innovations in science and their sharing

Innovations in research and sharing of technologies so developed out of such innovations are the keys for increased impact in the farmers' fields. Innovative strategic and upstream research information developed at ICRISAT – ideas, concepts, methods, techniques and intermediate products – that were inputs for further research has contributed immensely to increased efficiency of breeding processes of ICRISAT and those of NARS partners.

Strategic research

Leads in strategic research areas helped to hasten the delivery of outputs both within ICRISAT and NARS programs in Asia and Africa.

- Reliable and cost effective screening techniques and identication of resistance sources for various abiotic (drought [Reddy 1986], soil acidity [Reddy and Rangel 2000] and salinity [Krishnamurthy et al. 2003]) and biotic (shoot fly [Nwanze 1997] (Figure 22), stem borer [Sharma 1997], midge [Sharma et al. 1988], grain mold [Bandyopadhyaya and Mughogho 1988] (Figure 23), downy mildew [Pande and Singh 1992], anthracnose [Pande et al. 1994] and Striga).
- Genetics of several traits of economic importance and use in adaptation such as resistance to shoot fly, stem borer, midge, grain mold, Striga and

Figure 22. Field screening for resistance to shoot fly.

stay-green, a known trait conferring terminal drought resistance.

• Diversification of cytoplasm and nuclear base of cytoplasmic-nuclear male sterility-based sorghum hybrids.

Figure 23. Field screening for grain mold resistance under sprinkler irrigation.

- Method of producing heterotic landrace pollinatorbased hybrids for postrainy season adaptation, which provided impetus for the private sector to develop and market postrainy season adapted sorghum hybrids for the first time in India.
- An approach to breeding for drought tolerance and grain yield potential was formulated and used at ICRISAT and transferred to NARS (Reddy 1986).
- The moving average concept to improve selection efficiency for yield constraints.
- Methods of developing hybrids parents (Asia) and varieties (Africa) resistant to grain mold and shoot fly for rainy season and shoot fly for postrainy season in Asia and varieties resistant to drought, *Striga* and other biotic stresses in Africa.
- Superiority of single crosses *vs.* three-way cross forage hybrids for both hybrid and commercial seed yield.
- Efficient method of A-line development involving simultaneous selection for resistance and grain yield and converting the maintainer selections into male-sterile lines was used effectively to develop male-sterile lines for resistance to pests and diseases in the shortest possible period of four years (Reddy et al. 2004).
- Efficient method of breeding for grain yield and resistance involving selection for resistance on family basis. Selecting individual single plants within the selected resistant family based on grain yield was most effective (ICRISAT 1995).
- The ICRISAT's collaborative research with International Livestock research Institute (ILRI) based at ICRISAT-Patancheru, India dispelled farmer's notion that the improved ICRISAT-bred sorghum cultivars are inferior to the local land race cultivars and has established for the first time in India that these improved cultivars are at par with popular local landrace cultivars for farmerpreferred stover quality traits such as stem sweetness, leafiness and digestibility.
- The variability for stover quality traits due to genotypes (ICRISAT-bred improved cultivars) was far greater than management intervention factors such as plant density, fertility levels and spacing indicating vast scope for genetic options for the improvement of these traits.

- A total of 62,161 and 55,334 seed samples representing various categories of breeding materials (A- and B-lines, restorers, varieties and others) have been supplied to several public sector scientists in India and abroad, respectively, from 1986 to 2003.
- A total of 51,428 and 2243 seed samples representing various categories of breeding materials (A-/B-lines, restorers, varieties and others) have been supplied to several private sector seed companies since 1986 in India and abroad, respectively.
- These breeding materials had multiplier effect, with public and private research organizations further developing 54 finished products (hybrids) simultaneously, specifically for targeted production areas testifying the utility and impact of ICRISAT-bred hybrid parents.

Upstream research

Tremendous developments in plant molecular marker and transgenic technologies, ingenuity of farmers and information technologies have been increasingly used to address more intractable and difficult-to-breed traits such as *Striga*, stem borer, shoot fly and drought resistance.

• Quantitative trait loci (QTLs) conferring resistance to these yield constraints such as shoot fly, stem borer, stay-green and *Striga* have been identified (Figures 24–25).

Figure 24. QTL linkage map for shoot fly resistance from BTx 623 (Shoot fly resistant) x IS 18551 (Shoot fly susceptible).

Figure 25. QTL linkage map for Striga resistance from N 13 (Striga resistant) x E 36-1 (Striga susceptible).

- Molecular marker-assisted selection (MAS) is underway to introgress the QTLs governing *Striga* and shoot fly resistance, and stay-green, a proven trait conferring terminal drought resistance into farmer-accepted cultivars.
- ICRISAT is the first to develop sorghum transgenics for resistance to stem borer, which are currently under greenhouse testing (Figure 26).

Figure 26. Fully developed transgenic sorghum shoots resistant to stem borer ready for rooting and transplantation to the glasshouse.

• Farmer participatory plant breeding has started showing significant benefits in Africa and Asia (Figures 27 and 28). A variety Tieble was identified as a high yielding variety in the participatory varietal trial in a Gonsolo village in Mali in Africa in 2000. By 2002, nearly all the households in this village and the surrounding five villages have sown seed of this new variety. Farmer participatory evaluation of ICRISAT-Patancherubred varieties (ICSV 111, ICSV 400) along with local cultivars in collaboration with the Institute for Agricultural Research (IAR), Zaria, Nigeria, facilitated farmer acceptance of these improved cultivars and are grown in 30% of the sorghum areas in Kano, Katsina and Jigwa regions of Nigeria. Productivity gains from these cultivars ranged from 27 to 62% (Tabo et al. 1999). Farmer participatory varietal selection facilitated the release of the variety SPV 1359 for postrainyseason cultivation in Maharashtra and Karnataka states in India during 1999–2000.

Figure 27. A woman farmer selecting sorghum panicles from segregating generations at ICRISAT.

Figure 28. An Eritrean farmer tasting stover quality in sorghum lines introduced from ICRISAT .

- Stratification of test sites in Africa to help reduce resources utilization in multilocation testing of advanced breeding lines and development of GIS maps.
- Computerization of seed dispatches, developing databases and websites (http://www.icrisat.org/

text/research/grep/homepage/sorghum/ breeding/main.htm) for all male sterile lines, restorers, varieties and hybrids with pedigrees and characteristics.

Alternate uses and methods of technology sharing

Research on alternative uses of grain and sweet stalked sorghums has helped broaden the demand for sorghum and innovative mechanisms of technology sharing ensuring higher income to farmers. Sorghum is suitable in the production of a variety of food and non-food products. Apart from traditional foods, sorghum is extensively used in the preparation of other foods such as snacks, "predigested" weaning food, pop sorghum etc. Besides these, the industrial sorghum-based food products include alcoholic beverages (Burukutu, dolo, pito, talla), sour/opaque beers (Marisa, busaa, merrisa, urwaga, mwenge, munkoyo, bantu beer, kaffir beer, sorghum beer, utshwala, utywala, ikigage) and European-type beers. Rainy season sorghum (which is frequently affected by grain mold and hence fetch lower price) is increasingly being used in the poultry feed rations in Andhra Pradesh state in India for broiler production as a result of the establishment of farmer - poultry feed and products industry - user coalition facilitated by ICRISAT. Sorghum has a great potential in ethanol production too.

- ICRISAT research helped to bring out the full potential of the sorghum use in confectionary food preparations and other industries (Figure 29).
- Novel technology exchange mechanisms, such as farmer-scientist-industry-user coalition building for use of sorghum in poultry feed, have been successfully established by ICRISAT.
- The development of high yielding, sweet stalked sorghum varieties and hybrid parents (for hybrid development) attracted several private industries in India to venture into ethanol production from sweet stalk sorghum as a supplement to sugarcane molasses to meet the possible increased demand following the Indian government's policy to blend 5% ethanol in petrol and likely increase of this proportion to 10%.

Figure 29. Use of sorghum in confectionary and brewing industries has broadened the demand for sorghum and thereby higher income to sorghum producers.

- National Research Center for Sorghum (NRCS), Hyderabad, India in collaboration with ICRISAT has developed a sweet stalk sorghum hybrid (NSSH 104) for the first time in India by involving ICSA 38 (an ICRISAT-bred sweet stalk seed parent) and SSV 84 (NRCS-bred male parent/R-line) and is being recommended for release as special purpose sorghum.
- Tie-up with Rusni Distilleries Pvt Ltd, Hyderabad, a private sector based in India, to incubate ethanol production technology from sweet sorghum cultivars developed at ICRISAT.
- A novel mechanism of public-private partnership sorghum consortium, first of its kind in CGIAR, is established successfully at ICRISAT to enhance the adoption of hybrids and to receive continuous feedback on the performance of the breeding materials.

Publications

The information on strategic research, breeding processes and products are published in refereed journals, conference proceedings, posters and success story fliers. These publications not only serve as vehicles to share the information but they also reflect the quality and innovations in science. ICRISAT has so far produced 886 publications (from 1977 to 2004) (Annexure IV). These are

- Refereed journal articles 427
- Book chapters 49
- Conference papers 291
- Others 119

Capacity building

ICRISAT is instrumental in enhancing research and development capabilities of NARS in Asia, Africa and Latin America in various aspects of sorghum improvement through training of 1302 NARS scientists from 1974 to 2004. Of these, 8 were visiting scientists (VS), 20 postdoctoral fellows (PDF), 107 research scholars (RS), 219 research fellows (RF), 783 in-service long-term (6 months) and 119 in-service short-term trainees and 46 apprentices. Further details are given in Table 11.

ICRISAT conducts well-designated short-term training courses regularly in specific areas to impart expertise to the scientists of NARS – both private and public sectors – apart from the long-term capacity building exercises in various disciplines mentioned earlier (Figures 30 and 31). Courses on sorghum hybrid parents development, grain mold assessment, screening for resistance to diseases

and pests etc, are some of the examples. More than 200 sorghum scientists from private and public sectors took advantage of these short-term focused courses. Training at ICRISAT was shown to be demand driven. National program employers sent 46% of the participants, and another 30% were sent through collaborative research projects. The overwhelming majority of participants (94%) reported that their training at ICRISAT was necessary for their jobs. Participants indicated that their practical skills and subject knowledge had been enhanced through training at ICRISAT. Most participants (90%) returned to their jobs immediately after training at ICRISAT. Currently, 56% of them continue in the same job, while 42% have changed jobs. For more than half the participants, promotion or improvement in status was attributed to training at ICRISAT. Nearly 37% of the participants later went on to obtain a higher degree (MSc or PhD). Ninety-five percent of participants have shared the knowledge and skills

Table 11. Number of trainees from Asia, Africa and Latin America who were imparted training at ICRISAT.

Region	Categories of trainees						
	VS	PDF	RS	RF	In-Service - 6 months	In-Service Short-Term	Apprentice
Southern and Eastern Africa	1.40	4	19	78	323	49	1.0.110
Asia (including India)	8	7	59	111	126	57	37
India	8	4	42	51	1	16	35
Western and Central Africa	1.1.1.1	2	23	17	312	9	11-11
Latin America	100	7	6	13	22	4	9
Totals	8	20	107	219	783	119	46

Figure 30. Sorghum scientist imparts training to researchers at Africa.

Figure 31. Principal sorghum scientist imparts training to Asian and African budding scientists at ICRISAT.

with peers, and 55% were involved in training other staff. About 80% of the participants are still applying the skills and knowledge gained at ICRISAT, indicating relevance, usefulness and sustainability of learning. Nearly, 73% participants expressed that their job performance was enhanced by more than double through their exposure to ICRISAT.

These training courses also helped ICRISAT to generate additional funds. For example, in 2004, sorghum group at ICRISAT-Patancheru earned about US\$10,000 by offering course on hybrid parents development.

Other means of capacity building are farmers' and scientists' field days. ICRISAT conducts sorghum scientists' (both ICRISAT and NARS) field days in Africa and Asia (Figures 32 and 33). It also conducts almost every year farmers' field days in collaboration with NARS in each region (Figures 34 and 35). These field days also help to get feedback from the participants on research/ products and thus help to shape up ICRISAT's research portfolio.

Figure 32. Director General –ICRISAT along with other scientists listens to principal sorghum breeder during ICRISAT Scientists field day.

Figure 34. Farmers sharing the knowledge gleaned from more than 30 years of ICRISAT's sorghum research in sorghum field day conducted by ICRISAT in Africa.

Figure 33. NARS sorghum scientists participated in sorghum scientists field day at ICRISAT, Patancheru.

Figure 35. Indian farmers observing sorghum panicles at farmers' field day at ICRISAT.

IV. Partnership/collaboration – the way forward

Public sector networks

Apart from the informal interaction with scientists in NARS, formal networks were established for various regions to provide a common platform to test the materials pooled from various organizations within the region, to enhance the germplasm, breeding material and technology exchange and adoption of improved partnership products and to provide continuous interaction among the members in networks. These are Cereals and Legumes Asia Network (CLAN) for countries in Asia, Sorghum and Millet Improvement Program (SMIP) for Southern and Eastern Africa (SEA), West African Sorghum Improvement Program (WASIP) for countries in West Africa and Latin America Sorghum Improvement Program (LASIP) for Latin American countries. Apart from this, formal partnership projects developed with Indian Council of Agricultural Research (ICAR) are being implemented with scientists in India. In addition, various special projects - CGIAR's challenge program on HarvestPlus and identification/ development of salinity tolerant sorghum lines are being implemented with strong collaboration with National Institute of Nutrition, India, and

International Center for Biosaline Agriculture, Dubai, respectively.

Public-private sector partnerships

ICRISAT became sensitive to increasing role and research capabilities of private sector seed companies in India and other countries (Egypt, Thailand, Indonesia etc) and realized that traditional partnership with public sector breeding programs, though important and significant, was no longer the sole route to farm-level adoption of the hybrids developed from ICRISAT-bred parental lines. Consequently, ICRISAT,

established path-breaking and trend-setting partnerships with private sector seed companies, in the form of "Hybrid Parents Research Consortium for Sorghum", the first of its kind in the entire CGIAR system, which started functioning from January 2000. This successful concept is now being applied across the entire CGIAR system.

Conclusions

Sorghum team at ICRISAT in partnership with NARS-private and public sectors, advanced research institutions and other sister CGIAR centers, in tune with the external environment, tailored over time its research agenda, breeding processes, and targeting products catering to the needs of farmers and sorghum-based entrepreneurs such as private sector seed industry, poultry feed manufacturers and even biofuel manufacturers. Significant impacts in terms of release of partnership cultivars, adoption, increase in grain productivity and sorghum-based food security and sustainable production systems, and decrease in cost of production contributed significantly to the improved livelihoods of resource-poor farmers and low-income people in the SAT. The increased demand for hybrid seed production driven by increased popularity and enhanced adoption of hybrids together with broadened utilization of sorghum in food/

confectionary industry and poultry feed manufacturing and its potential use in biofuel production have transformed sorghum into a commercial crop while still serving as a staple food crop for millions of poor in the SAT.

The impact of ICRISAT's sorghum breeding research has contributed to food security and improved economy throughout the semi-arid tropics. But we fully realize that this is not enough. We must continue to respond to change while striving towards our vision of reducing world poverty and improving livelihoods.

Looking ahead

In large parts of Africa and some parts of Asia, sorghum still remains critically important for rural household food security. Since many sorghum producing countries especially in Africa continue to experience food deficits because of periodic drought coupled with several production constraints, the gains in grain productivity needs to be addressed by intensified research on no-cost input technologies that stabilize productivity such as host-plant resistance to drought, grain mold, shoot fly, stem borer in Africa and India and *Striga* in Africa. Also, integration of genetic and natural resources options needs greater focus to combat these productivity constraints.

With the increased sorghum productivity levels in Asia, farmers are left with surplus after meeting household food security. As a result, sorghum is being pushed to more marginal lands leaving the traditional sorghum belts to other more remunerative crops such as maize, soybean etc. To make sorghum more competitive, research would focus on improving productivity further through genetic resources management and on developing improved technologies to utilize sorghum in bakery, brewing, poultry feed and ethanol industries. Further, forging partnerships between ICRISAT and private industries to take advantage of complementary roles of ICRISAT's expertise in developing research products suitable to these alternate uses and technical expertise of private industries in the production of these products in Asia would also receive major attention.

Science with a Human Face

Research by ICRISAT and its partners will continue to generate international public goods (IPGs) for worldwide impact, to benefit farmers, consumers and sorghumbased entrepreneurs. Such a research endeavor to reduce poverty, malnutrition and environmental degradation is truly "Science with a Human Face". And the benefits are flowing.

Acknowledgements

The tremendous research achievements of ICRISAT's partnership research efforts and their impact on the livelihoods of millions of poor in ICRISAT mandate research target areas in Africa, Asia and Latin America would not have been possible without judicious support from several national governments in Africa, Asia, America and Australia, and liberal funding from donor agencies such as UNDP, UNEP, USAID, DFID, ADB, World Bank, IADB, GTZ, IFAD, CFC, USDA, ICRISAT-Private Sector Hybrid Parents Research Consortium for sorghum, Sehgal Family Foundation, and other organizations.

Collaborative research with advanced research institutes such as Institute for Genomic Diversity of Cornell University and sister organizations of Consultative Group on International Agricultural Research (CGIAR) such as International Livestock Research Institute (ILRI) based at ICRISAT, Centro Internacional de Agrocultura Tropical (CIAT), International Sorghum/Millet Collaborative Research Support Program (INTSORMIL) and International Center for Biosaline Agriculture (ICBA), International Rice Research Institute (IRRI) and Centro Internacional de Mejoramiento del Maïz y del Trigo (CIMMYT) has been highly valuable in exploiting the complementary expertise to develop technologies which had significant impacts on farmers, consumers and sorghumbased entrepreneurs as described in the text.

References cited in the text

1. **Badi SB, Pedersen L, Monowar** and **Eggum BO.** 1990. The nutritive value of new and traditional sorghum and millet foods for Sudan. Plant Foods Hum. Nutr. 40:5–19.

2. **Bandyopadhyay R** and **Mughogho LK.** 1988. Evaluation of field screening techniques for resistance to sorghum grain molds. Plant Diseases 72:500–503.

3. Bramel-Cox PJ, Kumar KA, Hancock JD and Andrews DJ. 1995. Sorghum and millets for forage and feed. Pages. 325–364 *in* Sorghum and Millets: Chemistry and Technology (Dendy DAV, ed.). St. Paul, MN, USA: American Association of Cereal Chemists.

4. **Brennan JP, Bantilan MCS, Sharma HC** and **Reddy BVS.** 2004. Impact of ICRISAT research on sorghum midge on Australian agriculture. Impact series no. 11. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. 36 pp.

5. **CGIAR** (Consultative Group on International Agricultural Research). 1996. CGIAR Newsletter. http://www.worldbank.org/html/cgiar/newsletter/Mar96/4sorghla.htm.

6. **Damania AB.** 2002. The Hindustan centre of origin of important plants. Asian Agri-History 6(4):333–341.

7. **Deb UK** and **Bantilan MCS.** 2003. Impacts of genetic improvement in sorghum. Pages 183–213 *in* Crop variety improvement and its effect on productivity—The Impact of International Agricultural Research (Evenson RE and Gollin D, eds.). Wallingford, UK: CABI Publishing.

8. **deWet JMJ.** 1977. Domestication of African cereals. Afr. Econ. History 3:15.

9. **Doggett H**. 1988. Sorghum. Second Edition. Longmans Scientific and Technical Publishers, UK, IDRC, Canada.

10. **FAO** (Food and Agricultural Organization of the United Nations) and **ICRISAT** (International Crops Research Institute for the Semi-Arid Tropics). 1996. The world sorghum and millet economics. Facts, trends and outlook. Rome, Italy: FAO; and Patancheru 502 324, Andhra Pradesh, India: ICRISAT.

11. **Flower DJ.** 1994. Vertisol Technology in India: Technology Development, Extension and Impact assessment. Pages 58–66 *in* Evaluating ICRISAT Research Impact. Summary proceedings of a workshop on Research Evaluation and Impact Assessment (Bantilan MCS and Joshi PK, eds.). Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

12. **Gowda CLL, Reddy BVS** and **Rai KN.** 2003. ICRISAT strengthens ties with private seed companies. Asian Seed and Planting Material 10(4):16.

13. **Harlan JR** and **de Wet JMJ.** 1972. A simplified classification of cultivated sorghum. Crop Science 12:172–176.

14. **IBPGR** (International Board for Plant Genetic Resources)/**ICRISAT** (International Crops Research Institute for the Semi-Arid Tropics). 1980. Sorghum descriptors. Rome, Italy: IBPGR.

15. **ICRISAT** (International Crops Research Institute for the Semi-Arid Tropics). 1995. Restorers *in* ICRISAT Asia Region Annual Report 1992, ICRISAT, Patancheru, India. Patancheru 502 324, Andhra Pradesh, India: ICRISAT. 75 pp.

16. **Kamuanga M** and **Fobasso M.** 1994. Role of farmers in the evaluation of an improved variety: The case of S 35 sorghum in northern Cameroon. Journal of Farming Systems research – Extension 4:93–110.

17. Kelly TG, Parthasarathy Rao P and Walker TS. 1993. The relative value of cereal straw fodder in the semi-arid tropics of India: Implications for the cereal breeding program at ICRISAT. Pages 88–105 *in* Research for Agricultural Technology Development: Spatial and Temporal Dimensions (Karen Ann Dvorak, ed.). Wallingford, UK: CAB International.

18. **Kimber CT.** 2000. Origins of domesticated sorghum and its early diffusion to Indian and China. Pages 3–98 *in* Sorghum origin, history, technology and production (Smith CW and Frederiksen RA, eds.). New York, USA: John Wiley & Sons Inc.

19. **Krishnamurthy L, Reddy BVS** and **Serraj R.** 2003. Screening sorghum germplasm for tolerance to soil salinity. International Sorghum and Millets Newsletter 44:90–92.

20. Mann JA, Kimber CT and Miller FR. 1983. The origin and early cultivation of sorghums in Africa. Tex. Agric. Exp. Stn. Bull. 1454.

21. **Murty DS** and **Kumar KA.** 1995. Traditional uses of sorghum and millets. Pages 185–221 *in* Sorghum and Millets: Chemistry and Technology (Dendy DAV, ed.). St. Paul, MN, USA: American Association of Cereal Chemists.

22. **Nwanze KF.** 1997. Screening for resistance to sorghum shoot fly. Pages 35–37 *in* Plant resistance to
insects in sorghum (Sharma HC, Singh Foujdar and Nwanze KF, eds.). Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

23. Ogungbile AO, Tabo R, Gupta SC, Ajayi O and Bantilan MCS. 1999. Factors influencing awareness and adoption of ICSV 111 and ICSV 400 sorghum varieties. Socioeconomics and Policy Program, ICRISAT, Patancheru, India. Limited distribution.

24. **Pande S** and **Singh SD.** 1992. Successful transfer of ICRISAT downy mildew resistance screening technology: an example of transfer of technology. Pages 331–334 *in* Sorghum and Millets Diseases: A Second World Review (de Milliano WAJ, Frederiksen RA and Bengston GD, eds.). Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

25. Pande S, Thakur RP, Karunakar RI, Bandyopadhyaya R and Reddy BVSR. 1994. Development of screening methods and identification of stable resistance to anthracnose in sorghum. Field Crops Research 38:157–166.

26. **Prasada Rao KE, Gopal Reddy V** and **Stenhouse JW.** 1995. Sorghum genetic resources at ICRISAT Asia Center. International Sorghum and Millets Newsletter 36:15–19.

27. **Prasada Rao KE, Mengesha MH** and **Gopala Reddy V.** 1989. International use of a sorghum germplasm collection. Pages 49–67 *in* Core collection of plant genetic resources (Hodgkin T, Brown AHD, Hinthum TJL and Morales EAV, eds.). London, UK: John Wiley and Sons.

28. **Reddy BVS** and **Rangel AF.** 2000. Genotype (G) and G × Environment (E) interactions in sorghum in acidsoils of the oriental Llanos of Colombia. Pages 46–51 *in* A research and network strategy for sustainable sorghum and pearl millet production systems for Latin America: Proceedings of the workshop, 24–26 November 1998, Villavicencio, Meta, Colombia. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics (ICRISAT); and Cali, Colombia: Centro International de Agricultura Tropical (CIAT).

29. Reddy BVS, Rao Prakasha, Deb UK, Stenhouse JW, Ramaiah B and Ortiz R. 2004. Global sorghum genetic enhancement processes at ICRISAT. Pages 65–102 *in* Sorghum genetic enhancement: research process, dissemination and impacts (Bantilan MCS, Deb UK, Gowda CLL, Reddy BVS, Obilana AB and Evenson RE, eds.). Patancheru 502 324, Andhra

Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

30. **Reddy BVS.** 1986. Genetic improvement for drought resistance in sorghum: A plant breeder's view point. Pages 28–32 *in* Genetic improvement of drought resistance. Proceedings of a Discussion Series of the Drought Research Seminar Forums.

31. **Sharma HC, Vidyasagar P** and **Leuschner K.** 1988. Field screening for resistance to sorghum midge (*Stenodiplosis sorghicola*). Journal of Economic Entomology 81:327–334.

32. **Sharma HC.** 1997. Screening for resistance to spotted stem borer. Pages 38–45 *in* Plant resistance to insects in sorghum (Sharma HC, Singh Foujdar and Nwanze KF, eds.). Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

33. **Stenhouse JW, Prasada Rao KE, Gopal Reddy V** and **Appa Rao S.** 1997. Sorghum. Pages 292–308 *in* Biodiversity in trust (Fuccillo D, Sears L and Stapleton P, eds.). Cambridge, UK: Cambridge University Press.

34. **Tabo R, Ogungible AO, Gupta SC** and **Ajayi O.** 1999. Participatory Evaluation of Sorghum Cultivars in Northern Nigeria. International Sorghum and Millet newsletter 40:36–38.

35. **Upadhyaya HD** and **Ortiz R.** 2001. A mini core subset for capturing diversity and promoting utilization of chickpea genetic resources in crop improvement. Theoretical and Applied Genetics 102:1292–1298.

36. **Vavilov NI.** 1992. Origin and geography of cultivated plants (Dorofeev VF, ed.). Cambridge University Press, Cambridge, UK. 332 pp.

37. Wendorf F, Close AE, Schild R, Wasylikowa RK Housley RA, Harlan RA and Krolik H. 1992. Saharan exploitation of plants 8000 years B.P. Nature. 359: 721–724.

38. **Yapi A, Debrah SK, Dehala G** and **Njomaha C.** 1999. Impact of germplasm Research spillovers: The case of sorghum variety S 35 in Cameroon and Chad. Impact series no.3. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

39. Yapi AM, Kergna AO, Debrah SK, Sidibe A and Sanogo O. 2000. Analysis of the economic impact of sorghum and millet research in Mali. Impact series no. 8. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. 60 pp.

About ICRISAT

The semi-arid tropics (SAT) encompass parts of 48 developing countries including most of India, parts of southeast Asia, a swathe across sub-Saharan Africa, much of southern and eastern Africa, and parts of Latin America. Many of these countries are among the poorest in the world. Approximately one-sixth of the world's population lives in the SAT, which is typified by unpredictable weather, limited and erratic rainfall, and nutrient-poor soils.

ICRISAT's mandate crops are sorghum, pearl millet, chickpea, pigeonpea and groundnut; these five crops are vital to life for the everincreasing populations of the SAT. ICRISAT's mission is to conduct research that can lead to enhanced sustainable production of these crops and to improved management of the limited natural resources of the SAT. ICRISAT communicates information on technologies as they are developed through workshops, networks, training, library services and publishing.

ICRISAT was established in 1972. It is supported by the Consultative Group on International Agricultural Research (CGIAR), an informal association of approximately 50 public and private sector donors; it is cosponsored by the Food and Agriculture Organization of the United Nations (FAO), the United Nations Development Program (UNDP), the United Nations Environment Programme (UNEP) and the World Bank. ICRISAT is one of 15 nonprofit, CGIARsupported Future Harvest centers.

Annexure I. ICRISAT's Partners in Sorghum Improvement Research

and the second second second second second	
Afghanistan	Agricultural Research Institute, Kabul
Argentina	Dekalb, Buenos Aires
Australia	Australian Centre for International Agricultural Research (ACIAR) Hermitage Research Station, Queensland Pacific Seeds Pvt Ltd, Queensland
Botswana	Department of Agricultural Research, Gaborone
Brazil	Centro Nacional de Pesquisa de Milho e Sorgo, Sete Lagoas Commercio de Industria Matsuda Imp e Expt Ltda, Tavares Empresa Pernambucana de Pesquisa Agropecuaria, Recife Empresa Brasileira de Pesquisa Agropecuaria (EMBRAPA), Sete Lagoas Milta Pesquisa Agricola Ltda, Uberlandia Secao de Entomologia Instituto Agronomica, Campinas SP Sementes Agroceres SA, Parana ZENECA Sementes, Cravinhos SP
Burkina Faso	Institut National d'Etudes et de Recherches Agricoles (INERA)
Burundi	Sorghum Program, Bujumbura
China	Chinese Academy of Agricultural Sciences (CAAS), Beijing Kiaoning Academy of Agricultural Sciences, Shenyang Liaoning Academy of Agricultural Sciences, Liaoning Shenyang Normal University, Shenyang Sorghum Institute of Shanxi Academy of Agricultural
Sciences, Shanxi	
Colombia	Centro Internacional de Agricultura Tropical (CIAT), Cali CORPOICA, La Libertad, Villavicencil-Meta
Egypt	ARC, FCRI Sorghum Research Station, Giza Misr Hytech Seed International SAE, Cairo Shandweel Agricultural Research Station, Sohag
El Salvador	Centro Nacional de Technologia Agricola (CENTA), La Libertad
Eritrea	National Agricultural Research Institute (NARI), Halhale National Sorghum Improvement Project, Asmara
Ethiopia	Nazareth Research Center, Nazareth Melkassa Agricultural Research Center, Nazareth Institute of Agricultural Research (IAR), Melkassa
France	Centre de cooperation internationale en recherche agronomique pour le developpement (CIRAD), Montpellier
Germany	University of Hohenhein, Stuttgart
Ghana	Nyamkpala Agricultural Experiment Station, Tamale Savanna Agricultural Research Institute (SARI), Nyankpala-Tamale
India	
National	All India Coordinated Sorghum Improvement Project (AICSIP), Hyderabad Indian Agricultural Research Institute (IARI), New Delhi Indian Council of Agricultural Research (ICAR), New Delhi

Annexure I. Cont	inued
1.	National Research Center for Sorghum (NRCS), Hyderabad Central University of Hyderabad, Hyderabad
State Agricultural/	Acharya NG Ranga Agricultural University, Hyderabad
Other Universities	CCS Haryana Agricultural University, Hisar
	CS Azad University of Agriculture and Technology, Kanpur
	GB Pant University of Agriculture and Technology, Pantnagar
	Gujarat Agricultural University, Surat
	Jawaharlal Nehru Krishi Vishwa Vidyalaya (JNKVV), Indore
	Mahatma Phule Agricultural University, Rahuri
	Marathwada Agricultural University, Parbhani
	National Bureau of Plant Genetic Resources (NBPGR), Hyderabad
125842-12	National Institute of Nutrition, Hyderabad
	Tamil Nadu Agricultural University (TNAU), Coimbatore
	Dr Punjabrao Deshmukh Krishi Vidyapeeth, Akola
4197 32 365	Udaipur Agricultural University, Udaipur
1	University of Agricultural Sciences, Bijapur
网络马克尔	University of Agricultural Sciences, Dharwad
1. D. C. L.	University of Mysore, Mysore
1919-01-1	Osmania University, Hyderabad
Private Seed	Advanta India Ltd, Bangalore
Companies	Ajeet Seeds Ltd, Nagpur
	Ankur Seeds Pvt Ltd, Nagpur
24.2 2022	Basant Agro-Tech (India) Ltd, Akola
	Bioseed Research India Ltd, Hyderabad
	Emergent Genetics India Pvt Ltd, Hyderabad
	Ganga Kaveri Seeds Pvt Ld, Hyderabad
	Godavari Hybrid Seeds Co Ltd, Nizamabad
	Green Gold Seeds Ltd, Aurangabad
	JK Agri Genetics Ltd, Hyderabad
	Kanchan Ganga Seed Co Pvt Ltd, Hyderabad
192 DI 182	Kaveri Seed Co Pvt Ltd, Secunderabad
	Krishidhan Seeds Ltd, Jalna
	Mahendra Hybrid Seeds, Jalna
1. 269- a.	Mahodaya Hybrid Seeds Pvt Ltd, Jalna
19/22/01/	Monsanto India Ltd, Aurangabad
REAGED	Nuziveedu Seeds Ltd, Secunderabad
	Pioneer Seeds Corporation, Hyderabad
	Proagro Seed Co Pvt Ltd, Aurangabad
	Vibba Agretach Itd. Hudarahad
The Marshall	Villevia Agrotech Ltd. Hyderabad
1100	
NGOs	Andhra Pradesh Poultry Federation, Hyderabad
	Lederation of Farmers' Association (FEA) Hyderabad

Annexure I. Co	ontinued
1. Jul.	Janaki Feeds, Hyderabad Vasantdada Sugar Institute, Pune Venkateswara Hatcheries Ltd, Hyderabad
Indonesia	Center for Food and Nutrition Studies (CFNS), Bogor Indonesian Research Institute for Cereals, South Sulawesi National Nuclear Energy Agency, Jakarta Research Institute for Maize and Cereals, South Sulawesi PT Benihinti Suburintani (BISI), Jawa Timur
Iran	Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj Agricultural Research, Education and Extension Organization, Tehran Seed and Plant Improvement Institute (SPII), Karaj University of Isfahan, Isfahan
Kenya	Kenya Agricultural Research Institute (KARI), Embu National Dryland Farming Research Station The International Centre for Insect Physiology and Ecology (ICIPE), Nairobi
Mali	 Association Conseil pour le Développement (ACOD) Association des Organizations Professionnelle Paysanne (AOPP) Cabinet de Etude Keita (CEK-Kala Saba) Compagnie Malienne Development Textile (CMDT) Institut d'Economie Rurale (IER) Office de la Haute Vallée du Niger (OHVN) Peace Corps Point Sud Service Local d'Appui Conseil de Amenagement et Equipement Rural (SLACAER) Union Locale des Producteurs de Cereal (UPLC) World Vision
Mexico	Instituto Nacional de Investigaciones Forestales Agropecuarias (INIFAP)
Mozambique	National Sorghum and Pearl millet Program (INIA), Maputo
Myanmar	Central Agricultural Research Institute (CARI), Pyinmana Myanmar Agriculture Service, Yangon
Namibia	Ministry of Agriculture, Water and Rural Development, Plant Production Research, Windhoek
Niger	Institut National de Research Agronomique de Niger (INRAN) Veterinaires Sans Frontieres
Nigeria	Aahmedu Bello University, Zaria
Pakistan	Institute of Field and Horticultural Crops, Pakistan National Agricultural Research Centre, Islamabad Pakistan Agricultural Research Council, Islamabad
Philippines	Benquet State University, Benquet Central Mindanao University, Bukidnon DA-Regional Crop Protection Center, Isabela
Puerto Rico	USDA-ARS-TARS, Mayaguez

Annexure I. Continued Rwanda Rwanda Agricultural Research Institute, Butare Senegal Institut Senegalais de Recherche Agronomique (ISRA) Sudan Agricultural Research Technology Corporation (ARTC), Wad Medani Tanzania Tanzanian Agriculture Research Organization, Ministry of Agriculture and Food Security, Dar-es-Salaam Thailand Charoen Pokphand Group Co Ltd, Bangkok Department of Agriculture, Bangkok Field Crops Research Institute, Bangkok Khon Kaen University, Khon Kaen National Corn and Sorghum Research Center, Kasetsart University, Nakhon Ratchasima USA Institute for Genomic Diversity, Cornell University, New York Mississippi State University, Mississippi Purdue University, Indiana Texas A&M University, College Station and Lubbock University of Nebraska, Nebraska USDA-Agricultural Research Services, Georgia University of Georgia, Athens, Georgia Yemen Agricultural Research Station, Hodeldah AREA (Al-Kadam), Hodeidah Surdid Experiment Station, Hoheida Province Zambia Zambia Seeds Co Ltd, Lusaka Sorghum and Millet Improvement Program, Fringila Development Asian Development Bank (ADB) Investors Bundesministerium für Wirtschaftliche Zusammenarbeit und Entwicklng (BMZ) Canadian Development Agency (CDA) Common Fund for Commodities (CFC) Department for International Development (DFID) Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) Food and Agriculture Organization of the United Nations (FAO) ICRISAT-Private Sector Sorghum Hybrid Parents Research Consortium International American Development Bank (IADB) International Development Research Center (IDRC) International Fund for Agricultural Development (IFAD) Sehgal Family Foundation United National Development Programme (UNDP) United Nations Environment Programme (UNEP) United States Agency for International Development (USAID) World Bank **CGIAR** Centers Centro Internacional de Agrocultura Topical (CIAT), Colombia Centro Internacional de Mejoramiento del Maïz y del Trigo (CIMMYT), Mexico International Centre for Biosaline Agriculture (ICBA), United Arab Emirates International Livestock Research Institute (ILRI), Kenya/Ethiopia International Rice Research Institute (IRRI), The Philippines

Accession number	Country of origin	Country of release	Released name	Year of release	e Remarks
Asia	11010121	-Frank I	1. Printer	CRIPTIC CONTRACT	and the second
IS 302	China	Myanmar	Shwe-ni 10	1980	15 Martin 20
IS 5424	India	Myanmar	Shwe-ni 8	1980	
IS 8965	Kenya	Myanmar	Shwe-ni 1	1980	
IS 2940	USA	Myanmar	Shwe-ni 2	1981	
IS 4776	India	India	UP Chari-1	1983 I	Forage sorghum
IS 33844	India	India	Parbhani Moti	2002	
IS 3922 x IS 1151	Nigeria, India	India	604		Cross progeny
IS 3922 x IS 1122	Nigeria, India	India	302	(Cross progeny
IS 2954 x IS 18432	USA, India	India	370		Cross progeny
IS 2950 x IS 1054	USA, India	India	R 16		Cross progeny
IS 3687 x IS 1151	USA, India	India	148/168	En a se	Cross progeny
IS 18484 x IS 3924	India, USA	India	SPV 297	1985	2222 3 2 2 2 3
IS 4283 x IS 18478	India, India	India	CO-25	1985	
IS 33892	Ethiopia	India	NTJ 2	1990	and the shift
IS 3541	Sudan	India	CS 3541		Converted Zera-zera
IS 6928	Sudan	India	Moti	1978 I	nduced mutant
IS 3924	Nigeria	India	Swarna	12368168	
IS 3922 x IS 1151	Nigeria, India	India	604	-	Cross progeny
IS 3922 x IS 1122	Nigeria, India	India	302	(Cross progeny
IS 2954 x IS 18432	USA, India	India	370		Cross progeny
IS 2950 x IS 1054	USA, India	India	R 16	(Cross progeny
IS 3687 x IS 1151	USA, India	India	148/168	1 section	Cross progeny
IS 18484 x IS 3924	India, USA	India	SPV 297	1985	
Southern and Easter	rn Africa	1. 1. 2. 2	and second state	The second	
IS 3923	Zimbabwe	Botswana	Mahube	1994	
IS 18758	Ethiopia	Burundi	Gambella 1107	1990	
IS 29415	Lesotho	Eritrea	Shiketi	2000	S. S. Anin
IS 9302	South Africa	Ethiopia	ESIP 11	1980	1912111
IS 9323	South Africa	Ethiopia	ESIP 12	1984	57 (Set 1977) (P)
IS 8193	Uganda	Kenya	Kari Matama	2001	
IS 8571	Tanzania	Mozambique	Mamonhe	1989	
IS 8193	Uganda	Rwanda		2001	
IS 21219	Kenya	Rwanda	and contractions	2001	
IS 25395	Kenya	Rwanda	CAR Control	2001	Carlor and
IS 13444	Zimbabwe	Sudan	Arous el Rima	2001 I	Drought tolerant
IS 9830	Sudan	Sudan	Mugawim Buda-2	1991	
IS 2391	South Africa	Swaziland	MRS 13	1989	
IS 3693	USA	Swaziland	MRS 94	1989	
IS 23496	Ethiopia	Tanzania	Pato	1995	
IS 23520	Ethiopia	Zambia	Sima	1989	
Western and Centra	l Africa			14 15 15 15	
IS 18758	Ethiopia	Burkina Faso	E 35-1	1983	
IS 15401	Cameroon	Mali	Soumalemba	2001	20 July 19 19 1
Latin America and G	Carribbean		Sauce and	1700-00	
IS 18484	India	Honduras	Tortillero 1	1984	Ser Charles Ser
IS 9468	South Africa	Mexico	Marvilla no SOFO	2000	19-14-16
	5-11 07		430201092		1 1 1 1 1 1 1
IS 13809	South Africa	Mexico	E. F. O. A. U.	1990	
IS 9321	South Africa	Mexico		1990	
IS 9447	South Africa	Mexico		1990	12/10/10/10/10

Annexure II. Details of sorghum germplasm accessions or selections released as superior varieties in different countries.

S.No	. Origin	Released Name	Country	Year
Asia	Same and all and all and and	2. Contractor 10 10	812 119	Contra 1
1	A 3681	Yuan 1-98	China	1982
2	A 3872	Yuan 1-28	China	1982
3	A 3895	Yuan 1-505	China	1982
4	A 6072	Yuan 1-54	China	1982
5	SPL 132A	Liao Za 4	China	1988
6		Liao Za 5	China	1996
7		Liao Za 6	China	1996
8		Liao Za 7	China	1996
9		lin 7a 94	China	1996
10	$3197A_2$ x Jin Liang 5 (D 71278-4 is converted to 3197 A)	Jin XA 4	China	1992
11	MR 741 R-line used as its male parent	Longsi-1	China	1997
100	initial interaction and indice parent	(a forage hybrid)	Cinina	
12	(SPL 132B x TAM 428B) is its female parent	Liao Za 10	China	1997
13	IC-A line converted to A2 and used as its female	lin Za 12	China	1997
15	parent	JIII Zu I Z	China	1337
14	IC-A line converted to A2 and used as its female parent	Gile Za 80	China	1997
15	E 1966 (IS 33892)	NTJ 2	India	1990
16	ICSV 1	CSV 11	India	1984
17	ICSH 153	CSH 11	India	1986
18	ICSV 112	CSV 13	India	1987
19	ICSV 145	SAR 1	India	1988
20	ICSV 239	BSR 1	India	1989
21	ICSV 745	DSV 3	India	1993
22	ICSV 197	ICSV 197	India	1993
23	Parent Source	CSH 14	India	1993
24	Parent Source	PIH 55	India	1993
25	Parent Source	PIH 58	India	1993
26	Parent Source	PKH 400	India	1993
27	Parent Source	PSH 8340	India	1993
28	Parent Source	CSV 15	India	1994
29	Parent Source	MLSH 36	India	1994
30	ICSA 91001 x ICSR 90017	ASH 1	India	1997
31	Parent Source	IKSH 22	India	1999
32	ICSH 86686	PSH 1	India	1999
33	PVK 400	PVK 400	India	1999
34	Parent Source	SPH 840	India	2000
35	GD 34553	PVK 801	India	2000
36	GD 31-4-2-3	Parbhani Moti	India	2002
		(SPV 1411)		
37	IS 8965	Shwe ni 1	Myanmar	1980
38	IS 2940	Shwe ni 2	Myanmar	1981
39	M 90906	YEZIN 1 (Schwe phyu 1)	Myanmar	1984
40	M 36335	YEZIN 3 (Schwe phyu 3)	Myanmar	1984
41	M 36248	YEZIN 2 (Schwe phyu 2)	Myanmar	1984
42	M 36172	YEZIN 4 (Schwe phyu 4)	Myanmar	1984
43	ICSV 735	YEZIN 6	Myanmar	1996

Annexure III. Details of released sorghum varieties and hybrids with ICRISAT-breeding product content in different countries.

Annexure III. Continued

S.No. Origin		Released Name	Country	Year
44	ICSV 758	YEZIN 7	Myanmar	1996
45	ICSV 804	YEZIN 5	Myanmar	1996
46	ICSV 107	PARC-SS 1	Pakistan	1991
47	IRAT 408	PARC-SS 2	Pakistan	1991
48	PSB Sg 93-20	IES Sor 1	Phillipines	1993
49	ICSV 126/PSB Sg 94-02	IES Sor 4	Phillipines	1994
50	-	Suphanburi-1	Thailand	1996
Sout	hern and Eastern Africa	and the second second	A STAND	
51	SDS 3220	PhofuU/Macia	Botswana	1994
52	IS 3923 (SDS 2583)	Mahube	Botswana	1994
53	SDSH 48	BSH 1	Botswana	1994
54		Mmabaitse (BOT 79)	Botswana	1994
55		5D X 160	Burundi	1989
56		Gambella-1107	Burundi	1990
57	E 35-1	Gambella-1107	Ethiopia	1980
58	76 TI #23	76 TI #23	Ethiopia	1980
59	M 36121	M 36121	Ethiopia	1980
60	IS 9302	IS 9302	Ethiopia	1980
61	IS 9323	ESIP 12	Ethiopia	1984
62	ICSV 1	Dinkmash	Ethiopia	1988
63	Diallel Pop 7-682	Melkamash	Ethiopia	1988
64		Seredo	Ethiopia	1990
65	ICSV 112	CSV 13	Kenya	1988
66	KAT 83/369	KARI/MTAMA I	Kenya	1994
67	IS 8193	KARI MTAMA 2	Kenya	2001
68	PGRC/E216740	KARI MTAMA 3	Kenya	2001
69	IS 76 T1#23	IS 76	Kenya	2001
70	ICSV 1	PiriraA 1	Malawi	1993
71	ICSV 112	Pirira 2	Malawi	1993
72	SDS 3220	Macia	Mozambique	1989
73	IS 8571	Mamonhe	Mozambique	1989
74	ICSV 112	Chokwe	Mozambique	1993
75	SDS 3220	Macia	Namibia	1998
76		5 DX 160	Rwanda	1980
77		1 Kinyamka	Rwanda	1980
78	IS 25395	19 Dente Storter	Rwanda	2001
79	IS 21219	The stand strange with	Rwanda	2001
80	IS 8193		Rwanda	2001
81	IESV 92043 DL		Somalia	2001
82	CR 35:5		Somalia	2001
83	Gedam el Hammam		Somalia	2001
84	ATx623 × K 1597 (Karper-1597)	Hageen Durra	Sudan	1983
85	ICSV 1007 HV	Mugawim Buda 1	Sudan	1991
86	IS 9830	Mugawim Buda 2	Sudan	1991
87	ICSV 1001 BF	Framida	Sudan	1991
88	M 90393	Ingazi (M 90393)	Sudan	1992
89	IS 13444	Aroos Elrimal	Sudan	2000
90	SDSV 1513	MRS 13	Swaziland	1989
91	SDSV 1594-1	MRS 94	Swaziland	1989
92	ICSV 112	MRS 12	Swaziland	1992

Annexure III. Continued				
S.No	. Origin	Released Name	Country	Year
93	2Kx17	Tegemeo	Tanzania	1988
94		Pato	Tanzania	1995
95	SDS 3220	Macia	Tanzania	1999
96	PICE ALL PROPERTY AND	Seredo	Uganda	1980
97		Epuripur (Tegemeo)	Uganda	1995
98	ICSV 2	ZSV 1	Zambia	1983
99		WSH 287	Zambia	1987
100	WSV 387	Kuyuma (MR4/4606 T 11)	Zambia	1989
101	IS 23520	SimaA	Zambia	1989
102	ICSA 104(SPL 177A)	MMSH 413	Zambia	1990
103		MMSH 375	Zambia	1990
104	1949 - Stan State State State 188 - 288	ZSV 12	Zambia	1995
105	ICSV 112	SV 1	Zimbabwe	1985
106	A 6460	SV 2	Zimbabwe	1987
107	- A CONTRACTOR OF AN AND AND AND AND AND AND AND AND AND	ZWSH 1	Zimbabwe	1992
108	SDS 3220	Macia	Zimbabwe	1998
109		SV 3	Zimbabwe	1998
110		SV 4	Zimbabwe	1998
West	tern and Central Africa	12222011000000	681-91115	11.11.192
111	ICSV 111	A State of the second	Benin	1999
112		IRAT 204	Burkina Faso	1980
113	IS 18758	E 35-1	Burkina Faso	1983
114	ICSV 1001 BE	Framida	Burkina Faso	1986
115	ICSV 1049	ICSV 1049	Burkina Faso	1989
116	Sariago-B	BE 83-48-2-1	Burkina Faso	1992
117	Sariabo 13		Burkina Faso	2000
118	Sariabo 14		Burkina Faso	2000
119	ICSV 111	\$ 35	Cameroon	1987
120	ICSV 111	S 35	Chad	1989
121	ICSV 1001 BE	Framida	Cote'd lyoire	1986
121	ICSV 1063	ICSV 1063	Cote'd lyoire	2000
122	ICSV 210	Bushuka	Fritrea	2000
123	PP 290 (INTSORMIL)	Shambuko	Fritroa	2000
124	89 M/M/ 5003	Shieb	Fritroa	2000
125	89 MW 5055	Laba	Fritroa	2000
120	IS 29415	Shiketi	Fritroa	2000
127	13 23 13	Framida	Chana	1986
120	ICSV 111	Kaanala	Chana	1997
120	Malisor 1	Malicor 1	Mali	1997
130	Malisor 4	Malisor 4	Mali	1987
122	Malisor 5	Malisor 5	Mali	1087
122	Malisor 7	Malisor 7	Mali	1907
133		ICSV 1005 RE	Mali	1001
125	ICSV 1095 DI	ICSV 1093 BI	Mali	1991
126	ICSV 1005 DI	ICSV 1003 DI	Mali	1993
120	ICSV 10/9 DF	ICSV 10/9 DF	Mali	1995
13/	CSM 225	Tioblo	Mali	2001
130		Kesse	Mali	2001
139		Nossa	Mali	2001
140		Ngoloting	Mali	2001
141	Nazongola Anthocyane	Nazombie	Mall	2001

Annexure III. Continued

S.No	. Origin	Released Name	Country	Year
142	Nazongola Tan	Nazondje	Mali	2001
143	IS 15401	Soumalemba	Mali	2001
144	CGM 19/9-1-1 (Pedigree: 87-38 x 57-26)	Marakanio	Mali	2001
145	CIRAD 406	Soumba	Mali	2001
146	ICSV 1079 (Framida x E 35-1)	Yagare	Mali	2001
147	M 90038	SEPON 82	Niger	1993
148	ICSV 1007 BF	SRN 39	Niger	1993
149	ICSH 89002(NG)	ICSH 89002(NG)	Nigeria	1995
150	ICSH 89009(NG)	ICSH 89009(NG)	Nigeria	1995
151	ICSV 111	ICSV 111	Nigeria	1995
152	ICSV 400	ICSV 400	Nigeria	1997
153	NR 71176	NR 71176	Nigeria	1997
154	NR 71182	NR 71182	Nigeria	1997
155	NSSH 91001	NSSH 91001	Nigeria	1997
156	NSSH 91002	NSSH 91002	Nigeria	1997
157	and the second se	IRAT 204	Senegal	1980
158	ICSV 1001 BF	Framida	Togo	1986
159	SEPON 82 x S 34	Sorvato 1	Togo	1998
160	Framida x S 34	Sorvato 28	Togo	1998
Latin	America and Caribbean	and the start		23992
161	A 3895	ICA YANUBA	Colombia	1992
162		Sorghica PH 302	Colombia	1992
163		HE 241	Colombia	
164	M 90362	Escameka	Costa Rica	1991
165	ISIAP DORADO	INIAP 201	Ecuador	1987
166	Sel from crosses from Chapingo	CENTA S-2	El Salvador	1976
167	ATx623 × Sweet Sudan	CENTA SS -41	El Salvador	1978
		(Forage hybrid)		
168	[(GPR 148 × E 35-1)-4-1 × (CS 3541 deriv.)]-1-1	ISIAP DORADO	El Salvador	1981
169	M 90361	CENTAa Oriental	El Salvador	1987
170	M 90362 (male parent of hybrid)	AGROCONSA I	El Salvador	1987
171	ICSV LM 90502 (M 36285 × 77C3-1)bk-5-1-2-3-1-bk	Soberanno	El Salvador	1996
172	ICSV LM 90503	RCV	El Salvador	1996
	(M 35585 × CS 3541)-31-bk-5-2-2-3-1-1-7-bk			
173	ICSV LM 90508 (PP 290 × 852-2235)bk-4-6-3-1-bk	Jocoro	El Salvador	1997
174	M 90975	ICTA Mitlan 85	Guatemala	1985
1. C.		(ICTA C-21)		and the second of
175	IS 18484 (CS 3541)	Tortillero 1	Honduras	1984
176	ATx623 × Tortillero	Catracho	Honduras	1984
177	M 62650 = M 90281 = SPV 387	Sureño	Honduras	1985
178	12200 AUGLOS HELICEDRE U PA	VARIADAD 110	Mexico	1978
179	Sel from crosses from E. Africa	Valles Altos 110	Mexico	1978
180	ISIAP DORADO	Blanco 86	Mexico	1986
181	ICSV 112	UANL-I-187	Mexico	1987
182	M 90362	UANL-11-287	Mexico	1987
183	M 62641	Costeño 201	Mexico	1989
184	SPV 475 = ICSV 112	Pacifico 301	Mexico	1990
185	M 91057	Istmeño	Mexico	1991
186	PP 290	Perlita	Mexico	1991
187	M 90812	Tropical 401	Mexico	1991

Annexu	Annexure III. Continued					
S.No.O	rigin	Released Name	Country	Year		
188 IS	9468	Maravilla, No. SOF-043-201092	Mexico	2000		
189 SE	EPON 77	Nica-Sor (T-43)	Nicaragua	1985		
190 IC	CSV 112	Pinollero 1	Nicaragua	1990		
191 IS	IAP DORADO	Alanje Blanquito	Panama	1991		
192 IS	IAP DORADO	DORADO	Paraguay	Aures		
193 IS	IAP DORADO	ISIAP DORADO	Venezuela	1985		
194 IC	CSV-LM 90501	Sureña-1	Dominican Republic	1993		

Annexure IV. Publications related to sorghum improvement at ICRISAT

Refereed journal articles

Abbasher AA, Hess DE and **Sauerborn J.** 1998. Fungal pathogens for biological control of *Striga hermonthica* on sorghum and pearl millet in West Africa. African Crop Science Journal 6(2):179–188.

Adu-Gyamfi JJ, Ito O, Yoneyama T and Katayama K. 1997. Nitrogen management and biological nitrogen fixation in sorghum/pigeonpea intercropping on alfisols of the semi-arid tropics. Soil Science and Plant Nutrition 43:1061–1066.

Adu-Gyamfi JJ, Ito O, Yoneyama T, Gayatri Devi and Katayama K. 1997. Timing of N fertilization on N2 fixation, N recovery and soil profile nitrate dynamics on sorghum/pigeonpea intercrops on alfisols on the semi-arid tropics. Nutrient Cycling in Agroecosystems 48:197–208.

Agrawal BL, Abraham CV and **House LR.** 1988. Inheritance of resistance to midge, *Contarinia sorghicola* coq. in sorghum, *Sorghum bicolor* (L.) Moench. Insect Science and Its Application 9(1):43–45.

Agrawal BL, Sharma HC and **Leuschner K.** 1987. Registration of 'ICSV 197' midge resistant sorghum cultivar. Crop Science 27(6):1312–1313.

Agrawal BL, Sharma HC, Abraham CV, Nwanze KF, Reddy BVS and Stenhouse JW. 1996. Registration of ICS 88019 and ICS 88020 midge-resistant grain sorghum A and B parental lines. Crop Science 36:825.

Agrawal RP, Jhorar BS, Maiti RK, Raju PS and **Peacock JM.** 1986. Effect of soil crusting on seedling emergence in sorghum genotypes. International Journal of Tropical Agriculture 4(1):15–22.

Agyemang K, Larbi A and **Murty DS.** 1998. Evaluating variation in feed attributes of elite grain sorghum cultivars. Animal Feed Science and Technology 72(1–2):189–197.

Ahmed AM, Singh B and **Singh U.** 1993. Improvement of sensory and nutritional qualities of sorghum-based 'Kisra' by supplementation with groundnut. Journal of Food Science and Technology. 30(2):121–126.

Ajayi O and **Ajiboye TO.** 1997. Non crop plant hosts of the sorghum head bug, Eurystylus oldi in West Africa. International Sorghum and Millets Newsletter No 38:81–82.

Ajayi O and Oboite FA. 2000. Importance of spittle bugs, Locris rubens (Erichson) and Poophilus costalis

(Walker) on sorghum in west and central Africa, with emphasis on Nigeria. Annals of Applied Biology 136(1):9–14.

Ajayi O and **Oboite FA.** 2001. Control of Locris rubens (Erichson) (Homoptera: Cercopidae) on sorghum in Nigeria. Journal of Sustainable Agriculture 18(1):85–97.

Ajayi O, Sharma HC, Tabo R, Ratnadass A and **Doumbia YO.** 2001. Incidence and distribution of sorghum head bug, Eurystylus oldi (Heteroptera: Miridae) in West and Central Africa. Insect Science and its Application 21:103–111.

Ajayi O, Tabo R and **Ali D.** 1996. Incidence of stem borers on postrainy-season transplanted sorghum in Cameroon, Nigeria and Chad in 1995/96. International Sorghum and Millets Newsletter No 37:58–59.

Alagarswamy G and **Chandra S.** 1998. Pattern analysis of international sorghum multi-environment trials for grain-yield adaptation. Theoretical and Applied Genetics 96:397–405.

Alagarswamy G, Reddy DM and **Swaminathan G.** 1998. Duration of the photoperiod-sensitive and insensitive phases of time to panicle initiation in sorghum. Field Crops Research 55:1–10.

Appa Rao S, Mengesha MH, Gopal Reddy V and Prasada Rao KE. 1998. Collecting and evaluation of sorghum germplasm from Rwanda, Plant Genetic Resources Newsletter 114:26–28.

Appa Rao S, Prasada Rao KE, Mengesha MH and Gopal Reddy V. 1996. Morphological diversity in sorghum germplasm from India. Genetic Resources and Crop Evolution 43:559–567.

Audilakshmi S, Stenhouse JW, Reddy TP and Prasad MVR. 1999. Grain mould resistance and associated charactersof sorghum genotypes. (In En.) 2:91–103.

Audilakshmi S, Stenhouse JW and Reddy TP. 2000. Genetic analysis of grain mould resistance in coloured sorghum genotypes. Euphytica 116(2):95–103.

Audilakshmi S, Stenhouse JW, Reddy TP and Prasad MVR. 1999. Grain mold resistance and associated characters of sorghum genotypes. Euphytica 107:91–103.

Azam-Ali SN, Matthews RB, Williams JH and Peacock JM. 1990. Light use, water uptake and performance of individual components of a sorghum/groundnut intercrop. Experimental Agriculture 26(4):413–427.

Bandyopadhyay R and **Mughogho LK.** 1988. Evaluation of field screening techniques for resistance to sorghum grain molds. Plant Disease 72(6):500–503.

Bandyopadhyay R, Frederickson DE, McLaren NW and **Odvody GN.** 1996. Ergot: a global threat to sorghum. International Sorghum and Millets Newsletter No 37:1–32.

Bandyopadhyay R, Frederickson DE, McLaren NW, Odvody GN and Ryley MJ. 1998. Ergot: a new disease threat to sorghum in the Americas and Australia. Plant Disease. 82(4):356–367.

Bandyopadhyay R, Mughogho LK and **Satyanarayana MV.** 1987. Systemic infection of sorghum by Acremonium strictum and its transmission through seed. Plant Disease 71(7):647–650.

Bandyopadhyay R, Mughogho LK and **Prasada Rao KE**. 1988. Sources of resistance to sorghum grain mold. Plant Disease 72(6):504–508.

Bandyopadhyay R, Mughogho LK, Satyanarayana MV and **Kalisz ME.** 1991. Occurrence of airborne spores of fungi causing grain mould over a sorghum crop. Mycological Research 95(11):1315–1320.

Behrman JR and **Murty KN.** 1985. Market impacts of technological change for sorghum in Indian nearsubsistence agriculture. American Journal of Agricultural Economics 67(3):539–549.

Beta T, Obilana AB and **Cork H.** 2001. Genetic diversity in properties of starch from Zimbabwean sorghum landraces. Cereal Chemistry 78:583–589.

Bhola Nath, Omran AO and **House LR.** 1985. Genetic divergence among a non-restorer collection of sorghum (*Sorghum bicolor* [L.] Moench) and its relationship with heterosis. Euphytica 34:441–447.

Bhola Nath, Omran AO and **House LR.** 1985. Identification of a double recessive genotype for 'B' genes controlling presence and absence of pigmented testa in sorghum. Cereal Research Communications 13(2–3):277–279.

Blum A, Golan G, Mayer J, Sinmena B and **Obilana T.** 1992. Comparative productivity and drought response of semi-tropical hybrids and open-pollinated varieties of sorghum. Journal of Agricultural Science, Cambridge 118:29–36.

Blümmel M, Zerbini E, Reddy BVS, Hash CT, Bidinger FR and Khan AA. 2003. Improving the production and

utilization of sorghum and pearl millet as livestock feed: progress towards dual-purpose genotypes. Field Crops Research 84:143–158.

Blümmel M, Zerbini E, Reddy BVS, Hash CT, Bidinger FR and **Ravi D.** 2003. Improving the production and utilization of sorghum and pearl millet as livestock feed: methodological problems and possible solutions. Field Crops Research 84:123–142.

Bock CH, Jeger MJ and **Bosque-Perez N.**1996. Host range of sorghum downy mildew in Africa. International Sorghum and Millets Newsletter No 37:56–58.

Bock CH, Jeger MJ, Mughogho LK, Cardwell KF and **Mtisi E.** 1999. Effect of dew point temperature and conidium age on germination, germ tube growth and infection of maize and sorghum by Peronosclerospora sorghi. Mycological Research 103(7):859–864.

Buah SSJ, Maranville JW, Traore A and **Bramel-Cox PJ.** 1998. Response of nitrogen use efficient sorghums to nitrogen fertilizer. Journal of Plant Nutrition 21(11):2303–2318.

Chakrabarty SK, Prasada Rao RDVJ, Varaprasad KS, Singh SD and **Girish AG.** 1998. The quarantine procedures for sorghum downy mildew - A note on the past experience. Indian Journal of Plant Protection 26:167–169.

Chantereau J, Luce C, Hamada MAG and **Fliedel G.** 1997. Selection of sorghum line, ICSV 2001 combining productivity and grain quality. International Sorghum and Millets Newsletter No 38:35–37.

Choudhari SD, Sreenivas B and **Seetharama N.** 1994. Multilocational evaluation of sweet-stalk sorghum genotypes for alternate use. Annals of Plant Physiology 7(2):256–262.

Cox TS, House LR and **Frey KJ.** 1984. Potential of wild germplasm for increasing yield of grain sorghum. Euphytica 33:673–684.

Cox TS, House LR and **Frey KJ.** 1985. Trait associations in introgressed populations of sorghum. Zeitschrift fur Pflanzenzuchtung 94:265–277.

Craufurd PQ, Mahalakshmi V, Bidinger FR, Mukuru SZ, Chantereau J, Omanga PA, Qi A, Roberts EH, Ellis RH, Summerfield RJ and **Hammer GL.** 1999. Adaptation of sorghum: characterisation of genotypic flowering responses to temperature and photoperiod. Theoretical and Applied Genetics 99(5):900–911.

Craufurd PQ, Qi AM, Ellis RH. Summerfield, RJ; Roberts, EH and **Mahalakshmi, V.** 1998. Effect of temperature on time to panicle initiation and leaf appearance in sorghum. Crop Science 38(4):942–947.

Dahlberg JA, Bandyopadhyay R, Roony WL, Odvody GN and Madera-Torres P. 2001. Evaluation of sorghum germplasm used in US breeding programmes for sources of sugary disease resistance. Plant Pathology 50(6):681–689.

Dangi OP, Kenga R, Rao NGP and **Murty DS.** 1998. Registration of 'S-35' sorghum cultivar. Crop Science 38(6):1718–1718.

Davies JC, Seshu Reddy KV and **Reddy YV.** 1980. Species of shootflies reared from sorghum in Andhra Pradesh, India. Tropical Pest Management 26(3): 258–261.

Dayakar B, Kelley TG and **Parthasarathy Rao P.** 1997. Sorghum competitiveness in India: a micro-level investigation: Indian Journal of Agricultural Economics 52(1):114–124.

de Milliano WAJ, Tavares Nogueira MFR, Pomela LM, Msiska FS, Kunene S, Matalaote B, Mbwaga AM, Kaula GM and Mtisi E. 1991. New records of Ergot of sorghum caused by *Sphacelia sorghi* in southern Africa. Plant Disease 74:215.

Deb UK, **Joshi PK** and **Bantilan MCS**. 1999. Impact of modern cultivars on growth and relative variability in sorghum yields in India: Agricultural Economics Research Review 12(2):84–106.

Debrah SK, Sanogo D and **Boadu FO**. 1996. On-farm experiments with sorghum to assess the acceptability of new varieties and herbicide treatments. Experimental Agriculture 32:219–223.

Duale AH and **Nwanze KF.** 1999. Incidence and distribution in sorghum of the spotted stem borer Chilo partellus and associated natural enemies in farmers' fields in Andhra Pradesh and Maharashtra states. International Journal of Pest Management 45(1):3–7.

Duffield SJ and **Reddy YVR.** 1997. Distribution and movement of predators of Helicoverpa armigera in intercropped sorghum and short-duration pigeonpea. Crop Research 14(2):315–335.

Duffield SJ and **Reddy YVR.** 1997. Distribution and movement of predators of *Helicoverpa armigera* in intercropped sorghum and short-duration pigeonpea. Crop Research 14(2):315–335.

Duffield SJ. 1994. Trichogramma egg parasitism of *Helicoverpa armigera* on short-duration pigeonpea intercultured with sorghum. Entomologia Experimentalis et Applicata 72:289–296.

Elasha EA, Bidinger FR and **Reddy BB.** 2001. Intercepted radiation as a tool to document plant population effects on leaf area and dry matter in sorghum *(Sorghum bicolor)*. Indian Journal of Agricultural Sciences 71(7):480–482.

Ezeaku IE, Gupta SC and **Prabhkar VR.** 1999. Classification of sorghum germplasm accessions using multivariate methods. African Crop Science Journal 7(1):97–108.

Flower DJ, Usha Rani A and **Peacock JM.** 1990. Influence of osmotic adjustment on the growth, stomatal conductance and light interception of contrasting sorghum lines in a harsh environment. Australian Journal of Plant Physiology. 17(1): 91–105.

Flower DJ. 1996. Physiological and morphological features determining the performance of the sorghum landraces of northern Nigeria. Experimental Agriculture 32:129–141.

Frederickson DE and **Leuschner K.** 1997. Potential use of benomyl for control of ergot (*Claviceps africana*) in sorghum A-lines in Zimbabwe. Plant Diesease 81(7):761–765.

Gibson PT and **Maiti RK.** 1983. Trichomes in segregating generations of sorghum matings. I. Inheritance of presence and density. Crop Science 23:73–75.

Giller KE, **Wani SP** and **Day JM**. 1986. Use of isotope dilution to measure nitrogen fixation associated with the roots of sorghum and millet genotypes. Plant and Soil 90:255–263.

Giller KE, Wani SP, Day JM and Dart PJ. 1988. Shortterm measurements of uptake of nitrogen fixed in the rhizosphere of sorghum *(Sorghum bicolor)* and millet (Pennisetum americanum). Biology and Fertility of Soils 7(1):11–15.

Gilliver B, Vasudeva Rao MJ and **Venkateswarlu P.** 1985. A design and methods of analysis to monitor crop growth conditions illustrated with sorghum screening trials for resistance to *Striga*. Experimental Agriculture 21:233–240. **Gopal Reddy V, Kameswara Rao N, Reddy BVS** and **Prasada Rao KE.** 2002. Geographic distribution of basic and intermediate races in the world collection of sorghum germplasm. International Sorghum and Millets Newsletter 43:15–17.

Gowda CLL, Reddy BVS and **Rai KN.** 2003. ICRISAT strengthens ties with private seed companies. Asian seed and planting material 10(4):16–17.

Grenier C, Bramel-Cox PJ and **Hamon P.** 2001. Core collection of sorghum: I. Stratification based on eco-geographical data. Crop Science 41(1):234–240.

Grenier C, Bramel-Cox PJ, Noirot M, Prasada Rao KE and **Hamon P.** 2000. Assessment of genetic diversity in three subsets constituted from the ICRISAT sorghum collection using random vs non-random sampling procedures. A. Using morpho-agronomical and passport data. Theoretical and Applied Genetics 101(1/2):190–196.

Grenier C, Deu M, Kresovich S, Bramel-Cox PJ and **Hamon P.** 2000. Assessment of genetic diversity in three subsets constituted from the ICRISAT sorghum collection using random vs non-random sampling procedures. B. Using molecular markers. Theoretical and Applied Genetics 101(1/2):197–202.

Grenier C, **Hamon P** and **Bramel-Cox PJ**. 2001. Core collection of sorghum: II. Comparison of three random sampling strategies. Crop Science 41(1):241–246.

Gupta SC. 1995. Allelic relationships and inheritance of brown midrib trait in sorghum. Journal of Heredity. (In En.) 86(1):72–74.

Hallgren L and Murty DS. 1983. A screening test for grain hardness in sorghum employing density grading in sodium nitrate solution. Journal of Cereal Science 1:265–274.

Harinath Naidu P and Nirula KK. 1979. Quarantine important diseases of sorghum, pearl millet, chickpea, pigeonpea and groundnut. Indian Journal of Plant Protection 7(2):175–188.

Haussmann BIG, Hess DE, Omanya GO, Reddy BVS, Welz HG and Geiger HH. 2001. Major and minor genes for stimulation of *Striga hermonthica* seed germination in sorghum and interaction with different *Striga* populations. Crop Science 41:1507–1512.

Haussmann BIG, Hess DE, Reddy BVS, Mukuru SZ, Kayentao M, Welz HG and Geiger HH. 2001. Pattern analysis of genotype × environment interaction for *Striga* resistance and grain yield in African sorghum trials. Euphytica 122:297–308. Haussmann BIG, Hess DE, Reddy BVS, Mukuru SZ, Kayentao M, Welz HG and Geiger HH. 2001. Quantitative-genetic parameters of sorghum growth under *Striga* infestation in Mali and Kenya. Plant Breeding 120:49–56.

Haussmann BIG, Hess DE, Reddy BVS, Welz HG and Geiger HH. 2000. Analysis of resistance to *Striga hermonthica* in diallel crosses of sorghum. Euphytica 116:33–40.

Haussmann BIG, Hess DE, Seetharama N, Welz HG and Geiger HH. 2002. Construction of a combined sorghum linkage map from two recombinant inbred populations using AFLP, SSR, RFLP and RAPD markers and comparison with other sorghum maps. Theoretical and Applied Genetics. 105(4):629–637.

Haussmann BIG, Hess DE, Sissoko I, Kayentao M, Reddy BVS, Welz HG and Geiger HH. 2001. Diallel analysis of sooty stripe resistance in sorghum. Euphytica 122:99–104.

Haussmann BIG, Hess DE, Weiz HG and Geiger HH. 2000. Improved methodologies for breeding *striga*-resistant sorghums. Field Crops Research. (In En.) 66:195–211.

Haussmann BIG, Mahalakshmi V, Reddy BVS, Seetharama N, Hash CT and Geiger HH. 2002. QTL mapping of stay-green in two sorghum recombinant inbred populations. Theoretical and Applied Genetics 106:133–142.

Haussmann BIG, Obilana AB, Ayiecho PO, Blum A, Schipprack W and Geiger HH. 2000. Yield and yield stability of four population types of grain sorghum in a semi-arid area of Kenya. Crop Science 40(2):319–329.

Haussmann BIG, Obilana AB, Ayiecho PO, Blum A, Schipprack W and Geiger HH. 1999. Quantitativegenetic parameters of sorghum (*Sorghum bicolor* [L.] Moench) grown in semi-arid areas of Kenya. Euphytica. 105(2):109–118.

Haussmann BIG, Obilana AB, Blum A, Ayiecho PO, Schipprack W and Geiger HH. 1998. Hybrid performance of sorghum and its relationship to morphological and physiological traits under variable drought stress in Kenya. Plant Breeding 117(3):223–229.

Hazra S, Thakur RP, Uma Devi G and Mathur K. 1999. Pathogenic and molecular variability among twelve isolates of *Colletotrichum graminicola* from sorghum. Journal of Mycology and Plant Pathology 29:176–183. **Hess DE, Bandyopadhyay R** and **Sissoko I.** 2002. Pattern analysis of sorghum genotype x environment interaction for leaf, panicle and grain anthracnose in Mali. Plant Disease. 86(12):1374–1382.

Holly L, Seetharama N and House LR. 1987. Sorghums in the post-rainy season. 1. Effect of irrigation and date of sowing on the grain and stover yields of diverse cultivars. Experimental Agriculture. 24:31–36.

House LR. 1987. Sorghum—present status and future potential. Outlook on Agriculture 16(1):21–27.

Huda AKS, Madhusudan Reddy D and Seetharama N. 1983. Effect of moisture stress on yield components of *Sorghum bicolor* (L.) Moench. Sorghum Newsletter 26:129–130.

Huda AKS, Sivakumar MVK, Sri Rama YV, Sekaran JG and Virmani SM. 1987. Observed and simulated responses of two sorghum cultivars to different water regimes. Field Crops Research 16(4):323–335.

Huda AKS, Virmani SM and Sekaran JG. 1985. Simple models for predicting sorghum grain yield using environmental factors. Journal of the Indian Society for Agricultural Statistics 37(2):184–191.

Huda AKS, Virmani SM and Sekaran JG. 1986. Simulation model for sorghum crop and its application. Indian Journal of Plant Physiology 29(4):317–330.

Huda AKS. 1987. Simulating yields of sorghum and pearl millet in the semi-arid tropics. Field Crops Research 15(3–4):309–325.

Huda AKS. 1988. Simulating growth and yield responses of sorghum to changes in plant density. Agronomy Journal. 80(3):541–547.

Isakeit T, Bandyopadhyay R and **Odovody GN.** 1999. Reaction of sorghum hybrids to ergot *(Claviceps africana)* in south and central Texas. Phytopathology 89:S35.

Jambunathan R and Kherdekar Milind S. 1991. Flavan-4-ol concentration in leaf tissues of grain mold susceptible and resistant sorghum plants at different stages of leaf development. Journal of Agricultural and Food Chemistry 39(6):1163–1165.

Jambunathan R, Rao NS and Gurtu S 1983. Rapid methods for estimating protein and lysine in sorghum *(Sorghum bicolor* [L.] Moench). Cereal Chemistry 60(3):192–194.

Jambunathan R, Butler LG, Bandyopadhyay R and Mughogho LK. 1986. Polyphenol concentrations in grain, leaf and callus tissues of mold-susceptible and mold-resistant sorghum cultivars. Journal of Agricultural and Food Chemistry 34(3):425–429.

Jambunathan R, Kherdekar Milind S and Vaidya Pawan. 1991. Ergosterol concentration in mold-susceptible and mold-resistant sorghum at different stages of grain development and its relationship to flavan-4-ols. Journal of Agricultural and Food Chemistry 39(10):1866–1870.

Jambunathan R, Kherdekar MS and Bandyopadhyay R. 1990. Flavan-4-ols concentration in mold-susceptible and mold-resistant sorghum at different stages of grain development. Journal of Agricultural and Food Chemistry 38(3):545–548.

Jambunathan R, Kherdekar MS and Stenhouse JW. 1992. Sorghum grain hardness and its relationship to mold susceptibility and mold resistance. Journal of Agricultural and Food Chemistry 40(8):1403–1408.

Jambunathan R, Kherdekar MS, Raghunath K and Subramanian V. 1995. Volatile constituents of moldsusceptible and mold-resistant sorghum (*Sorghum bicolor* (i.) Moench) grains. Journal of Agricultural, Food and Chemistry 43:215–216.

Jayanthi PDK, Reddy BVS, Gour TB and Reddy DDR. 1999. Genetics of glossy and trichome charaters in sorghum hybrids of cytoplasmic male sterile lines. Journal of Maharashtra Agricultural Universities 24(3):251–256.

Jeevananda Reddy S, Maiti RK and Seetharama N. 1984. An iterative regression approach for prediction of sorghum *(Sorghum bicolor)* phenology in the semiarid tropics. Agricultural and Forest Meteorology. 32:323–338.

Kadi Kadi H, Gilstrap FE, Teetes GL, Youm O and Pendleton BB. 1998. Field evaluation, longevity and oviposition period of millet head miner (Lepidoptera: Noctuidae) in Niger. International Sorghum and Millets Newsletter No 39:143–144.

Kamala V, Singh SD, Bramel PJ and Rao DM. 2002. Sources of resistance to downy mildew in wild and weedy sorghums. Crop Science 42(4):1357–1360.

Kameswara Rao N and Sastry DVSSR. 2002. Vacuum storage and seed survival in pearl millet and sorghum. International Sorghum and Millets Newsletter No 43:20–22.

Kanaka Durga K, Reddy MSS, Reddy BVS and Bandyopadhyay R. 2002. Response of different genotypes of sorghum (*Exserohilum turcicum* Pass.). International Journal of Tropical Plant Diseases 17:91–102.

Kanwar JS, Rego TJ and Seetharama N. 1984. Fertiliser and water-use efficiency in pearl millet and sorghum in Vertisols and Alfisols of semiarid India. Fertiliser News 29(4):42–52.

Karunakar RI, Pande S and **Thakur RP**. 1996. A greenhouse screening technique to assess rust resistance in sorghum. International Journal of Pest Management 42(4):221–225.

Katayama K, Ito O, Adu-Gyamfi JJ, Rao TP, Dacanay EV and Yoneyama T. 1999. Effects of NPK fertilizer combinations on yield and nitrogen balance in sorghum or pigeonpea on a Vertisol in the semi-arid tropics. Soil Science and Plant Nutrition 45(1):143–150.

Kausalya KG, Nwanze KF, Reddy YVR and Nwilene FE. 1997. A simple head cage technique for monitoring sorghum midge (Diptera: Cecidomyiidae). International Journal of Pest Management 43(1):35–38.

Kausalya KG, Nwanze KF, Reddy YVR, Nwilene FE and Reddy DDR. 1997. Emergence pattern of sorghum midge and its major parasitoids on midge-resistant and susceptible genotypes. Biocontrol Science And Technology. 7(2):259–269.

Kipe-Nolt JA, Avalakki UK and **Dart PJ.** 1985. Root exudation of sorghum and utilization of exudates by nitrogen-fixing bacteria. Soil Biology and Biochemistry 17(6):859–863.

Krishnamurthy L, Reddy BVS and **Serraj R.** 2003. Screening sorghum germplasm for tolerance to soil salinity. International Sorghum and Millets Newsletter 44:90–92.

Kumari APP, Sharma HC and Reddy DRR. 2000. Components of resistance to the sorghum head bug, *Calocoris angustatus*. Crop Protection 19(6):385–392.

Laryea KB and **Unger PW**. 1995. Grassland converted to cropland: soil conditions and sorghum yield. Soil and Tillage Research 33:29–45.

Latha J, Mathur K, Mukherjee PK, Chakraborty A, Rao VP and Thakur RP. 2002. Morphological, pathogenic and genetic variability amongst sorghum isolates of *Colletotrichum graminicola* from India. Indian Phytopathology 55(1):19–25.

Lee KK, Wani SP, Sahrawat KL, Trimurtulu N and Ito O. 1997. Nitrogen and/or phosphorus fertilization effects in organic carbon and mineral contents in the rhizosphere of field grown sorghum. Soil Science and Plant Nutrition 43(1):117–126.

Lee KK, Wani SP, Yoneyama T, Trimurtulu N and Harikrishnan R. 1994. Associative N2-fixation in pearl millet and sorghum: levels and response to inoculation. Soil Science and Plant Nutrition 40(3):477–484.

Leuschner K, Taneja SL and **Sharma HC.** 1985. The role of host-plant resistance in pest management in sorghum in India. Insect Science and Its Application 6(3):453–460.

Littlefield LJ, Delfosse P, Whallon JH, Hassan ZM, Sherwood JL and Reddy DVR. 1997. Anatomy of sporosori of *Polymyxa graminis*, the vector of Indian peanut clump virus, in roots of *Sorghum bicolor*. Canadian Journal of Plant Pathology 19:281–288.

Mahalakshmi V and **Bidinger FR.** 2002. Evaluation of stay-green sorghum germplasm lines at ICRISAT. Crop Science 42(3):965–974.

Mahalakshmi V, Reddy BVS, Bandyopadhyay R, Sharma HC, Rao NK and Ortiz R. 2001. Sorghum on line crop information. *In* Sorghum and Millet Diseases III. (Leslie JF, ed.). Iowa State University Press, Ames.

Maiti RK and **Bidinger FR**. 1979. A simple approach to the identification of shoot-fly tolerance in sorghum. Indian Journal of Plant Protection 7(2):135–140.

Maiti RK and **Gibson PT.** 1983. Trichomes in segregating generations of sorghum matings. II Association with shootfly resistance. Crop Science 23:76–79.

Maiti RK, Prasada Rao KE, Raju PS and House LR. 1984. The glossy trait in sorghum: its characteristics and significance in crop improvement. Field Crops Research 9:279–289.

Maiti RK, Raju PS and **Bidinger FR.** 1981. Evaluation of visual scoring for seedling vigour in sorghum. Seed Science and Technology 9:613–622.

Maiti RK, Raju PS and **Bidinger FR.** 1985. Studies on germinability and some aspects of pre-harvest physiology of sorghum grain. Seed Science and Technology 13:27–35.

Maiti RK, Raju PS, Reddy BVS and Peacock JM. 1989. Evaluation of techniques to screen for drought resistance in sorghum seedlings. Pages 106–110 *in* Turrialbon, Vol.39.

Maiti RK, Ramaiah KV, Bisen SS and Chidley VL. 1984. A comparative study of the haustorial development of *Striga asiatica* (L.) Kuntze on sorghum cultivars. Annals of Botany 54:447–457.

Mali VR and **Thakur RP.** 1999. Reactions and virus titres of differential sorghum inbred lines mechanically inoculated with an Indian isolate of sorghum red stripe potyvirus (SRSV-Ind). Sugar Tech 1(1–2):13–18.

Mali VR and **Thakur RP.** 2000. Natural infection of sugarcane by an immunity breaking strain of sorghum mosaic potyvirus (Sr MV-IBS) in peninsular India. Sugar Tech 2(3):20–25.

Marley PS and **Ajayi O**. 1999. Sorghum grain mold and the influence of head bug Eurystylus oldi in West and Central Africa. Journal Of Sustainable Agriculture 13(3):35–44.

Marley PS and **Ajayi O.** 2002. Assessment of anthracnose resistance (*Colletotrichum graminicola*) in sorghum (*Sorghum bicolor*) germplasm under field conditions in Nigeria. Journal Of Agricultural Science 138(2):201–208.

Marley PS, Bandyopadhyay R, Tabo R and Ajayi O. 2001. Availability of sorghum germplasm with multiple resistance to anthracnose and grey leaf spot in Nigeria. Tropical Science 41:44–49.

Marley PS, Kehinde AE, Daniel AA, Isa O and Akintayo I. 2001. Reactions of sorghum genotypes to anthracnose and grey leaf spot diseases under Sudan and Sahel Savanna field conditions of Nigeria. Sustainable Agriculture 18:105–116.

Marley PS, Thakur RP and Ajayi O. 2001. Variation among foliar isolates of *Colletotrichum sublineolum* of sorghum in Nigeria. Field Crops Research 69:133–142.

Mathur K, Rao V and **Thakur RP.** 1997. Intrapopulation variability in *Colletotrichum sublineolum* infecting sorghum. Journal of Mycology and Plant Pathology 27(3):302–310.

Mathur K, Thakur RP and Rao VP. 1997. A strain of *Colletotrichum gloeosporioides* causing anthracnose on yellow sorghum. International Sorghum and Millets Newsletter No 38:69–70.

Mathur K, Thakur RP and Rao VP. 2001. Characterization of Colletotrichum graminicola populations from a sorghum hybrid CSH 9 for morphological and pathogenic variability. Indian Phytopathology 54:165–169.

Matthews RB, Azam-Ali SN and Peacock JM. 1990. Response of four sorghum lines to mid-season drought. II. Leaf characteristics. Field Crops Research 25(3– 4):297–308.

Matthews RB, Azam-Ali SN, Saffell RA, Peacock JM and Williams JH. 1991. Plant growth and development in relation to the microclimate of a sorghum/ groundnut intercrop. Agricultural and Forest Meteorology 53:285–301.

Matthews RB, Reddy DM, Azam-Ali SN and Peacock JM. 1990. Response of four sorghum lines to midseason drought. I. Growth, water use and yield. Field Crops Research 25(3–4):279–296.

Mbwaga AM, **de Milliano WAJ** and **Pande S**. 1993. Diseases and parasitic weeds of sorghum in Tanzania: occurrence and incidence, 1986–1990. Crop Protection 12:183–188.

McGaw EM, Witcombe JR and Hash CT. 1997. Making miracles with millet molecules. International Sorghum and Millets Newsletter No 38:19–28.

Mgonja MA, Monyo ES, Chandra S, Rohrbach DD, Murambadoro D and Mpande C. 2002. Regional collaboration for research Impact: the case for SADC regional development and adaptability of improved sorghum and pearl millet varieties: SMINET News 3(2):16–20.

Mgonja MA, Monyo ES, Madzamuse M, Chisi M and Murambadoro D. 2002. Quality analysis of the Tanzania photoperiod sensitive sorghums and potential for their improvement through the lead NARS approach. SMINET News 3(2):9–11. (accepted for ISMN 2002).

Minja E, Wohlleber B, Ekandjo S, Chisi M, Musonda E and Mwandila D. 1999. Integrated pest management (IPM) components for control of armored bush cricket on pearl millet and sorghum in farmers' fields in Namibia and Zambia. International Sorghum and Millets Newsletter No 40:47–50.

Mughogho LK, Karunakar RI and Suresh Pande. 1982. Wild sorghum species as sources of resistance to *Peronosclerospora sorghi*. International Working Group on Graminaceous Downy Mildews Newsletter 4(1):3–4.

Murthy DS, Diarra M and Dembele B. 1997. New sources of resistance to *Striga hermonthica* in

sorghum. International Sorghum and Millets Newsletter No 38:76–77.

Murthy DS, Diarra M, Coulibaly B and Coulibaly MN. 1997. Combining ability of hybrid parents for sooty stripe resistance in sorghum. International Sorghum and Millets Newsletter No 38:31–33.

Murthy DS, Nwasike CC and Atokple IDK. 1998. Registration of ICSV 111 sorghum cultivar. Crop Science 38(6):1716–1717.

Murty DS and **House LR**. 1984. Components of generation means for resistance to grain mold-causing fungi *Curvularia* and *Fusarium* in sorghum. Cereal Research Communications 12(3–4):237–244.

Murty DS and **Nicodemus KD**. 1987. Interallelic relations among endosperm variants in sorghum. Journal of Heredity. 78:391–394.

Murty DS, Nicodemus KD and House LR. 1982. Inheritance of basmati and dimpled seed in sorghum. Crop Science 22:1080–1082.

Murty DS, Nicodemus KD, Patel HD, Mukuru SZ and House LR. 1983. Studies on popping quality in sorghum. Sorghum Newsletter 26:97–99.

Murty DS, Nwasike CC and Da S. 1999. Registration of sorghum parental lines ICSA/B 38, ICSA/B 39, ICSV 247 and ICSR 101. Crop Science 39(2):599–600.

Murty DS, Patel HD and **House LR.** 1984. Studies on flour particle size and endosperm texture in sorghum. Journal of Food Science and Technology 21:359–363.

Murty DS, Patel HD, Prasada Rao KE and **House LR.** 1982. A note on screening the Indian sorghum collection for popping quality. Journal of Food Science and Technology 19:79–80.

Murty DS, Singh M and Nicodemus KD. 1988. A genetic study of popping quality in sorghum *(Sorghum bicolor* [L.] Moench). Euphytica 37(1):5–8.

Murty DS, Singh U, Suryaprakash S and Nicodemus KD. 1985. Soluble sugars in five endosperm types of sorghum. Cereal Chemistry 62(2):150–152.

Murty DS, Subramanian V, Suryaprakash S, Patel HD and House LR. 1984. Amylase activity and sprout damage in sorghum *(Sorghum bicolor* [L.] Moench). Cereal Chemistry 61(5):415–418.

Murty DS, Swanston JS and Taylor K. 1992. Grain and malt milling energies in sorghum and their

relationships with extract and diastatic power. Journal of the Institute of Brewing. 98:129–131.

Musabyimana T, Sehene C and **Bandyopadhyay R.** 1995. Ergot resistance in sorghum in relation to flowering, inoculation technique and disease development. Plant Pathology. 44:109–115.

Mushonga JN, Gupta SC and **House LR.** 1993. Genetic and phenotypic correlations for malting quality traits in grain sorghum. Zimbabwe Journal of Agricultural Research 31(2):161–171.

Mushonga JN, Gupta SC and House LR. 1997. Combining ability and heterosis for diastatic activity in grain sorghum. African Crop Science Journal 5(2):99–106.

Mythili PK, Seetharama N and Reddy VD. 1999. Plant regeneration from embryogenic cell suspension cultures of wild sorghum *(Sorghum dimidiatum Stapf.)*. Plant Cell Reports 18:424–428.

Naidu, RA, Harikrishnan R, Manohar SK, Reddy DVR, Ratna AS, King SB and Bandyopadhyay R.1989. The occurrence of maize mosaic virus on sorghum in India. Annals of Applied Biology 114(2):301–310.

Nakamura T, Adu-Gyamfi JJ, Yamamoto A, Ishikawa S, Nakano H and Ito O. 2002. Varietal differences in root growth as related to nitrogen uptake by sorghum plants in low-nitrogen environment. Plant and Soil 245 (1):17–24.

Nambiar PTC, Rego TJ and Srinivasa Rao B. 1987. Comparison of the requirements and utilization of nitrogen by genotypes of sorghum (*Sorghum bicolor* [L.] Moench) and nodulating and non-nodulating groundnut (Arachis hypogaea L.). Field Crops Research 15(2):165–179.

Narayana YD, Bandyopadhyay R, Pande S, Mathur K and Shetty HS. 1997. Evaluation of sorghum lines for multiple disease resistance in India. Journal of Mycology and Plant Pathology 27(3):271–274.

Narayana YD, Mughogho LK and **Bandyopadhyay R.** 1995. Evaluation of greenhouse inoculation techniques to screen sorghum for resistance to downy mildew. Euphytica 86:49–53.

Natarajan M and **Willey RW.** 1980. Sorghumpigeonpea intercropping and the effects of plant population density. 1. Growth and yield. Journal of Agricultural Science 95:51–58.

Natarajan M and Willey RW. 1980. Sorghumpigeonpea intercropping and the effects of plant population density. 2. Resource use. Journal of Agricultural Science 95:59–65. **Natarajan M** and **Willey RW.** 1985. Effect of row arrangement on light interception and yield in sorghum-pigeonpea intercropping. Journal of Agricultural Science 104:263–270.

Navi SS, Singh SD, Gopal Reddy V, Kameswara Rao N and Bramel PJ. 2002. New sources of resistance to grain mold in converted zerezera sorghum. International Sorghum and Millets Newsletter No 43:77–80.

Ngugi HK, Julian AM, King SB and Peacocke BJ. 2000. Epidemiology of sorghum anthracnose (*Colletotrichum sublineolum*) and leaf blight (*Exserohilum turcicum*) in Kenya. Plant Pathology 49(1):129–140.

Ngugi HK, King SB, Abayo GO and Reddy YVR. 2002. Prevalence, incidence and severity of sorghum diseases in western Kenya. PLANT DISEASE 86(1):65–70.

Nwanze Kanayo F. 1988. Distribution and seasonal incidence of some major insect pests of sorghum in Burkina Faso. Insect Science and Its Application 9(3):313–321.

Nwanze KF and **Nwilene FE.** 1998. Interactions of host plant resistance and biological control of stemborers in sorghum. Insect Science and its Application 18(3):261–266.

Nwanze KF and **Overholt WA.** 1997. Integrated management of stemborers of sorghum and pearl millet. Insect Science and its Application 17(1):1–8.

Nwanze KF and **Reddy YVR.** 1991. A rapid method for screening sorghum for resistance to *Chilo partellus* (Swinhoe) (Lepidoptera: pyralidae). Journal of Agricultural Entomology 8(1):41–49.

Nwanze KF, Nwilene FE and Reddy YVR. 1998. Evidence of shoot fly *Atherigona soccata* Rondani (Dipt., Muscidae) oviposition response to sorghum seedling volatiles. Journal of Applied Entomology 122:591–594.

Nwanze KF, Nwilene FE and **Reddy YVR.** 1998. Fecundity and diurnal oviposition behaviour of sorghum shoot fly, *Atherigona soccata* Rondani (Diptera: Muscidae). Entomon 23(7):77–82.

Nwanze KF, Pring RJ, Sree PS, Butler DR, Reddy YVR and Soman P. 1992. Resistance in sorghum to the shoot fly, Atherigona soccata: epicuticular wax and wetness of the central whorl leaf of young seedlings. Annals of Applied Biology 120:373–382.

Nwanze KF, Reddy YVR and Soman P. 1990. The role of leaf surface wetness in larval behaviour of the

sorghum shoot fly, *Atherigona soccata*. Entomologia Experimentalis et applicata 56(2):187–195.

Nwanze KF, Reddy YVR, Nwilene FE, Kausalya KG and Reddy DDR. 1998. Tritrophic interactions in sorghum, midge (*Stenodiplosis sorghicola*) and its parasitioid (*Aprostocetus* spp.). Crop Protection 17(2):165–169.

Nwanze KF, Reddy YVR, Nwilene FE, Soman P, Laryea KB and Jayachandran R. 1996. Reduction of shoot fly damage in irrigated post-rainy season sorghum by manipulating irrigation. Annals of Applied Biology. 129:391–403.

Nwanze KF, Reddy YVR, Taneja SL, Sharma HC and Agrawal BL. 1991. Evaluating sorghum genotypes for multiple insect resistance. Insect Science and its Application 12(1–3):183–188.

Nwanze KF, Seetharama N, Sharma HC and Stenhouse JW. 1995. Biotechnology in pest management improving resistance in sorghum to insect pests. African Crop Science Journal 3(2):209–215.

Nwanze KF, Sree PS, Butler DR, Reddy DDR, Reddy YVR and Soman P. 1992. The dynamics of leaf surface wetness of sorghum seedlings in relation to resistance to the shootfly, *Atherigona soccata*. Entomologia experimentalis at applicata 64:151–160.

Nwilene FE, Nwanze KF and **Reddy YVR.** 1998. Effect of sorghum ecosystem diversification and sowing date on shoot fly, stem borer and associated parasitoids. Crops Research 16(2):239–245.

Obilana AB. 1998. Sorghum improvement. International Sorghum and Millets Newsletter No 39:4–17.

Olabanji OG, Tabo R, Flower DJ, Ajayi O, Ushie F, Kaigama BK and Ikwelle MC. 1996. Survey of Masakwa sorghum growing areas in northeastern Nigeria. International Sorghum and Millets Newsletter 37:61–63.

Omori T, Agrawal BL and **House LR**. 1988. Genetic divergence for resistance to shootfly, *Atherigona soccata* Rond. in sorghum, *Sorghum bicolor* (L.) Moench and its relationship with heterosis. Insect Science and Its Application 9(4):484–488.

O'Neill MK and **Diaby M.** 1987. Effects of high soil temperature and water stresses on Malian pearl millet and sorghum during seedling stage. Journal of Agronomy and Crop Science 159:192–198.

Osman MA, Raju PS and Peacock JM. 1991. The effect of soil temperature, moisture and nitrogen on *Striga*

asiatica (L.) Kuntze seed germination, viability and emergence on sorghum (*Sorghum bicolor* [L.] Moench) roots under field conditions. Plant and Soil 131:265–273.

Ougham HJ, Peacock JM, Stoddart JL and **Soman P**. 1988. High temperature effects on seedling emergence and embryo protein synthesis of sorghum. Crop Science 28:251–253.

Padmakumari AP, Sharma HC and Reddy DDR. 2000. Components of resistance to the sorghum head bug, *Calocoris angustatus.* Crop Protection 19:385–392.

Panchbhai SD, Ravinder Reddy C and **Verma BK.** 1984. Effect of sorghum seed treatment with double dose of mercurial fungicides on seed viability and smut spore germination. Seed Research 12(2):33–37.

Pande S and **Gupta SC.** 1997. Occurrence of downy mildew on finger millet in Nigeria. International Sorghum and Millets Newsletter No 38:123–124.

Pande S and **Karunakar RI**. 1994. Etiology of stalk rot and lodging in grain sorghum. International Journal of Tropical Plant Diseases 12:117–137.

Pande S, Harikrishnan R, legbejo MD, ughogho LK, Karunakar RI and Ajayi O. 1993. Prevalence of sorghum diseases in Nigeria. International Journal of Pest Management 39(3):297–303.

Pande S, Karunakar RI and Thakur RP. 1997. Influence of soil moisture stress and *Macrophomina phaseolina* in charcoal rot development in grain sorghum. Journal of Mycology and Plant Pathology 27(3):255–260.

Pande S, Marely PS and **Ajayi O**. 1997. Increasing incidence of covered kernel smut disease of sorghum in Northern Nigeria. International Sorghum and Millets Newsletter No 38:59–61.

Pande S, Mughogho LK and **Karunakar RI**. 1990. Effect of moisture stress, plant population density and pathogen inoculation on charcoal stalk rot of sorghum. Annals of Applied Biology 116(2):221–232.

Pande S, Mughogho LK and **Karunakar RI.** 1992. Incidence of charcoal rot in sorghum cultivars as affected by sowing date and plant density. Indian Journal of Plant Protection 20:162–170.

Pande S, Mughogho LK, Bandyopadhyay R and Karunakar RI. 1991. Variation in pathogenicity and cultural characteristics of sorghum isolates of *Colletotrichum graminicola* in India. Plant Disease 75(8):778–783.

Pande S, Mughogho LK, Seetharama N and **Karunakar RI.** 1989. Effects of nitrogen, plant density, moisture stress and artificial inoculation with *Macrophomina phaseolina* on charcoal rot incidence in grain sorghum. Journal of Phytopathology 126(4):343–352.

Pande S, Thakur RP, Karunakar RI, Bandyopadhyay R and Reddy BVS. 1994. Development of screening methods and identification of stable resistance to anthracnose in sorghum. Field Crops Research 38:157–165.

Pazoutova S, Bandyopadhyay R, Frederickson DE, Mantle PG and Frederiksen RA. 2000. Relations among sorghum ergot isolates from the Americas, Africa, India and Australia. Plant Disease. 84(4):437– 442.

Peacock JM, Miller WB, Matsuda K and **Robinson DL**. 1990. Role of heat girdling in early seedling death of sorghum. Crop Science 30(1):138–143.

Peterschmitt M, Ratna AS, Sacks WR, Reddy DVR and **Mughogho LK.** 1991. Occurrence of an isolate of maize stripe virus on sorghum in India. Annals of Applied Biology 118(1):57–70.

Piara Singh, Monteith JL, Lee KK, Rego TJ and **Wani SP.** 1998. Response to fertilizer nitrogen and water of postrainy season sorghum on a vertisol. 2. Biomass and water extraction. Journal of Agricultural Sciences 131(4):429–438.

Piara Singh, Srinivas K, Victor US, Patil JD, Virmani SM and **Wani SP.** 2001. Potential of opportunity double cropping with short duration legumes in the rabi sorghum areas of India. Indian Journal of Dryland Agricultural Research and Development. (in press).

Prasada Rao KE and **Hamoud Ali Abdulla.** 1986. Sorghum germplasm from the Yemen Arab Republic. Sorghum Newsletter 29:8–10.

Prasada Rao KE and **Kameswara Rao N.** 1994. Sorghum stapfii (Hook. f) C.E.E. Fisher - a little known wild species from Tamil Nadu. Indian Journal of Plant Genetic Resources. 7:105–107.

Prasada Rao KE and **Mengesha MH**. 1983. Sorghum germplasm from Rwanda. Sorghum Newsletter 26:86–87.

Prasada Rao KE and **Mengesha MH.** 1983. Zera-zera sorghums in Ethiopia. Sorghum Newsletter 25:87–88.

Prasada Rao KE and Mengesha MH. 1987. Morphology and distribution of zerazera sorghums. Journal d'Agriculture Traditionelle et de Botanique Appliquee 34:51–55.

Prasada Rao KE and **Murty DS.** 1979. A basmati (scented) sorghum from Madhya Pradesh. Current Science 48(18):824–825.

Prasada Rao KE, Hussain MH and **Mengesha MH**. 1980. Collecting sorghum germplasm in Somalia. FAO/ IBPGR Plant Genetic Resource Newsletter. 78/79. 41.

Prasada Rao KE, Obilana AT and **Mengesha MH**. 1985. Collection of Kaura, Fara-fara and Guineense sorghums in northern Nigeria. Journal d'Agriculture Traditionelle et de Botanique Appliquee 32:73–81.

Prasada Rao KE, Saideswara Rao Y and **Mengesha MH.** 1989. *Sorghum purpureosericeum* (A. Rich) Aschers. and Schweif sub sp. dimidiatum (Stapf) Garber: occurrence, morphology and cytology. Current Science 58(7):385–386.

Rai KN, Murthy DS, Andrews DJ and **Bramel Cox PJ.** 1999. Genetic enhancement of pearl millet and sorghum for the semi-arid tropics of Asia and Africa. Genome 42(4):617–628.

Raju PS, Osman MA, Soman P and **Peacock JM. 1990.** Effects of N, P and K on *Striga asiatica* (L.) Kuntze seed germination and infestation of sorghum. Weed Research 30(2):139–144.

Ramaiah KV, Chidley VL and **House LR.** 1990. Inheritance of *Striga* seed-germination stimulant in sorghum. Euphytica 45(1):33–38.

Ramaiah KV, Chidley VL and **House LR.** 1991. A timecourse study of early establishment stages of parasitic angiosperm *Striga asiatica* on susceptible sorghum roots. Annals of Applied Biology 118(2):403–410.

Ramaiah KV. 1977. Identification of a male-sterile gene in sorghum. Current Science 46(5):155.

Ramakrishna A, Ong CK and **Reddy SLN.** 1991. Studies on integrated weed management in sorghum. Tropical Pest Management 37(2):159–161.

Rao JN, Garud TB, Pande S, Rao PM and **Deshmukh RV.** 1997. Survey of diseases of sorghum in Maharashtra during the 1995 rainy season. International Sorghum and Millets Newsletter No 38:61–63.

Rao MR and **Willey RW.** 1980. Evaluation of yield stability in intercropping: studies on sorghum/ pigeonpea. Experimental Agriculture 16:105–116.

Rao MR and **Willey RW**. 1980. Preliminary studies of intercropping combinations based on pigeonpea or sorghum. Experimental Agriculture 16:29–39.

Rao MR and **Willey RW.** 1983. Effects of pigeonpea plant population and row arrangement in sorghum/pigeonpea intercropping. Field Crops Research 7:203–212.

Rao VP, Tesfamichael Abraha, Obilana AB, Preston S and Thakur RP. 2002. Prevalence of sorghum diseases in Eritrea. ISMN-2002 (submitted).

Rao VP, Thakur RP and **Mathur K.** 1998. Morphological and pathogenic diversity among grain sorghum isolates of *Colletotrichum graminicola* in India. Indian Phytopathology. 51(2):164–174.

Ratnadass A, Chantereau J, Coulibaly MF and **Cilas C**. 2002. Inheritance of resistance to the panicle-feeding bug *Eurystylus* oldi and the sorghum midge *Stenodiplosis sorghicola* in sorghum. Euphytica. 123(1):131–138.

Ratnadass A, Cisse B and **Malle K.** 1994. Notes on the biology and immature stages of West African sorghum head bugs *Eurystylus immaculatus* and *Creontiades pallidus* (Heteroptera:Miridae). Bulletin of Entomological Research 84:383–388.

Ratnadass A, Cisse B, Diarra D, Sidibe B, Sogoba B and Thiero CAT. 1999. Fauna of stored sorghum grain in two regions of Mali and comparison of losses inflicted to local or high-yielding introduced varieties. Annales de la Societe Entomologique de France 35:(Suppl):489–495.

Ratnavathi CV, Ravi SB, Subramanian V and **Rao NS**. 2000. A study on the suitability of unmalted sorghum as a brewing adjunct. Journal of the Institute of Brewing 106(6):383–387.

Ratrnadass A, Cisse B, Diarra D and **Sangare ML.** 1997. Indigenous host plants of sorghum head-bugs (Heteroptera: Mirdae) in Mali. African Entomology 5(1):158–160.

Ratrnadass A, Cisse B, Diarra D, Mengual L, Taneja SL and **Thiero CAT**. 1997. Perspective on biointensive pest management of sorghum. Insect Science and its Application 17(2):227–233.

Rattunde HFW, Zerbini E, Chandra S and **Flower DJ.** 2001. Stover quality of dual-purpose sorghum: genetic and environmental sources of variation. Field Crops Research 71(1):1–8.

Rattunde HFW. 1998. Early-maturing dual-purpose sorghums: agronomic trait variation and covariation among landraces. Plant Breeding. (In En.) 117:33–36.

Reddy Belum VS and Comstock RE. 1976. Simulation of the backcross breeding method. 1. The effect of

heritability and gene number on fixation of desired alleles. Crop Sci. 16:825 830.

Reddy Belum VS and **Stenhouse JW.** 1994. Sorghum Improvement for semi-arid tropics region: past, current and future research thrusts in Asia. Punjabrao Krishi Vidyapeeth (Akola) Research Journal 18:155–170.

Reddy Belum VS and **Vera Raul R.** 1996. A Research and Network strategy for sustainable sorghum production systems for Latin America; an Inter Center Initiative. Pages 91–92 in International Sorghum and millets newsletter 1996 (Vol 37).

Reddy Belum VS, **Green JM** and **Bisen SS**. 1978. Genetic male sterility in pigeonpea. Crop Sci. 18:362364.

Reddy Belum VS, **Mughogho LK**, **Narayana YD**, **Nicodemus KD** and **Stenhouse JW**. 1992. Inheritance pattern of downy mildew resistance in advanced generations of sorghum. Annals of Applied Biology 121:249–255.

Reddy Belum VS, Seetharama N and **House LR.** 1987. Sorghums in the postrainy season. 1. Effect of irrigation and date of sowing on the grain and stover yields of diverse cultivars. Expt. Agric. 24:31 36.

Reddy BVS and **Green JM**b 1976. A genetic male sterile in *Cajanus cajan* L. Mill sp. Abstract appeared in the Proceedings of American Society of Agronomy, USA.

Reddy BVS and **House LR**. 1983. Observations on associations of recovery drought resistance with some important agronomic traits in sorghum. Sorghum Newsletter 26:128–129.

Reddy BVS and **Prasada Rao GN.** 1971. Genetic analysis of some exotic x Indian crosses in sorghum. V. Character association and response to selection in advanced generation progenies. Indian J. Genet. 31:510 520.

Reddy BVS and **Reddy PS.** 2003. Sweet sorghum: characteristics and potential. International Sorghum and Millets Newsletter 44:26–28.

Reddy BVS and **Sinha SK**. 1971. Genetic control of photosynthetic activity and its importance in plant breeding a review. Indian J. Genet. 31:94 104.

Reddy BVS, Maiti RK, Seetharama N and **Peacock JM.** 1983. Genetic variability for moisture stress recovery resistance in sorghum. Sorghum Newsletter 26:141–142.

Reddy BVS, Ramesh S and **Reddy PS.** 2004. Sorghum breeding research at ICRISAT–goals, strategies,

methods and accomplishments. International Sorghum and Millet Newsletter (in press).

Reddy BVS, Reddy LJ and **Murthy AN.** 1977. Reproductive variants in *Cajanus cajan* (L.) Mill sp. Trop. Grain Leg. Bull, 7.11(1977).

Reddy BVS, Reddy PS, Bidinger F and **Blümmel M.** 2003. Crop management factors influencing yield and quality of crop residues. Field Crops Research 84:57–77.

Reddy VG, **Rao NK**, **Reddy BVS** and **Rao KEP**. 2002. Geographic distribution of basic and intermediate races in the world collection of sorghum germplasm. International Sorghum and Millets Newsletter 43:15–17.

Rego TJ and **Rao VN.** 2000. Long-term effects of grain legumes on rainy-season sorghum productivity in semi-arid tropical vertisol. Experimental Agriculture 36(2):205–221.

Rego TJ, Monteith JL, Piara Singh, Lee KK, Nageswara Rao V and **Srirama YV.** 1998. Response to fertilizer nitrogen and water of post-rainy season sorghum on vertisol. 1. biomoss and light interception. Journal of Agricultural Science 131:417–428.

Rego TJ, Rao VN, Seeling B, Pardhasaradhi G and **Rao JVDKK**. 2003. Nutrient balances - a guide to improving sorghum - and groundnut-based dryland cropping systems in semi-arid tropical India. Field Crops Research 81(1):53–68.

Rego TJ, Seeling B, Nageswara Rao V, Pardharardhi G and **Kumar Rao JVDK.** 2001. Nutrient balances in the rainfed sorghum and groundnut based systems grown in the SAT Alfisols of India. Field Crops Research (Submitted).

Rohrbach DD and **Kiriwaggulu JAB.** 2001. Testing the demand for sorghum meal in Tanzania: a case study with Power Foods. SMINET Newsletter 3(1):14–15.

Rohrbach DD and **Mutiro K.** 1998. Sorghum and pearl millet production, trade and consumption in Southern Africa. International Sorghum and Millets Newsletter No 39:33–41.

Rohrbach DD, Mgoba Celestin and **Temu Anna**. 2002. Potential Use of Sorghum in School Feeding Programmes. SMINET Newsletter 3(2).

Rohrbach DD, Mupanda K and Seleka T. 2000. Commercialization of sorghum milling in Botswana: SMINET News July 2000:12.

Rohrbach DD. 1998. Socioeconomics in SMIP: Research highlights, impacts and implications. International Sorghum and Millets Newsletter No 39:41–53.

Romeis J, Shanower TG and **Zebitz PW.** 1999. Richogramma egg parasitism of *Helicoverpa armigera* on pigeonpea and sorghum in southern India. Entomologia Experimentalis et Applicata 90(1):69–81.

Rupela OP, Wani SP, Danso SKA and Johansen C. 1995. Effect of a high nodulating selection of chickpea cultivar ICC 4948 on yield and soil properties of a chickpea-sorghum cropping system. Journal of Soil Biology and Ecology 15(2):127–134.

Sahrawat KL, Pardhasaradhi G, Rego TJ and Rahman MH. 1996. Relationship between extracted phosphorus and sorghum yield in a vertisol and an alfisol under rainfed cropping. Fertilizer Research 44(1):23–26.

Sahrawat KL, Rahman MH and **Rao JK**. 1999. Leaf phosphorus and sorghum yield under rainfed cropping of a vertisol. Nutrient Cycling in Agroecosystems 54(1):93–97.

Sahrawat KL, Rego TJ, Natarajan M and **Burford JR.** 1996. Effects of fallow and pigeonpea on yield and nitrogen response of the succeeding sorghum on a vertisol. Tropical Agriculture 73(2):90–93.

Sahrawat KL, Rego TJ, Rahman MH and Rao JK. 1998. Phosphorus response effects on macro and micronutrient removal by sorghum under rainfed cropping on a vertisol. Journal of the Indian Society of Soil Science 46(1):58–60.

Sahrawat KL. 1988. Effects of nitrogen on growth and nitrogen and phosphorus uptake in tops and roots of sorghum grown in an Alfisol and a Vertisol. Fertilizer Research 17:119–124.

Sahrawat KL. 1999. Assessing the fertilizer phosphorus requirement of grain sorghum. Communications in Soil Science and Plant Analysis 30(11–12):1593–1601.

Sahrawat KL. 2000. Residual phosphorus and management strategy for grain sorghum on a vertisol. Communications in Soil Science and Plant Analysis 31(19–20):3103–3112.

Sairam RV and **Seetharama N.** 1996. Andgrogenic response of cultured anthers and microspores of sorghum. International Sorghum and Millets Newsletter No 37:69–71.

Sairam RV, Seetharama N, Devi PS and Verma A. 1999. Culture and regeneration of mesophyll-derived

protoplasts of sorghum *(Sorghum bicolor* [L.] Moench). Plant Cell Reports 18:972–977.

Sairam RV, Seetharama N, Shyamala T and Devi PS. 2000. Plant regeneration from scutella of immature embryos of diverse sorghum genotypes. Cereal Research Communication 28(3):279–285.

Sajjanar,GM, Reddy BVS, Hash CT, Nayakar NY and Shenoy VV. 2003. Genetic analysis of components of resistance to shoot fly in recombinant inbred lines of sorghum (in press).

Sarath Babu B, Sharma HC, Surender A, Prasada Rao RDVJ, Chakravarty SK, Singh SD and Girish GA. 2000. Sorghum germplasm from Thailand showing resistance to sugarcane aphid, Melanaphis sacchari Zehntner. Indian Journal of Plant Genetic Resources 13:186–187.

Saxena SC, **Mughogho LK** and **Pande S**. 1991. Stalk and top rot of sorghum caused by *Erwinia chrysanthemi* in India. Indian Journal of Microbiology 31(4):435–441.

Scheuring JF, Sidibe S, Rooney LW and Earp CF. 1982. Sorghum pericarp thickness and its relation to decortication in a wooden mortar and pestle. Cereal Chemistry 60(1):86–89.

Seetharama N, Bidinger FR, Rao KN, Gill KS and Madhuri Mulgund. 1987. Effect of pattern and severity of moisture deficit stress on stalk rot incidence in sorghum. I. Use of line source irrigation technique and the effect of time of inoculation. Field Crops Research 15(3,4):289–308.

Seetharama N, Sairam RV and **Rani TS.** 2000. Regeneration of sorghum from shoot tip cultures and field performance of the progeny. Plant Cell, Tissue and Organ Culture 61:169–173.

Seetharama N, Sardar Singh and Reddy BVS. 1990. Strategies for improving rabi sorghum productivity. Proceedings, Indian National Science Academy B56(5–6):455–467.

Seetharama N, Sivakumar MVK, Bidinger FR, Sardar Singh, Maiti RK, Reddy BVS, Peacock JM, Reddy SJ, Mahalakshmi V, Sachan RC, Shiv Raj A, Murthy SRK, Narayanan A, Tissa Kannangara Durley RC and Simpson GM. 1983. Physiological basis for increasing and stabilising yield under drought in sorghum. Proceedings, Indian National Science Academy B49(5):498–523.

Seetharama N. 1995. Biotechnology and sorghum improvement for drought and temperature stress tolerance. African Crop Science Journal 3(2):223–229.

Seshu Reddy KV and **Davies JC.** 1980. A new medium for mass rearing of the sorghum stem borer, *Chilo partellus* Swinhoe (Lepidoptera: Pyralidae) and its use in resistance screening. Indian Journal of Plant Protection 6(1):48–55.

Seshu Reddy KV and Davies JC. 1978. A predacious mite on the eggs of sorghum shoot fly Atherigona soccata (Diptera: Muscidae) at Hyderabad. Acarology Newsletter. 6:9.

Seshu Reddy KV, Skinner II JD and Davies JC. 1981. Attractants for Atherigona spp. including the sorghum shootfly, *Atherigona soccata* Rond. (Muscidae: Diptera). Insect Science and Its Application. 2(1/2):83–86.

Setimela P, Manthe CS, Mazhani L and **Obilana AB.** 1997. Release of three grain sorghum pure line varieties in Botswana. South African Journal of Plant and Soil 14(3):137–138.

Sharma HC and **Franzmann BA.** 2001. Host-plant preference and oviposition responses of the sorghum midge, *Stenodiplosis sorghicola* (Coquillett) (Dipt., Cecidomyiidae) towards wild relatives of sorghum. Journal of Applied Entomology – Zeitschrift Fur Angewandte Entomologie 125(3):109–114.

Sharma HC and Franzmann BA. 2001. Orientation of sorghum midge, *Stenodiplosis sorghicola*, females (Diptera: Cecidomyiidae) to color and host-odor stimuli. Journal of Agricultural and Urban Entomology 18(4):237–248.

Sharma HC and Franzmann BA. 2002. Influence of color and odor stimuli on the behavior of sorghum midge, *Stenodiplosis sorghicola*. Journal of Agricultural and Urban Entomology (in press).

Sharma HC and **Hariprasad KV.** 2002. Flowering events in sorghum in relation to expression of resistance to sorghum midge, *Stenodiplosis sorghicola*. Eyphytica 127(3):411–419.

Sharma HC and Leuschner K. 1987. Chemical control of sorghum head bugs (Hemiptera: Miridae). Crop Protection 6(5):334–340.

Sharma HC and Lopez VF. 1989. Assessment of avoidable losses and economic injury levels for the sorghum head bug, *Calocoris angustatus* Leth. (Hemiptera:Miridae) in India. Crop Protection 8(6):429–435.

Sharma HC and **Lopez VF.** 1990. Biology and population dynamics of sorghum head bugs (Hemiptera: Miridae). Crop Protection 9(3):164–173.

Sharma HC and Lopez VF. 1990. Mechanisms of resistance in sorghum to head bug, *Calocoris angustatus*. Entomologia Experimentalis et applicata 57:285–294.

Sharma HC and **Lopez VF.** 1991. Stability of resistance in sorghum to *Calocoris angustatus* (Hemiptera: Miridae). Journal of Economic Entomology 84(3):1088–1094.

Sharma HC and **Lopez VF**. 1992. Genotypic resistance in sorghum to head bug, *Calocoris angustatus* Lethiery. Euphytica 58:193–200.

Sharma HC and **Lopez VF.** 1992. Screening for plant resistance to sorghum head bug, Calocoris angustatus leth. Insect Science and its Application 13(3):315–325.

Sharma HC and **Lopez VF.** 1993. Comparison of economic injury levels for sorghum head bug, *Calocoris angustatus* on resistant and susceptible genotypes at different stages of panicle development. Crop Protection 12(4):259–266.

Sharma HC and Lopez VF. 1993. Survival of *Calocoris* angustatus (Hemiptera: Miridae) Nymphs on diverse sorghum genotypes. Journal of Economic Entomology 86(2):607–613.

Sharma HC and **Lopez VF.** 1994. Interactions between panicle size, insect density and environment of genotypic resistance in sorghum to head bug, *Calocoris angustatus*. Entomologia experimentalis at applicata 71:101–109.

Sharma HC and Ratnadass A. 2000. Color variation in the African head bug. International Sorghum and Millets Newsletter No 41:42–43.

Sharma HC and Venkateswarulu G. 2002. Influence of environmental factors on expression of resistance to sorghum midge, *Stenodiplosis sorghicola*. Euphytica (in press).

Sharma HC and **Vidyasagar P.** 1992. Orientation of males of sorghum midge, *Contarinia sorghicola* to sex pheromones from virgin females in the field. Entomologia experimentalis at applicata 64:23–29.

Sharma HC and Vidyasagar P. 1994. Antixenosis component of resistance to sorghum midge, *Contarinia sorghicola* Coq. in *Sorghum bicolor* (L.) Moench. Annals of Applied Biology 124:495–507.

Sharma HC, Abraham CV and Stenhouse JW. 2002. Compensation in grain weight and volume in sorghum is associated with expression of resistance to sorghum midge, *Stenodiplosis sorghicola.* (In En.) Euphytica 125(2):245–254.

Sharma HC, Abraham CV, Vidyasagar P and Stenhouse JW. 1996. Gene action for resistance in Sorghum to midge, *Contarinia sorghicola*. Crop Science 36(2):259–265.

Sharma HC, Agarwal BL, Vidyasagar P, Abraham CV and Nwanze KF. 1993. Identification and utilization of resistance to sorghum midge, Contarinia sorghicola (Coquillet), in India. Crop Protection 12(5):343–350.

Sharma HC, Agrawal BL, Abraham CV, Vidyasagar P, Nwanze KF and Stenhouse JW. 1994. Registration of nine sorghum lines with resistance to sorghum midge: ICSV 692, ICSV 729, ICSV 730, ICSV 731, ICSV 736, ICSV 739, ICSV 744, ICSV 745 and ICSV 748. Crop Science 34:1425–1426.

Sharma HC, Doumbia YO and Diorisso NY. 1992. A headcage technique to screen sorghums for resistance to mirid head bug, *Eurystylus immaculatus* Odh. in West Africa. Insect Science and Its Application 13(3):417–427.

Sharma HC, Doumbia YO, Haridara M, Scheuring JF, Ramaiah KV and Beninati NF. 1994. Sources and mechanisms of resistance to sorghum head bug, *Eurystylus immaculatus* Odh, in West Africa. Insect Science and its Application 15(1):39–48.

Sharma HC, Franzmann BA and Henzell RG. 2002. Mechanisms and diversity of resistance to sorghum midge, Stenodiplosis sorghicola in *Sorghum bicolor*. Euphytica 124:1–12.

Sharma HC, Leuschner K and **Vidyasagar P.** 1990. Factors influencing oviposition behaviour of the sorghum midge, Contarinia sorghicola Coq. Annals of Applied Biology 116:431–439.

Sharma HC, Lopez VF and **Nwanze KF.** 1993. Genotypic effects of sorghum accessions on fecundity of sorghum head bug, *Calocoris angustatus* lethiery. Euphytica 65:167–175.

Sharma HC, Lopez VF and Vidyasagar P. 1994. Influence of panicle compactness and host plant resistance in sequential plantings on population increase of panicle-feeding insects in *Sorghum bicolor* (L.) Moench. International Journal of Pest Management 40(2):216–221.

Sharma HC, Mukuru SZ and Kibuka J. 1998. *Helicoverpa armigera* incidence in finger millet (Eleusine coracana Gaertn.) at Kiboko, Kenya. International Sorghum and Millets Newsletter No 39:147–149.

Sharma HC, Mukuru SZ, Hari Prasad KV, Manyasa E and Pande S. 1999. Identification of stable sources of resistance in sorghum to midge and their reaction to leaf diseases. Crop Protection 18:29–37.

Sharma HC, Mukuru SZ, Manyasa E and Were JW. 1999. Breakdown of resistance to sorghum midge, *Stenodiplosis sorghicola*. Euphytica 109(2):131–140.

Sharma HC, Murkuru SZ, Gugi H and King SB. 2000. Inheritance of resistance to sorghum midge and leaf disease in sorghum in Kenya. International Sorghum and Millets Newsletter No 41:37–42.

Sharma HC, Satyanarayana MV, Singh SD and Stenhouse JW. 2000. Inheritance of resistance to head bugs and its interaction with grain molds in *Sorghum bicolor*. Euphytica 112:167–173.

Sharma HC, Soman P and **Subramanian V.** 1995. Effect of host plant resistance and chemical control of the head bug, *Calocoris angustatus* Leth., on grain quality and seedling establishment in sorghum. Annals of Applied Biology. 126(1):131–142.

Sharma HC, Vidyasagar P and Leuschner K. 1988. Field screening sorghum for resistance to sorghum midge (Diptera: Cecidomyiidae). Journal of Economic Entomology 81(1):327–334.

Sharma HC, Vidyasagar P and Leuschner K. 1988. Nochoice cage technique to screen for resistance to sorghum midge (Diptera: Cecidomyiidae). Journal of Economic Entomology 81(1):415–422.

Sharma HC, Vidyasagar P and Leuschner K. 1990. Componental analysis of the factors influencing resistance to sorghum midge. Insect Science and its Application 11:889–898.

Sharma HC, Vidyasagar P and Leuschner K. 1990. Components of resistance to the sorghum midge, Contarinia sorghicola. Annals of Applied Biology 116(2):327–333.

Sharma HC, Vidyasagar P and Nwanze KF. 1993. Effect of host-plant resistance on economic injury levels for the sorghum midge, Contarinia sorghicola. International Journal of Pest Management 39(4):435–444.

Sharma HC, **Vidyasagar P** and **Subramanian V**. 1993. Antibiosis component of resistance in sorghum to sorghum midge, *Contarinia sorghicola*. Annals of Applied Biology 123:469–483. Sharma HC, Vidyasagar P, Abraham CV and Nwanze KF. 1994. Effect of cytoplasmic male-sterility in sorghum on host plant interaction with sorghum midge *Contarinia sorghicola*. Euphytica 74:35–39.

Sharma HC. 1985. Strategies for pest control in sorghum in India. Tropical Pest Management 31(3):167–185.

Sharma HC. 1993. Host-plant resistance to insects in sorghum and its role in integrated pest management. Crop Protection 12:11–34.

Sharma HC. 1994. Effect of insecticide application and host plant resistance on parasitization of sorghum midge, *Contarinia sorghicola* Coq. Biocontrol Science and Technology 4:53–60.

Sharma HC. 1997. Influence of panicle size on midge damage and compensation in grain mass in sorghum. International Sorghum and Millets Newsletter No 38:85–87.

Sharma HC. 2001. Cytoplasmic male-sterility and source of pollen influence the expression of resistance to sorghum midge, *Stenodiplosis sorghicola*. Euphytica 122(2):391–395.

Sharma HC. 2001. Host plant resistance to sorghum midge, *Stenodiplosis sorghicola* (Coquillett): A sustainable approach for integrated pest management and environment conservation. Journal of Ecophysiology and Occupational Health 1:1–34.

Sharma SB and **McDonald D.** 1990. Global status of nematode problems of groundnut, pigeonpea, chickpea, sorghum and pearl millet and suggestions for future work. Crop Protection 9:453–458.

Sharma SB and Renu Sharma. 1988. Occurrence of the sorghum cyst nemotode, *Heterodera sorghi* in Andhra Pradesh. Indian Journal of Nematology 18(2):329.

Singh BU and **Sharma HC**. 2002. Natural enemies of sorghum shoot fly, *Atherigona soccata* rondani (Diptera: Muscidae). Biocontrol Science and Technology 12(3):307–323.

Singh SD and **de Milliano WAJ.** 1989. Production of normal panicles by sorghum plants systematically infected by downy mildew in Zimbabwe. Plant Disease. 73:1020.

Singh SD and **Navi SS.** 2000. Garlic as a biocontrol agent for sorghum ergot. Journal of Mycology and Plant Pathology 30(3):350–354.

Singh SD and **Navi SS.** 2001. An in vitro screening technique for the identification of grain mold resistance in sorghum. Indian Phytopathology 54:35–39.

Singh U and **Singh B.** 1991. Functional properties of sorghum-peanut composite flour. Cereal Chemistry 68(5):460–463.

Sivakumar MVK and **Huda AKS.** 1985. Solar energy utilization by tropical sorghums. Agricultural and Forest Meteorology 35:47–57.

Sivakumar MVK, Seetharama N, Gill KS and Sachan RC. 1981. Response of sorghum to moisture stress using line source sprinkler irrigation. 1. Plant-water relations. Agricultural Water Management 3:279–289.

Sivakumar MVK, Seetharama N, Sardar Singh and Bidinger FR. 1979. Water relations, growth and dry matter accumulation of sorghum under post-rainy season conditions. Agronomy Journal 71:843–847.

Sivaramakrishnan S, Patell Villoo Z and **Soman P.** 1990. Heat shock proteins of sorghum *(Sorghum bicolor* [L.] Moench) and pearl millet *(Pennisetum glaucum* [L.] R.Br.) cultivars with differing heat tolerance at seedling establishment stage. Journal of Experimental Botany 41(223):249–254.

Sivaramakrishnan S, Patell Villoo Z, Flower DJ and Peacock JM. 1988. Proline accumulation and nitrate reductase activity in contrasting sorghum lines during mid-season drought stress. Physiologia Planatarum 74:418–426.

Sivaramakrishnan S, Seetha K and Reddy BVS. 1997. Characterization of the A(4) cytoplasmic male-sterile lines of sorghum using RFLP of mtDNA. Eyphytica 93:301–305.

Sivaramakrishnan S, Soman P, Nwanze KF, Reddy YVR and Butler DR. 1994. Resistance in sorghum to shootfly *Atherigona soccata:* evidence for the source of leaf surface wetness. Annals of Applied Biology. 125:215–218.

Soman P and **Peacock JM**. 1985. A laboratory technique to screen seedling emergence of sorghum and pearl millet at high soil temperature. Experimental Agriculture 21:335–341.

Soman P and **Seetharama N.** 1992. Genotypic and environmental variation in nodal root growth of postrainy season (Rabi) sorghum. Experimental Agriculture 28:331–341. **Soman P, Jayachandran R** and **Peacock JM.** 1992. Effect of soil crusting on seedling growth in contrasting sorghum lines. Experimental Agriculture. 28:49–55.

Soman P, Nwanze KF, Laryea KB, Butler DR and Reddy YVR. 1994. Leaf surface wetness in sorghum and resistance to shoot fly, *Atherigona soccata:* role of soil and plant water potentials. Annals of Applied Biology 124:7–108.

Soman P, Peacock JM and **Bidinger FR.** 1984. A field technique to screen seedling emergence of pearl millet and sorghum through soil crusts. Experimental Agriculture 20(4):327–334.

Sree PS, Nwanze KF, Butler DR, Reddy DDR and Reddy YVR. 1994. Morphological factors of the central whorl leaf associated with leaf surface wetness and resistance in sorghum to shootfly, *Atherigona soccata*. Annals of Applied Biology 125:467–476.

Sridhar D, Karunakar RI and **Thakur RP.** 1997. Variation in phenol content of sorghum lines after inoculation with *Colletotrichum graminicola*. International Sorghum and Millets Newsletter 38:71–73.

Stoop WA. 1987. Adaptation of sorghum/maize and sorghum/pearl millet intercrop systems to the toposequence land types in the North Sudanian Zone of the West African savanna. Field Crops Research 16(3):255–272.

Subramanian V and **Jambunathan R.** 1980. Traditional methods of processing of sorghum (*Sorghum bicolor*) and pearl millet (*Pennisetum americanum*) grains in India. Reports of the International Association of Cereal Chemistry 10:115–118.

Subramanian V, Butler LG, Jambunathan R and **Prasada Rao KE.** 1983. Some agronomic and biochemical characters of brown sorghums and their possible role in bird resistance. Journal of Agricultural and Food Chemistry 31(6):1303–1307.

Subramanian V, Hoseney RC and **Bramel-Cox P.** 1994. Factors affecting the color and appearance of sorghum starch. Cereal Chemistry 71(3):275–278.

Subramanian V, Hoseney RC and **Bramel-Cox P.** 1994. Shear thinning properties of sorghum and corn starches. Cereal Chemistry 71(3):272–275.

Subramanian V, Jambunathan R and **Sambasiva Rao N.** 1983. Textural properties of sorghum dough. Journal of Food Science 48:1650–1654.

Subramanian V, Jambunathan R and Seetharama N. 1983. Biochemical changes during seed development

in sorghum *(Sorghum bicolor).* Phytochemistry 22(5):1097–1101.

Subramanian V, Jambunathan R and Suryaprakash S. 1980. Note on the soluble sugars of sorghum. Cereal Chemistry 57(6):440–441.

Subramanian V, Murty DS, Sambasiva Rao N and Jambunathan R. 1992. Chemical changes and diastatic activity in grains of sorghum *(Sorghum bicolor)* cultivars during germination. Journal of the Science of Food and Agriculture 58:35–40.

Subramanian V, Prasada Rao KE, Mengesha MH and Jambunathan R. 1987. Total sugar content in sorghum stalks and grains of selected cultivars from the world germplasm collection. Journal of the Science of Food and Agriculture 39(4):289–295.

Subramanian V, Rao NS, Jambunathan R, Murty DS and Reddy BVS. 1995. The effect of malting on the extractability of proteins and its relationship to diastatic activity in sorghum. Journal of Cereal Science (In En.) 21(3):283–289.

Subramanian V, Seetharama N, Jambunathan R and Venkateswara Rao P. 1990. Evaluation of protein quality of sorghum *(Sorghum bicolor* [L.] Moench). Journal of Agricultural and Food Chemistry 38(6):1344–1347.

Swanston JS, Rao NS, Subramanian V and Taylor K. 1994. Influence of some aspects of grain quality on malting potential in sorghum. Journal of Cereal Science 19:91–97.

Tabo R, Ogungbile AO, Gupta SC and **Ajayi O**. 1999. Participatory evaluation of sorghum cultivars in Northern Nigeria. International Sorghum and Millets Newsletter No 40:36–38.

Tabo R, Olabanji OG, Ajayi O and **Flower DJ.** 2002. Effect of Plant Population Density on the Growth and Yield of Sorghum Varieties Grown on a Vertisol. African Crop Science Journal 10(1):31–38.

Taneja SL and **Henry VK.** 1993. Chemical control of sorghum shoot fly: dosage, method and frequency of insecticide application in India. Crop Protection 12:74–78.

Taneja SL and **Leuschner K.** 1986. A simple trap for monitoring sorghum shoot fly. Indian Journal of Plant Protection 14(1):83–86.

Taneja SL, Seshu Reddy KV and **Leuschner K.** 1986. Monitoring of shoot fly population in sorghum. Indian Journal of Plant Protection 14(2):29–36. **Tegegne G, Bandyopadhyay R, Mulatu T** and **Kebede Y.** 1994. Screening for ergot resistance in sorghum. Plant Disease 78:873–876.

Thakur RP, Rao VP and **Hash CT.** 1998. A highly virulent pathotype of Scelrospora graminicola from Jodhpur, Rajasthan, India. International Sorghum and Millets Newsletter No 39:140–142.

Thakur RP, Reddy BVS, Rao VP, Garud TB, Agarkar GD and Bhat B. 2003. Sorghum grain mold: resistance stability in advanced B-lines. International Sorghum and Millets Newsletter 44:108–112.

Thomas MD, Bocoum F and **Thera A**. 1993. Field inoculations of sorghum with sclerotia and conida of Ramulispora sorghi formed in vivo. Mycologia 85(5):807–810.

Thomas MD, Sissoko I and Sacko M. 1996. Development of leaf anthracnose and its effect on yield and grain weight of sorghum in West Africa. Plant Disease 80(2):151–153.

Thomas Melville D. 1991. Development of gray leaf spot on sorghum in Burkina Faso. Plant Disease 75(1):45–47.

Tobita S, Ito O, Matsunaga R, Rao TP, Rego TJ, Johansen C and Yoneyama T. 1994. Field evaluation of nitrogen fixation and use of nitrogen fertilizer by sorghum/pigeonpea intercropping on an Alfisol in the Indian semi-arid tropics. Biology and Fertility of Soils 17:241–248.

van Oosterom EJ, Jayachandran R and Bidinger FR. 1996. Diallel analysis of the stay-green trait and its components in sorghum. Crop Science 36(3):549–555.

van Staveren JP and Stoop WA. 1985. Adaptation to toposequence land types in West Africa of different sorghum genotypes in comparison with local cultivars of sorghum, millet and maize. Field Crops Research 11:13–35.

Vasudeva Rao MJ, Chidley VL and House LR. 1983. Genetics of field resistance to *Striga asiatica* (L.) Kuntze in sorghum. Sorghum Newsletter 26:111–112.

Vasudeva Rao MJ, Chidley VL and House LR. 1989. Estimates of grain yield losses caused in sorghum *(Sorghum bicolor* [L.] Moench) by *Striga asiatica* (L.) Kuntze obtained using the regression approach. Agriculture, Ecosystems and Environment 25(2–3):139–149.

Vasudeva Rao MJ, Chidley VL, Raghavender B and House LR. 1985. (*Striga densiflora*) root parasite of sorghum on maize. Sorghum Newsletter 28:86. Vasudeva Rao MJ, Raghavender B and Mukuru SZ. 1986. Physiological specialization in *Striga asiatica* (L.) Kuntz with reference to parasitization on sorghum, Sorghum bicolor (L.) Moench. Cereal Research Communications 14(2):185–190.

Vasudeva Rao MJ, Vaidya PK, Chidley VL, Mukuru SZ and House LR. 1989. Registration of 'ICSV 145' *Striga asiatica* resistant sorghum cultivar. Crop Science 29(2):488–489.

Verma PK, Wade LJ, Peacock JM, Seetharama N, Sai Prasad J and Huda AKS. 1983. Leaf area response to water and nitrogen stress in sorghum. Sorghum Newsletter 26:130–132.

Wani SP, Dart PJ and Upadhyaya MN. 1983. Factors affecting nitrogenase activity (C2H2 reduction) associated with sorghum and millet estimated using the soil core assay. Canadian Journal of Microbiology 29(8):1063–1069.

Wani SP, Sivaramakrishnan S, Naidu RA, Zambre MA, Lee KK and Pande S. 1991. Biochemical changes in sorghum *(Sorghum bicolor* [L.] Moench) plants infected with maize mosaic virus. Indian Journal of Microbiology 31(4):387–395.

Wani SP, Upadhyaya MN and Dart PJ. 1984. An intact plant assay for estimating nitrogenase activity (C2H2 reduction) of sorghum and millet plants grown in pots. Plant and Soil 82:15–29.

Waniska RD, Poe JH and Bandyopadhyay R. 1989. Effects of growth conditions on grain molding and phenols in sorghum caryopsis. Journal of Cereal Science 10(3):217–225.

Williams RJ and Rao KN. 1981. A review of sorghum grain moulds. Tropical Pest Management 27(2):200–211.

Williams RJ, Dange SRS, Mughogho LK and Rao KN. 1982. Identification of QL-3 sorghum, a source of resistance to Peronosclerospora sorghi. Plant Disease 66(9):807–809.

Wilson GL, Raju PS and Peacock JM. 1982. Effect of soil temperature on seedling emergence in sorghum. Indian Journal of Agricultural Sciences 52(12):848–851.

Wilson JP, Hess DE, Cisse B, Hanna WW and Youm O. 1997. *Striga hermonthica* infestation of wild millet germplasm is related to the time of flowering and downy mildew incidence. International Sorghum and Millets Newsletter 39:149–150.

Woodhead S and Taneja SL. 1987. The importance of the behavior of young larvae in sorghum resistance to

Chilo partellus. Entomologia experimentalis at applicata 45:47–54.

Yamamoto A, Nakamura T, Adu-Gyamfi JJ and Saiguisa M. 2002. Relationship between chlorophyll content in leaves of sorghum and pigeonpea determined by extraction method and by chlorophyll meter (SPAD 502). Journal Plant Nutrition 25(10):2295–2301.

Yoneyama T, Engelaar WMHG, Kim HY and **Rupela OP.** 2001. Delta N-15 values of sorghum grains harvested on a Vertisol in the semi-arid tropics were positively related to doses of fertilizer N but negatively with the frequency of legume cultivation. Soil Science And Plant Nutrition. 47(2):423–427.

Zerbini E, Krishan CT, Victor XVA and **Sharma A**. 2002. Composition and in vitro gas production of whole stems and cell walls of different genotypes of pearl millet and sorghum. Animal Feed Science and Technology 98(1–2):73–85.

Zerbini E, Sharma A and **Rattunde HFW.** 1999. Fermentation kinetics of stems of sorghum and millet genotypes. Annals of Feed Science and Technology 81(102):17–34.

Book chapters

Abbasher AA, Hess DE, Sauerborn J and Kroschel J. 1996. Effect of different Fusarium spp. on germination of *Striga hermonthica* (sorghum and millet strains), *S. asiatica* and *S. gesnerioides* seeds. Pages 880–887 in Advances in Parasitic Plants Research (Moreno MT, Cubero JL, Berner D, Joel D, Musselman LJ and Parker C, eds.). Sevilla: Direccion General de Investigacion Agraria.

Alagarswamy G and Virmani SM. 1996. Characterizing the yield gap of sorghum for peninsular India: A study using crop simulation. Page 45 in Systems approaches for agricultural development (Van Laar HH, Teng PS and Kropf MJ, eds.). Los Banos, The Philippines: International Rice Research Institute.

Alagarswamy G, Virmani SM, Godwin DC and Singh U. 1990. Evaluating fertilizer use strategies for sorghum - a system approach. Technology blending and agrarian prosperity (Verma JP and Varma A, eds.). New Delhi, India: Malhotra Publishing House. Pp. 71–81.

Bandyopadhyay R. 2000. Rust. Pages 23–24 in Compendium of Sorghum Diseases (Frederiksen RA and Odvody GN, eds). 2nd edn. St. Paul, Minnesota, USA: The American Phytopathological Society. **Bandyopadhyay R.** 2000. Sooty stripe. Pages 14–15 in Compendium of Sorghum Diseases (Frederiksen RA and Odvody GN, eds.). 2nd edn. St. Paul, Minnesota, USA: The American Phytopathological Society.

Bantilan MCS, Deb UK, Gowda CLL, Reddy BVS and Obilana AB (eds.). 2002. Sorghum Genetic Enhancement: Research Process, Dissemination and Impacts. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Topics. (in press).

Bantilan MCS, Deb UK, Gowda CLL, Reddy BVS, Obilana AB and Evenson RE. 2004. Introduction. Chapter 1 in Sorghum genetic enhancement: research process, dissemination and impacts. (Bantilan MCS, Deb UK, Gowda CLL, Reddy BVS, Obilana AB and Evenson RE, eds.). Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 5–20.

Bantilan MCS, Deb UK, Gowda CLL, Reddy BVS, Obilana AB and Evenson RE. 2004. Future directions for food security and diversity: partnership and research strategy for sorghum. Chapter 12 in Sorghum genetic enhancement: research process, dissemination and impacts. (Bantilan MCS, Deb UK, Gowda CLL, Reddy BVS, Obilana AB and Evenson RE, eds.). Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 263–270.

Deb UK, Bantilan MCS, Reddy BVS, Bramel PJ and Kameswara Rao N. 2004. Impact of improved sorghum cultivars on genetic diversity and yield stability. Chapter 10 in Sorghum genetic enhancement: research process, dissemination and impacts. (Bantilan MCS, Deb UK, Gowda CLL, Reddy BVS, Obilana AB and Evenson RE, eds.) Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 225–236.

Debrah SK. 1993. Sorghum in West Africa. Sorghum and millets commodity and research environments (Byth DE.ed.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 17–37.

FAO (Food and Agriculture Organization of the United Nations) and **ICRISAT** (International Crops Research Institute for the Semi-Arid Tropics). 1996. La economia del sorgo y del mijo en el mundo: hechos, tendencias y perspectivas (World sorghum and millet economies: facts, trends and outlook). (Es) International Crops

Research Institute for the Semi-Arid Tropics. Rome, Italy: Food and Agriculture Organization of the United Nations; Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. 68 pp.

Forbes GA, Bandyopadhyay R and **Garcia G.** 1992. A review of sorghum grain mold. Sorghum and millets diseases: a second world review (de Milliano WAJ, Frederiksen RA and Bengston GD, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp 253–264.

Freitag J, Hess DE, Welz HG and **Geiger HH.** 1996. Pearl millet and sorghum specific races of *Striga hermonthica* in Niger. Pages 472–478 in Advances in parasitic plants research: (Moreno MT, Cubero JL, Berner D, Joel D, Musselman LJ and Parker C, eds.). Sevilla: Direccion General de Investigacion Agraria.

Gomez MI, House LR, Rooney LW and **Dendy DAV.** 1992. Utilization of sorghum and millets. (In En. Summaries in Fr, Pt.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. 224 pp.

Hash CT. 1994. Current status and strategy for promoting by brief sorghum and pearl millet technology. Hybrid research and developmental needs in major cereals in the Asia-Pacific region (Paroda RS and Rai M, eds.). Bangkok, Thailand: FAO, Regional Office for Asia and the Pacific. Pp. 46–60.

Hess DE, Reddy BVS, Obilana AB and Grard P. 1996. Striga research at ICRISAT. Pages 11–18 in Sorghumperspectives of a global research agenda: ICRISAT Sorghum Projects Consultative Group Meeting, 11–14 Dec 1995, ICRISAT Western and Central Africa Region, B.P. 320, Bamako, Mali (Nwanze KF and Bandyopadhyay R, eds.). Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. (Semi-formal publication).

House LR. 1985. A guide to sorghum breeding. Second edition. (In En.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. 216 pp.

Ito O, Matsunaga R, Tobita S, Rao TP and **Gayatri Devi Y.** 1993. Spatial distribution of root activity and nitrogen fixation in sorghum/pigeonpea intercropping on an Indian Alfisol. Plant nutrition from genetic engineering to field practice (Barrow NJ, ed.). Dordrecht, Netherlands: Kluwer Academic Publishers. Pp. 451–545. Jambunathan R. 1980. Improvement of nutritional quality of sorghum and pearl millet. Nutrition and food science (Santos W, Lopres N, Barbosa JJ and Chaves D, eds.). Vol. 2. New York, New York, USA: Plenum Publishing Corp. Pp 39–53.

Kameswara Rao N, Bramel PJ, Deb UK and Reddy VG. 2001. Conservation, utilization and distribution of sorghum germplasm. In Sorghum genetic enhancement: research process, dissemination and impacts (Bantilan MCS and Deb UK, eds.). Patancheru, Andhra Pradesh, India: International Crops Research Institute for Semi-Arid Tropics.

Kelley TG and Parthasarathy Rao P. 1993. Sorghum and millets in Asia. Sorghum and millets commodity and research environments (Byth DE, ed.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 95–117.

Lane JA, Moore THM, Child DV, Bailey JA and Obilana AB. 1996. Post-infection resistance mechanisms against *Striga* in cowpea and sorghum. Pages 560–565 in Advances in parasitic plants research (Moreno MT, Cubero JI, Berner D, Joel D, Musselman LJ and Parker C, eds.). Sevilla: Dirección General de Investigacion Agraria.

Mathur K, Thakur RP, Tebeest DO, Neya A, Marley PS and Casela CR. Sorghum anthracnose: current status and future outlook. Pages 211–220 in Sorghum and Millets Pathology 2000 (Leslie JF, ed.). Ames, Iowa, USA: Iowa State Press.

Monyo ES, Hassen M, Axtell JD and Ejeta G. 1992. Potential methods for improving the nutritive value of high-tannin sorghums in Tanzania. Utilization of sorghum and millets (Gomez MI, House LR, Rooney LW and Dendy DAV, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp 61–63.

Mukuru SZ. 1993. Sorghum and millets in eastern Africa. Sorghum and millets commodity and research environments (Byth DE, ed.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 55–62.

Murty DS, Tabo R and **Ajayi O**. 1994. Sorghum hybrid seed production and management. (In En, Summaries in En, Fr, Es.) Information Bulletin no. 41. Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. 72 pp.

Obilana AB and **Reddy BVS.** 1999. Host-plant resistance to *Striga* in sorghum and pearl millet. Pages

11–22 in *Striga* control in Sorghum and Millet. Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics.

Pande S, Bandyopadhyay R and Karunakar RI. 1998. Integrated management of sorghum diseases. Pages 128–137 in IPM Systems in Agriculture. Vol. 3. (Upadhyay RK, Mukerji KG and Rajak RL, eds.). New Delhi, India: Aditya Books Pvt. Ltd.

Paul CL. 1993. Sorghum in Latin America. Sorghum and millets commodity and research environments (Byth DE, ed.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 63–91.

Peacock JM and **Wilson GL.** 1984. Sorghum. The physiology of tropical field crops (Goldsworthy PR and Fisher NM, eds.). Chichester, UK: John Wiley and Sons Ltd. Pp 249–279.

Prasada Rao KE, Mengesha MH and **Reddy VG.** 1989. International use of a sorghum germplasm collection. The use of plant genetic resources (Brown AHD, Frankel OH, Marshall DR and Williams JT, eds.). Cambridge, UK: Cambridge University Press. Pp. 49–67.

Reddy BVS, Obilana AB, Gowda CLL, Ramaiah B and **Akintayo I.** 2004. Research Partnership and Technology Exchange. Chapter 7 in Sorghum genetic enhancement: research process, dissemination and impacts. (Bantilan MCS, Deb UK, Gowda CLL, Reddy BVS, Obilana AB and Evenson RE, eds.). Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 153–180.

Reddy BVS, Prakasha Rao, Deb UK, Stenhouse JW, Ramaiah B and Ortiz R. 2004. Global sorghum genetic enhancement process at ICRISAT. Chapter 4 in Sorghum genetic enhancement: research process, dissemination and impacts (Bantilan MCS, Deb UK, Gowda CLL, Reddy BVS, Obilana AB and Evenson RE, eds.) Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 65–104.

Reddy BVS, Rai KN, Sarma NP, Ish Kumar and Saxena KB. 2003. Cytoplasmic-nuclear malesterility: Origin, evaluation and utilization in hybrid development. Chapter 20 in Plant breeding – Mendelian to molecular approaches. (Jain HK and Kharkwal MC, eds.), Narosa publishing house Pvt Ltd., New Delhi (in press). **Reddy BVS, Ramesh S** and **Ortiz R.** 2004. Genetic and cytoplasmic-nuclear male sterility in sorghum. Plant Breeding Reviews. Vol. 25 (in press).

Reddy BVS, Ramesh S and Sanjana P. 2004. Sorghum and its improvement, CRC press, LLC, USA (in press).

Reddy BVS, Rangel AF, Ramaiah B and **Ortiz R.** 2004. A research and network strategy for sustainable sorghum production systems for Latin America. Chapter 6 in Sorghum genetic enhancement: research process, dissemination and impacts. (Bantilan MCS, Deb UK, Gowda CLL, Reddy BVS, Obilana AB and Evenson RE, eds.) Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.pp. Pp. 139–152.

Reddy BVS, Rattunde HFW and **Stenhouse JW.** 1997. Breeding sorghum for insect resistance. Pages 115– 126 *in* Plant resistance to insects in sorghum. (Sharma HC, Singh F and Nwanze KF, eds.). Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

Seetharama N, Mythili PK, Rani TS, Harshavardhan D, Ranjani A and Sharma HC. 2002. Tissue culture and alien gene transfer in sorghum. *In* Plant Genetic Engineering. Vol. 2. Improvement of Food crops (Singh RP and Jaiwal PK, eds.). Houstan, Texas, USA: Sci-Tech Publishing Company (in press).

Seetharama N, Reddy BVS, Peacock JM and Bidinger FR. 1981. Sorghum improvement for drought resistance. Pages 317–338 *in* Drought Resistance in Crops: With Emphasis on Rice. Los Banos, the Philippines the International Rice Research Institute.

Sharma HC. 1998. Insect pests of sorghum and their management. Pages 475–509 in IPM System in Agriculture (Upadhyay RK, Mukerji KG and Razak RL, eds.). New Delhi, India: Aditya Books Pvt. Ltd.

Singh SD, Sangam Lal and **Pande S.** 1993. The changing scenario of maize, sorghum and pearl millet disease. Pests and pest management in India—The changing scenario (Sharma HC and Veerabhadra Rao M, eds.). Hyderabad, India: Plant Protection Association of India. Pp. 130–139.

Stenhouse JW, Prasada Rao KE, Gopal Reddy V and **Appa Rao S.** 1997. Sorghum. Pages 292–308 in Biodiversity in Trust (Fuccillo D, Sears L and Stapleton P, eds.). Cambridge, UK: Cambridge University Press.

Taneja SL. 1987. Host-plant resistance in the management of sorghum stem borers. Recent

advances in entomology (Mathur YK, Bhattacharya AK, Pandey ND, Upadhyaya KD and Srivastava JP, eds.). Kanpur, Uttar Pradesh, India: Gopal Prakashan. Pp. 212–233.

Taneja SL. 1993. Changing scenario in insect pest problems and their management on sorghum and millets. Pests and pest management in India—The changing scenario (Sharma HC and Veerabhadra Rao M, eds.). Hyderabad, India: Plant Protection Association of India. Pp. 28–41.

Vasudeva Rao MJ. 1987. Techniques for screening sorghums for resistance to *Striga*. Parasitic weeds in agriculture (Musselman LJ, ed.). vol. 1. *Striga*. Boca Raton, FL, USA: CRC Press. Pp. 282–304.

Walker TS. 1989. High-yielding varieties and variability in sorghum and pearl millet production in India. Variability in grain yields: implications for agricultural research and policy in developing countries (Anderson JR and Hazell PBR, eds.). Baltimore, Maryland, USA: Johns Hopkins University Press. Pp. 91–99.

Wani SP. 1988. Nitrogen fixation potentials of sorghum and millets. Biological nitrogen fixation: recent developments (Subba Rao NS, ed.). New Delhi, India: Oxford and IBH Publishing Co. Pp 125–174.

Williams RJ, Frederiksen RA and Girard JC. 1978. Sorghum and pearl millet disease identification handbook. (In En.) Information Bulletin no. 2. Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. 88 pp.

Conference papers

Adu-Gyamfi JJ, Ito O, Yoneyama T and Katayama K. 1997. Nitrogen management and biological nitrogen fixation in sorghum/pigeonpea intercropping on Alfisols of the semi-arid tropics. Pages 613–618 in Plant nutrition–for sustainable food production and environment: proceedings of the XIII International Plant Nutrition Colloquium, 13–19 September 1997, Tokyo, Japan. Developments in Plant and Soil Sciences: Volume 78 (Ando T, Fujita K, Mae T, Matsumoto H, Mori S and Sekiya J, eds.). Tokyo, Japan: Kluwer Academic Publishers.

Adu-Gyamfi JJ, Katayama K, Gayatri Devi, Rao TP and Ito O. 1996. Improvement of soil and fertilizer nitrogen use efficiency in sorghum/pigeonpea intercropping. Pages 493–506 in Dynamics of roots and nitrogen in cropping systems of the semi-arid tropics: proceedings of the International Workshop, 21–25 Nov 1994, ICRISAT Center, Patancheru, Andhra Pradesh, India. (Ito O, Johansen C, Adu-Gyamfi JJ, Katayama K, Kumar Rao JVDK, Rego TJ, eds.). Tokyo, Japan: Japan International Research Center for Agricultural Sciences.

Agrawal BC and **Abraham CV.** 1985. Breeding sorghum for resistance to shoot fly and midge. Proceedings of the International Sorghum Entomology Workshop, 15–21 Jul 1984, College Station, Texas, USA (Leuschner K and Teetes GL, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 371–383.

Agrawal BL and **House LR.** 1982. Breeding for pest resistance in sorghum. Sorghum in the eighties: Proceedings of the International Symposium on Sorghum, 2–7 Nov 1981, ICRISAT Center, India (House LR, Mughogho LK and Peacock JM, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 435–446.

Agrawal BL and **Taneja SL**. 1989. Breeding for resistance to stem borer (Chilo partellus Swinhoe) in sorghum. International Workshop on Sorghum Stem Borers, 17–20 Nov 1987, ICRISAT Center, India (Nwanze KF, ed.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 159–168.

Agrawal BL, Sharma HC, Abraham CV and **Vidyasagar P.** 1986. Screening and breeding sorghum for midge resistance. Proceedings of the First Australian Sorghum Conference, 4–6 Feb 1986, Gatton, Queensland, Australia. Gatton, Queensland, Australia: Organizing Committee of the Australian Sorghum Conference 7.1–7.9.

Agrawal BL, Taneja SL, Sharma HC, Maiti RK, Leuschner K, Mukuru SZ and House LR. 1985. Sorghum improvement for pest resistance at ICRISAT. National Seminar on Breeding Crop Plants for Resistance to Pests and Diseases, 25–27 May 1983, Coimbatore, India. Coimbatore, Tamil Nadu, India: Tamil Nadu Agricultural University. Pp. 7–8.

Ajayi O. 2000. How important are spittle bugs on sorghum? Pages 91–97 in Entomology in nation building: the Nigerian experience: proceedings of the ESN 30th Annual Conference, Kano, Nigeria, 4–7 Oct 1999 (Dike MC, Ajayi O, Okunade SO, Okoronkwo

NO and Abba AA, eds.). Zaria, Nigeria: Entomological Society of Nigeria.

Akintayo I and **Sedgo J** (eds.). 2001. Toward sustainable sorghum production, utilization and commercialization in West and Central Africa: proceedings of a Technical Workshop of the West and Central Africa Sorghum Research Network, Lome, Togo, 19–22 Apr 1999. Bamako, Mali: West and Central Africa Sorghum Research Network. 315 pp.

Alagarswamy G and Seetharama N. 1983. Biomass and harvest index as indicators of nitrogen uptake and translocation to the grain in sorghum genotypes. Genetic aspects of plant nutrition. Proceedings of the First International Symposium on Genetic Specificity of Mineral Nutrition of Plants, 30 Aug–4 Sep 1982, Belgrade, Yugoslavia (Saric MR and Loughman BC, eds.). The Hague, Netherlands: Martinus Nijhoff. Pp. 423–427.

Alagarswamy G and Virmani SM. 1996. Risk analysis of rainfed sorghum production at various levels of nitrogen fertilizers rate with the CERES sorghum crop simulation model. Pages 603–615 in Dynamics of roots and nitrogen in cropping systems of the semi-arid tropics: proceedings of the International Workshop, 21–25 Nov 1994, ICRISAT Center, Patancheru, Andhra Pradesh, India (Ito O, Johansen C, Adu-Gyamfi JJ, Katayama K, Kumar Rao JVDK and Rego TJ, eds.). Tokyo, Japan: Japan International Research Center for Agricultural Sciences.

Alagarswamy G, Stenhouse JW and Pattanayak CM. 1992. Sorghum research and development network for Asia: Report of the Consultative Meeting to consider the Establishment of a Sorghum Research and Development Network Asia, 16–19 Sep 1991, ICRISAT Center, India. (In En, Summaries in En, Fr, Es.) Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. 34 pp.

Andrews DJ, Ejeta G, Gilbert M, Goswami P, Anand Kumar K, Maunder AB, Porter K, Rai KN, Rajewski JF, Reddy Belum VS, Stegmeier W and Talukdar BS. 1997. Breeding hybrid parents. Pages 173–187 in Proceedings of the International Conference on Genetic Improvement of Sorghum and Pearl Millet, 22–27 Sep 1996, Holiday Inn Plaza, Lubbock, Texas, USA. Lincoln, Nebraska, USA: Collaborative Research Support Program and Pearl Millet. (INTSORMIL Publication 97–5). Andrews DJ, Mughogho LK and Ball SL. 1984. Sorghum and pearl millet production in Africa: problems and prospects with new varieties. Advancing agricultural production in Africa: proceedings of CAB's First Scientific Conference, 12–18 Feb 1984, Arusha, Tanzania (Hawksworth DL, ed.). Farnham Royal, Slough, UK: CAB International. Pp. 85–90.

Andrews DJ, Reddy Belum VS, Talukdar S, Reddy LJ, Saxena NP and Saxena KB. 1983. Breeding for drought resistance. Pages 40–46 *in* Proceedings of In House Symposium on ICRISAT's Drought Research. Part II. ICRISAT, Patancheru 502 324, A.P, India.

Asokan M, Bantilan MCS, Joshi PK, Anders MM and Valasayya S. 1998. Dual purpose sorghum – a case study in India. Pages 38–51 in Assessing joint research impact: proceedings of an International Workshop on Joint Impact Assessment of NARS-ICRI.

Axtell JD, Gebisa Ejeta and Munck L. 1982. Sorghum nutritional quality—progress and prospects. Sorghum in the eighties: proceedings of the International Symposium on Sorghum, 2–7 Nov 1981, ICRISAT Center, India (House, LR, Mughogho LK and Peacock JM, eds.) Vol. 2. Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 589–603.

Bandyopadhyay R and Torres HM. 1998. Comparisons of sorghum ergot around the world. Pages 117–128 in Memorias Conferencias Magistrales Primer Simposio Internacional de Sorgo, Rio Bravo'98, 27–30 May 1998, Rio Bravo, Mexico.

Bandyopadhyay R, Reddy Belum VS and Hall A. 2000. Sorghum Improvement management in sorghum. Presented at the AICSIP workshop, Hisar, 25–29 April 2000.

Bandyopadhyay R, Butler DR, Chandrashekar A, Reddy RK and Navi SS. Biology, epidemiology and management of sorghum grain mold. Pages 34–71 in Technical and institutional options for sorghum grain mold management: proceedings of an international consultation, 18–19 May 2000, ICRISAT, Patancheru, India (Chandrashekar A, Bandyopadhyay R and Hall AH, eds.). Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

Bandyopadhyay R, Little CR, Waniska RD and Butler DR. 2000. Sorghum grain mold: Through the 1990s into the new millennium. Paper presented in Global 2000: Sorghum and Pearl Millet Diseases III, 23–30 September, Guanajuato, Mexico.

Bandyopadhyay R, Muthusubramanian V, Tooley PW, Chakraborty S and Pazoutová S. 2000. Ergot Variability in India. Paper presented in Global 2000: Sorghum and Pearl Millet Diseases III, 23–30 September, Guanajuato, Mexico.

Bandyopadhyay R, Pazoutova S and Frederiksen RA. 1998. Ergot in Asia and Africa. On-line Proceedings for 1998 Conference on the Status of Sorghum Ergot in North America, 24–26 Jun 1998, Corpus Christi,TX, http://www.arsgrin.gov/ars/SoAtlantic/Mayaguez/ sorghum.html.

Bandyopadhyay R, Reddy Belum VS and Hall A. 2000. Grain mold management in sorghum. Presented at the AICSIP workshop, Hisar, 25–29 April, 2000.

Bandyopadhyay R, Stenhouse JW, Singh SD and Reddy BVS. 1998. Sorghum grain molds. Pages 43–46 in Proceedings of the Consultative meeting on Sorghum in Asia, 23–26 October 1997, Bangkok, Thailand. Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics.

Bandyopadhyay R. 1999. Role of ICRISAT in sorghum ergot research. Pages 169–177 in Proceedings of the Global Conference on Ergot of Sorghum, 1–8 Jun 1997, Sete Lagoas, Brazil (Casela CR and Dahlberg JA, eds.). Universiy of Nebraska, Lincoln, Nebraska, USA: INTSORMIL.

Bandyopadhyay R. 1999. Geographic distribution and spread of sorghum ergot: causes and implications. Pages 10–20 in Proceedings of the Global Conference on Ergot of Sorghum, 1–8 Jun 1997, Sete Lagoas, Brazil (Casela CR and Dahlberg JA, eds.). University of Nebraska, Lincoln, Nebraska, USA: INTSORMIL.

Bantilan MCS, Rai KN, Reddy BVS and Nigam SN. 1997. Generation of research for the semi-arid tropics from ICRISAT/NARS partnerships. Pages 113–120 *in* Integrating research evaluation efforts: Proceedings of an International Workshop (Bantilan MSC and Joshi PK, eds.). 14–16 Dec 1994, ICRISAT, Patancheru, India: Patancheru 502 324, Andhra Pradesh, India. International Crops Research Institute for the Semi-Arid Tropics. 208 pp. (INT 97 I 62205)

Bationo A, Anand Kumar, K Youm O and **N'djeunga J.** 2002. Critical over-view of on-farm research at ICRISAT. Pages 47–48 in Improving income and food supply in the Sahel-On-farm testing of sorghum and pearl millet technologies: summary proceedings of the Stakeholders' Workshop to Plan and Implement the IFAD project, 24–26 Feb 1999, ICRISAT, Sadoré, Niger. (In En, Fr.) BP 320, Bamako, Mali: International Crops Research Institute for the Semi-Arid Tropics and Rome, Italy: International Fund for Agricultural Development. 84 pp.

Bhola Nath. 1982. Population breeding techniques in sorghum. Sorghum in the eighties: proceedings of the International Symposium on Sorghum, 2–7 Nov 1981, ICRISAT Center, India (House LR, Mughogho LK and Peacock JM, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 421–434.

Bramel-Cox PJ, Maciel GM, Chisi F, Zavala Garcia E, Weltzien R and **Monyo ES.**1997. Targeting breeding programs for variable environments. Pages 224–240 in Genetic Improvement of Sorghum and Pearl Millet: proceedings of an International Conference, Lubbock, Texas, USA, 23–27 Sep 1996.

Chandrashekar A, Bandyopadhyay R and Hall AJ, (eds). 2000. Technical and Institutional options for sorghum grain mold management: proceedings of an International Consultation, ICRISAT Center, Patancheru, Andhra Pradesh, India, 18–19 May 2000. Patancheru 50234, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. 301 pp.

Chandrashekar A, Shewry P and **Bandyopadhyay R.** 2000. Some solutions to the problem of grain mold in sorghum: a review. Pages 124–168 in Technical and institutional options for sorghum grain mold management: proceedings of an international consultation, 18–19 May 2000, ICRISAT, Patancheru, India (Chandrashekar A, Bandyopadhyay R and Hall AH, eds.). Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

Chintu EM, Chigwe CFB, Obilana AB, Chirwa RW and Msiska FS. 1996. Sorghum variety release in Malawi the case of Pirira 1 and Pirira 2. Pages 19–25 in Drought-tolerant crops for southern Africa: proceedings of the SADC/ICRISAT Regional Sorghum and Pearl Millet Workshop, 25–29 Jul 1994, Gaborone, Botswana. (Leuschner K and Manthe CS, eds.). Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

Cissé B, Ratnadass A, Sow A, Sylla M, Maïga HM, Diarra D and Thiéro CAT. 1999. Les hétéroptères
associés à la rotation culturale cotonnier-sorghoarachide au Mali – Heteropteran bugs associated with the cotton-sorghum-groundnut crop rotation in Mali. Pages 11–12 in Integrated pest and vector management and sustainable development in Africa: Abstract of the Joint Congress of the African Association of Insect Scientists (13th congress) and the Entomological Society of Burkina Faso, 19–23 Jul 1999, Ouagadougou, Burkina Faso (Giga D and Ali Bob M, eds.).

Da S', Akingbala JO, Rooney LW, Scheuring JF and Miller FR. 1982. Evaluation of t' quality in a sorghum breeding program. Proceedings of the International Symposium on Sorghum Grain Quality, 28–31 Oct 1981, ICRISAT Center, India (Rooney LW and Murty DS, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 11–23.

Dahlberg J, Bandyopadhyay R, Rooney B, Odvody G and Frederickson D.1998. Host plant resistance strategies within the United States. On-line, Proceedings for 1998 Conference on the Status of Sorghum Ergot in North America, June 24–26, Corpus Christi, TX, http://www.ars-grin.gov/ars/SoAtlantic/ Mayaguez/sorghum.htm.

Dange SRS and **Williams RJ.** 1980. The ICRISAT sorghum downy mildew program. Sorghum diseases, a world review: proceedings of the International Workshop on Sorghum Diseases, 11–15 Dec 1978, ICRISAT, Hyderabad, India (Williams RJ, Frederiksen RA and Mughogho LK, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute or the Semi-Arid Tropics. Pp. 209–212.

Davies JC. 1982. Pest losses and control of damage on sorghum in developing countries—the realities and the myths. Sorghum in the eighties: proceedings of the International Symposium on Sorghum, 2–7 Nov 1981, ICRISAT Center, India (House LR, Mughogho LK and Peacock JM, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 215–223.

Deb UK and **Bantilan MCS.** 1998. Sorghum database development to enhance technology spillovers. Pages 29–33 in Strengthening sorghum research collaboration in Asia: report of the Asian Sorghum Scientists' Meeting, Suphan Buri, Thailand, 18–21 Nov 1997 (Gowda CLL and Stenhouse JW, eds.). Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. 72 pp.

Deb UK, Bantilan MCS and **Reddy BVS.** 2000. Impact of sorghum improved cultivars in India. A paper presented at ICAR-ICRISAT workshop, held at ICRISAT, Patancheru, during 10–12 February 2000.

Debrah SK and **Sanogo D**. 1995. The role of village studies in crop improvement research experiences from ICRISAT's West African Sorghum Improvement Program. Eighth EARSAM Regional Workshop on Sorghum and Millets. 30 Oct – 5 Nov 1992, Wad Medani, Sudan. (Mukuru, SZ King SB, eds.). Patancheru 502 324, Andhra Pradesh, India. International Crops Research Institute for the Semi-Arid Tropics. Pp. 204–211.

Dendy DAV, Gomez MI, House LR and **Rooney LW.** 1988. Uses of sorghum and millets: summary proceedings of an International Workshop on Policy, Practice and Potential Relating to Uses of Sorghum and Millets, 8–12 Feb 1988, Bulawayo, Zimbabwe. (In En.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. 36 pp.

Eggum BO, Bach Knudsen KE, Munck L, Axtell JD and Mukuru SZ. 1982. Milling and nutritional value of sorghum in Tanzania. Proceedings of the International Symposium on Sorghum Grain Quality, 28–31 Oct 1981, ICRISAT Center, India (Rooney LW and Murthy DS, eds.) Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 211–225.

Ejeta G, Butler LG, Hess DE and **Vogler RK.** 1991. Genetic and breeding strategies for *Striga* resistance in sorghum. Proceedings of the 5th International Symposium of Parasitic Weeds. Ransom JK, Musselman LJ, Worsham AD and Parker C, eds.; CIMMYT. Nairobi. Pp. 539–544.

Ejeta G, Butler LG, Hess DE, Obilana T and **Reddy BVS.** 1997. Breeding for *Striga* resistance in sorghum. Pages 504–516 in Proceedings of the International Conference on Genetic Improvement of Sorghum and Pearl Millet. 22–27 Sep 1996, Lubbock, Texas, USA. Lincoln, Nebraska, USA: Collaborative Research Support Program and Pearl Millet. INTSORMIL Publication 97–5.

Ejeta G, Mohammed A, Rich P, Melake-Berhan A, Housley TL and **Hess DE.** 2000. Selection for specific mechanisms of resistance to *striga* in sorghum. Pages 29–37 in Breeding for *striga* resistance in cereals: proceedings of a workshop, 18–20 Aug 1999, IITA, Ibadan, Nigeria (Haussmann BIG, Hess DE, Koyama ML, Grivet L, Rattunde HFW and Geiger HH, eds.). Weikersheim, Germany: Margraf Verlag.

Escobar G, Usma H, Madrid O, Rivera G and **Escue I**. 2000. Prospects of sorghum and pearl millet utilization in acid soils in Cauca State. Pages 26–30 in A research and network strategy for sustainable sorghum and pearl millet production systems for Latin America: proceedings of the Workshop, Villavicencio, Meta, Colombia, 24–26 Nov 1998 (Reddy BVS, Ceballos H and Ortiz R, eds.). Patancheru 50234, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

Gebisa Ejeta. 1982. Kisra quality: testing new sorghum varieties and hybrids. Proceedings of the International Symposium on Sorghum Grain Quality, 28–31 Oct 1981, ICRISAT Center, India (Rooney LW and Murty DS, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 67–72.

Gowda CLL, Hash CT, Reddy BVS, Stenhouse JW, Singh L and **Bantilan CS.** 1996. Collaboration in plant breeding among international and national agricultural research centers and the private sector: the case of ICRISAT. Paper presented at the APSA - Asian Seed 96 conference, 25–27 September 1996, Jakarta, Indonesia.

Gowda CLL, Reddy BVS, Rai KN and Saxena KB. 2004. Consortia approach as a model for publicprivate partnerships. Paper presented at the "Meeting on enhancing biopesticides through partnerships", 4 May 2004, ICRISAT, Patancheru.

Guiragossian V and **Mihm JA.** 1985. Improving hostplant resistance to fall armyworm and sugarcane borer in sorghum. Proceedings of the International Sorghum Entomology Workshop, 15–21 Jul 1984, College Station, Texas, USA (Leuschner K and Teetes GL, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 201–204.

Gupta SC, Ogungbile AO, Angarawai I, Ezeaku IE and Aldele SE. 2001. Farmers' participatory selection of sorghum and pearl millet varieties in Nigeria. Pages 232–242 in Towards sustainable sorghum production, Utilization and Commercialization in West Africa and Central Africa: proceedings of a Technical Workshop of the West and Central Africa Sorghum Research Network, Lome, Togo, 19–22 Apr 1999 (Akintayo I and Sedgo J, eds.). Bamako, Mali: West and Central Africa Sorghum Research Network. Hall A and Sivamohan MVK. 2000. Consumption of Sorghum in India and it's industrial utilisation: Some factors overlooked. Pages 59–60 in Souvenir and Abstracts in VIII Vasantrao Naik Memorial National Agriculture Seminar on Sorghum under different agroecological systems and it's industrial utilisation, Nagpur, 13–16 Jan 2000.

Hall AH, Bandyopadhyay R, Chandrashekar A and Clark NG. 2000. Sorghum grain mold: the scope of institutional innovations to support sorghum-based rural livelihoods. Pages 258–289 in Technical and institutional options for sorghum grain mold management: proceedings of an international consultation, 18–19 May 2000, ICRISAT, Patancheru, India (Chandrashekar A, Bandyopadhyay R and Hall AH, eds.). Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

Hall AJ and Yoganand B (eds). 2000. Sorghum utilization and the livelihoods of the poor in India: Summary proceedings of a workshop, 4–5 Feb 1999, ICRISAT, Patancheru, India. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. 92 pp.

Hall AJ, Bandyopadhyay R, Chandrashekar A and Shewry PR. 2000. Technical and institutional options for sorghum grain mold management and the potential for impact on the poor. Pages 7–33 in Technical and institutional options for sorghum grain mold management: proceedings of an international consultation, 18–19 May 2000, ICRISAT, Patancheru, India (Chandrashekar A, Bandyopadhyay R and Hall AH, eds.). Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

Hall AJ. 2000. Sorghum utilisation and the Indian poor: a review of findings and recommendations. Pages 5–41 in Sorghum utilisation and the livelihoods of the poor in India: Summary proceedings of a workshop 4–5 January 1999 ICRISAT, Patancheru, India. (Hall AJ and Yoganand B, eds.). Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid tropics. 92 pp.

Harinarayana G, Melkania NP, Reddy BVS, Gupta SK, Rai KN and Kumar PS. 2003. Forage potential of sorghum and pearl millet. Paper presented at the Expert Meeting on Alternate Uses of Sorghum and Pearl Millet in Asia, 1–4 July 2003 held at ICRISAT, Patancheru, India. Hash CT, Folkertsma RT, Ramu P, Reddy BVS, Mahalakshmi V, Sharma HC, Rattunde HFW, Weltzein ER, Haussmann BIG, Ferguson ME and Crouch JH. 2003. Marker-assisted breeding across ICRISAT for terminal drought tolerance and resistance to shoot fly and *striga* in sorghum. Poster presented at the international conference entitled "In the wake of the double helix: From the green revolution to the gene revolution", 27–31 May 2003, Bologna, Italy.

Haussmann BIG and Hess DE. 2001. *Striga* control: mechanisms and strategies for promoting sustainable sorghum production in Africa with special emphasis on host plant resistance. Pages 101–119 in Towards sustainable sorghum production, utilization and commercialization in West and Central Africa: proceedings of a Technical Workshop of the West and Central Africa Sorghum Research Network. (Akintayo I and Sedgo J, eds.), 19–22 Apr 1999, Lomé;, Togo. WCASRN/ICRISAT: International Crops Research Institute for the Semi-Arid Tropics.

Haussmann BIG, Hess DE, Omanya GO, Reddy BVS, Seetharama N, Mukuru SZ, Kayentao M, Welz HG and Geiger HH. 2001. Towards marker-assisted selection for *striga* resistance in sorghum. Presented at the 7th International Parasitic Weeds Symposium, Nantes, France. 5–8 Jun 2001.

Haussmann BIG, Hess DE, Reddy BVS, Mukuru SZ, Kayentao M, Welz HG and Geiger HH. 2000. Diallel studies on *striga* resistance in sorghum. Pages 41–58 in Breeding for *striga* resistance in cereals: proceedings of a workshop, 18–20 Aug 1999, IITA, Ibadan, Nigeria (Haussmann BIG, Hess DE, Koyama ML, Grivet L, Rattunde HFW and Geiger HH, eds.). Weikersheim, Germany: Margraf Verlag. 376 pp.

Haussmann BIG, Hess DE, Reddy BVS, Mukuru SZ, Seetharama N, Kayentao M, Omanya GO, Welz HG and Geiger HH. 2000. QTL for striage resistance in sorghum populations derived from IS 9830 and N 13. Pages 159–171 in Breeding for *striga* resistance in cereals: proceedings of a workshop 18–20 Aug 1999, IITA, Ibadan, Nigeria (Haussmann BIG, Hess DE, Koyama ML, Grivet L, Rattunde HFW and Geiger HH, eds.). Weikersheim, Germany: Margraf Verlag. 376 pp.

Haussmann BIG, Hess DE, Reddy BVS, Welz HG and Geiger HH. 1996. Quantitative-genetic parameters for resistance to *Striga hermonthica* in sorghum. Pages 681–688 in Advances in parasitic plants research: proceedings of the Sixth International Parasitic Weed Symposium, April 16–18, 1996, Cordoba, Spain.

(Moreno MT, Cubero JI, Berner D, Joel D, Musselman LJ and Parker C, eds.). Sevilla: Direccion General de Investigacion Agraria.

Haussmann BIG, Omanya G, Hess DE, Reddy BVS and Geiger HH.1998. Evaluation of therecombinant inbred sorghum population for resistance to *Striga hermonthica* in field, pot and laboratory studies. A paper presented at Tropical Day, 10–12, Dec 1998, University of Goettingen.

Haussmann, BIG, Hess DE, Reddy BVS, Mukuru SZ, Seetharama N, Kayentao M, Omanya GO, Welz HG and Geiger HH. 2000. Towards more efficient breeding for *striga* resistance in sorghum. In: Proceedings, Deutscher Tropentag 1999. Conference held at Humboldt University, Berlin, 14–15 October 1999.

Heinrich GM and Gupta SC. 1996. Conduct and implementation of on-farm trials. Pages 81–95 in Sorghum-perspectives of a global research agenda, ICRISAT Sorghum Projects Consultative Group Meeting, 11-14 Dec 1995, ICRISAT Western and Central Africa Region, BP 320, Bamako, Mali (Nwanze, KF and Bandyopadhyay, R, eds.). Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

Heinrich GM and Monyo ES, (eds). 1998. Farmer participation in sorghum and pearl millet breeding: proceedings of a workshop, 25–27 Apr 1995, Mahenene, Namibia. PO Box 776, Bulawayo, Zimbabwe: Southern African Development Community/International Crops Research Institute for the Semi-Arid Tropics.

Henzell RG, Peterson GC, Teetes GL, Franzmann BA, Sharma HC, Youm O, Ratnadass A, Touré A and Rab J. 1997. Breeding for resistance to sorghum and pearl millet panicle pests. Pages 255–280 in Proceedings of the International Conference on the Genetic Improvement of Sorghum and Pearl Millet, Lubbock, Texas, USA, 22–27 Sept 1996. (Publication No. 97–5). Lincoln, Nebraska, USA: INTSORMIL. 708 pp.

Hess DE, Bandyopadhay R and Sissoko I. 2001. Reactions of sorghum genotypes to leaf, panicle and grain anthracnose (Colletotrichum graminicola) under field conditions in Mali. Pages 163–177 in Towards sustainable sorghum production, Utilization and Commercialization in West Africa and Central Africa: proceedings of a Technical Workshop of the West and Central Africa Sorghum Research Network, Lome, Togo, 19–22 Apr 1999 (Akintayo I and Sedgo J, eds.). Bamako, Mali: West and Central Africa Sorghum Research Network.

Hess DE, Ejeta G and **Butler L**. 1991. Research into germination of *striga* seed by sorghum root exudates. Proceedings of the 5th International Symposium of Parasitic Weeds, 24–30 Jun 1991, Nairobi, Kenya (Ransom JK, Musselman LJ, Worsham AD and Parker C, eds.). Nairobi, Kenya: International Maize and Wheat Improvement Center (CIMMYT). Pp. 217–222.

Hess DE. 1997. *Striga* management in sorghum. Paper presented at the General Assembly of the West and Central African Sorghum Research Network, 10–13 Mar 1997, Bamako, Mali. ICRISAT, B.P. 320, Bamako, Mali. 30 pp.

Hodges RJ, Hall AJ, Jayaraj K, Jaiswal P, Potdar N, Yoganand B and Navi SS. 2000. Quality changes in farm-stored sorghum grain grown in the wet or dry season in southern India—a technical and social study. Pages 333–344 in Quality assurance in agricultural produce: proceedings of the 19th ASEAN/1st APEC seminar on Postharvest technology, 9–12 Nov 1999, Ho Chi Minh City, Vietnam (Johnson GI, Le Van To, Nguyen Duy Duc and Webb MC, eds.). Canberra, Australia: Australian Center for International Agricultural Research.

House LR, Mughogho LK and Peacock JM. 1982. Sorghum in the eighties: proceedings of the International Symposium on Sorghum, 2–7 Nov 1981, ICRISAT Center, India. 2 vols. (In En, Summaries in En.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. 800 pp.

House LR, Verma BN, Ejeta G, Rana BS, Kapran I, Obilana AB and Reddy Belum VS. 1997. Developing Countries breeding and potential of hybrid sorghum. Pages 84–96 in Proceedings of the International Conference on Genetic Improvement of Sorghum and Pearl Millet, 22–27 Sep 1996, Holiday Inn Plaza, Lubbock, Texas, USA.

House LR. 1980. Needs and strategies for incorporation of disease resistance in sorghum hybrids compared with varieties. Sorghum diseases, a world review: proceedings of the International Workshop on Sorghum Diseases, 11–15 Dec 1978, ICRISAT, Hyderabad, India (Williams RJ, Frederiksen RA and Mughogho LK, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute or the Semi-Arid Tropics. Pp 426–429.

Howarth CJE, Weltzien R, Bidinger FR and Harris D. 1997. Seedling survival of abiotic stress: Sorghum and pearl millet. Pages 379–399 in Genetic Improvement of Sorghum and Pearl Millet: Proceedings of an International Conference, Lubbock, Texas, USA, 23– 27 Sep 1996.

Huda AKS, Sivakumar MVK, Virmani SM, Seetharama N and Sardar Singh Sekaran JG. 1984. Modeling the effect of environmental factors on sorghum growth and development. Agrometerology of sorghum and millet in the semi-arid tropics: proceedings of the International Symposium, 15–20 Nov 1982, ICRISAT Center, India. Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 277–287.

Indira S, Xiude X, Iamsupasit N, Shetty HS, Vasanthi NS, Singh SD and Bandyopadhyay R. 2000. Diseases of sorghum and pearl millet in Asia. Paper presented in Global 2000: Sorghum and Pearl Millet Diseases III, 23–30 Sept 2000, Guanajuato, Mexico.

Isakeit T, Bandyopadhyay R, Odvody GN, Dahlberg J and **Narro SJ.** 1999. Reaction of sorghum hybrids to ergot in South and Central Texas, Puerto Rico and Guanajuato, Mexico. Page 63 in the Proceedings of the 1999 Sorghum Conference and 21st Biennial Grain Sorghum Research and Utilization Conference, Abernathy, Texas 79311: National Grain Sorghum Producers.

Ito O, Matsunaga R, Tobita S and **Rao TP.** 1992. Rooting behaviour of intercropped pigeonpea *(Cajanus cajan* [L.] Millspaugh) and sorghum *(Sorghum bicolor* [L.] Moench). Root ecology and its practical application—A contribution to the investigation of the whole plant 2: proceedings of the 3rd ISRR-Symposium, 2–6 Oct 1991, Wien, Austria (Kutschera L, Hubl E, Lichtenegger E, Persson H and Sobotik M, eds.). A-9020 Klagenfurt, Austria: Verein fur Wurzelforzchung. Pp. 419–422.

Ito O, Matsunaga R, Tobita S, Adu-Gyamfi JJ, Katayama K, Rao TP and Gayatri Devi. 1997. Nitrogen fertilizer management in pigeonpea/sorghum intercropping on an Alfisol in the semi-arid tropics. Pages 689–690 in Plant nutrition for sustainable food production and environment: Proceedings of the XIII International Plant Nutrition Colloquium, 13–19 September 1997, Tokyo, Japan. Developments in Plant and Soil Sciences: Volume 78 (Ando T, Fujita K, Mae T, Matsumoto H, Mori S and Sekiya J, eds.). Tokyo, Japan: Kluwer Academic Publishers. **Ito O, Tobita S, Matsunaga R, Rao TP** and **Johansen C.** 1992. Inorganic nitrogen in soil water collected from soil under intercrop components sorghum and pigeonpea – A pot experiment. Nutrient management for sustained productivity: proceedings of the International Symposium, Ludhiana, Punjab, India (Bajwa MS, Pasricha NS, Sidhu PS, Chaudhary MR, Benbi DK and Beri V, eds.). Vol. 2. Ludhiana 141 004, Punjab, India: Punjab Agricultural University. Pp. 16–18.

Jambunathan R and Subramanian V. 1988. Grain quality and utilization of sorghum and pearl millet. Biotechnology in tropical crop improvement: proceedings of the International Biotechnology Workshop, 12–15 Jan 1987, ICRISAT Center, India (de Wet JMJ. ed.). Patancheru, Andhra Pradesh 502 324, India: ICRISAT. Pp. 133–139.

Jambunathan R, Singh U and Subramanian V. 1984. Grain quality of sorghum, pearl millet, pigeon-pea and chick-pea. Interfaces between agriculture, nutrition and food science. Proceedings of a Workshop, 10–12 Nov 1981, ICRISAT Center, India (Achaya KT, ed.). Tokyo, Japan: United Nations University. Pp. 47–60.

Kamala Jayanthi PD, Reddy Belum VS, Gour TB and Reddy DDR. 2000. Season specific trait expression of shoot fly resistance parameter – A clue for Rabi sorghum breeding. A paper presented at 87th Indian Science Congress, Pune, 3–7 January, 2000.

Kanemasu ET, Piara Singh and Chaudhuri UN. 1984. Water use and water-use efficiency of pearl millet and sorghum. Agrometeorology of sorghum and millet in the semi-arid tropics: proceedings of the International Symposium, 15–20 Nov 1982, ICRISAT Center, India (Virmani SM and Sivakumar MVK, ed.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 175–181.

Kelley TG and Parthasarathy Rao P. 1996. Availability and requirement of different sources of livestock feed in India with special reference to sorghum and millet straw. Pages 53–65 *in* Global Agenda for Livestock Research Proceedings of the Consultation for the South Asia Region, 8–6 June 1995, Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. Kenya: International Livestock Research Institute.

King SB and **Mukuru SZ.** 1994. An overview of sorghum, finger miller and pearl millet in eastern Africa with special attention to diseases. Breeding for disease resistance with emphasis on durability

proceedings of a Regional Workshop for Eastern, Central and Southern Africa. 2–6 Oct 1994, Njoro, Kenya. (Danial DL, ed.). The Netherlands Ministry for Development Cooperation (DGIS). Pp. 24–34.

King SB and **Mukuru SZ**. 1995. An overview of sorghum, finger millet and pearl millet in eastern Africa with special attention to diseases. In En. Breeding for disease resistance with emphasis on durability. Proceedings of a regional workshop for eastern, central and southern Africa, held at Njoro, Kenya, Oct 2–6, 1994. (Danial DL, ed.). Wageningen, the Netherlands. Wageningen Agricultural University. Pp. 24–34.

Knepper D, Tunde Obilana A and Musselman LJ. 1991. Morphology of *Striga* forbesii and preliminary screening for resistance in sorghum. Proceedings of the 5th International Symposium of Parasitic Weeds, 24–30 Jun 1991, Nairobi, Kenya (Ransom JK, Musselman LJ, Worsham AD and Parker C, eds.). Nairobi, Kenya: International Maize and Wheat Improvement Center (CIMMYT). Pp. 241–246.

Lee KK, Singh P, Wani SP, Rego TJ, Trimurtulu N and Monteith JL. 1996. Effects of fertilizer nitrogen and irrigation on root growth and water uptake with special reference to postrainy season sorghum. Pages 261–271 *in* Dynamics of roots and nitrogen in cropping systems of the semi-arid tropics: proceedings of the International Workshop, 21–25 Nov 1994, ICRISAT Center, Patancheru, Andhra Pradesh, India (Ito O, Johansen C, Adu-Gyamfi JJ, Katayama K, Kumar Rao JVDK and Rego TJ, eds.). Tokyo, Japan: Japan International Reserach Center for Agricultural Sciences.

Leuschner K and Manthe CS (eds.). 1996. Droughttolerant crops for Southern Africa: proceedings of the SADC/ICRISAT Regional Sorghum and Pearl Millet Workshop, Gaborone, Botswana, 25–29 Jul 1994. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

Leuschner K and **Sharma HC.** 1983. Assessment of losses caused by sorghum panicle pests. Proceedings of the National Seminar on Crop Losses Due to Insect Pests, 7–9 Jan 1983, Hyderabad, Andhra Pradesh, India (Krishnamurty Rao BH and Murty SRK, eds.). Special Issue, Indian Journal of Entomology. Vol. II. Hyderabad, Andhra Pradesh, India: Entomological Society of India. Pp. 201–212. **Leuschner K** and **Teetes GL**. 1985. Proceedings of the International Sorghum Entomology Workshop, 15–21 Jul 1984, College Station, Texas, USA. (In En, Summaries in En, Fr.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. 434 pp.

Leuschner K. 1985. Sorghum entomology research: programs and need in the developing world. Proceedings of the International Sorghum Entomology Workshop, 15–21 Jul 1984, College Station, Texas, USA (Leuschner K and Teetes GL, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 13–20.

Leuschner K. 1996. Methodology for screening sorghum resistance to storage pests. Drought-tolerant crops for southern Africa proceedings of the SADC/ ICRISAT Regional Sorghum and Pearl Millet Workshop, 25–29 Jul 1994, Gaborone, Botswana. (Leuschner K and Manthe CS, eds.). Patancheru 502 324, Andhra Pradesh, India. International Crops Research Institute for the Semi-Arid Tropics. Pp. 173–179.

Mangombe N, Heinrich GM and Gono LT, (eds.). 1998. Proceedings of the Zimbabwe National Sorghum/ Millets Program workshop on the formation of a national sorghum and millets coordinating committee and strategies for ensuring good quality seed for smallholder farmers through coordinated research and extension, Harare, Zimbabwe, 18–19 Feb 1997. Bulawayo, Zimbabwe: Sorghum/Millets Team, Department of Research and Specialist Services.

Mathur K, Rao VP, Thakur RP and Sivaramakrishnan S. 2001. RAPDs and virulence analysis for characterizing pathogenic variability in Colletotrichum graminicola isolates infecting sorghum. Pages 12–21 in Proceedings of Frontiers in Fungal Biotechnology and Plant Pathogen Relations (Manoharachary C, Bhagyanarayana G, Bhadraiah B, Satyaprasad K, Reddy BN and Nagamani A, eds.). Mumbai, India: Allied Publishers.

Mengesha MH and **Prasada Rao KE.** 1982. Current situation and future of sorghum germplasm. Sorghum in the eighties: proceedings of the International Symposium on Sorghum, 2–7 Nov 1981, ICRISAT Center, India (House LR, Mughogho LK and Peacock JM, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 323–333.

Mengesha MH and Prasada Rao KE. 1985. World sorghum germplasm collection and conservation.

Proceedings of the Plant Breeding Methods and Approaches in Sorghum Workshop for Latin America, 11–16 Apr 1983, Centro Internacional de Mejoramiento de Maiz y Trigo, Mexico. Mexico City, Mexico: CIMMYT. Pp. 90–104.

Monyo ES and **Mgonja MA.** 2001. *Striga* control strategies - a brief review. Pages 92–96 in proceedings of the SADC *Striga* Working Group Workshop, 22–23 May 2000, Dar es Salaam, Tanzania. P.O. Box 776, Bulawayo, Zimbabwe: SADC/ICRISAT Sorghum and Millet Improvement Program, International Crops Research Institute for the Semi-Arid Tropics, Bulawayo.

Monyo ES, Mgonja MA, Rattunde EW, Anand Kumar K and Obilana AB. 2002. Giving farmers options: better germplasm of sorghum and millets. Pages 47–51 in Dissemination of Technologies Enhancing Smallholder Income in sub-Saharan Africa: science with a Human Face: proceedings of an International Workshop to Discuss ICRISAT and World Vision International Partnerships, ICRISAT-Bulawayo, Zimbabwe, 20–23 Nov 2000 (Myers RJK, Abifarin A and Jones RB, eds.). Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

Moran JL, Rooney WL, Bandyopadhyay R and Frederiksen RA. 1999. Differences in ergot susceptibility among sorghum inbred lines and the role of floral characteristics in determining ergot susceptibility. Pages 33–34 in the Proceedings of the 1999 Sorghum Conference and 21st Biennial Grain Sorghum Research and Utilization Conference. Abernathy, Texas 79311: National Grain Sorghum Producers.

Mughogho LK and **Pande S.** 1985. Charcoal rot of sorghum. Sorghum root and stalk rots, a critical review: proceedings of the Consultative Group Discussion on Research Needs and Strategies for Control of Sorghum Root and Stalk Rot Diseases, 27 Nov–2 Dec 1983, Bellagio, Italy (Mughogho LK, ed.). Patancheru, Andhra Pradesh 502 324, India:International Crops Research Institute for the Semi-Arid Tropics. Pp. 11–24.

Mughogho LK. 1982. Strategies for sorghum disease control. Sorghum in the eighties: proceedings of the International Symposium on Sorghum, 2–7 Nov 1981, ICRISAT Center, India (House LR, Mughogho LK and Peacock JM, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp 273–282. **Mughogho LK.** 1984. Sorghum root and stalk rots: basic disease problems. Summary and synthesis. Sorghum root and stalk rots, a critical review: proceedings of the Consultative Group Discussion on Research Needs and Strategies for Control of Sorghum Root and Stalk Rot Diseases, 27 Nov-2 Dec 1983, Bellagio, Italy (Mughogho LK, ed.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 73–74.

Mughogho LK. 1984. Sorghum root and stalk rots, a critical review: proceedings of the Consultative Group Discussion on Research Needs and Strategies for Control of Sorghum Root and Stalk Rot Diseases, 27 Nov–2 Dec 1983, Bellagio, Italy. (In En, Summaries in En.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. 274 pp.

Mukuru SZ, Mushonga JN and **Murty DS.** 1982. Sorghum ugali. Proceedings of the International Symposium on Sorghum Grain Quality, 28–31 Oct 1981, ICRISAT Center, India (Rooney LW and Murty DS, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 39–44.

Murthy DS. 1990. Industrial utilization of sorghum: summary proceedings of a Symposium on the Current Status and Potential of Industrial uses of Sorghum in Nigeria, 4–6 Dec 1989, Kano, Nigeria. (In En, Summaries in En, Fr.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. 68 pp.

Murty DS and **Subramanian V.** 1982. Sorghum roti. I. Traditional methods of consumption and standard procedures for evaluation. Proceedings of the International Symposium on Sorghum Grain Quality, 28–31 Oct 1981, ICRISAT Center, India (Rooney LW and Murty DS, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 73–78.

Murty DS and **Tabo R.** 1998. Potential of sorghum hybrids in West and central Africa. Pages 211–214 in Amelioration du sorgho et de sa culture en Afrique de l' Ouest et du Centre. Actes de l' atelier de restitution du programme conjoint sur le sorgho ICRISAT-CIRAD, 17-20 mars 1997, Bamako, Mali (Ratnadass A, Chantereau J and Gigou J, eds.). Colloques, Montpellier, Cirad-ca, 315 pp.

Murty DS, Patel HD and House LR. 1982. Cultivar differences for gel consistency in sorghum.

Proceedings of the International Symposium on Sorghum Grain Quality, 28–31 Oct 1981, ICRISAT Center, India (Rooney LW and Murty DS, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 289–293.

Murty DS, Patel HD and **House LR**. 1982. Sankati quality evaluation of sorghum cultivars. Proceedings of the International Symposium on Sorghum Grain Quality, 28–31 Oct 1981, ICRISAT Center, India (Rooney LW and Murty DS, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 36–38.

Murty DS, Patel HD and **House LR**. 1982. Sorghum roti. II. Genotypic and environmental variation for roti quality parameters. Proceedings of the International Symposium on Sorghum Grain Quality, 28–31 Oct 1981, ICRISAT Center, India (Rooney LW and Murty DS,eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 79–91.

Murty DS, Patel HD and **House LR**. 1984. Processing and cooking quality characters in sorghum. Nutritional and processing quality of sorghum: proceedings of the Symposium on Nutritional and Processing Quality of Sorghum, 17–21 May 1982, Pune, Maharashtra, India (Salunkhe DK, Chavan JK and Jadhav SJ, eds.). New Delhi, India: Oxford and IBH Publishing Co. Pp. 156–170.

Murty DS, Rao KN and **House LR.** 1980. Breeding for grain mold resistant sorghums at ICRISAT. Sorghum diseases, a world review: proceedings of the International Workshop on Sorghum Diseases, 11–15 Dec 1978, ICRISAT, Hyderabad, India (Williams RJ, Frederiksen RA and Mughogho LK, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute or the Semi-Arid Tropics. Pp. 154–163.

Murty DS, Rao NS and **Singh U.** 1985. Evaluation of sorghum grain quality as influenced by milling methods. Symposium of the Processing of Sorghum and Millets: criteria for quality of grains and products for human food, 4–5 Jun 1984, Vienna, Austria. The Eleventh Congress 1984 of the International Association for Cereal Science and Technology, 4–8 Jun 1984, Vienna, Austria. Vienna, Austria: International Association of Cereal Chemistry. Pp. 24–28.

Natarajan M and **Willey RW.** 1981. Growth studies in sorghum/pigeonpea intercropping with particular

emphasis on canopy development and light interception. Proceedings of the International Workshop on Intercropping, 10–13 Jan 1979, ICRISAT, Hyderabad, India (Willey RW, ed.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 180–187.

Ndjeunga J and Nelson CH. 2001. Prospects for a pearl millet and sorghum food processing industry in West Africa Semi-arid tropics. Pages 178–184 in Toward sustainable sorghum production, utilization and commercialization in West and Central Africa: proceedings of a Technical Workshop of the West and Central Africa Sorghum Research Network, Lome, Togo, 19–22 Apr 1999 (Akintayo I and Sedgo J, eds.). Bamako, Mali: West and Central Africa Sorghum Research Network. 315 pp.

Ndjeunga J. 1997. Constraints to variety release, seed multiplication and distribution of sorghum, pearl millet and groundnut in Western and Central Africa. Pages 34–36 in Alternative strategies for smallholder seed supply: proceedings of an International Conference on Options for Strengthening National and Regional Seed Systems in Africa and West Asia, Harare, Zimbabwe, 10–14 Mar 1997 (Rohrbach DD, Bishaw Z and van Gastel AJG, eds.). Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

Nwanze Kanayo F, Prasada Rao KE and Soman P. 1990. Understanding and manipulating resistance mechanisms in sorghum for control of the shoot fly. Proceedings of the International Symposium on Natural Resource Management for Sustainable Agriculture, 6– 10 Feb 1990, New Delhi, India. New Delhi, India: Secretary, Indian Society of Agronomy. T11.1-T11.2.

Nwanze KF and **Reddy Belum VS.** 1988. An overview of sorghum program at ICRISAT Center. A position paper presented at the Annual Sorghum Workshop, SADCC/ICRISAT, Bulawayo, Zimbabwe.

Nwanze KF and Bandyopadhyay R. (eds.). 1996. Sorghum — perspectives of a global research agenda. ICRISAT Sorghum Projects Consultative Group Meeting, 11 to 14 Dec 1995, ICRISAT Western and Central Africa Region, BP 320, Bamako, Mali. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. 136 pp.

Nwanze KF, Kokubu H and Teetes GL. 1991. Insect pests of sorghum and their control. Proceedings of the

11th International Congress of Plant Protection: Focus on the developingworld, 5–9 Oct 1987, Manila, the Philippines (Magallona ED, ed.). Los Banos, Philippines: Organizing Committee, 11th ICCP, University of Philippines. Pp 66–76.

Nwanze KF and **Mueller RAE**. 1988. Management options for sorghum stem borers for farmers in the semi-arid tropics. International Workshop on Sorghum Stem Borers, 17–20 Nov 1987, ICRISAT Center, India (Nwanze KF, ed.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 105–116.

Nwanze KF. 1985. Sorghum insect pests in West Africa. Proceedings of the International Sorghum Entomology Workshop, 15–21 Jul 1984, College Station, Texas, USA (Leuschner K and Teetes GL, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 37–43.

Nwanze KF. 1989. International Workshop on Sorghum Stem Borers, 17–20 Nov 1987, ICRISAT Center, India. (In En, Summaries in En, Fr.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. 192 pp.

Obilana AB and **Taylor JRN.** 2002. Status and development needs of processing and utilization technologies for sorghum and pearl millet: experiences from Southern Africa region and implications for West and Central Africa (WCA). Presented at the CFC Expert Consultative Meeting to identify and prioritize research and development needs and activities for a CFC Project in WCA, Bamako, Mali, 23–26 Apr 2002.

Obilana AB, (ed.). 1996. Sorghum and pearl millet food technology in SADC countries: proceedings of a regional workshop, Harare, Zimbabwe, 29–30 Jan 1996. (In En.) Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics; Bulawayo, Zimbabwe: ICRISAT Southern and Eastern Region. 87 pp.

Obilana AB, de Milliano WAJ and **Mbwaga AM.** 1991. *Striga* research in sorghum and millets in southern Africa: status and host plant resistance. Proceedings of the 5th International Symposium of Parasitic Weeds, 24–30 Jun 1991, Nairobi, Kenya (Ransom JK, Musselman LJ, Worsham AD and Parker C, eds.). Nairobi, Kenya: International Maize and Wheat Improvement Center (CIMMYT). Pp. 435–441. **Obilana AB, Monyo ES** and **Gupta SC.** 1997. Impact of genetic improvement in sorghum and pearl millet: developing country experiences. Pages 119–141 in Proceedings of the International Conference on Genetic Improvement of Sorghum and Pearl Millet, Lubbock, Texas, USA, 22–27 Sep 1996. Lincoln, Nebraska, USA: INTSORMIL Publication No. Pp. 97–5.

Obilana AB, Prasada Rao KE, Mangombe N and **House LR.** 1996. Classification of sorghum races in the southern Africa sorghum germplasm. Pages 113–118 in Drought-tolerant crops for southern Africa: proceedings of the SADC/ICRISAT Regional Sorghum and Pearl Millet Workshop, 25–29 Jul 1994, Gaborone, Botswana (Leuschner K and Manthe CS, eds.). Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

Obilana AB, Reddy BVS and **Manyasa E.** 2002. Collaboration between ICRISAT and Ethiopian Sorghum Improvement Program (ESIP): a review and continued partnership for impact. Invited presentation at the 1st Ethiopian Agricultural Research Organization (EARO) National Sorghum and Millet Workshop, 12– 14 Nov. 2002. Melkasa Agric. Research Center, Nazreth/Melkasa, Ethiopia.

Obilana AB. 2001. Production, utilization and marketing of sorghum in Southern Africa region: Pages 141–162 in Towards a sustainable sorghum production, utilization and marketing in west and central Africa, Lome, Togo, 19–22 April 1999, West and Central Africa Sorghum Research Network (WCASRN), Bamako, Mali (Akintayo I and Sedgo J, eds.). Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

Obilana AB. 2001. Use of sorghum as animal feed: a research-for-development note. Presented at the KARI/ University of Reading/ILRI Stakeholders Meeting, 11 Jul 2001, NARL Agricultural Information Center, Nairobi, Kenya. 4 pp.

Ogungbile AO, Gupta SC, Tabo R and **Ajayi O**. 1997. On-farm evaluation of improved sorghum cultivars in the Sudan Savanna Ecological Zone of Nigeria. Paper presented at the 1997 Institute for Agricultural Research Annual cropping Scheme Meeting, IAR, Samaru, Nigeria.

Omanya GO, Haussmann BIG, Hess DE, Reddy BVS, Mukuru SZ, Welz HG and Geiger HH. 2000. Assessment of direct and indirect measures of *striga* resistance in sorghum. In: Proceedings, Deutscher Tropentag 1999. Conference held at Humboldt University, Berlin, 14–15 October 1999. ATSAF (in press).

Omanya GO, Haussmann BIG, Hess DE, Reddy BVS, Mukuru SZ, Welz HG and Geiger HH. 2000. Evaluation of laboratory, pot and field measures of *striga* resistance in sorghum. Pages 51–72 in Breeding for *striga* resistance in cereals: proceedings of a workshop, 18–20 Aug 1999, IITA, Ibadan, Nigeria (Haussmann BIG, Hess DE, Koyama ML, Grivet L, Rattunde HFW and Geiger HH, eds.). Weikersheim, Germany: Margraf Verlag. 376 pp.

Peacock JM and **Heinrich GM**. 1984. Light and temperature responses in sorghum. Agrometeorology of sorghum and millet in the semi-arid tropics: proceedings of the International Symposium, 15–20 Nov 1982, ICRISAT Center, India (Virmani SM and Sivakumar MVK, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the emi-Arid Tropics. Pp. 143–158.

Peacock JM and **Sivakumar MVK**. 1987. An environmental physiologists approach to screening for drought resistance in sorghum *(Sorghum bicolor* [L.] Moench) with particular reference to sub-Saharan Africa. Food grain production in the semi-arid Africa: proceedings of an International Symposium, 19–23 May 1986, Nairobi, Kenya (Menyonga JM, Bezuneh T and Youdeowei A, eds.). Ouagadougou, Burkina Faso: OAU/STRC-SAFGRAD (Organization of African Unity/ Scientific, Technical and Research Commission-Semi-Arid Food Grain Research Development). Pp. 101–120.

Peacock JM, Azam-Ali SN and Matthews RB. 1988. An approach to screening for resistance to water and heat stress in sorghum *(Sorghum bicolor* [L.] Moench). Arid lands today and tomorrow: proceedings of an International Research and Development Conference, 20–25 Oct 1985, Tucson, Arizona, USA (Whitehead EE, Hutchinson CF, Timmermann BN and Varady R,, eds.). Boulder, Colorado, USA: Westview Press. Pp. 487–497.

Peacock JM. 1982. Response and tolerance of sorghum to temperature stress. Sorghum in the eighties: proceedings of the International Symposium on Sorghum, 2–7 Nov 1981, ICRISAT Center, India (House, L.R., Mughogho LK and Peacock JM, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 143–159.

Peacock JM. 1987. ICRISAT's sorghum research in the semi-arid tropics. Sorghum for acid soils: proceedings of a Workshop on Evaluating Sorghum for Tolerance to Al-toxic Tropical Soils in Latin America, 28 May–2 Jun 1984, Cali, Colombia. Pp. 15–33.

Peterson GC, Reddy BVS, Youm O, Teetes GL and Lambright L. 1997. Breeding for resistance to foliar- and stem-feeding insects of sorghum and pearl millet. Pages 281–302 in Proceedings of the International Conference on the Genetic Improvement of Sorghum and Pearl Millet (Publication No. 97-5) Lubbock, Texas, USA, 22–27 Sept 1996. Lincoln, Nebraska: USA. 708 pp.

Prasada Rao KE and **Mengesha MH.** 1988. Sorghum genetic resources-synthesis of available diversity and its utilisation. Plant genetic resources—Indian perspective: proceedings of the National Symposium on Plant Genetic Resources, 3–6 Mar 1987, New Delhi, India (Paroda RS, Arora RK and Chandel KPS, eds.). New Delhi 110 012, India: National Bureau of Plant Genetic Resources. Pp. 159–169.

Prasada Rao KE and **Murty DS.** 1982. Sorghum for special uses. Proceedings of the International Symposium on Sorghum Grain Quality, 28–31 Oct 1981, ICRISAT Center, India (Rooney LW and Murty DS, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 129–134.

Prasada Rao KE and **Rao NK**. 1990. Sorghum nitidum(Vah1) Pers., occurrence, morphology and cytology. Proceedings, Indian Academy of Sciences — Plant Sciences 100(5):333–336.

Ramaiah KV and **Parker C.** 1982. *Striga* and other weeds in sorghum. Sorghum in the eighties: proceedings of the International Symposium on Sorghum, 2–7 Nov 1981, ICRISAT Center, India (House LR, Mughogho, LK and Peacock JM, eds.). Vol 1. Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid ropics. Pp. 291–302.

Ramaiah KV. 1985. Patterns of *Striga* resistance in sorghum and millets with special emphasis on Africa. *Striga* biology and control: papers presented at a Workshop on the Biology and Control of *Striga*, 14–17 Nov 1983, Dakar, Senegal. Paris, France: ICSU Press and Ottawa, Canada: International Development Research Centre. Pp. 71–92.

Rana BS, Kaul SL, Appaji Chari, Reddy Belum VS, Witcombe John R and Virk DS. 1998. Farmers participatory varietal selection aimed at improving rabi sorghum productivity in India. A paper presented at the workshop on Farmer Participatory Methods in Research and Development for the Semi-Arid Tropics, 27–28 Oct 1998, ICRISAT-Patancheru, India.

Rangel AF and **Reddy BVS.** 2000. Network trials: prospects and problems. Pages 57–65 in A research and network strategy for sustainable sorghum and pearl millet production systems for Latin America: proceedings of the Workshop, Villavicencio, Meta, Colombia, 24–26 Nov 1998 (Reddy BVS, Cebellos H and Ortiz R, eds.). Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

Rao KN and **Williams RJ.** 1980. Screening for sorghum grain mold resistance at ICRISAT. Sorghum diseases, a world review: proceedings of the International Workshop on Sorghum Diseases, 11–15 Dec 1978, ICRISAT, Hyderabad, India (Williams RJ, Frederiksen RA and Mughogho LK, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute or the Semi-Arid Tropics. Pp. 103–108.

Rao KN, Reddy Belum VS, Williams RJ and **House LR.** 1978. The ICRISAT charcoal rot resistance program. Pages 315–321 *in* Proceedings of the International Workshop held at ICRISAT on Sorghum Diseases - A World Review. ICRISAT Center, India, Patancheru, A.P. 502 324, India: ICRISAT.

Rao MR and **Willey RW.** 1981. Stability of performance of a pigeonpea/sorghum intercrop system. Proceedings of the International Workshop on Intercropping, 10–13 Jan 1979, ICRISAT, Hyderabad, India (Willey RW. ed.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 306–317.

Ratnadass A, Ajayi O, Marley PS and **Akintayo**, (eds.). 2001. Insects pests of sorghum in West and Central Africa: proceedings of Training Workshop organized by ROCARS, ICRISAT and CIRAD,14–23 Oct 1996, Samanko, Mali, published as a CD-Rom (ISBN 2-87614-446-8).

Ratnadass A, Butler DR, Marley PS, Ajayi O, Bandyopadhyay R, Hamada MA, Hess DE, Assamoi F, Atokple IDK, Beyo J, Cisse O, Dakouo D, Diakite M, Dossou-Yovo S, Le Diambo B, Sissoko I, Vopeyande MB and Akintayo I. 2001. Interacting effect of head bugs, molds and climate on sorghum grains in West and Central Africa. Pages 120–140 in Towards sustainable sorghum production, utilization and commercialization in West and Central Africa: proceedings of a Technical Workshop of the West and Central Africa Sorghum Research Network, 19–22 April 1999, Lome, Togo (Akintayo I and Sedgo J, eds.). Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

Ratnadass A, Cissé A and **Butler B.** 1998. Bioecology of the Panicle-feeding bug Eurystylus oldi Poppius (Heteroptére: Miridae), A key pest of sorghum in Mali. Pages 105–11 in Amelioration du sorgho et sa culkture en Afrique de l'Ouest et du Centre (Ratnadass A and Chantereau Gigou G, eds.). Atelier de restitution du Programme conjoint ICRISAT-CIRAD, 17–20 Mars 1997, á Bamako, Mali.

Ratnadass A, Hamada MA, Thiéro CAT, Diabaté M, Dramé D and Cissé B. 1999. Etudes récentes sur la résistance du sorgho à la punaise des panicules Eurystylus oldi Poppius (Heteroptera: Miridae) au Mali - Recent studies on sorghum resistance to paniclefeeding bug panicules Eurystylus oldi Poppius (Heteroptera: Miridae) in Mali. Pages 26–27 in Integrated pest and vector management and sustainable development in Africa: Abstract of the Joint Congress of the African Association of Insect Scientists (13th congress) and the Entomological Society of Burkina Faso, 19–23 Jul 1999, Ouagadougou, Burkina Faso, (Giga D. and Ali Bob M, eds.).

Rattunde HFW, Weltzien E and **Vaksmann M.** 2002. Population Breeding: An Approach for Millet and Sorghum Germplasm Utilization. Presented at Expert meeting on Utilisation of Regional Germplasm in the Improvement of Sorghum and Pearl Millet and Improved Post-Harvest technologie, 23–26 Apr 2002, Bamako, Mali.

Rattunde HFW, Obilana AB, Haussmann BIG, Reddy BVS and Hess DE. 2000. Breeding sorghum for *striga* resistance at ICRISAT: progress and perspectives. Pages 85–93 in Breeding for *striga* resistance in cereals: proceedings of a workshop, 18–20 Aug 1999, IITA, Ibadan, Nigeria (Haussmann, BIG, Hess DE, Koyama ML, Grivet L, Rattunde HFW and Geiger HH, eds.). Weikersheim, Germany: Margraf Verlag. 376 pp.

Rattunde HFW, Toure A, Weltzien E and **Sansan D**. 2002. Characterization of diversity within guinea race sorghums. Presented at Conference on Biotechnology, Breeding and Seed Systems for African Crops: Research and Product Development that Reaches

Farmers. Conference organized by the Rockefeller Foundation, Entebbe, Uganda, 4–7 Nov 2002. Abstract 66 pp.

Rattunde HFW, Weltzien E, Bramel-Cox RPJ, Kofoid K, CT Hash, Schipprack W, Stenhouse JW and Presterl T. 1997. Population Improvement of Pearl Millet and Sorghum: Current Research, Impact and Issues for Implementation. Pages 188–212 in Genetic Improvement of Sorghum and Pearl Millet: proceedings of an International Conference, Lubbock, Texas, USA, 23–27 Sep 1996.

Rattunde HFW, Weltzien RE, Touré A, Diarra MB and Sidibaye B. 2001. Understanding farmers' seed management as a basis for participatory breeding. Pages 243–251 in Towards sustainable sorghum production, utilization and commercialization in West and Centrel Africa: proceedings of a Technical Workshop of the West and Central Africa Sorghum Research Network, Lomé, Togo, 19–22 Apr 1999 (Akintayo I and Sedgo J, eds.). ROCARS, Bamako, Mali and ICRISAT, Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

Reddy Belum VS and **Rao Prakasha**. 1995. Sorghum improvement for *Striga* resistance: An up-date with emphasis on ICRISAT research. Paper presented at Sorghum project consulative meeting, Bamako, Mali, Dec.11–14, 1995.

Reddy Belum VS and **Rao Prakasha.** 1996. *Striga* research in sorghum - A global perspective. Presented at Second International Crop Science Congress. November 17–24, 1996, New Delhi, India.

Reddy Belum VS and **Stenhouse JW.** 1994. Improving Postrainy season sorghum, *Sorghum bicolor* (L.) Moench: A case for Landrace Hybrids Breeding Approach. Paper presented at the AII India Coordinated Sorghum Improvement Project (AICSIP) workshop, April 18–20, 1994, at GBPUAT, Pantnagar, U.P., India. 26 pp. (ICRISAT CP 913)

Reddy Belum VS and **Stenhouse JW**. 1994. Genetic enhancement research on sorghum at ICRISAT Asia Center, 1972–94. Pages 15–18 *in* Evaluating ICRISAT research impact: summary proceedings of a workshop on Research Evaluation and Impact Assessment, 13– 15 Dec 1993, ICRISAT Asia Center, India (Bantilan MCS and Joshi PK, eds.). Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. Reddy Belum VS, Hash CT, Stenhouse JW, Nigam SN, Laxman Singh and van Rheenan HA. 1995. Crop Improvement for livestock crop-residue feed at ICRISAT Asia Center. Pages 85–92 *in* Crop Improvement and its impact on the feeding value of straw and stovers of grain cereals in India (Seetharam A, Subbarao A and Schiere JB, eds.). New Delhi, India: Indian Council of Agricultural Research and Department of Tropical Animal Production, Agricultural University, Wageningen. (CP 1039)

Reddy Belum VS, Nicodemus David K, Sreeramulu G and Stenhouse JW. 1992. Diversification of sorghum seed parents at ICRISAT Center. A paper presented at XXII AICSIP workshop, 2–4 April 1992, Surat, India.

Reddy Belum VS, Prakasha Rao, Ramaiah B and Bandyopadhyay R. 1998. Breeding anthracnose resistant seed parents. Paper presented at A summary proceedings of Technical Exchange and Training Workshop on advances in sorghum anthracnose research, 23–25 Sept 1998, ICRISAT, Patancheru, International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Andhra Pradesh 502 324, India.

Reddy Belum VS, Prasada Rao KE and **Stenhouse JW.** 1990. Genetic diversity and selection response in ICRISAT Center's Sorghum Breeding Program. A paper presented to 7th EARSAM Regional Workshop, Jun 24-Jul 2 1990, Nairobi, Kenya.

Reddy Belum VS, Rattunde HFWR and **Stenhouse JW.** 1995. Sorghum Quality Improvement for Food, Feed and Industrial Uses. Paper presented at the symposium on "Sorghum Production Development to Support Agro Industries" Marif, Malang, Indonesia, Jun 14–21, 1995. 39 pp (ICRISAT CP 1045).

Reddy Belum VS, Seetharama N, Peacock JM and **House LR.** 1984. Genotypic variability for recovery from moisture stress and its association with days to flower and grain yield in sorghum. Presented at XV International Congress of Genetics, 12–21 Dec 1983, New Delhi, India.

Reddy Belum VS, Sharma HC and **Stenhouse JW.** 1995. Breeding for resistance to sorghum midge at ICRISAT Asia Center. Pages 159–169 *in* Panicle insect pests of sorghum and pearl millet: Proceedings of an International Consultative Workshop, 4–7 Oct 1993, ICRISAT Sahelian Center, Niamey, Niger (Nwanze KF and Youm O, eds.). Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. **Reddy Belum VS, Sharma HC** and **Stenhouse JW** 1993. Breeding for resistance to sorghum midge at ICRISAT Center. A paper presented to the International Consultative Workshop on Panicle Insect Pests of sorghum and Pearl millet (ICWPIP), 4–7 Oct 1993, Niamey, Niger.

Reddy Belum VS, Stenhouse JW, David Nicodemus K and **Ramaiah B.** 1992. Sorghum Breeding at ICRISAT Center, Pages 5–16 *in* Eigth EARSAM Regional Workshop on Sorghum and Millets, 30 Oct – 5 Nov 1992, Wad Medani, Sudan (Mukuru, SZ and King SB, eds), ICRISAT, Andhra Pradesh, India.

Reddy Belum VS, Stenhouse JW, Sekhar VB and Rao Prakasha. 1996. *Striga* resistant sorghum seed parents breeding at ICRISAT Asia Center. Presented at Sixth Parasitic Weed Symposium, 16–18 April, Cordoba, Spain. (CP 1091).

Reddy Belum VS. 1985. Genetic improvement of drought resistance in sorghum A plant breeder's view point. Pages 28–32 in Genetic Improvement of Drought Resistance. Proceedings of a Discussion Series of the Drought Research Seminar Forum held during 1985–86.

Reddy Belum VS. 1989. Breeding Sorghum for Postrainy Season Adaptation at ICRISAT. Presented to the Working Group Meeting on Production Technology of Rabi Sorghum, 19 Sep 1989, CRIDA, Hayatnagar, AP, India.

Reddy Belum VS. 2002. Relative Economic Value of Genotypes. A paper presented at AICSIP Workshop, held at Acharya N G Ranga Agricultural University, Rajendranagar, Hyderabad, 26–28 April 2002.

Reddy BVS and **Rangel AF.** 2000. Genotype (G) and G X environment (E) interactions in sorghum in acid soils of the oriental Ilanos of Colombia. Pages 46–53 in A research and network strategy for sustainable sorghum and pearl millet production systems for Latin America: proceedings of the Workshop, Villavicencio, Meta, Colombia, 24–26 Nov 1998 (Reddy BVS, Cebellos H and Ortiz R, eds.). Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

Reddy BVS and **Rao P.** 1996. *Striga* research in sorghum – A global perspective. Presented at Second International Crop Science Congress. November 17–24, 1996, New Delhi, India.

Reddy BVS and **Seetharama N.** 1999. Sorghum Improvement: A case for integrating traditional

breeding and transgenic research methods. A paper presented at the International Workshop on sorghum tissue culture, transformation and genetic engineering, 8–9 March, 1999. ICRISAT, Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

Reddy BVS and **Stenhouse JW.** 1996. ICRISAT's sorghum research and program highlights. Pages 76–77 in CLAN collaborative research in Asia: Needs and opportunities: summary proceedings of CLAN Country Coordinators Committee Meeting, 4–6 Dec 1995, ICRISAT Asia Center, India (Gowda CLL and Ramakrishna A, eds.). Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

Reddy BVS, Andres Felipe and **Iglesias C.** 1998. Latin American Sorghum Project: Some results. Pages 98– 116 in the Proceedings of Primer Simposi International de Sorgo, RiBrav 1998, 27–30 de Mayo.

Reddy BVS, Bandyopadhyay R, Ramaiah B and **Ortiz R.** 2000. Breeding grain mold resistant seed parents in sorghum. A paper presented the International Workshop on technical and institutional options for sorghum grain mold management and the potential impact on the poor, ICRISAT, Patancheru, Andhra Pradesh, 18–19 May 2000.

Reddy BVS, Cebellos H and **Ortiz R**, (eds.). 2000. A research and network strategy for sustainable sorghum and pearl millet production systems for Latin America: proceedings of the Workshop, Villavicencio, Meta, Colombia, 24–26 Nov 1998. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. 83 pp.

Reddy BVS, Gowda CLL, Rai KN and **Saxena KB**. 2003. Public-private sector partnership for hybrid parents research at ICRISAT: Origin and Evolution. Paper presented in workshop on "Public-private sector partnership for promotion of hybrid rice", held from 12–13 November 2003, Pune.

Reddy BVS, Hall AJ and **Rai KN.** 2001. The long road to partnership: private support of public research on sorghum and pearl millet. Pages 27–34 in Sharing Perspectives on a Public Private Sector Interaction: proceedings of a Workshop, Patancheru, Andhra Pradesh, India, 10 Apr 2001. (Hall AJ, Yoganand B, Rasheed Sulaiman V and Clark NG, eds.). New Delhi, India: National Center for Agricultural Economics and Policy Research. Patancheru 502 324, Andhra

Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

Reddy BVS, Kameswara Rao N, Bandyopadhyay R, Sharma HC, Sivaramakrishnan S and Seetharama N. 2001. Partnership for Progress: perspectives from ICAR-ICRISAT Collaborative Research on Sorghum. A paper presented at 31st Annual Group Meeting of Sorghum Scientists from India, organized by Acharya N G Ranga Agricultural University, CRIDA, Hyderabad, 4–6 May 2001.

Reddy BVS, Ramesh S, Madhusudana R and Aruna Reddy C. 2004. Population improvement in sorghum. Paper presented at the 34th Annual All India Coordinated Sorghum Improvement Project Meeting held at Tamil Nadu Agricultural University, Coimbatore, 20–22 May 2004.

Reddy BVS, Rangel AF, Iglesias CA and **Bernal JH.** 2000. Evaluation of sorghum and pearl millet for acidsoil tolerance in the Oriental Ilanos of Colombia. Pages 37–45 in A research and network strategy for sustainable sorghum and pearl millet production systems for Latin America: proceedings of the Workshop, Villavicencio, Meta, Colombia, 24–26 Nov 1998 (Reddy BVS, Cebellos H and Ortiz R, eds.). Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

Reddy BVS, Rao P and **Ramaiah B.** 1999. Sorghum Improvement at ICRISAT: Products and recent research perspectives. Pages 18–27 in Proceedings of the first Iran-ICRISAT Workshop, 16–22 August 1998, Seed and Plant Improvement Institute, Karaj, Iran and ICRISAT, Patancheru 502 324, Andhra Pradesh, India. Tehran, Iran: Agricultural Research, Education and Extension Organization and Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

Reddy BVS, Sanjana P and **Ramaiah B**. 2003. Sorghum genetic diversification at ICRISAT: 1972–2000. Paper presented at the AII India Coordinated Sorghum Improvement Project (AICSIP) Workshop, 1–3 April 2003, Surat, Gujarat, India.

Reddy BVS, Sanjana P and **Ramaiah B.** 2003. Strategies for improving postrainy season sorghums: a case study for landrace-based hybrids breeding approach. Paper presented at the workshop on Heterosis in Guinea Sorghum, Sotuba, Mali, 10–14 March 2003. Reddy BVS, Seetharama N, Maiti RK, Bidinger FR, Peacock JM and House LR. 1980. Breeding for drought resistance in sorghum at ICRISAT. Presented at the All India Coordinated Sorghum Improvement Project Workshop, 12–14 May 1980, Coimbatore.

Reddy BVS, Stenhouse JW, Sekhar VB and **Rao P.** 1996. *Striga* resistant seed parents breeding at ICRISAT Asia Center. Presented at Sixth Parasitic Weed Symposium, 16–18 April, Cordoba, Spain.

Reddy BVS, Thakur RP, Ramesh S, Panduranga Rao V and Sanjana Reddy P. 2003. Breeding sorghum seed parents for grain mold resistance. Poster presented at National seminar on "Advances in Genetics and Plant Breeding-Impact of DNA Revolution", 30–31 October 2003, University of Agricultural Sciences, Dharwad, Karnataka, India.

Reddy BVS. 1998. ICAR/ICRISAT Collaborative sorghum research in 1997. A paper presented at All India Coordinated Sorghum Improvement Project Workshop, 23–25 Apr 1998, Dharwad, India.

Reddy LJ, Sharma D, Green GM, Faris DG and **Reddy BVS.** 1983. Prospects of hybrid pigeonpeas in India. Presented at XV International Congress of Genetics, 12–12 Dec 1983, New Delhi, India.

Rego TJ, Seeling B, Nageswara Rao V, Pardhasaradhi G, Kumar Rao JVDK, Myers RJK and Johansen C. 1999. Nutrient balances–a guide to improving the management of sorghum- and groundnut-based dryland cropping systems in semi-arid tropical India. Pages 111–113 in Food security in nutrient stressed environments: exploiting plants' genetic capabilities: Summary and Recommendations of an International Workshop, 27–30 Sep 1999, ICRISAT, Patancheru, India (Adu-Gyamfi JJ, ed.). Ibaraki, Japan: Japan International Research Center for Agricultural Sciences; and Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

Rego TJ. 1981. Nitrogen response studies of intercropped sorghum with pigeonpea. Proceedings of the International Workshop on Intercropping, 10–13 Jan 1979, ICRISAT, Hyderabad, India (Willey RW, ed.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 210–216.

Rego TJ. 2002. Nitrogen management through legumes in sorghum based cropping system. In Proceedings of winter school on System approach to

plant nutrition for sustainable crop production organized by Crop Production Section, Directorate of Oilseeds Research, Hyderabad, 18 Sep – 8 Oct 2002.

Rohrbach DD and **Mutiro K.** 1997. Formal and informal channels of sorghum and millet seed supply in Zimbabwe. Pages 39–47 in Proceedings of the Workshop on Seed policies in Zimbabwe: an agenda for action, 30–31 Jul 1996, Harare, Zimbabwe. Harare, Zimbabwe: Environment and Development Activities.

Rohrbach DD, **Mutiro K** and **Mazhangara E**. 1997. Seed availability and markets: the case of sorghum and pearl millet seed supply in Zimbabwe. Pages 52–76 in Proceedings of the Zimbabwe National Sorghum/ Millets Program Workshop on Formation of a national sorghum and millets coordinating committee and strategies for ensuring good quality seed for smallholder farmers through coordinated research and extension, 18–19 Feb 1997, Harare, Zimbabwe. Harare, Zimbabwe: Department of Research and Specialist Services.

Rohrbach DD. 2000. Commercialization of Sorghum and Pearl Millet in Zimbabwe. Pages 1–15 in Proceedings of the Workshop to develop a strategy for the multiple use of Mahanngu and sorghum in Namibia, 27–28 June 2000, Mokuti Lodge. Windhoek, Namibia: Centre for Research Information Action in Africa.

Rooney LW and **Murty DS.** 1982. Color of sorghum food products. Proceedings of the International Symposium on Sorghum Grain Quality, 28–31 Oct 1981, ICRISAT Center, India (Rooney LW and Murty DS, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp 323–327.

Rooney LW and **Murty DS.** 1982. Evaluation of sorghum food quality. Sorghum in the eighties: proceedings of the International Symposium on Sorghum, 2–7 Nov 1981, ICRISAT Center, India (House LR, Mughogho LK and Peacock JM, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 571–588.

Rooney LW and **Murty DS.** 1982. Proceedings of the International Symposium on Sorghum Grain Quality, 28–31 Oct 1981, ICRISAT Center, India. (In En, Summaries in En.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. 416 pp. **Ryan JG** and **von Oppen M.** 1984. Global production and demand for sorghum and millet to the year 2000. Agrometerology of sorghum and millet in the semi-arid tropics: proceedings of the International Symposium, 15–20 Nov 1982, ICRISAT Center, India. Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 41–61.

Sajjanar GM, Folkertsma RT, Reddy BVS and Hash CT. 2003. Genetic mapping of QTL associated with sorghum shoot fly (*Atherigona soccata*) resistance in sorghum (*Sorghum bicolor* [L.] Moench). Poster presented at the Plant Animal Genomics (PAG)-XI Conference, 11–15 January 2003, San Diego, USA.

Sajjanar GM, Hash CT, Reddy BVS, Nayakar NY and Seetharama N. 2003. Prospects of molecular breeding for improved resistance to shoot fly in sorghum. Poster presented at National Seminar on "Advances in Genetics and Plant Breeding-Impact of DNA Revolution", 30–31 October 2003, University of Agricultural Sciences, Dharwad, Karnataka, India.

Sajjanar GM, Reddy BVS, Hash CT, Nayakar NY and Seetharama N. 2003. Sorghum shoot fly resistance: Genetic analysis, evaluation and selection. Poster presented at National seminar on "Advances in Genetics and Plant Breeding-Impact of DNA Revolution", 30–31 October 2003, University of Agricultural Sciences, Dharwad, Karnataka, India.

Sangitrao CS, Indira S and Bandyopadhyay R. 1999. Sorghum ergot in India. Pages 41–54 in Proceedings of the Global Conference on Ergot of Sorghum, 1–8 June 1997, Sete Lagoas, Brazil (Casela CR and Dahlberg JA, eds.). University of Nebraska, Lincoln, Nebraska, USA: INTSORMIL.

Saxena KB, Faris DG, Reddy LJ, Sharma D, Reddy BVS, Gupta SC and Green JM. 1985. Prospects for hybrid pigeonpeas. Paper presented at SABRAO Fifth International Congress, Bangkok, Paper presented at SABRAO Fifth International Congress, 25–29 Nov 1985, Bangkok, Thailand.

Schertz KF, Sivaramakrishnan S, Hanna WW, Mullet Jyi, Sun Murthy UR, Pring DR, Rai KN and Reddy Belum VS. 1997. Alternate cytoplasms and apomixis of sorghum and millet. Pages 213–223 *in* Proceedings of the International Conference on Genetic Improvement of Sorghum and Pearl Millet, 22–27 Sep 1996, Holiday Inn Plaza, Lubbock, Texas, USA.

Scheuring JF, Sidibe,S and Kante A. 1982. Sorghum alkali and quality considerations. Proceedings of the

International Symposium on Sorghum Grain Quality, 28–31 Oct 1981, ICRISAT Center, India (Rooney LW and Murty DS, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 24–31.

Scheuring JF. 1984. Control of sorghum root and stalk rots. Summary and synthesis II. Sorghum root and stalk rots, a critical review: proceedings of the Consultative Group Discussion on Research Needs and Strategies for Control of Sorghum Root and Stalk Rot Diseases, 27 Nov-2 Dec 1983, Bellagio, Italy (Mughogho LK, ed.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 241–242.

Seetharama N, Flower DJ, Jayachandran R, Krishna KR, Peacock JM, Sardar Singh, Soman P, Usha Rani A and Wani SP. 1990. Assessment of genotypic differences in sorghum root characteristics. Proceedings of the Fourth Regional Groundnut Workshop for Southern Africa, 19– 23 Mar 1990, Arusha, Tanzania (Hildebrand GL, Schmidt G, Laxman Singh, Subrahmanyam P and Wightman JA, eds.). Patancheru, Andhra Pradesh 502 324, India: ICRISAT. Pp. 215–220.

Seetharama N, Huda AKS, Virmani SM and Monteith JL. 1990. Sorghum in the semi-arid tropics: agroclimatology, physiology and modelling. Proceedings of the Fourth Regional Groundnut Workshop for Southern Africa, 19–23 Mar 1990, Arusha, Tanzania (Hildebrand GL, Schmidt G., Laxman Singh, Subrahmanyam P and Wightman JA, eds.). Patancheru, Andhra Pradesh 502 324, India: ICRISAT. Pp. 142–151.

Seetharama N, Krishna KR, Rego TJ and Burford JR. 1987. Prospects for sorghum improvement for phosphorus efficiency. Sorghum for acid soils: proceedings of a Workshop on Evaluating Sorghum for Tolerance to Al-toxic Tropical Soils in Latin America, 28 May-2 Jun 1984, Cali, Colombia. Pp. 229–249.

Seetharama N, Magill CW and Miller FR. 1994. Molecular markers for cold tolerance in sorghum. Use of molecular markers in sorghum and pearl millet breeding for developing countries: proceedings of an ODA Plant Sciences Research Programme Conference, 29 Mar-1 Apr 1993, Norwich, UK (Witcombe JR and Duncan RR, eds.). London, UK: Overseas Development Administration. Pp. 32–35.

Seetharama N, Mahalakshmi V, Bidinger FR and Sardar Singh. 1984. Response of sorghum and pearl

millet to drought stress in semi-arid India. Agrometerology of sorghum and millet in the semiarid tropics: proceedings of the International Symposium, 15–20 Nov 1982, ICRISAT Center, India. Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 159–173.

Seetharama N, Prasada Rao KE, Subramanian V and Murty DS. 1987. Screening for sweet stalk sorghums and environmental effect on stalk sugar concentrations. Technology and applications for alternate uses of sorghum: proceedings of the National Seminar, 2–3 Feb 1987, Parbhani, India. Parbhani, Maharashtra 431 402, India: Marathwada Agricultural University. Pp. 169–179.

Seetharama N, Sivakumar MVK, Bidinger FR, Singh Sardar, Reddy BVS, Peacock JM, Reddy SJ, Mahalakshmi V, Sachan RC, Shiv Raj A, Murthy SRK, Narayanan A, Kannagara T, Durley RC and Simpson GM. 1981. Problems and prospects for increasing yield under drought: Criticism and synthesis with sorghum. Plenary paper presented at the Symposium on Plant Physiology and Biochemistry in 1980's, 23– 25 Nov 1981, Indian Agricultural Research Institute, New Delhi 110 012, India. (Ref No. RP 1518/2065)

Seetharama N, Sivaramakrishnan S, Chandra S, Reddy Belum VS, Bandyopadhyay R, Mahalakshmi V, Sharm HC and Ortiz R. 2000. Research on genomics of dryland crops with special reference tsorghum. Presented at the AICSIP workshop, Hisar, 25–29 April 2000.

Seetharama N, Subba Reddy BV, Peacock JM and Bidinger FR. 1982. Sorghum improvement for drought resistance. Drought resistance in crops with emphasis on rice: proceedings of the IRRI Symposium 4–8 May 1981, Los Banos, Philippines. Los Banos, Laguna, Philippines: International Rice Research Institute. Pp. 317–338.

Seetharama N, Wade LJ, Peacock JM, Verma PK, Rego TJ and Sardar Singh. Effect of nitrogen and water stress on leaf area development in sorghum. Plant nutrition 1982: proceedings of the Ninth International Plant Nutrition Colloquium, 22–27 Aug 1982, Warwick, Coventry, UK (Scaife A, eds.). Vol. 2. Farnham Royal, Slough, UK: CAB International. Pp. 595–600.

Sharma HC and Leuschner K. 1986. Mechanisms and diversity of resistance to the sorghum midge, *Contarinia sorghicola* Coq. Proceedings of the First

Australian Sorghum Conference, 4–6 Feb 1986, Gatton, Queensland, Australia. Gatton, Queensland, Australia: Organizing Committee of the Australian Sorghum Conference 3:8–3.19.

Sharma HC, Ananda Kumar P, Seetrharama N, Hariprasad KV and Singh BU. 1999. Role of transgenic plants in pest management in sorghum. *In* Proceedings, Sorghum Tissue Culture, Transformation and Genetic Engineering, 8–9 March 1999. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

Sharma HC, Mukuru SZ and Nwanze KF. 1996. Stability of resistance to sorghum midge (Stenodiplosis sorghicola). Pages 429–435 in Proceedings of the Third Australian Sorghum Conference, Tamworth, 20–22 February 1996. Australian Institute of Agricultural Science Occasional Publication No. 93. (Foale MA, Henzell RG and Kneipp JF, eds.). Melbourne, Australia: Australian Institute of Agricultural Science.

Sharma HC. 1987. Insect pests of sorghum and their management. Plant protection in field crops: lead papers of the National Seminar on Plant Protection in Field Crops, 29–31 Jan 1986, Hyderabad, India (Veerabhadra Rao M and Sithanantham S, eds.). Hyderabad, Andhra Pradesh, India: Plant Protection Association of India. Pp. 121–134.

Sharma HC. 1985. Screening for host-plant resistance to mirid head bugs in sorghum. Proceedings of the International Sorghum Entomology Workshop, 15–21 Jul 1984, College Station, Texas, USA (Leuschner K and Teetes GL, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 317–335.

Sharma HC. 1985. Screening for sorghum midge resistance and resistance mechanisms. Proceedings of the International Sorghum Entomology Workshop, 15–21 Jul 1984, College Station, Texas, USA (Leuschner K and Teetes GL, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 275–292.

Sharma HC. 2000. Insect plant interrelationships of sorghum midge, *Stenodiplosis sorghicola*. In: Proceedings, Biotechnological Approaches for Rice Gall Midge, Orseolia oryzae, 23–24 Nov 1998, Directorate of Rice Research, Hyderabad, Andhra Pradesh, India and International Rice Research Institute, Los Banos, Phillippines. **Sharma HC.** 2002. Effect of stem borer damage on fodder quality in sorghum. Paper presented at the Stakeholders Workshop on Evaluation of the Effects of Plant Diseases on the Yield and Nutritive Value of Crop Residues used for Peri-Urban Dairy Production on the Deccan Plateau in India, 19–22 Feb 2002, Patancheru, Andhra Pradesh, India. Patancheru, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

Shetty SVR and Rao AN. 1981. Weed-management studies in sorghum/pigeonpea and pearl millet/ groundnut intercrop systems—some observations. Proceedings of the International Workshop on Intercropping, 10–13 Jan 1979, ICRISAT, Hyderabad, India (Willey RW, ed.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 238–248.

Shetty SVR. 1990. Improving sorghum based cropping systems in the Sudanian zone of the West African savanna. Challenges in dryland agriculture—a global perspective: proceedings of the International Conference on Dryland Farming, 15–19 Aug 1988, Amarillo/Bushland, TX, USA. College Station, TX, USA: Texas A&M University. Pp. 724–727.

Sidibe S, Diarra M and Cheuring JF. 1982. Sorghum couscous: quality considerations. Proceedings of the International Symposium on Sorghum Grain Quality, 28–31 Oct 1981, ICRISAT Center, India (Rooney LW and Murty DS, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 110–112.

Singh BB, Tabo R, Ajegba H and Gupta SC. 1997. Increasing productivity of sorghum-cowpea and millet-cowpea intercrops through improved varieties. Paper presented at the 1997 American Society of Agronomy (ASA)/CSSA/SSA Annual Meetings at Anaheim, California, USA , October 26–31, 1997. Agronomy Abstracts 1997:41.

Sivakumar MVK, Huda AKS and **Virmani SM.** 1984. Physical environment of sorghum- and millet-growing areas in south Asia. Agrometerology of sorghum and millet in the semi-arid tropics: proceedings of the International Symposium, 15–20 Nov 1982, ICRISAT Center, India. Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 63–83.

Sivakumar MVK. 1989. Climate vulnerability of sorghum and millet. Proceedings of the National

Seminar on Advances in Seed Science and Technology, 14–16 Dec 1989, Mysore, India (Shekara Shetty H and Prakash HS, eds.). Mysore, Karnataka, India: University of Mysore, Department of Studies in Applied Botany. Pp. 187–192.

Soman P, Jayachandran R and **Peacock JM.** 1986. Genotypic variation in sorghum for seedling emergence under conditions of high soil temperature and surface crusting. Proceedings of the First Australian Sorghum Conference, 4–6 Feb 1986, Gatton, Queensland, Australia. Gatton, Queensland, Australia: Organizing Committee of the Australian Sorghum Conference 5.30–5.37.

Stenhouse JW, Bandyopadhyay R, Singh SD and Subramanian VS. 1998. Breeding for grain mold resistance in sorghum. Pages 326–336 *in* Proceedings of the International Conference on Genetic Improvement of Sorghum and Pearl Millet, 23–27 Sep 1996, Lubbock, Texas, University of Nebraska, Lincoln, USA: INTSORMIL.

Subramanian V and **Jambunathan R**. 1982. Properties of sorghum grain and their relationship to roti quality. Proceedings of the International Symposium on Sorghum Grain Quality, 28–31 Oct 1981, ICRISAT Center, India (Rooney LW and Murty DS, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 280–288.

Subramanian V and **Jambunathan R.** 1984. Chemical composition and food quality of sorghum. Nutritional and processing quality of sorghum: proceedings of the Symposium on Nutritional and Processing Quality of Sorghum, 17–21 May 1982, Pune, Maharashtra, India (Salunkhe DK, Chavan JK and Jadhav SJ, eds.). New Delhi, India: Oxford and IBH Publishing Co. Pp. 32–47.

Subramanian V and **Jambunathan R.** 1988. Potential for alternative uses of sorghum and pearl millet. 4th Quadrennial Symposium on Sorghum and Millets, 26–27 May 1988, Lausanne, Switzerland. Schwechat, Austria: International Association for Cereal Science and Technology. Pp. 46–66.

Subramanian V and **Jambunathan R.** 1992. Laboratory procedures for evaluating grain and food quality of sorghum and pearl millet: problems and prospects. Utilization of sorghum and millets (Gomez MI, House LR, Rooney LW and Dendy DAV, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 143–150.

Subramanian V, Murty DS, Jambunathan R and House LR. 1982. Boiled sorghum characteristics and their relationship to starch properties. Proceedings of the International Symposium on Sorghum Grain Quality, 28–31 Oct 1981, ICRISAT Center, India (Rooney LW and Murty DS, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 103–109.

Subramanian V, Suryaprakash S, Jambunathan R and Murty DS. 1988. Dehulling and milling characteristics of some sorghum cultivars. 4th Quadrennial Symposium on Sorghum and Millets, 26–27 May 1988, Lausanne, Switzerland. Schwechat, Austria: International Association for Cereal Science and Technology. Pp. 126–140.

Subramanian V, Jambunathan R and **Prasada Rao KE**. 1987. Dry milling characteristics of sorghum grains and their relationship to product quality. Technology and applications for alternate uses of sorghum: proceedings of the National Seminar, 2–3 Feb 1987, Parbhani, India. Parbhani, Maharashtra 431 402, India: Marathwada Agricultural University. Pp. 45–54.

Tabo R. 1997. Overview of modelling activities at ICRISAT: A case study of sorghum. Pages 188–197 in Climate Variability Prediction, Water Resource and Agricultural Productivity: Food Security in Tropical Sub-Saharan Africa. Proceedings of the Workshop, 22–25 July 1997, Cotonou, Benin (Fleming, Cory, Hoepffner, Freise Amy and Sobti, Mayuri, eds.). Nairobi, Kenya: University of Nairobi.

Tabo R. 1998. Rotation and fertilizer effects on the productivity of sorghum based cropping systems in northern Nigeria. Pages 159–166 *in* Amelioration du sorgho et de sa culture en Afrique de l' Ouest et du Centre. Actes de l' atelier de restitution du programme conjoint sur le sorgho ICRISAT-CIRAD, 17–20 March 1997, Bamako, Mali (Ratnadass A, Chantereau J and Gigou J, eds.). Colloques, Montpellier, Cirad-ca, 315 pp.

Taneja SL and **Leuschner K.** 1985. Resistance screening and mechanisms of resistance in sorghum to shoot fly. Proceedings of the International Sorghum Entomology Workshop, 15–21 Jul 1984, College Station, Texas, USA (Leuschner K. and Teetes GL, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 115–129.

Taneja SL and Leuschner K. 1985. Methods of rearing, infestation and evaluation for *Chilo partellus*

resistance in sorghum. Proceedings of the International Sorghum Entomology Workshop, 15–21 Jul 1984, College Station, Texas, USA (Leuschner K and Teetes GL, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 175–188.

Taneja SL and **Nwanze KF.** 1989. Assessment of yield loss of sorghum and pearl millet due to stem borer damage. International Workshop on Sorghum Stem Borers, 17–20 Nov 1987, ICRISAT Center, India (Nwanze KF, ed.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 95–104.

Taneja SL and **Woodhead S.** 1989. Mechanisms of stem borer resistance in sorghum. International Workshop on Sorghum Stem Borers, 17–20 Nov 1987, ICRISAT Center, India (Nwanze KF, ed.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 137–143.

Tesfamichael Abraha, Obilana AB and **Manyasa E**. 2002. New and promising varieties of sorghum in Eritrea. Paper presented at the annual workshop to review and plan cereal seed production program in Eritrea Asmara, Eritrea, 26–27 Feb 2002.

Thakur RP, Frederiksen RA, Murty DS, Reddy BVS, Bandyopadhyay R, Giorda LM, Odvody GN and Claflin LE. 1998. Breeding for disease resistance in sorghum. Pages 303–315 in Proceedings of the International Conference on Genetic Improvement of Sorghum and Pearl Millet, 23–27 Sep 1996, Lubbock, Texas, University of Nebraska, Lincoln, USA: INTSORMIL.

Thakur RP, Mathur K, Rao VP, Chandra S, Sivaramakrishnan S, Kannan S, Hiremath RV, Tailor HC, Kushwala US, Dwivedi RR and Indira S. 1998. Pathogenic and genetic characterization of six Indian populations of *Colletotrichum sublineolum*, the causal agent of sorghum anthracnose. Indian Phytopathology 51(4):338–348.

Tobita S, Katayama K, Ito O, Matsunaga R, Adu-Gyamfi JJ and Rao TP. 1996. Soil nitrogen as a limiting factor in the intercropping system of sorghum and pigeonpea. Pages 441–451 in Dynamics of root and nitrogen in cropping system of the semi-arid tropics: proceedings of the International Workshop, 21–25 Nov 1994, ICRISAT Center, Patancheru, Andhra Pradesh, India (Ito O, Johansen C, Adu-Gyamfi JJ, Katayama K, Kumar Rao JVDK and Rego TJ, eds.). Tokyo, Japan: Japan International Research Center for Agricultural Sciences.

Toure A, Rattunde F, Sansan D and **Weltzien RE**. 2002. Guinea sorghum hybrids: bringing the benefits of hybrid technology to a staple crop of Sub-Saharan Africa. Paper presented at Biotechnology, Breeding and Seed Systems for African Crops: Research and Product Development that Reaches Farmers. Conference organized by the Rockefeller Foundation, Entebbe, Uganda, 4–7 November, 2002. Abstract 73 pp.

Toure A, Rattunde HFW and **Akintayo I.** 2002. Heterosis and hybrid sorghum Seed production in West Africa. Pages 94–103 in Proceedings of the West African Hybrid Sorghum and Pearl Millet Seed Workshop, Niamey, Niger. 28 Sep – 2 Oct 1998. Nebraska, US: INTSORMIL.

Uma Devi K, Padmavathi J, Sharma HC and **Seetharama N.** 2001. Laboratory evaluation of the virulence of Beauveria bassiana isolates to the sorghum shoot borer, Chilo partellus Swinhoe (Lepidoptera: Pyralidae) and their characterization by RAPD-PCR. World Journal of Microbiology and Biotechnology 17:131–137.

Underwood MP, Hall AJ and **Zerbini E**. 2000. Genetic enhancement of sorghum and millet residues fed to ruminant: farmers perceptions of fodder quality in livelihood systems: summary report of PRA case studies in Andhra Pradesh, Gujarat, Maharasthra, Karnataka and Rajasthan states. Nairobi, Kenya: International Livestock Research Institute and Patancheru, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. 68 pp.

Vaidya PK, Raghavender B and **Mukuru SZ.** 1991. Progress in breeding resistance to *Striga* asiatica in sorghum at the ICRISAT Center. Combating *Striga* in Africa: Proceedings of the International Workshop, 22–24 Aug 1988, Ibadan, Nigeria (Kim SK, ed.). Ibadan, Nigeria: International Institute of Tropical Agriculture. Pp. 81–89.

Vasudeva Rao MJ, Chidley VL, Mukuru SZ and House LR. 1985. Screening methodology and breeding sorghum for resistance to *Striga* asiatica (L.) Kuntze at ICRISAT center. National Seminar on Breeding Crop Plants for Resistance to Pests and Diseases, 25–27 May 1983, Coimbatore, India. Coimbatore, Tamil Nadu, India: Tamil Nadu Agricultural University. (Abstr.). 164.

Vasudeva Rao MJ, Chidley VL, Ramaiah KV and House LR. 1983. Breeding sorghum with resistance to *Striga*

asiatica (L.) Kuntze at ICRISAT Center. Proceedings of the Second International Workshop on *Striga*, 5–8 Oct 1981, IDRC/ICRISAT, Ouagadougou, Burkina Faso (Ramaiah, KV and Vasudeva Rao, MJ, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 61–76.

Vasudeva Rao MJ. 1985. Patterns of resistance to *Striga asiatica* in sorghum and millets, with special reference to Asia. *Striga* biology and control: papers presented at a Workshop on the Biology and Control of *Striga*, 14–17 Nov 1983, Dakar, Senegal. Paris, France: ICSU Press and Ottawa, Canada: International Development Research Centre. Pp. 93–112.

Vidyabhushanam RV, Rana BS and Reddy Belum VS. 1988. Use of sorghum germplasm and its impact on crop improvement in India. ICRISAT (International Crops Research Institute for the Semi-Arid Tropics), 1988. Collaboration on Genetic Resources: Summary proceedings of the Joint ICRISAT/NBPGR (ICR) Workshop on Germplasm Exploration and Evaluation in India, 14 15 Nov 1988, ICRISAT Center, India, Patancheru, Andhra Pradesh 502 324, India: ICRISAT.

Virmani SM and **Sivakumar MVK.** 1984. Agrometeorology of sorghum and millet in the semiarid tropics: proceedings of the International Symposium, 15–20 Nov 1982, ICRISAT Center, India. (In En, Summaries in En, Fr.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. 328 pp.

Virmani SM, Tandon HLS and Alagarswamy G. 1989. Modeling the growth and development of sorghum and pearl millet. (In En, Summary in En, Fr.) Research Bulletin no. 12. Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. 50 pp.

Virmani SM. 1984. Agroclimatological research in the service of the sorghum and millet farmer: need for a network. Agrometeorology of sorghum and millet in the semi-arid tropics: proceedings of the International Symposium, 15–20 Nov 1982, ICRISAT Center, India (Virmani SM and Sivakumar MVK, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 317–322.

von Oppen M and **Rao PP.** 1982. A market-derived selection index for consumer preferences of evident and cryptic quality characteristics of sorghum. Proceedings of the International Symposium on

Sorghum Grain Quality, 28–31 Oct 1981, ICRISAT Center, India (Rooney LW and Murty DS, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 354–364.

von Oppen M and Rao PP. 1982. Sorghum marketing in India. Sorghum in the eighties: proceedings of the International Symposium on Sorghum, 2–7 Nov 1981, ICRISAT Center, India (House LR, Mughogho L.K and Peacock, JM, eds.) Vol. 2. Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid ropics. Pp. 659–674.

Walker TS and Witcombe JR. 1986. ICRISAT presentation: yield variability in sorghum and millet. Summary Proceedings of a Workshop on Cereal Yield Variability, 26–29 Nov 1986, Feldafing, Federal Republic of Germany. Washington DC, USA: International Food Policy Research Institute. Pp. 167–175.

Wallner P, Kohne A and **Fussell LK.** 1988. Factors affecting the nutritive value of sorghum and millet crop residues. Plant breeding and the nutritive value of crop residues: proceedings of a workshop, 7–10 Dec 1987, Addis Ababa, Ethiopia (Reed JD, Capper BS and Neate PJH, eds.). Addis Ababa, Ethiopia: International Livestock Centre for Africa. Pp. 233–249.

Weltzien E and Jones R. 2002. Strengthening Farmers' seed systems – opportunities arising in Mali. Presented at Expert meeting on Utilisation of Regional Germplasm in the Improvement of Sorghum and Pearl Millet and Improved Post-Harvest technologies, 23–26 April 2002, Bamako, Mali.

Weltzien E and Rattunde HFW. 2002. ICRISAT's sorghum breeding strategy in and for West and Central Africa. Pages 31–37 *in* Proceedings of workshop: La culture du sorgho de décrue en Afrique de l'Ouest et du Centre. Situation actuelle et définition d'un Plan d'Action Régional, Nouakschott, Mauretania, March 2001(Comas J and Gomez MacPherson H, eds.). Madrid, Spain: l'Agence Espagnole de Coopération Internationale.

Weltzien E, Diakite S and Samake B. 2002. Améliorer l'accès des producteurs aux nouvelles variétés de sorgho. Presented at the Strengthening farmers' seed systems as a basis for enhancing productivity and profitability of sorghum in Mali? Options and Recommendations from an interdisciplinary project. 29 March, Bamako, Point Sud.

Weltzien E, Rattunde HFW, Kamara A, Diarra MB and Coulibaly B. 2000. Farmers' management of genetic

resources: Sorghum in Mali as an example. Poster presented at Crop Science Congress 2000 held 17–23 Aug 2000, Hamburg, Germany.

Willey RW, Rao MR, Reddy MS and Natarajan M. 1982. Cropping systems with sorghum. Sorghum in the eighties: proceedings of the International Symposium on Sorghum, 2–7 Nov 1981, ICRISAT Center, India (House LR, Mughogho LK and Peacock JM, eds.). Vol 1. Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 477–490.

Williams RJ and Rao KN. 1980. The International Sorghum Grain Mold Nursery. Sorghum diseases, a world review: proceedings of the International Workshop on Sorghum Diseases, 11–15 Dec 1978, ICRISAT, Hyderabad, India (Williams RJ, Frederiksen RA and Mughogho LK, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute or the Semi-Arid Tropics. Pp. 109–118.

Williams RJ and Rao KN. 1980. A review of sorghum grain mold. Sorghum diseases, a world review: proceedings of the International Workshop on Sorghum Diseases, 11–15 Dec 1978, ICRISAT, Hyderabad, India (Williams RJ, Frederiksen RA and Mughogho LK, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for he Semi-Arid Tropics. Pp. 79–92.

Williams RJ, Davies JC and Mughogho LK. 1983. Prospects for successful integrated control of biotic yield-reducing agents of sorghum and pearl millet in the tropics. Proceedings of the Tenth International Congress of Plant Protection, 20–25 Nov 1983, Brighton, UK. Vol. 1. Croydon, UK: British Crop Protection Council. Pp. 904–912.

Williams RJ, Frederiksen RA and Mughogho LK. 1980. Sorghum diseases, a world review: proceedings of the International Workshop on Sorghum Diseases, 11–15 Dec 1978, ICRISAT, Hyderabad, India. (In En. Summaries in En.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. 478 pp.

Williams RJ, Rao KN and Dange SRS. 1980. The International Sorghum Downy Mildew Nursery. Sorghum diseases, a world review: proceedings of the International Workshop on Sorghum Diseases, 11–15 Dec 1978, ICRISAT, Hyderabad, India (Williams RJ, Frederiksen RA and Mughogho LK, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute or the Semi-Arid Tropics. Pp. 213–219.

Williams RJ, Rao KN and Dange SRS. 1980. The International Sorghum Leaf Disease Nursery. Sorghum diseases, a world review: proceedings of the International Workshop on Sorghum Diseases, 11–15 Dec 1978, ICRISAT, Hyderabad, India (Williams RJ, Frederiksen RA and Mughogho LK, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute or the Semi-Arid Tropics. Pp. 269–283.

Yapi A, Kergna AO, Debrah SK, Sidibe A and Sanogo O. 1998. Impact of sorghum and millet research in Mali. Pages 76–93 in Assessing joint research impacts: proceedings of an International Workshop on Joint Impact Assessment of NARS-ICRISAT Technologies for the Semi-Arid Tropics, Patancheru, India, 2–4 Dec 1996 (Bantilan MCS and Joshi PK, eds.). Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

Others

Abbasher AA, Hess DE, Sauerborn J and Kroschel J. 1999. Biological control of *Striga*. Pages 47–61 in Report on the ICRISAT Sector Review for *Striga* Control in Sorghum and Millet (Hess DE and Lenné JM, eds.). ICRISAT-Bamako, 27–28 May 1996, Bamako, Mali, B.P. 320, Bamako, Mali: International Crops Research Institute for the Semi-Arid Tropics. 138 pp.

Aden MH. 1991. Studies of sorghum leaf blight incited by *Excerohilum turcicum* (Pass) Leo and Suggs. M.Sc. thesis, Andhra Pradesh Agricultural University, Hyderabad, Andhra Pradesh, India. 113 pp.

Ahmed KM, Ravinder Reddy Ch and ICRISAT. 1993. A pictorial guide to the identification of seedborne fungi of sorghum, pearl millet, finger millet, chickpea, pigeonpea and groundnut. Information Bulletin. (In En, Summaries in Fr, Ar, Es.) Patancheru 502 324, Andhra Pradesh, India. International Crops Research Institute for the Semi-Arid Tropics. 200 pp.

Ajayi O and **Oboite FA.** 2000. Importance of spittle bugs, Locrisrubens (Erichson) and Poophilus costalis (Walker) on sorghum in west and central Africa, with emphasis on Nigeria. (In En.) 1:9–14.

Alagarswamy G, Ritchie J, Godwin D and Singh U. 1988. A user's guide to CERES sorghum - V2.00. Muscle Shoals, Alabama, USA: International Fertilizer Development Center; Patancheru, Andhra Pradesh 502 324: International Crops Research Institute for the Semi-Arid Tropics. 86 pp.

Bandyopadhyay R, Stenhouse JW, Singh SD and Reddy BVS. 1998. Sorghum grain mold: current status. Pages 19–21 in Strengthening sorghum research collaboration in Asia: report of the Asian Sorghum Scientists Meeting, Suphan Buri, Thailand, 18–21 Nov 1997 (Gowda CLL, Stenhouse JW, eds.). Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

Bandyopadhyay R. 1992. Sorghum ergot. Sorghum and millets diseases: a second world review (de Milliano WAJ, Frederiksen RA and Bengston GD, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 235–244.

Brennan JP, Bantilan MCS, Sharma HC and **Reddy BVS.** 2004. Impact of ICRISAT research on sorghum midge on Australian agriculture. Impact series no. 11. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. 36 pp.

Byth DE. 1993. Sorghum and millets commodity and research environments. Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. 124 pp.

Castor LL.1981. Grain mold histopathology, damage assessment and resistance screening within *Sorghum bicolor* (L.) Moench lines. Ph.D. thesis, Texas A & M University, College Station, Texas, USA. 177 pp.

Chuma E, Mvumi B and **Nyagumbo I.** 2001. A review of sorghum and pearl millet-based production systems in the semi-arid regions of Zimbabwe. (In En.) PO Box 776, Bulawayo, Zimbabwe: International Crops Research Institute for the Semi-Arid Tropics, SADC/ICRISAT Sorghum and Millet Improvement Program. 72 pp.

Cox TS. 1983. Introgression of wild germplasm into cultivated sorghum. Ph.D. thesis, Iowa State University, Ames, Iowa, USA.

Dayal Shankar TK. 1989. Host-plant preferences of the spotted stemborer, *Chilo partellus* Swinhoe in different sorghum genotypes. M.Sc. thesis, Andhra Pradesh Agricultural University, Hyderabad, Andhra Pradesh, India. 119 pp.

de Franca JGE. 1983. Genetic and combining ability analysis of some agronomic and grain quality characters in sorghum *(Sorghum bicolor* [L.] Moench).

M.Sc. thesis, Andhra Pradesh Agricultural University, Hyderabad, Andhra Pradesh, India. 105 pp.

de Milliano WAJ. 1991. Sorghum and millet diseases: a second world review. (In En.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. 378 pp.

de Milliano WAJ. 1992. Sorghum diseases in southern Africa. Sorghum and millets diseases: a second world review (de Milliano WAJ, Frederiksen, RA and Bengston, GD, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 9–19.

Deb UK and **Bantilan MCS**, (eds). 1998. Spillover impacts of sorghum germplasm research: study undertaken as part of the Research Evaluation and Impact Assessment (REIA) project. 250 pp.

Duale AH and **Nwanze KF.** 1999. Incidence and distribution in sorghum of the spotted stem borer Chilo partellus and associated natural enemies in farmers' fields in Andhra Pradesh and Maharashtra states. (In En.) 1:3–7.

Ganga Nageshwar Rao T. 1985. Investigations on the contributions of ethylene, cation exchange capacity and sugars in sorghum-Macrophomina phaseolina system. Ph.D. thesis, Andhra Pradesh Agricultural University, Hyderabad, Andhra Pradesh, India. 151 pp.

Gibson PT. 1981. Inheritance of resistance to shootfly in sorghum. Ph.D. thesis, Iowa State University, Ames, Iowa, USA. 287 pp. 287 pp.

Gomez MI, Obilana AB, Martin DF, Madzvamuse M and **Monyo ES.** 1997. Manual of laboratory procedures for quality evaluation of sorghum and millet, Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. 116 pp.

Gopal Reddy V and **Verma VD.** 1996. Rabi sorghum germplasm collection in Maharastra and adjoining areas of Karnataka. A joint collection mission by ICRISAT Asia Center and NBPGR (ICAR). Genetic Resources Progress Report-85.

Gowda CLL and **Stenhouse JW.** (eds). 1998. Strengthening sorghum research collaboration in Asia: report of the Asian Sorghum Scientists' Meeting, Suphan Buri, Thailand, 18–21 Nov 1997. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. 68 pp. **Gowda CLL** and **Stenhouse JW.** 1993. Collaborative Sorghum Research in Asia: report of the Asian Sorghum Researchers' Consultative Meeting, 27–29 Sep 1993, ICRISAT Center, India. (In En, Summaries in En, Fr.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. 76 pp.

Gupta SC. 1999. Seed production procedures in sorghum and pearl millet. Information Bulletin no. 58, Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. 16 pp.

Gupta SC. 1999. Sorghum and pearl millet breeder seed production techniques. Pages 95–111 in Seed technology: a manual of varietal maintenance and breeder and foundation seed production: Seed Technology Workshop for NARI Seed Production Specialists, 14–19 Jul 1997, Zaria, Nigeria. (Aliyu A, Joshua A and Oyekan PO, eds.). Abuja, Nigeria: Federal Ministry of Agricultural and Natural Resources, National Agricultural Research Project.

Haile M. 1983. Assessment of the availability of soil phosphorus in Alfisol and Vertisol at ICRISAT Center for sorghum growth. M.Sc. thesis, Addis Abada University, Addis Ababa, Ethiopia. 107 pp.

Haji HM. 1984. Gene effects for resistance to stem borer (*Chilo partellus* Swinhoe) in sorghum (*Sorghum bicolor* [L.] Moench). M.Sc. thesis, Andhra Pradesh Agricultural University, Hyderabad, Andhra Pradesh, India. 85 pp.

Hall AJ. 2002. New patterns of partnership in agricultural research in Africa: recent experiences from SADC/ICRISAT Sorghum and Millet Improvement programme, Phase IV. ICRISAT Working Paper Series. Under review.

Hashi MA. 1986. Effect of recurrent selection on general and specific combining abilities of two random-mating sorghum populations *(Sorghum bicolor* [L.] Moench). M.Sc. thesis, Andhra Pradesh Agricultural University, Hyderabad, Andhra Pradesh, India. 85 pp.

Heinrich GM and **Mugabe I.** 1999. Sorghum production guidelines for the dry hot environments in Mozambique. Maputo, Mozambique: INIA.

Heinrich GM. 1998. Technology exchange in phase III of SMIP. International Sorghum and Millets Newsletter No 39:53–63.

Hess DE and Dembélé B. 1999. Cultural management of *Striga* on cereals. Pages 23–32 in Report on the ICRISAT Sector Review for *Striga* Control in Sorghum and Millet, ICRISAT-Bamako, 27–28 May 1996, Bamako, Mali (Hess DE and Lenné JM, eds.). B.P. 320, Bamako, Mali: International Crops Research Institute for the Semi-Arid Tropics. 138 pp.

Hess DE and **Grard P.** 1999. Chemical control of *Striga*. Pages 33–45 in Report on the ICRISAT Sector Review for *Striga* Control in Sorghum and Millet (Hess DE and Lenné JM, eds.). ICRISAT-Bamako, 27–28 May 1996, Bamako, Mali, B.P. 320, Bamako, Mali: International Crops Research Institute for the Semi-Arid Tropics. 138 pp.

Hess DE and **Lenné JM.** 1999. Report on the ICRISAT Sector Review for *Striga* Control in Sorghum and Millet. ICRISAT-Bamako, 27–28 May 1996, Bamako, Mali. B.P. 320, Bamako, Mali: International Crops Research Institute for the Semi-Arid Tropics. 138 pp.

Hodges RJ, Hall AJ, Jayaraj K, Jaiswal P, Potdar N, Yoganand B and Navi SS. 1998. Quality changes in farm-stored sorghum grain grown in the wet or dry season in South India – a technical and social study: Natural Resource Institute Report 2412. 34 pp.

IBPGR (International Board for Plant Genetic Resources). **ICRISAT** (International Crops Research Institute for the Semi-Arid Tropics). 1993. Descriptors for sorghum *(Sorghum bicolor* [L.] Moench) (In En, Fr.). Rome, Italy: IBPGR; Patancheru, Andhra Pradesh 502 324, India: ICRISAT. Eng 46 pp; Fr 46 pp.

ICRISAT (International Crops Research Institute for the Semi-Arid Tropics). 1985. Sorghum variety ICSV 1. Plant Material Description no.8. Patancheru, Andhra Pradesh 502 324, India: ICRISAT. 4 pp.

ICRISAT (International Crops Research Institute for the Semi-Arid Tropics). 1987. Midge-resistant sorghum variety ICSV 197. (In En.) Plant Material Description no.11. Patancheru, Andhra Pradesh 502 324, India: ICRISAT. 4 pp.

ICRISAT (International Crops Research Institute for the Semi-Arid Tropics). 1988. Sorghum hybrid ICSH 153. (In En.) Plant Material Description no.15. Patancheru, Andhra Pradesh 502 324, India: ICRISAT. 4 pp.

ICRISAT (International Crops Research Institute for the Semi-Arid Tropics). 1988. Sorghum variety ICSV 112. (In En.) Plant Material Description no.16. Patancheru, Andhra Pradesh 502 324, India: ICRISAT. 4 pp. **ICRISAT** (International Crops Research Institute for the Semi-Arid Tropics). 1988. Sorghum variety ICSV 145. (In En.) Plant Material Description no.17. Patancheru, Andhra Pradesh 502 324, India: ICRISAT. 4 pp.

ICRISAT (International Crops Research Institute for the Semi-Arid Tropics). 1991. Controlling sorghum midge. (In En.) ICRISAT Public Awareness Series. Patancheru, Andhra Pradesh 502 324, India: ICRISAT. 8 pp.

ICRISAT (International Crops Research Institute for the Semi-Arid Tropics). 1993. Midge-resistant sorghum lines: ICSV 692, ICSV 729, ICSV 730, ICSV 731, ICSV 736, ICSV 739, ICSV 745 and ICSV 748. Plant Material Description no. 37. Patancheru, Andhra Pradesh 502 324, India: ICRISAT. 4 pp.

ICRISAT (International Crops Research Institute for the Semi-Arid Tropics). 1994. Midge-resistant sorghum cultivar ICSV 745. Plant Material Description 49. Patancheru, Andhra Pradesh 502 324, India: ICRISAT. 4 pp.

ICRISAT (International Crops Research Institute for the Semi-Arid Tropics). 1995. Sorghum variety pirira 1 (ICSV 1). Plant Material Description. (In En.) ICRISAT. Patancheru 502 324, Andhra Pradesh, India. International Crops Research Institute for the Semi-Arid Tropics. 60. 4 pp.

ICRISAT (International Crops research Institute for the Semi-Arid Tropics). 1995. Sorghum variety pirira 2 (ICSV 112). Plant Material Descriptions. (In En.) ICRISAT. Patancheru 502 324, Andhra Pradesh, India. International Crops Research Insitute for the Semi-arid Tropics. 61. 4 pp.

ICRISAT (International Crops Research Institute for the Semi-Arid Tropics). 1995. Sorghum variety MRS 13 (SDSV 1513). Plant Material Descriptions. (In En.) ICRISAT. Patancheru 502 324, Andhra Pradesh, India. International Crops Research Institute for the Semi-Arid Tropics. 54. 4 pp.

ICRISAT (International Crops research Institute for the Semi-Arid Tropics). 1995. Sorghum variety MRS 94 (SDSV 1594). Plant Material Description. (In En.) ICRISAT. Patancheru 502 324, Andhra Pradesh, India. International Crops Research Institute for the Semi-Arid Tropics. 55. 4 pp.

ICRISAT (International Crops Research Institute for the Semi-Arid Tropics). **CARE-Somalia** 2002. Sorghum crop husbandry in Somalia. Nairobi, Kenya: International Crops Research Institute for the Semi-Arid Tropics; CARE-Somalia. 24 pp. **ICRISAT** (International Crops Research Institute for the Semi-Arid Tropics) and **FAO** (Food and Agriculture Organization). 1996. The world sorghum and millet economics: facts, trends and outlook: A joint study by the Basic Foodstuffs Service, FAO Commodities and Trade Division and the Socioeconomics and Policy Division, ICRISAT.68 pp.

ICRISAT (International Crops Research Institute for the Semi-Arid Tropics) and **IFAD** (International Fund for Agricultural Development). 2002. Improving income and food supply in the Sahel: on-farm testing of sorghum and pearl millet technologies: summary proceedings of the Stakeholders' Workshop to Plan and Implement the IFAD Project, Sadore, Niger, 24–26 Feb 1999. (In En.) BP 320, Bamako, Mali: International Crops Research Institute for the Semi-Arid Tropics; Italy, Rome: International Fund for Agricultural Development. 84 pp.

Jadhav PS, Jain TC and Prasannalakshmi S. 1975. Sorghum, millets, peas: a bibliography of the Indian literature 1969–1973. (In En.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. 124 pp.

Jaisil P. 1981. Effects of recurrent selection in two sorghum populations. M.Sc. thesis, Andhra Pradesh Agricultural University, Hyderabad, Andhra Pradesh, India. 84 pp.

Jotwani D. (compiler). 1984. Sorghum bibliography 1981. (In En.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. 302 pp.

Katayama K, Ito O, Adu-Gyamfi JJ, Rao TP, Dacanay EV and Yoneyama T. 1999. Effects of NPK fertilizer combinations on yield and nitrogen balance in sorghum or pigeonpea on a Vertisol in the semi-arid tropics. (In En.) 1:143–150.

Kausalya KG. 1989. Biophysical and anatomical factors associated with resistance in sorghum genotypes to sorghum stem borer, *Chilo partellus* Swinhoe. M.Sc. thesis, Andhra Pradesh Agricultural University, Hyderabad, Andhra Pradesh, India. 167 pp.

Kleih U, Ravi SB, Rao BD and Yoganand B. 2000. Industrial utilization of sorghum in India. Working Paper Series no 4. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. 38 pp.

Kumari APP. 1990. Mechanisms of resistance in sorghum to earhead bug, Calocoris angustatus

Lethiery (Hemiptera: Miridae). M.Sc. thesis, Andhra Pradesh Agricultural University, Hyderabad, Andhra Pradesh, India. 101 pp.

Mahalakshmi V. 1998. Drought tolerance in sorghum: current status. Pages 17–18 in Strengthening sorghum research collaboration in Asia: report of the Asian Sorghum Scientists' Meeting, Suphan Buri, Thailand, 18–21 Nov 1997 (Gowda CLL and Stenhouse JW, eds.). Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. 72 pp.

Mao Mohamed Ahemed. 1987. The effect of planting dates and irrigation on the yield of two rainy season sorghum cultivars. M.Sc. thesis, Andhra Pradesh Agricultural University, Hyderabad, Andhra Pradesh, India. 110 pp.

Marshland N and **Parthasarathy Rao P.** 1999. Marketing of *kharif* and *rabi* Sorghum in Andhra Pradesh, Karnataka and Maharashtra. Working Paper Series No. 1. Socioeconomics and Policy Program, Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. 40 pp

Musa TM and **Ruskie J.** 1997. Constraints to variety release, seed production and distribution: sorghum, pearl millet, groundnut and pigeonpea in SADC countries. Bualwayo, Zimbabwe: International Crops Research Institute for the Semi-Arid Tropics.

Mwasaru MA. 1985. Milling characteristics of hightannin sorghum varieties *(Sorghum bicolor* [L.] Moench). M.Sc. thesis, University of Saskatchewan, Saskatoon, Saskatchewan, Canada. 174 pp.

Nabila PM. 1986. The effect of rainy season legumes on yield and nitrogen response of postrainy season sorghum. M.Sc. thesis, Andhra Pradesh Agricultural University, Hyderabad, Andhra Pradesh, India. 97 pp.

Naidu RG and **Sinha PK**. 1986. Sorghum bibliography 1982. (In En.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. 392 pp.

Naidu RG. (compiler). 1983. Sorghum bibliography 1974–76. (In En.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. 208 pp.

Nair BS. 1985. Genetic variability for developmental and yield attributes of sorghum and pigeonpea under inter and intra-species competitions. M.Sc., Andhra Pradesh Agricultural University, Hyderabad, Andhra Pradesh, India. 144 pp.

Navi M, Bandypadyo R, Hall AJ and Bramel-Cox P. 2000. An Identification Manual For Species Of Grain Mould Infecting Sorghum In India. Information Bulletin No 59. Patancheru 502 324, Andhra Pradesh India: International Crops Research Institute for the Semi-Arid Tropics, 118 pp.

Navi SS, Bandyopadhyay R, Hall A and Bramel-Cox PJ. 1999. A pictorial guide for the identification of mold fungi on sorghum grain. Information Bullein No 59. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. 118 pp.

Obilana AB and **Ramaiah KV.** 1992. *Striga* (witchweeds) in sorghum and millet: knowledge and future research needs. Sorghum and millets diseases: a second world review (de Milliano WAJ, Frederiksen RA and Bengston GD, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp 187–201.

Obilana AB, Tesfamichael Abraha, Bramel P and **Emechebe AM.** 2002. Sorghum and *striga* biodiversity mission to Eritrea. A report on the joint mission by ICRISAT-IITA-Eritrea NARS to Eritrea. 11–18 Oct 2001. Patancheru 502 324, Andhra Pradesh: International Crops Research Institute for Semi Arid Tropics. (in print).

Odvody G, Bandyopadhyay R, Frederiksen RA, Isakeit T, Frederickson DE, Kauffman J, Dahlberg J, Velasquez R and Torres H. 1998. Sorghum ergot goes global in less than three years. On-line, APSnet feature, http://www.scisoc.org/feature/ergot/top.

Ogungbile AO, Tabo R, Gupta SC, Ajayi O and **Bantilan MCS.** 1999. Factors influencing awareness and adoption of sorghum varieties in Nigeria. Pages 60–64 in A Synthesis of Findings concerning CGIAR Case Studies on the Adoption of Technological Innovations. (Lee S, Stewart M and Stickle T, eds.). Washington, USA: Consultative Group on International Agricultural Research Impact Assessment and Evaluation Group, IAEG Secretariat.

Omondi CO. 1984. Control of sorghum shootfly *Atherigona soccata* Rondani through trapping and bait sprays. M.Sc. thesis, Andhra Pradesh Agricultural University, Hyderabad, Andhra Pradesh, India. 71 pp.

Pande S, Bock CH, Bandyopadhyay R, Narayana YD, Reddy BVS, Lenné JM and Jeger MJ. 1997. Downy mildew of sorghum. Information Bulletin No 51. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. 32 pp.

Prasannalakshmi S, Nalini Basavaraj and **Sinha PK.** 1986. Sorghum bibliography 1983. (In En.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. 410 pp.

Pray Carl E, Ribeiro Sharmila, Mueller RAE and **Parthasarathy Rao P.** 1991. Private research and public benefit: The private seed industry for sorghum and pearl millet in India. Research Policy 20:315–324.

Queiroz Manoel Abili. 1984. Evaluation of sorghum genotypes for intercropping with cowpea. Ph.D. thesis, University of Cambridge, Cambridge, UK. 296 pp.

Ramakrishna A and **Gowda CLL**. 1998. Working groups for collaborative sorghum research in Asia. Pages 11–12 in Strengthening sorghum research collaboration in Asia: report of the Asian Sorghum Scientists' Meeting, Suphan Buri, Thailand, 18–21 Nov 1997 (Gowda CLL and Stenhouse JW, eds.). Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

Ravindranath Reddy Y. 1981. Line x tester analysis to identify potential seed parents among non-restorer lines in sorghum *(Sorghum bicolor* [L.] Moench). M.Sc. thesis, Andhra Pradesh Agricultural University, Hyderabad, Andhra Pradesh, India. 60 pp.

Reddy Belum VS. 1977. Heterosis-Theories and utilization in crop plants. Lecture notes prepared for ICRISAT trainees in 1977. ICRISAT Center, India, Patancheru, Andhra Pradesh 502 324, India: ICRISAT.

Reddy Belum VS. 2002. Searching for the fountain of youth. A note prepared for SATrends, ICRISAT's monthly Newsletter. Issue 24, Nov 2002.

Reddy BVS and **Ramaiah B.** 2000. Iran and ICRISAT research collaboration in sorghum: A review. Pages 20–24 in 2nd Iran-ICRISAT Collaborative Research Review Meeting, Seed Plant Improvement Institute (SPII), Kardj, Iran, 21–24 August 2000.

Reddy BVS and **Rao P.** 1998. Diversification of sorghum male-sterile lines at ICRISAT. Pages 13–16 in Strengthening sorghum research collaboration in Asia: report of the Asian Sorghum Scientists' Meeting, Suphan Buri, Thailand (Gowda CLL and Stenhouse JW, eds.). Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

Reddy BVS, Sanjana P, Srinath Dixit and **Ravinder Reddy Ch.** 2003. Participatory varietal selection and seed centers in watershed programs, principles and practices. Paper presented to the participants of the training course under ADB-assisted project in the area of participatory watershed management, 1–20 September 2003 at ICRISAT, Patancheru, India.

Reddy BVS. 1997. Development, Production and maintenance of male-sterile-lines in sorghum. Pages 22–27 in Training Manual on Development of Cultivars and Seed Production Techniques in Sorghum and Pearl Millet (Singh Faujdar, Rai KN, Reddy Belum VS and Diwakar B, eds.). Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics.

Reddy BVS. 1997. Selfing and crossing techniques in sorghum. Pages 17–21 in Training Manual on Development of Cultivars and Seed Production Techniques in Sorghum and Pearl Millet (Singh Faujdar, Rai KN, Reddy BVS and Diwakar B, eds.). Patancheru 502 324, Andhra Pradesh: India. International Crops Research Institute for the Semi-Arid Tropics.

Reddy BVS. 1997. Sorghum plant and Flower parts. Pages 12–16 in Training Manual on Development of Cultivars and Seed Production Techniques in Sorghum and Pearl Millet (Singh Faujdar, Rai KN, Reddy Belum VS and Diwakar B, eds.). International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502 324, Andhra Pradesh, India.

Reddy BVS. 2003. Sweet and Swaying, April 2003, SATrends, ICRISAT's monthly newsletter.

Reddy BVS. 2004. Breeding approaches to exploit heterosis in sorghum. A lecture presented at the National symposium on "Harnessing heterosis in crop plants" organized by Indian society of vegetable science, Indian council of agricultural research and Indian Institute of Vegetable Research, 13–15 March 2004. Indian Institute of Vegetable Research, Varanasi.

Reddy BVS. 2004. Nucleus, Breeder, Foundation and Certified Seed Production in Sorghum, an invited lecture presented in the training program on "Package and maintenance of nucleus and breeder seed of crop varieties" conducted by Farm and Rural Science Foundation, Hyderabad at ICRISAT, Patancheru, 9 March 2004. **Reddy BVS.** 2004. Private-public partnership: A successful basis for securing new funding, an invited lecture presented for the training course participants from CIMMYT, 10 Feb 2004, ICRISAT, Patancheru, India.

Reddy KCS. 1977. Studies on the effect of intercropping of sorghum with grain legumes under semi-arid conditions. M.Sc. thesis, Andhra Pradesh Agricultural University, Hyderabad, Andhra Pradesh, India. 44 pp.

Rego TJ and **Rao VN.** 2000. Long-term effects of grain legumes on rainy-season sorghum productivity in semi-arid tropical vertisol. (In En.) 2:205–221.

Riley KW. 1980. Inheritance of lysine content and environmental responses of high and normal lysine lines of *Sorghum bicolor* (L.) Moench in the semi-arid tropics of India. Ph.D. thesis, University of Manitoba, Winnipeg, Manitoba, Canada. 171 pp.

Rodriguez HG. 1989. A quantitative description of the sorghum root system. M.Sc. thesis, Texas A & M University, College Station, Texas, USA. 111 pp.

Rohrbach DD and **Kiriwaggulu JAB.** 2001. Commercialization prospects for sorghum and pearl millet in Tanzania. Working Paper Series no. 7. Bulawayo, Zimbabwe: International Crops Research Institute for the Semi-Arid Tropics, Socioeconomics and Policy Program. 28 pp.

Rohrbach DD, Mupanda K and **Seleka T.** 2000. Commercialization of sorghum milling in Botswana: trends and prospects. Working Paper Series No 6. Bulawayo, Zimbabwe: International Crops Research Institute for the Semi-Arid Tropics. 24 pp.

Romeis J, Shanower TG and **Zebitz CPW.** 1999. Trichogramma egg parasitism of *Helicoverpa armigera* on pigeonpea and sorghum in southern India. (In En.) 1:69–81.

Sahrawat KL, Rahman MH and Rao JK. 1999. Leaf phosphorus and sorghum yield underrainfed cropping of a vertisol. (In En.) 1:93–97.

Sairam RV, Seetharama N, Devi PS and Verma A. 1999. Culture and regeneration of mesophyll-derived protoplasts of sorghum (*Sorghumbicolor* [L.] Moench). Pp. 972–977.

Seetharama A. 1977. Study on the performance of sorghum cultivars on soils of varying zinc status. M.Sc. thesis, Andhra Pradesh Agricultural University, Hyderabad, Andhra Pradesh, India. 47 pp.

Sharma HC, Taneja SL, Leuschner K and Nwanze KF. 1992. Techniques to screen sorghums for resistance to insect pests. (In En, Summary in En, Fr, Es.) Information Bulletin no. 32. Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. 53 pp.

Sharma HC. 1998. Host-plant resistance to shoot fly and spotted stem borer in sorghum. Pages 22–25 in Strengthening sorghum research collaboration in Asia: report of the Asian Sorghum Scientists' Meeting, Suphan Buri, Thailand, 18–21 Nov 1997(Gowda CLL and Stenhouse JW, eds.). Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. 72 pp.

Sharma HC. 2001. Crop protection compendium: sorghum shoot fly, *Atherigona soccata:* biology and management. (In En.) Patachcheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics; Wallingford, UK: Commonwealth Agricultural Bureaux International. 28 pp.

Siaka SB, Ouendeba B and **Kumar KA**. 2002. Strategies de selection du mil au Sahel. Presentaté à CFC expert meeting on Pearl Millet and Sorghum, 23–26 Avril, Bamako, Mali.

SMIC (Sorghum and Millets Information Center). 1982. Directory of sorghum and millets research workers. Patancheru, Andhra Pradesh 502 324, India: ICRISAT. 184 pp.

SMIC (Sorghum and Millets Information Center). 1982. Sorghum bibliography 1970–73. (In En.). Patancheru, Andhra Pradesh 502 324, India: ICRISAT. 148 pp.

SMIC (Sorghum and Millets Information Center). 1984. Sorghum bibliography 1977–80. (In En.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. 532 pp.

Sree PS. 1991. Factors associated with resistance in sorghum shoot fly *Atherigona soccata* Rondani. Ph.D.

thesis, Andhra Pradesh Agricultural University, Hyderabad, Andhra Pradesh, India. 160 pp.

Tandon HLS and Kanwar JS. 1984. A review of fertilizer use research on sorghum in India. (In En. Summary in En, Fr.) Research Bulletin no. 8. Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. 68 pp.

Teetes GL, Seshu Reddy KV, Leuschner K and **House LR.** 1983. Sorghum insect identification handbook. (In En.) Information Bulletin no. 12,. Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. 124 pp.

Thomas MD. 1992. Sorghum diseases in Western Africa. Sorghum and millets diseases: a second world review (de Milliano WAJ, Frederiksen RA and Bengston GD, eds.). Patancheru, Andhra Pradesh 502 324, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 25–29.

Weltzien E. 2002. Moderniser le système tradionnel ou adapter le système moderne: quel enjeu? Presented at Strengthening farmers' seed systems as a basis for enhancing productivity and profitability of sorghum in Mali? Options and Recommendations from an interdisciplinary project, 29 Mar 2002, Bamako, Point Sud.

Yapi AM, Dehala G, Ngawara K and Issaka A. 1999. Assessment of the economic impact of sorghum variety S 35 in Chad. Impact Series No 6. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. 30 pp.

Yapi AM. 1999. Impact of germplasm research spillovers: the case of sorghum variety S 35 in Cameroon and Chad. Impact Series No 3. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. 26 pp.

Yapi AM. 2000. Analysis of the economic impact of sorghum and millet research in Mali. Impact Series No 8. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. 53 pp.

Citation: ICRISAT. 2004. Sorghum, a crop of substance. (In En.) Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. 97 pp. ISBN 92-9066-473-8. Order code GAE 049.

About ICRISAT

The International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) is a non-profit, non-political, international organization for science-based agricultural development. ICRISAT conducts research on sorghum, pearl millet, chickpea, pigeonpea and groundnut – crops that support the livelihoods of the poorest of the poor in the semi-arid tropics encompassing 48 countries. ICRISAT also shares information and knowledge through capacity building, publications and ICTs. Established in 1972, it is one of 15 Centers supported by the Consultative Group on International Agricultural Research (CGIAR).

Contact information: ICRISAT-Nairobi

(Regional hub ESA) PO Box 39063, Nairobi, Kenya Tel +254 20 524555 Fax 524001 icrisat-nairobi@cgiar.org

ICRISAT-Lilongwe Chitedze Agricultural Research Station PO Box 1096 Lilongwe, Malawi Tel +265-1-707297/071/067/057 Fax 707298 icrisat-malawi@cgiar.org

ICRISAT-Niamey (Regional hub WCA) BP 12404 Niamey, Niger (Via Paris) Tel +227 722529, 722725 Fax 734329 icrisatsc@cgiar.org

ICRISAT-Maputo c/o INIA, Av. das FPLM No 2698 Caixa Postal 1906 Maputo, Mozambique Tel +258-1-461657 Fax 461581 icrisatmoz@panintra.com

ICRISAT-Bamako BP 320 Bamako, Mali Tel +223 2223375

icrisat-w-mali@cgiar.org

Fax 223 2228683

ICRISAT-Patancheru

Patancheru 502 324

Andhra Pradesh, India

Tel +91 40 23296161 Fax +91 40 23241239

ICRISAT-Bulawayo

Bulawayo, Zimbabwe

Tel +263 83 8311-15

Fax +263 83 8253/8307

PO Box 776,

Matopos Research Station

(Headquarters)

icrisat@cgiar.org

icrisatzw@cgiar.org ic

www.icrisat.org

đ